101
|
Liu N, Tian J, Wang W, Cheng J, Hu D, Zhang J. Effect and mechanism of erythropoietin on mesenchymal stem cell proliferation in vitro under the acute kidney injury microenvironment. Exp Biol Med (Maywood) 2011; 236:1093-9. [PMID: 21865406 DOI: 10.1258/ebm.2011.011001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Erythropoietin (EPO) can stimulate the proliferation and protraction of endothelial progenitor cells, and plays an important role in the proliferation and differentiation of marrow-derived mesenchymal stem cells (mMSCs) under the acute kidney injury (AKI) microenvironment. In the present study, C57BL/6 mice mMSCs were isolated, and AKI mice models were prepared. The renal cortex was obtained to prepare the ischemia/reperfusion (I/R) kidney homogenate supernatant. P3-mMSCs were treated by different methods: one group was added only I/R kidney homogenate supernatant, and another contained different concentrations of EPO (1, 5, 10, 50 IU/mL) in I/R kidney homogenate supernatant. The proliferation and apoptosis of mMSCs were detected by CCK-8 and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling), respectively. Expression of erythropoietin receptor (EPOR) and protein of the signal pathway related to proliferation/apoptosis were also examined. The results showed that the proliferation ability of mMSCs treated with I/R kidney homogenate supernatant decreased significantly, while the apoptosis percentage was significantly higher than that of the control. After intervention of EPO, their proliferation enhanced and the apoptosis percentage decreased. EPOR expression was positive in P3-mMSCs. EPO decreased the expression of caspase-3 of mMSCs under the AKI microenvironment in a dose- and time-dependent manner, but increased the Bcl-2 expression. The expression of phosphor-Janus kinase 2, phosphor-signal transducer and activator of transcription (pSTAT-5) increased significantly in 10 IU/mL EPO cultured for five days. Our results show that EPO can promote proliferation of mMSCs in vitro under the AKI microenvironment, which is mediated by EPOR and related with the proliferation/apoptosis signal pathway.
Collapse
Affiliation(s)
- Nanmei Liu
- Department of Nephrology, 455th Hospital of PLA, Shanghai, China
| | | | | | | | | | | |
Collapse
|
102
|
Evaluation of transdifferentiation from mesenchymal stem cells to neuron-like cells using microfluidic patterned co-culture system. Biomed Microdevices 2011; 13:517-26. [PMID: 21347824 DOI: 10.1007/s10544-011-9520-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We design a microfluidic patterned co-culture system for mouse mesenchymal stem cells (mMSCs) and neural cells to demonstrate the paracrine effects produced by the neural cells in facilitating the transdifferentiation from mMSCs to neuron-like cells. Neural cells and mMSC are orderly patterned in the microfluidic co-culturing system without direct cell contact. This configuration provides us to calculate the percentage of neural marker transdifferentiated by mMSCs easily. We obtain higher transdifferentiated ratio of mMSC in the microfluidic co-culturing system (beta III tubulin: 67%; glial fibrillary acidic protein (GFAP): 86.2%) as compared with the traditional transwell co-culturing system (beta III tubulin: 59.8%; GFAP: 52.0%), which is similar to the spontaneous neural marker expression in the undifferentiated MSCs (beta III tubulin: 47.5%; GFAP: 60.1%). Furthermore, mMSCs expressing green fluorescent protein and neural cells expressing red fluorescent protein were also used in our co-culture system to demonstrate the rarely occurring or observed cell fusion phenomenon. The results show that the co-cultured neural cells increased the transdifferentiation efficiency of mMSCs from soluble factors secreted by neural cells.
Collapse
|
103
|
Ye Y, Wang B, Jiang X, Hu W, Feng J, Li H, Jin M, Ying Y, Wang W, Mao X, Jin K. Proliferative capacity of stem/progenitor-like cells in the kidney may associate with the outcome of patients with acute tubular necrosis. Hum Pathol 2011; 42:1132-41. [PMID: 21315412 PMCID: PMC3135674 DOI: 10.1016/j.humpath.2010.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/22/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
Abstract
Animal studies indicate that adult renal stem/progenitor cells can undergo rapid proliferation in response to renal injury, but whether the same is true in humans is largely unknown. To examine the profile of renal stem/progenitor cells responsible for acute tubular necrosis in human kidney, double and triple immunostaining was performed using proliferative marker and stem/progenitor protein markers on sections from 10 kidneys with acute tubular necrosis and 4 normal adult kidneys. The immunopositive cells were recorded using 2-photon confocal laser scanning microscopy. We found that dividing cells were present in the tubules of the cortex and medulla, as well as the glomerulus in normal human kidney. Proliferative cells in the parietal layer of Bowman capsule expressed CD133, and dividing cells in the tubules expressed immature cell protein markers paired box gene 2, vimentin, and nestin. After acute tubular necrosis, Ki67-positive cells in the cortex tubules significantly increased compared with normal adult kidney. These Ki67-positive cells expressed CD133 and paired box gene 2, but not the cell death marker, activated caspase-3. In addition, the number of dividing cells increased significantly in patients with acute tubular necrosis who subsequently recovered, compared with patients with acute tubular necrosis who consequently developed protracted acute tubular necrosis or died. Our data suggest that renal stem/progenitor cells may reside not only in the parietal layer of Bowman capsule but also in the cortex and medulla in normal human kidney, and the proliferative capacity of renal stem/progenitor cells after acute tubular necrosis may be an important determinant of a patient's outcome.
Collapse
Affiliation(s)
- Youxin Ye
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang 310016, China
| | - Bingyin Wang
- Department of Urology, Stanford University School of Medicine, Palo Alto, CA94305, USA
| | - Xinxin Jiang
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang 310016, China
| | - Weiming Hu
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang 310016, China
| | - Jian Feng
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang 310016, China
| | - Hua Li
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang 310016, China
| | - Mei Jin
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang 310016, China
| | - Yingjuan Ying
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang 310016, China
| | - Wenjuan Wang
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang 310016, China
| | - XiaoOu Mao
- Buck Institute for Age Research, Novato, CA 94945, USA
| | - Kunlin Jin
- Buck Institute for Age Research, Novato, CA 94945, USA
| |
Collapse
|
104
|
Dai LJ, Moniri MR, Zeng ZR, Zhou JX, Rayat J, Warnock GL. Potential implications of mesenchymal stem cells in cancer therapy. Cancer Lett 2011; 305:8-20. [PMID: 21396770 DOI: 10.1016/j.canlet.2011.02.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/13/2011] [Accepted: 02/15/2011] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are the first type of stem cells to be utilized in clinical regenerative medicine, mainly owing to their capacity for multipotent differentiation and the feasibility of autologous transplantation. More recently, the specific tumor-oriented migration and incorporation of MSCs have been demonstrated in various pre-clinical models, highlighting the potential for MSCs to be used as an ideal carrier for anticancer gene delivery. Engineered with specific anticancer genes, MSCs possess the ability of dual-targeting tumor cells. This contrasts with non-engineered native MSCs which have intrinsic pro- and anti-tumorigenic properties. Engineered MSCs are capable of producing specific anticancer agents locally and constantly. Astute investigation on engineered MSCs may lead to a new avenue toward an efficient therapy for patients with cancer.
Collapse
Affiliation(s)
- Long-Jun Dai
- Department of Surgery, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | |
Collapse
|
105
|
Pulavendran S, Rose C, Mandal AB. Hepatocyte growth factor incorporated chitosan nanoparticles augment the differentiation of stem cell into hepatocytes for the recovery of liver cirrhosis in mice. J Nanobiotechnology 2011; 9:15. [PMID: 21526984 PMCID: PMC3108285 DOI: 10.1186/1477-3155-9-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 04/28/2011] [Indexed: 01/18/2023] Open
Abstract
Background Short half-life and low levels of growth factors in the niche of injured microenvironment necessitates the exogenous and sustainable delivery of growth factors along with stem cells to augment the regeneration of injured tissues. Methods Here, recombinant human hepatocyte growth factor (HGF) was incorporated into chitosan nanoparticles (CNP) by ionic gelation method and studied for its morphological and physiological characteristics. Cirrhotic mice received either hematopoietic stem cells (HSC) or mesenchymal stemcells (MSC) with or without HGF incorporated chitosan nanoparticles (HGF-CNP) and saline as control. Biochemical, histological, immunostaining and gene expression assays were carried out using serum and liver tissue samples. One way analysis of variance was used for statics application Results Serum levels of selected liver protein and enzymes were significantly increased in the combination of MSC and HGF-CNP (MSC+HGF-CNP) treated group. Immunopositive staining for albumin (Alb) and cytokeratin 18 (CK18), and reverse transcription-polymerase chain reaction (RT-PCR) for Alb, alpha fetoprotein (AFP), CK18, cytokeratin 19 (CK19) ascertained that MSC-HGF-CNP treatment could be an effective combination to repopulate liver parenchymal cells in the liver cirrhosis. Zymogram and western blotting for matrix metalloproteinases 2 and 9 (MMP2 and MMP9) revealed that MMP2 actively involved in the fibrolysis of cirrhotic tissue. Immunostaining for alpha smooth muscle actin (αSMA) and type I collagen showed decreased expression in the MSC+HGF-CNP treatment. These results indicated that HGF-CNP enhanced the differentiation of stem cells into hepatocytes and supported the reversal of fibrolysis of extracellular matrix (ECM). Conclusion Bone marrow stem cells were isolated, characterized and transplanted in mice model. Biodegradable biopolymeric nanoparticles were prepared with the pleotrophic protein molecule and it worked well for the differentiation of stem cells, especially mesenchymal phenotypic cells. Transplantation of bone marrow MSC in combination with HGF-CNP could be an ideal approach for the treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Sivasami Pulavendran
- Department of Biotechnology, Central Leather Research Institute, Adyar, Chennai-600020, India
| | | | | |
Collapse
|
106
|
Zhen G, Xue Z, Zhao J, Gu N, Tang Z, Xu Y, Zhang Z. Mesenchymal stem cell transplantation increases expression of vascular endothelial growth factor in papain-induced emphysematous lungs and inhibits apoptosis of lung cells. Cytotherapy 2011; 12:605-14. [PMID: 20429787 DOI: 10.3109/14653241003745888] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pulmonary emphysema is characterized by loss of alveolar structures. We have found that bone marrow (BM) mesenchymal stem cell (MSC) transplantation ameliorates papain-induced pulmonary emphysema. However, the underlying mechanism is not completely understood. It has been shown that blocking the vascular endothelial growth factor (VEGF) signaling pathway leads to apoptosis of lung cells and pulmonary emphysema, and MSC are capable of secreting VEGF. We hypothesized that MSC transplantation may have a protective effect on pulmonary emphysema by increasing VEGF-A expression and inhibiting apoptosis of lung cells. METHODS We examined the morphology and expression of VEGF-A in rat lung after papain treatment and MSC transplantation. We also used a co-culture system in which MSC and cells prepared from papain-treated lungs or control lungs were cultured together. The levels of VEGF-A in cells and culture medium were determined, and apoptosis of cultured lung cells was evaluated. RESULTS VEGF-A expression in rat lungs was decreased after papain treatment, which was partly rescued by MSC transplantation. MSC production of VEGF-A was increased when MSC were co-cultured with cells prepared from papain-treated lungs. Furthermore, the apoptosis of papain-treated lung cells was inhibited when co-cultured with MSC. The induction of MSC production of VEGF-A by papain-treated lung cells was inhibited by adding anti-tumor necrosis factor (TNF)-alpha antibody to the medium. CONCLUSIONS The protective effect of MSC transplantation on pulmonary emphysema may be partly mediated by increasing VEGF-A expression and inhibiting the apoptosis of lung cells. TNF-alpha released from papain-treated lung cells induces MSC to secret VEGF-A.
Collapse
Affiliation(s)
- Guohua Zhen
- Division of Respiratory Diseases, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | | | | | | | | | |
Collapse
|
107
|
Deak E, Seifried E, Henschler R. Homing pathways of mesenchymal stromal cells (MSCs) and their role in clinical applications. Int Rev Immunol 2011; 29:514-29. [PMID: 20839913 DOI: 10.3109/08830185.2010.498931] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSCs) have come into focus for an increasing number of cellular therapies. Since most clinical protocols use intravenous application of MSCs, it has become important to understand their trafficking in the bloodstream. Moreover, since relatively little is known where the transplanted MSCs might locate, a better understanding of involved homing mechanisms will likely shed light on how MSCs exert their therapeutic effects. This review focuses on the current knowledge of homing pathways of transplanted MSCs. We describe regulatory signalling molecules and receptors involved. An outlook is given on significance of these findings for the future use of MSCs as a cellular therapeutic.
Collapse
Affiliation(s)
- Erika Deak
- Stem Cell Biology Group, DRK Institute of Transfusion Medicine and Immune Hematology, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
108
|
Lee SH, Jang AS, Kwon JH, Park SK, Won JH, Park CS. Mesenchymal stem cell transfer suppresses airway remodeling in a toluene diisocyanate-induced murine asthma model. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2011; 3:205-11. [PMID: 21738887 PMCID: PMC3121063 DOI: 10.4168/aair.2011.3.3.205] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 01/21/2011] [Indexed: 12/16/2022]
Abstract
Purpose Severe asthma is characterized by high medication requirements to maintain good disease control or by persistent symptoms despite high medication use. The transfer of bone marrow-derived mesenchymal stem cells (BMDMSCs) to the injured lungs is a possible treatment for severe asthma. This study investigated the therapeutic effects of BMDMSCs in airway remodeling and inflammation in an experimental toluene diisocyanate (TDI)-induced asthma animal model of severe asthma. Methods BMDMSCs were transferred into rats after TDI inhalation. Bronchoalveolar lavage (BAL) cell profiles, histological changes including an inflammatory index and goblet cell hyperplasia, and the airway response to methacholine using plethysmography were analyzed. Smooth muscle actin (SMA) and proliferating cell nuclear antigen (PCNA) protein expression were observed in lung tissue using immunohistochemical staining. The collagen content was measured in lung tissue sections and lung extracts using Masson's trichrome staining and an immunoassay kit. Results The numbers of inflammatory cells in BAL fluid, histological inflammatory index, airway response to methacholine, number of goblet cells, and amount of collagen were increased in TDI-treated rats compared with sham rats (P=0.05-0.002). BMDMSC transfer significantly reduced the TDI-induced increase in the inflammatory index and numbers of eosinophils and neutrophils in BAL fluid to levels seen in sham-treated rats (P<0.05). BMDMSC transfer significantly reduced the number of goblet cells, collagen deposition, and immune staining for SMA and PCNA with concomitant normalization of the airway response to methacholine. Conclusions The systemic transfer of BMDMSCs effectively reduced experimental TDI-induced airway inflammation and remodeling and airway hyperreactivity.
Collapse
Affiliation(s)
- Shin-Hwa Lee
- Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | | | | | | | | | | |
Collapse
|
109
|
Katsara O, Mahaira LG, Iliopoulou EG, Moustaki A, Antsaklis A, Loutradis D, Stefanidis K, Baxevanis CN, Papamichail M, Perez SA. Effects of donor age, gender, and in vitro cellular aging on the phenotypic, functional, and molecular characteristics of mouse bone marrow-derived mesenchymal stem cells. Stem Cells Dev 2011; 20:1549-61. [PMID: 21204633 DOI: 10.1089/scd.2010.0280] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a very important adult stem cell population with a multitude of potential applications in regenerative medicine. The thorough characterization of the bone marrow MSC (BM-MSC) population derived from the BALB/c species was essential, considering the significance of the murine model amongst animal models. In the present study, we examined the effect of gender, age, and in vitro culture on the basic properties (proliferation, differentiation, and immunosuppressive potential) of BM-MSCs. We found a decline in the progenitor frequencies from the BM of adult mice, lower MSC frequencies in all female donors, and an increase in the BM-MSC proliferation rate upon in vitro propagation. We also examined BM-MSCs for the expression of the 3 major embryonic stem cell transcription factors, Oct3/4, Sox-2, and Nanog, as well as 2 mRNA binding proteins, coding region determinant binding protein/insulin-like growth factor 2 mRNA binding protein 1 (Crd-bp/Imp1) and Deleted in azoospermia-like (Dazl), which are expressed in primitive stem cells, umbilical cord blood-hematopoietic stem cells and amniotic fluid stem cells, respectively. Further, it has been reported that these 2 genes are critical for embryonic development. In this study, therefore, we report, for the first time, the expression of Crd-bp/Imp1 and Dazl in BM-MSCs. Dazl, Oct3/4, and Sox2 were detected in relatively low levels in contrast to Crd-bp/Imp1, its major target c-Myc, as well as Nanog, which were expressed redundantly, irrespective of sex, donor age, or in vitro passaging. These findings could further support the extrinsic theory of aging of the MSC population and the potential implication of embryonic genes in adult stem cell physiology.
Collapse
Affiliation(s)
- Olga Katsara
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Shafritz DA, Oertel M. Model systems and experimental conditions that lead to effective repopulation of the liver by transplanted cells. Int J Biochem Cell Biol 2011; 43:198-213. [PMID: 20080205 PMCID: PMC2907475 DOI: 10.1016/j.biocel.2010.01.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/22/2009] [Accepted: 01/07/2010] [Indexed: 12/26/2022]
Abstract
In recent years, there has been substantial progress in transplanting cells into the liver with the ultimate goal of restoring liver mass and function in both inherited and acquired liver diseases. The basis for considering that this might be feasible is that the liver is a highly regenerative organ. After massive liver injury or surgical removal of two-thirds or more of the liver tissue, the organ can restore its mass with completely normal morphologic structure and function. It has also been found under highly selective conditions that transplanted hepatocytes can fully repopulate the liver and cure a metabolic disorder or deficiency state. Fetal liver cells can also substantially repopulate the normal liver, and it is hoped in the future that effective repopulation will be achievable with cultured cells or cell lines, pluripotent stem cells from other somatic tissues, embryonic stem cells, or induced pluripotent stem cells, which can now be generated in vitro by a variety of methods. The purpose of this review is to present the major systems that have been used for liver repopulation, the variables involved in obtaining successful repopulation and what has been achieved in these various systems to date with different cell types.
Collapse
Affiliation(s)
- David A Shafritz
- Marion Bessin Liver Research Center, Department of Medicine and Division of Hepatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
111
|
White RB. Looks like a duck, quacks like a duck … still behaves like a bone marrow stromal cell. Transl Res 2011; 157:53-5. [PMID: 21256456 DOI: 10.1016/j.trsl.2010.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 11/30/2022]
Affiliation(s)
- Robert B White
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
112
|
Drzewiecki BA, Thomas JC, Tanaka ST. Bone marrow-derived mesenchymal stem cells: current and future applications in the urinary bladder. Stem Cells Int 2011; 2010:765167. [PMID: 21253479 PMCID: PMC3022195 DOI: 10.4061/2010/765167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/14/2010] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells can be isolated from almost any adult tissue. In this paper we focus on bone marrow-derived mesenchymal stem cells which have captured the interest of researchers since their introduction because of the promising potential of tissue regeneration and repair. They are known for their ability to self-renew and differentiate into diverse lineages while maintaining low immunogenicity. The exact mechanisms behind how these cells work still remain unclear, and there is a continuing shift in the paradigms that support them. There has been extensive research in multiple organ systems; however, the genitorurinary system has been vastly underrepresented. This article discusses the background behind bone marrow-derived mesenchymal stem cells and they are currently being applied to the urinary bladder in the realm of tissue engineering. We also postulate on their future applications based on the current literature in other organ systems.
Collapse
Affiliation(s)
- Beth A. Drzewiecki
- Division of Pediatric Urology, Monroe Carell, Jr. Children's Hospital, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John C. Thomas
- Division of Pediatric Urology, Monroe Carell, Jr. Children's Hospital, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Stacy T. Tanaka
- Division of Pediatric Urology, Monroe Carell, Jr. Children's Hospital, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
113
|
Laminopathies: the molecular background of the disease and the prospects for its treatment. Cell Mol Biol Lett 2010; 16:114-48. [PMID: 21225470 PMCID: PMC6275778 DOI: 10.2478/s11658-010-0038-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/13/2010] [Indexed: 02/06/2023] Open
Abstract
Laminopathies are rare human degenerative disorders with a wide spectrum of clinical phenotypes, associated with defects in the main protein components of the nuclear envelope, mostly in the lamins. They include systemic disorders and tissue-restricted diseases. Scientists have been trying to explain the pathogenesis of laminopathies and find an efficient method for treatment for many years. In this review, we discuss the current state of knowledge about laminopathies, the molecular mechanisms behind the development of particular phenotypes, and the prospects for stem cell and/or gene therapy treatments.
Collapse
|
114
|
Mesenchymal Stem Cells and the Origin of Ewing's Sarcoma. Sarcoma 2010; 2011. [PMID: 20953407 PMCID: PMC2952797 DOI: 10.1155/2011/276463] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 09/06/2010] [Indexed: 12/17/2022] Open
Abstract
The origin of Ewing's sarcoma is a subject of much debate. Once thought to be derived from primitive neuroectodermal cells, many now believe it to arise from a mesenchymal stem cell (MSC). Expression of the EWS-FLI1 fusion gene in MSCs changes cell morphology to resemble Ewing's sarcoma and induces expression of neuroectodermal markers. In murine cells, transformation to sarcomas can occur. In knockdown experiments, Ewing's sarcoma cells develop characteristics of MSCs and the ability to differentiate into mesodermal lineages. However, it cannot be concluded that MSCs are the cell of origin. The concept of an MSC still needs to be rigorously defined, and there may be different subpopulations of mesenchymal pluripotential cells. Furthermore, EWS-FLI1 by itself does not transform human cells, and cooperating mutations appear to be necessary. Therefore, while it is possible that Ewing's sarcoma may originate from a primitive mesenchymal cell, the idea needs to be refined further.
Collapse
|
115
|
Li F, Wang X, Niyibizi C. Bone marrow stromal cells contribute to bone formation following infusion into femoral cavities of a mouse model of osteogenesis imperfecta. Bone 2010; 47:546-55. [PMID: 20570757 PMCID: PMC2926210 DOI: 10.1016/j.bone.2010.05.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 04/22/2010] [Accepted: 05/25/2010] [Indexed: 11/23/2022]
Abstract
Currently, there are conflicting data in literature regarding contribution of bone marrow stromal cells (BMSCs) to bone formation when the cells are systemically delivered in recipient animals. To understand if BMSCs contribute to bone cell phenotype and bone formation in osteogenesis imperfecta bones (OI), MSCs marked with GFP were directly infused into the femurs of a mouse model of OI (oim). The contribution of the cells to the cell phenotype and bone formation was assessed by histology, immunohistochemistry and biomechanical loading of recipient bones. Two weeks following infusion of BMSCs, histological examination of the recipient femurs demonstrated presence of new bone when compared to femurs injected with saline which showed little or no bone formation. The new bone contained few donor cells as demonstrated by GFP fluorescence. At 6 weeks following cell injection, new bone was still detectable in the recipient femurs but was enhanced by injection of the cells suspended in pepsin solubilized type I collagen. Immunofluorescence and immunohistochemical staining showed that donor GFP positive cells in the new bone were localized with osteocalcin expressing cells suggesting that the cells differentiated into osteoblasts in vivo. Biomechanical loading to failure in three point bending, revealed that, femurs infused with BMSCs in PBS or in soluble type I collagen were biomechanically stronger than those injected with PBS or type I collagen alone. Taken together, the results indicate that transplanted cells differentiated into osteoblasts in vivo and contributed to bone formation in vivo; we also speculate that donor cells induced differentiation or recruitment of endogenous cells to initiate reparative process at early stages following transplantation.
Collapse
Affiliation(s)
- Feng Li
- Pennsylvania State University College of Medicine, Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Hershey, PA 17033, USA
| | - Xujun Wang
- Pennsylvania State University College of Medicine, Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Hershey, PA 17033, USA
| | - Christopher Niyibizi
- Pennsylvania State University College of Medicine, Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Hershey, PA 17033, USA
- Department of Biochemistry and Molecular Biology, Hershey, PA 17033, USA
| |
Collapse
|
116
|
Valorani MG, Germani A, Otto WR, Harper L, Biddle A, Khoo CP, Lin WR, Hawa MI, Tropel P, Patrizi MP, Pozzilli P, Alison MR. Hypoxia increases Sca-1/CD44 co-expression in murine mesenchymal stem cells and enhances their adipogenic differentiation potential. Cell Tissue Res 2010; 341:111-120. [PMID: 20496083 DOI: 10.1007/s00441-010-0982-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 04/14/2010] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are usually cultured under normoxic conditions (21% oxygen). However, in vivo, the physiological "niches" for MSCs have a much lower oxygen tension. Because of their plasticity, stem cells are particularly sensitive to their environments, and oxygen tension is one developmentally important stimulus in stem cell biology and plays a role in the intricate balance between cellular proliferation and commitment towards differentiation. Therefore, we investigated here the effect of hypoxia (2% oxygen) on murine adipose tissue (AT) MSC proliferation and adipogenic differentiation. AT cells were obtained from the omental fat and AT-MSCs were selected for their ability to attach to the plastic dishes, and were grown under normoxic and hypoxic conditions. Prior exposure of MSCs to hypoxia led to a significant reduction of ex vivo expansion time, with significantly increased numbers of Sca-1(+) as well as Sca-1(+)/CD44(+)double-positive cells. Under low oxygen culture conditions, the AT-MSC number markedly increased and their adipogenic differentiation potential was reduced. Notably, the hypoxia-mediated inhibition of adipogenic differentiation was reversible: AT-MSCs pre-exposed to hypoxia when switched to normoxic conditions exhibited significantly higher adipogenic differentiation capacity compared to their pre-exposed normoxic-cultured counterparts. Accordingly, the expression of adipocyte-specific genes, peroxisome proliferator activated receptor gamma (Ppargamma), lipoprotein lipase (Lpl) and fatty acid binding protein 4 (Fabp4) were significantly enhanced in hypoxia pre-exposed AT-MSCs. In conclusion, pre-culturing MSCs under hypoxic culture conditions may represent a strategy to enhance MSC production, enrichment and adipogenic differentiation.
Collapse
Affiliation(s)
- M G Valorani
- Centre for Diabetes, Blizard Institute of Cell and Molecular Science, Barts & the London School of Medicine & Dentistry, Queen Mary University of London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Li Q, Turdi S, Thomas DP, Zhou T, Ren J. Intra-myocardial delivery of mesenchymal stem cells ameliorates left ventricular and cardiomyocyte contractile dysfunction following myocardial infarction. Toxicol Lett 2010; 195:119-26. [PMID: 20303399 PMCID: PMC2862825 DOI: 10.1016/j.toxlet.2010.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 11/27/2022]
Abstract
Although mesenchymal stem cells (MSCs) transplantation may improve the overall heart function, the heterogeneity of myocardial cells makes it difficult to determine the nature of cells benefited from transplantation. This study evaluated the effect of intra-myocardial MSC transplantation on myocardial function following MI. Enhanced green fluorescent protein (EGFP)-expressing donor MSCs from C57BL/6-Tg (UBC-GFP) 30Scha/J mice were transplanted into LV free wall in the region bordering an infarct in C57 recipient mice following ligation of left main coronary artery (MI+MSC group). Ten days after MI, LV function was assessed using echocardiography. Cardiomyocyte contractility and intracellular Ca(2+) transients were measured in cells from the area-at-risk surrounding the infarct scar. The EGFP donor cells were traced in the MSC recipient mice using fluorescence microscopy. TUNEL, H&E and Masson trichrome staining were used to assess apoptosis, angiogenesis and myocardial fibrosis, respectively. MI dilated LV as evidenced by increased end-diastolic and end-systolic diameters. MI significantly reduced fractional shortening, cardiomyocyte peak shortening, and maximal velocity of shortening and relengthening, all of which were attenuated or abrogated by MSC therapy. MI also reduced resting intracellular Ca(2+), intracellular Ca(2+) rise and decay rate, which were reconciled by MSC. MSC therapy attenuated MI-induced apoptosis and decreased angiogenesis but not myocardial fibrosis in the peri-infarct area. Taken together, our results demonstrated that MSC therapy significantly improved both LV and cardiomyocyte function possibly associated with its beneficial role in apoptosis and angiogenesis, indicating a key role for cardiomyocytes in stem cell tissue engineering.
Collapse
Affiliation(s)
- Qun Li
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Subat Turdi
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - D. Paul Thomas
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY 82071, USA
| | | | - Jun Ren
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
118
|
Chen Y, Xiang LX, Shao JZ, Pan RL, Wang YX, Dong XJ, Zhang GR. Recruitment of endogenous bone marrow mesenchymal stem cells towards injured liver. J Cell Mol Med 2010; 14:1494-508. [PMID: 19780871 PMCID: PMC3829016 DOI: 10.1111/j.1582-4934.2009.00912.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 08/11/2009] [Indexed: 01/16/2023] Open
Abstract
Recent studies suggest that mesenchymal stem cells (MSCs) possess a greater differentiation potential than once thought and that they have the capacity to regenerate damaged tissues/organs. However, the evidence is insufficient, and the mechanism governing the recruitment and homing of MSCs to these injured sites is not well understood. We first examined the MSCs circulating in peripheral blood and then performed chemotaxis, wound healing and tubule-formation assays to investigate the migration capability of mouse bone marrow MSCs (mBM-MSCs) in response to liver-injury signals. In addition, BM-MSCs from donor enhanced green fluorescent protein transgenic male mice were transplanted into liver-injured co-isogenic female recipients, either by intra-bone marrow injection or through the caudal vein, to allow in vivo tracking analysis of the cell fate after transplantation. Donor-derived cells were analysed by in vivo imaging analysis, PCR, flow cytometry and frozen sections. Microarray and real-time PCR were used for chemokine/cytokine and receptor analyses. We successfully isolated circulating MSCs in peripheral blood of liver-injured mice and provided direct evidence that mBM-MSCs could be mobilized into the circulation and recruited into the liver after stimulation of liver injury. CCR9, CXCR4 and c-MET were essential for directing cellular migration towards the injured liver. The recruited mBM-MSCs may play different roles, including hepatic fate specification and down-regulation of the activity of hepatic stellate cells which inhibits over-accumulation of collagen and development of liver fibrosis. Our results provide new insights into liver repair involving endogenous BM-MSCs and add new information for consideration when developing clinical protocols involving the MSCs.
Collapse
Affiliation(s)
- Ye Chen
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang ProvinceHangzhou, P. R. China
| | - Li-Xin Xiang
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang ProvinceHangzhou, P. R. China
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang ProvinceHangzhou, P. R. China
| | - Ruo-Lang Pan
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang ProvinceHangzhou, P. R. China
| | - Yu-Xi Wang
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang ProvinceHangzhou, P. R. China
| | - Xue-Jun Dong
- The Molecular Medicine Center of Shaoxing People’s Hospital, The First Affiliate Hospital of Shaoxing UniversityShaoxing, P. R. China
| | - Guo-Rong Zhang
- The Molecular Medicine Center of Shaoxing People’s Hospital, The First Affiliate Hospital of Shaoxing UniversityShaoxing, P. R. China
| |
Collapse
|
119
|
Deak E, Rüster B, Keller L, Eckert K, Fichtner I, Seifried E, Henschler R. Suspension medium influences interaction of mesenchymal stromal cells with endothelium and pulmonary toxicity after transplantation in mice. Cytotherapy 2010; 12:260-4. [PMID: 19929457 DOI: 10.3109/14653240903401840] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intravenous (i.v.) transplantation and subsequent homing of Mesenchymal Stromal Cells (MSC) may be adversely influenced by their relatively high adhesion capacity and their tendency to aggregate, leading to clogging of capillaries especially in the lungs. We evaluated the ability of murine MSC suspended in EDTA or heparin in buffered saline solution on their spontaneous adhesion to endothelial cells in vitro, under shear stress and their in vivo tolerability after i.v. injection. We show that suspension of MSC in heparin was highly beneficial, avoiding clinical symptoms in 95% of mice, whereas application of MSC suspended in PBS/EDTA or control buffer caused severe pulmonary reactions and partly, death. In vitro studies using parallel plate flow chambers revealed increased adhesion of MSC suspended in PBS/EDTA to endothelial cells compared with MSC in PBS/heparin. These data provide a means to predict and to interfere with toxicity of i.v. transplanted MSC.
Collapse
Affiliation(s)
- Erika Deak
- Stem Cell Biology Group, DRK Institute of Transfusion Medicine and Immune Hematology, Johann Wolfgang Goethe University, D-60528 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
120
|
Aravalli RN. Progress in stem cell-derived technologies for hepatocellular carcinoma. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2010; 3:81-92. [PMID: 24198513 PMCID: PMC3781728 DOI: 10.2147/sccaa.s6886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Primary hepatocellular carcinoma (HCC) is a common malignancy that has a poor prognosis because it is often diagnosed at an advanced stage. HCC normally develops as a consequence of underlying liver disease and is most often associated with cirrhosis. Surgical resection and liver transplantation are the current best options to treat liver cancer. However, problems associated with liver transplantation, such as shortage of donors, risk of immune rejection, and tissue damage following surgery provided the impetus for development of alternative therapies. The emerging field of stem cell therapy has raised hopes for finding curative options for liver cancer. Stem cells have the ability not only to proliferate after transplantation but also to differentiate into most mammalian cell types in vivo. In this review, progress on stem cell-derived technologies for the treatment of liver cancer is discussed.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
121
|
Mello Coelho VD, Bunbury A, Rangel LB, Giri B, Weeraratna A, Morin PJ, Bernier M, Taub DD. Fat-storing multilocular cells expressing CCR5 increase in the thymus with advancing age: potential role for CCR5 ligands on the differentiation and migration of preadipocytes. Int J Med Sci 2009; 7:1-14. [PMID: 20046229 PMCID: PMC2792732 DOI: 10.7150/ijms.7.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 12/03/2009] [Indexed: 12/25/2022] Open
Abstract
Age-associated thymic involution is characterized by decreased thymopoiesis, adipocyte deposition and changes in the expression of various thymic microenvironmental factors. In this work, we characterized the distribution of fat-storing cells within the aging thymus. We found an increase of unilocular adipocytes, ERTR7(+) and CCR5(+ )fat-storing multilocular cells in the thymic septa and parenchymal regions, thus suggesting that mesenchymal cells could be immigrating and differentiating in the aging thymus. We verified that the expression of CCR5 and its ligands, CCL3, CCL4 and CCL5, were increased in the thymus with age. Hypothesizing that the increased expression of chemokines and the CCR5 receptor may play a role in adipocyte recruitment and/or differentiation within the aging thymus, we examined the potential role for CCR5 signaling on adipocyte physiology using 3T3-L1 pre-adipocyte cell line. Increased expression of the adipocyte differentiation markers, PPARgamma2 and aP2 in 3T3-L1 cells was observed under treatment with CCR5 ligands. Moreover, 3T3-L1 cells demonstrated an ability to migrate in vitro in response to CCR5 ligands. We believe that the increased presence of fat-storing cells expressing CCR5 within the aging thymus strongly suggests that these cells may be an active component of the thymic stromal cell compartment in the physiology of thymic aging. Moreover, we found that adipocyte differentiation appear to be influenced by the proinflammatory chemokines, CCL3, CCL4 and CCL5.
Collapse
Affiliation(s)
- Valeria de Mello Coelho
- Laboratories of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Vaghjiani RJ, Talma S, Murphy CL. Six-transmembrane epithelial antigen of the prostate (STEAP1 and STEAP2)-differentially expressed by murine and human mesenchymal stem cells. Tissue Eng Part A 2009; 15:2073-83. [PMID: 19196137 DOI: 10.1089/ten.tea.2008.0519] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have great potential for cell-based therapies. However, lack of cell-specific markers thwarts full realization of this as it prevents their identification in vivo, and subsequent purification. In the present study, to ensure cell purity multiple individual clones were derived from the bone marrow of BALB/b and BALB/c mice, and subsequently defined as MSCs by demonstrating their multipotentiality and self-renewal ability. In an effort to define the molecular signature of such MSCs and identify potentially cell-specific markers, an extensive genome-wide microarray analysis was performed comparing eight individual undifferentiated MSC clones to four different controls-corresponding differentiated MSC clones, bone marrow adherent cells, freshly isolated bone marrow cells, and embryonic fibroblasts. Strikingly, all MSC clones expressed differentially high levels of six-transmembrane epithelial antigen of the prostate (STEAP1 and STEAP2). Further, both STEAP members showed an extremely similar expression profile to stem cell antigen-1 (Sca-1) as demonstrated by two-dimensional hierarchical cluster analysis. Most importantly, differentially high levels of STEAP1 and STEAP2 proteins were also detected in human multipotent bone marrow adherent cultures. Thus, STEAPs may represent novel markers of MSCs in man as well as mice. Depletion of STEAP1 in human MSCs using RNAi resulted in decreased cell adhesion to tissue culture plastic. Further work is now needed to fully uncover its function in these cells, and to explore its potential as a marker of MSCs.
Collapse
Affiliation(s)
- Rasilaben J Vaghjiani
- Faculty of Medicine, The Kennedy Institute of Rheumatology, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
123
|
Aguilar S, Scotton CJ, McNulty K, Nye E, Stamp G, Laurent G, Bonnet D, Janes SM. Bone marrow stem cells expressing keratinocyte growth factor via an inducible lentivirus protects against bleomycin-induced pulmonary fibrosis. PLoS One 2009; 4:e8013. [PMID: 19956603 PMCID: PMC2779453 DOI: 10.1371/journal.pone.0008013] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 10/20/2009] [Indexed: 11/18/2022] Open
Abstract
Many common diseases of the gas exchange surface of the lung have no specific treatment but cause serious morbidity and mortality. Idiopathic Pulmonary Fibrosis (IPF) is characterized by alveolar epithelial cell injury, interstitial inflammation, fibroblast proliferation and collagen accumulation within the lung parenchyma. Keratinocyte Growth Factor (KGF, also known as FGF-7) is a critical mediator of pulmonary epithelial repair through stimulation of epithelial cell proliferation. During repair, the lung not only uses resident cells after injury but also recruits circulating bone marrow-derived cells (BMDC). Several groups have used Mesenchymal Stromal Cells (MSCs) as therapeutic vectors, but little is known about the potential of Hematopoietic Stem cells (HSCs). Using an inducible lentiviral vector (Tet-On) expressing KGF, we were able to efficiently transduce both MSCs and HSCs, and demonstrated that KGF expression is induced in a regulated manner both in vitro and in vivo. We used the in vivo bleomycin-induced lung fibrosis model to assess the potential therapeutic effect of MSCs and HSCs. While both populations reduced the collagen accumulation associated with bleomycin-induced lung fibrosis, only transplantation of transduced HSCs greatly attenuated the histological damage. Using double immunohistochemistry, we show that the reduced lung damage likely occurs through endogenous type II pneumocyte proliferation induced by KGF. Taken together, our data indicates that bone marrow transplantation of lentivirus-transduced HSCs can attenuate lung damage, and shows for the first time the potential of using an inducible Tet-On system for cell based gene therapy in the lung.
Collapse
Affiliation(s)
- Susana Aguilar
- Centre for Respiratory Research, Rayne Institute, University College London, London, United Kingdom
- Hematopoietic Stem Cell Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
| | - Chris J. Scotton
- Centre for Respiratory Research, Rayne Institute, University College London, London, United Kingdom
| | - Katrina McNulty
- Centre for Respiratory Research, Rayne Institute, University College London, London, United Kingdom
| | - Emma Nye
- Experimental Pathology Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
- Department of Histopathology, Imperial College London, London, United Kingdom
| | - Gordon Stamp
- Experimental Pathology Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
- Department of Histopathology, Imperial College London, London, United Kingdom
| | - Geoff Laurent
- Centre for Respiratory Research, Rayne Institute, University College London, London, United Kingdom
| | - Dominique Bonnet
- Hematopoietic Stem Cell Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom
- * E-mail: (DB); (SJ)
| | - Sam M. Janes
- Centre for Respiratory Research, Rayne Institute, University College London, London, United Kingdom
- * E-mail: (DB); (SJ)
| |
Collapse
|
124
|
Esposito MT, Di Noto R, Mirabelli P, Gorrese M, Parisi S, Montanaro D, Del Vecchio L, Pastore L. Culture conditions allow selection of different mesenchymal progenitors from adult mouse bone marrow. Tissue Eng Part A 2009; 15:2525-36. [PMID: 19298168 DOI: 10.1089/ten.tea.2008.0509] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The use of adult stem cells in tissue engineering approaches will benefit from the establishment of culture conditions that allow the expansion and maintenance of cells with stem cell-like activity and high differentiation potential. In the field of adult stem cells, bone marrow stromal cells (BMSCs) are promising candidates. In the present study, we define, for the first time, conditions for optimizing the yields of cultures enriched for specific progenitors of bone marrow. Using four distinct culture conditions, supernatants from culture of bone fragments, marrow stroma cell line MS-5, embryonic fibroblast cell line NIH3T3, and a cocktail of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF), we isolated four different sub-populations of murine BMSCs (mBMSCs). These cells express a well-known marker of undifferentiated embryonic stem cells (Nanog) and show interesting features in immunophenotype, self-renewal ability, and differentiation potency. In particular, using NIH3T3 conditioned medium, we obtained cells that showed impairment in osteogenic and chondrogenic differentiation while retaining high adipogenic potential during passages. Our results indicate that the choice of the medium used for isolation and expansion of mBMSCs is important for enriching the culture of desired specific progenitors.
Collapse
|
125
|
Karoubi G, Cortes-Dericks L, Breyer I, Schmid RA, Dutly AE. Identification of mesenchymal stromal cells in human lung parenchyma capable of differentiating into aquaporin 5-expressing cells. J Transl Med 2009; 89:1100-14. [PMID: 19652646 DOI: 10.1038/labinvest.2009.73] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The lack of effective therapies for end-stage lung disease validates the need for stem cell-based therapeutic approaches as alternative treatment options. In contrast with exogenous stem cell sources, the use of resident progenitor cells is advantageous considering the fact that the lung milieu is an ideal and familiar environment, thereby promoting the engraftment and differentiation of transplanted cells. Recent studies have shown the presence of multipotent 'mesenchymal stem cells' in the adult lung. The majority of these reports are, however, limited to animal models, and to date, there has been no report of a similar cell population in adult human lung parenchyma. Here, we show the identification of a population of primary human lung parenchyma (pHLP) mesenchymal stromal cells (MSCs) derived from intraoperative normal lung parenchyma biopsies. Surface and intracellular immunophenotyping by flow cytometry revealed that cultures do not contain alveolar type I epithelial cells or Clara cells, and are devoid of the following hematopoietic markers: CD34, CD45 and CXCR4. Cells show an expression pattern of surface antigens characteristic of MSCs, including CD73, CD166, CD105, CD90 and STRO-1. As per bone marrow MSCs, our pHLP cells have the ability to differentiate along the adipogenic, osteogenic and chondrogenic mesodermal lineages when cultured in the appropriate conditions. In addition, when placed in small airway growth media, pHLP cell cultures depict the expression of aquaporin 5 and Clara cell secretory protein, which is identified with that of alveolar type I epithelial cells and Clara cells, respectively, thereby exhibiting the capacity to potentially differentiate into airway epithelial cells. Further investigation of these resident cells may elucidate a therapeutic cell population capable of lung repair and/or regeneration.
Collapse
Affiliation(s)
- Golnaz Karoubi
- Division of General Thoracic Surgery, University Hospital Berne, Berne, Switzerland
| | | | | | | | | |
Collapse
|
126
|
Zemel R, Bachmetov L, Ad-El D, Abraham A, Tur-Kaspa R. Expression of liver-specific markers in naïve adipose-derived mesenchymal stem cells. Liver Int 2009; 29:1326-37. [PMID: 19515222 DOI: 10.1111/j.1478-3231.2009.02054.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Increasing evidence suggests that adipose tissue contains mesenchymal stem cells (MSC) that possess the ability to transdifferentiate into other cell types including hepatocytes, similar to bone marrow-derived stem cells. The existence of precommitted cells in the MSC population may explain transdifferentiation. AIMS Our aim was to identify a population of putative hepatocyte-like precursor cells in human adipose tissue. METHODS We analysed the 'basal' hepatic potential of undifferentiated, naïve human adipose-derived mesenchymal stem cells (hADMSC). hADMSC were isolated from human adipose tissue and characterized for cell surface markers and for liver-specific gene expression. RESULTS The isolated undifferentiated naïve hADMSCs expressed MSC surface markers. They also expressed alpha-fetoprotein, CK18, CK19 and HNF4, which are known as early liver expressing genes. Interestingly, the undifferentiated naïve hADMSC were also positive for albumin, G-6-P and alpha-1-antitrypsin (AAT), which are all known to be predominantly expressed in adult liver cells. These cells acquired a hepatocyte-specific phenotype and function upon treatment with a differentiation medium, resulting in the upregulation of albumin, G-6-P and AAT. Moreover, urea production, glycogen storage ability and cellular uptake of indocyanine green, which were absent in the basal state, were evident in the treated cells. CONCLUSIONS Our findings suggest the presence of cells with hepatocyte-like properties that are isolated from human adipose tissue and that can readily acquire hepatocyte-like functions. Adipose tissue could thus be an exciting alternative means for repopulating the liver after various injuries, and might serve as a source for the transplantation of liver cells.
Collapse
Affiliation(s)
- Romy Zemel
- Molecular Hepatology Research Laboratory, Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | | | | | | | | |
Collapse
|
127
|
Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 2009; 18:683-92. [PMID: 19099374 DOI: 10.1089/scd.2008.0253] [Citation(s) in RCA: 915] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intravenous (IV) stem cell delivery for regenerative tissue therapy has been increasingly used in both experimental and clinical trials. However, recent data suggest that the majority of administered stem cells are initially trapped in the lungs. We sought to investigate variables that may affect this pulmonary first-pass effect. In anesthetized Sprague-Dawley rats, silicone tubing catheters were placed in the left internal jugular vein and common carotid artery. We investigated four different cell types: mesenchymal stromal cells (MSC), multipotent adult progenitor cells (MAPCs), bone marrow-derived mononuclear cells (BMMC), and neural stem cells (NSC). Cells were co-labeled with Qtracker 655 (for flow cytometry) and Qtracker 800 (for infrared imaging) and infused intravenously with continual arterial sample collection. Samples were analyzed via flow cytometry to detect labeled cells reaching the arterial circulation. Following sampling and exsanguination, heart, lungs, spleen, kidney, and liver were harvested and placed on an infrared imaging system to identify the presence of labeled cells. The majority of MSCs were trapped inside the lungs following intravenous infusion. NSC and MAPC pulmonary passage was 2-fold and BMMC passage was 30-fold increased as compared to MSCs. Inhibition of MSC CD49d significantly increased MSC pulmonary passage. Infusion via two boluses increased pulmonary MSC passage as compared to single bolus administration. Infrared imaging revealed stem cells evenly distributed over all lung fields. Larger stem and progenitor cells are initially trapped inside the lungs following intravenous administration with a therapeutically questionable number of cells reaching the arterial system acutely.
Collapse
Affiliation(s)
- Uwe M Fischer
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
128
|
5-Azacytidine facilitates osteogenic gene expression and differentiation of mesenchymal stem cells by alteration in DNA methylation. Cytotechnology 2009; 60:11. [PMID: 19557538 DOI: 10.1007/s10616-009-9203-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Accepted: 06/07/2009] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are considered to be one of the most promising therapeutic cell sources as they encompass a plasticity of multiple cell lineages. The challenge in using these cells lies in developing well-defined protocols for directing cellular differentiation to generate a desired lineage. In this study, we investigated the effect of 5-azacytidine, a DNA demethylating agent, on osteogenic differentiation of MSCs. The cells were exposed to 5-azacytidine in culture medium for 24 h prior to osteogenic induction. Osteogenic differentiation was determined by several the appearance of a number of osteogenesis characteristics, including gene expression, ALP activity, and calcium mineralization. Pretreatment of MSCs with 5-azacytidine significantly facilitated osteogenic differentiation and was accompanied by hypomethylation of genomic DNA and increased osteogenic gene expression. Taking dlx5 as a representative, methylation alterations of the "CpG island shore" in the promoter caused by 5-azacytidine appeared to contribute to osteogenic differentiation.
Collapse
|
129
|
Kakinuma S, Nakauchi H, Watanabe M. Hepatic stem/progenitor cells and stem-cell transplantation for the treatment of liver disease. J Gastroenterol 2009; 44:167-72. [PMID: 19214659 DOI: 10.1007/s00535-008-2297-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 02/04/2023]
Abstract
Allogeneic liver transplantation is still the only effective treatment available to patients with liver failure. However, because there is a serious shortage of liver donors, an alternative therapeutic approach is needed. Transplantation of mature hepatocytes has been evaluated in clinical trials, but the long-term efficacy remains unclear and the paucity of donor cells limits this strategy. Stem-cell transplantation is a more promising alternative approach. Several studies have provided information about the mechanism underlying the proliferation and differentiation of hepatic stem/progenitor cells. Moreover, in experimental models of liver disease, transplantation of hepatic stem/progenitor cells or hepatocyte-like cells derived from multipotent stem cells led to donor cell-mediated repopulation of the liver and improved survival rates. However, before stem-cell transplantation can be applied in the clinic to treat liver failure in humans, it will be necessary to overcome several difficulties associated with the technique.
Collapse
Affiliation(s)
- Sei Kakinuma
- Division of Stem Cell Therapy, Center for Stem Cell and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | | | | |
Collapse
|
130
|
Yukawa H, Noguchi H, Oishi K, Takagi S, Hamaguchi M, Hamajima N, Hayashi S. Cell Transplantation of Adipose Tissue-Derived Stem Cells in Combination with Heparin Attenuated Acute Liver Failure in Mice. Cell Transplant 2009; 18:611-8. [DOI: 10.1177/096368970901805-617] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The effect of adipose tissue-derived stem cells (ASCs) in combination with heparin transplantation on acute liver failure mice with carbon tetrachloride (CCl4) injection was investigated. CCl4 is a well-known hepatotoxin and induces hepatic necrosis. Heparin did not affect the viability of ASCs for at least 24 h. The injection of heparin into the caudal tail vein decreased slightly the activities of the alanine aminotransferase (ALT), asparate aminotransferase (AST), and lactate dehydrogenase (LDH) in plasma. In the transplantation of ASCs (1 × 106 cells) group, there was a trend toward decreased activities of all markers. However, four out of six mice died of the lung infarction. In the transplantation of ASCs in combination with heparin group, there was also a trend toward decreased activities of all markers. In addition, all mice survived for at least the duration of the study period. In conclusion, the transplantation of ASCs in combination with heparin was thus found to effectively treat acute liver failure.
Collapse
Affiliation(s)
- Hiroshi Yukawa
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Nagoya 461-0047, Japan
| | - Hirofumi Noguchi
- Baylor All Saints Medical Center, Baylor Research Institute, Dallas, TX 75204, USA
| | - Koichi Oishi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Nagoya 461-0047, Japan
| | - Soichi Takagi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Nagoya 461-0047, Japan
| | - Michinari Hamaguchi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Nobuyuki Hamajima
- Department of Preventive Medicine, Biostatistics and Medical Decision Making, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shuji Hayashi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Nagoya 461-0047, Japan
| |
Collapse
|
131
|
Furlani D, Ugurlucan M, Ong L, Bieback K, Pittermann E, Westien I, Wang W, Yerebakan C, Li W, Gaebel R, Li RK, Vollmar B, Steinhoff G, Ma N. Is the intravascular administration of mesenchymal stem cells safe? Microvasc Res 2009; 77:370-6. [DOI: 10.1016/j.mvr.2009.02.001] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 02/05/2009] [Indexed: 01/16/2023]
|
132
|
Huang Y, Johnston P, Zhang B, Zakari A, Chowdhry T, Smith RR, Marbán E, Rabb H, Womer KL. Kidney-derived stromal cells modulate dendritic and T cell responses. J Am Soc Nephrol 2009; 20:831-41. [PMID: 19297559 DOI: 10.1681/asn.2008030310] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multipotent mesenchymal stromal cells from the bone marrow ameliorate acute kidney injury through a mechanism other than transdifferentiation into renal tissue. Stromal cells exert immunoregulatory effects on dendritic and T cells, both of which are important in the pathophysiology of immune-mediated kidney injury. We hypothesized that similar cells with immunoregulatory function exist within the adult kidney. We isolated murine kidney-derived cells with morphologic features, growth properties, and an immunophenotype characteristic of mesenchymal stromal cells. These cells lacked lineage markers and could be differentiated into mesodermal cell lineages, including osteocytes and adipocytes. Furthermore, these kidney-derived cells induced the generation of bone marrow-derived dendritic cells with significantly reduced MHC II expression, increased CD80 expression, increased IL-10 production and the inability to stimulate CD4+ T cell proliferation in allogeneic and nominal antigen-specific cultures. Experiments in mixed and transwell cultures demonstrated that the production of soluble immune modulators, such as IL-6, was responsible for these effects on dendritic cell differentiation and maturation. Contact-dependent mechanisms, however, inhibited mitogenic T cell proliferation. In summary, kidney-derived cells may suppress inflammation in the kidney in vivo; a better understanding of their biology could have therapeutic implications in a wide variety of immune-mediated kidney diseases.
Collapse
Affiliation(s)
- Yanfei Huang
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Gössler UR, Hörmann K. [New strategies for tissue replacement in the head and neck region]. HNO 2009; 57:100-12. [PMID: 19190887 DOI: 10.1007/s00106-008-1866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In recent years there has been an increase in the need for tissue replacement in the head and neck region. The disadvantages of classical reconstructive procedures are donor site morbidity for autologous transplants and the immunogenity of allogenous transplants. Tissue engineering is a promising method for the generation of autologous cartilagenous transplants for plastic and reconstructive surgery for closure of large defects by the use of minimal amounts of material for reconstruction. For this purpose harvested material must be cultivated in suitable culture/carrier systems. One obstacle is the loss of phenotype and function once the cells are detached from their environment (dedifferentiation). Adult mesenchymal stem cells are a valuable cell source for tissue engineering. The underlying strategy of using stem cells is the replacement of functionally compromised cells either by in vitro expanded stem cells or activation of stem cells in the tissue. However, there are still problems regarding valuable markers for cellular differentiation and the controlled differentiation towards a specific phenotype.
Collapse
Affiliation(s)
- U R Gössler
- Universitäts-HNO-Klinik, Universitätsmedizin Mannheim, Fakultät für Medizin Mannheim, Ruprecht-Karls-Universität Heidelberg, 68135, Mannheim.
| | | |
Collapse
|
134
|
Niyibizi C, Li F. Potential implications of cell therapy for osteogenesis imperfecta. INTERNATIONAL JOURNAL OF CLINICAL RHEUMATOLOGY 2009; 4:57-66. [PMID: 20490372 PMCID: PMC2873227 DOI: 10.2217/17584272.4.1.57] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Osteogenesis imperfecta (OI) is a brittle-bone disease whose hallmark is bone fragility. Since the disease is genetic, there is currently no available cure. Several pharmacological agents have been tried with not much success, except the recent use of bisphosphonates. Stem cells have been suggested as an alternative OI treatment, but many hurdles remain before this technology can be applied for treating patients with OI. This review summarizes what is known at present regarding the application of stem cells to treat OI using animal models, clinical trials using mesenchymal stem cells to treat patients with OI and the knowledge gained from the clinical trials. Application of gene therapy in combination with stem cells is also discussed. The hurdles to be overcome to bring stem cells close to the clinic and future perspectives are discussed.
Collapse
Affiliation(s)
- Christopher Niyibizi
- Author for correspondence: Pennsylvania State University College of Medicine, Associate professor of Orthopaedics and Rehabilitation, Biochemistry and Molecular Biology and Anatomy, H089, 500 University Drive, Hershey, PA 17033, USA, Tel.: +1 717 531 5649, Fax: +1 717 531 7583,
| | | |
Collapse
|
135
|
Vilalta M, Dégano IR, Bagó J, Gould D, Santos M, García-Arranz M, Ayats R, Fuster C, Chernajovsky Y, García-Olmo D, Rubio N, Blanco J. Biodistribution, long-term survival, and safety of human adipose tissue-derived mesenchymal stem cells transplanted in nude mice by high sensitivity non-invasive bioluminescence imaging. Stem Cells Dev 2008; 17:993-1003. [PMID: 18537463 DOI: 10.1089/scd.2007.0201] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cultivated murine bone marrow mesenchymal stem cells (MSCs) frequently accumulate chromosome abnormalities, become oncogenically transformed, and generate sarcomas when transplanted in mice. Although human MSCs appear to be more resistant, oncogenic transformation has also been observed in MSCs cultivated past the senescence phase. Cell therapy for tissue regeneration using human autologous MSCs requires transplantation of cells previously expanded in vitro. Thus, an important concern is to determine if oncogenic transformation is a necessary outcome of the expansion procedures. We have analyzed the proliferation capacity, organ colonization, and oncogenicity of enhanced green fluorescent protein and luciferase-labeled human adipose tissue-derived mesenchymal stem cells (hAMSCs), implanted in immunocompromised mice during a prolonged time period (8 months) using a non-invasive bioluminescence imaging procedure. Our data indicates that the liver was the preferred target organ for colonization by intramuscular or intravenous implantation of hAMSCs. The implanted cells tended to maintain a steady state, population did not proliferate rapidly after implantation, and no detectable chromosomal abnormalities nor tumors formed during the 8 months of residence in the host's tissues. It would appear that hAMSCs, contrary to their murine correlatives, could be safe candidates for autologous cell therapy procedures since in our experiments they show undetectable predisposition to oncogenic transformation after cultivation in vitro and implantation in mice.
Collapse
Affiliation(s)
- Marta Vilalta
- Centre d'investigació Cardiovascular (CSIC-ICCC), CIBER de Bioingenieria, Biomateriales y Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Anjos-Afonso F, Bonnet D. Isolation, culture, and differentiation potential of mouse marrow stromal cells. ACTA ACUST UNITED AC 2008; Chapter 2:Unit 2B.3. [PMID: 18972375 DOI: 10.1002/9780470151808.sc02b03s7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This unit describes how to isolate and expand mesenchymal stromal cells (MSCs) from mouse bone marrow. For reasons that are not clear, it has been difficult to isolate these cells (also known as mesenchymal stem cells). Furthermore, different mouse strains seem to have specific requirements for successful extraction and culture of these cells. A general and easy protocol is presented here for isolating stromal cells from different inbred and transgenic mice commonly used in the stem cell biology field.
Collapse
Affiliation(s)
- Fernando Anjos-Afonso
- Haematopoietic Stem Cell Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | | |
Collapse
|
137
|
Bao J, Tu Z, Sun H, Luo G, Yang L, Song J, Qin M, Shi Y, Bu H, Li Y. R2: identification of renal potential progenitor/stem cells that participate in the renal regeneration processes of kidney allograft fibrosis. Nephrology (Carlton) 2008; 13:500-507. [PMID: 18363645 DOI: 10.1111/j.1440-1797.2008.00939.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Many strategies are explored to ameliorate kidney allograft tubular atrophy and interstitial fibrosis (TA/IF), but little progress has been achieved. The latest evidence suggested that CD133+ cell in kidney represent a potential multipotent adult resident stem cell population that may contribute to the renal injury repair. Here we investigate whether the CD133+ cells exist in transplanted renal and exert a growth and self-repair procedure in TA/IF. METHODS Allografts from rat kidney transplant models were harvested at 4 weeks, 8 weeks and 12 weeks post transplantation. We performed immunohistochemistry to detect the CD133+ cells and immunofluorescence to detect the co-expression of CD133 or Pax-2 with Ki-67. We furthermore analysed the E-cadherin using serial sections. RESULTS CD133+ cells were seldom seen in control kidney, but distributed sporadically in the cortex parenchyma along with the deterioration of TA/IF. The number of CD133+ cell increased after 4 weeks and reached the peak at 8 weeks, then decreased at 12 weeks. From 8 weeks, some new tubules expressing E-cadherin were constructed with CD133+ cells. Almost all the CD133+ cells were Ki-67-positive, but not all the Ki-67+ cells expressed CD133. The rest Ki-67+ cells almost expressed Pax-2. CONCLUSION Our study reveals that when majority of the tubules are damaged, a self-repair mechanism is evoked by potential adult stem cells to compensate the renal function. Thus, potential adult resident stem cells offer a new avenue for autologous cell therapies in TA/IF.
Collapse
Affiliation(s)
- Ji Bao
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
Hepatocellular carcinoma (HCC) typically has poor prognosis, because it is often diagnosed at an advanced stage. Heterogeneous phenotypic and genetic traits of affected individuals and a wide range of risk factors have classified it a complex disease. HCC is not amenable to standard chemotherapy and is resistant to radiotherapy. In most cases, surgical resection and liver transplantation remain the only curative treatment options. Therefore, development of novel, effective therapies is of prime importance. Extensive research over the past decade has identified a number of molecular biomarkers as well as cellular networks and signaling pathways affected in liver cancer. Recent studies using a combination of "omics" technologies, microRNA studies, combinatorial chemistry, and bioinformatics are providing new insights into the gene expression and protein profiles during various stages of the disease. In this review, we discuss the contribution of these newer approaches toward an understanding of molecular mechanisms of HCC and for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Radiology, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN, USA.
| | | | | |
Collapse
|
139
|
Fritzell JA, Mao Q, Gundavarapu S, Pasquariello T, Aliotta JM, Ayala A, Padbury JF, De Paepe ME. Fate and effects of adult bone marrow cells in lungs of normoxic and hyperoxic newborn mice. Am J Respir Cell Mol Biol 2008; 40:575-87. [PMID: 18988921 DOI: 10.1165/rcmb.2008-0176oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cell-based therapy in adult lung injury models is associated with highly variable donor cell engraftment and epithelial reconstitution. The role of marrow-derived cell therapy in neonatal lung injury is largely unknown. In this study, we determined the fate and effects of adult bone marrow cells in a model of neonatal lung injury. Wild-type mice placed in a normoxic or hyperoxic (95% O(2)) environment received bone marrow cells from animals expressing green fluorescent protein (GFP) at Postnatal Day (P)5. Controls received vehicle buffer. Lungs were analyzed between Post-Transplantation (TPX) Day 2 and Week 8. The volume of GFP-immunoreactive donor cells, monitored by stereologic volumetry, remained constant between Post-TPX Weeks 1 and 8 and was similar in normoxic and hyperoxia-exposed recipients. Virtually all marrow-derived cells showed colocalization of GFP and the pan-macrophage marker, F4/80, by double immunofluorescence studies. Epithelial transdifferentiation was not seen. Marrow cell administration had adverse effects on somatic growth and alveolarization in normoxic mice, while no effects were discerned in hyperoxia-exposed recipients. Reexposure of marrow-treated animals to hyperoxia at P66 resulted in significant expansion of the donor-derived macrophage population. In conclusion, intranasal administration of unfractionated bone marrow cells to newborn mice does not achieve epithelial reconstitution, but establishes persistent alveolar macrophage chimerism. The predominantly adverse effects of marrow treatment in newborn lungs are likely due to macrophage-associated paracrine effects. While this model and route of cell therapy may not achieve epithelial reconstitution, the role of selected stem cell populations and/or alternate routes of administration for cell-based therapy in injured newborn lungs deserve further investigation.
Collapse
Affiliation(s)
- James A Fritzell
- Women and Infants Hospital, Dept. of Pathology, 101 Dudley Street, Providence, RI 02905, USA
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Han K, Lee JE, Kwon SJ, Park SY, Shim SH, Kim H, Moon JH, Suh CS, Lim HJ. Human amnion-derived mesenchymal stem cells are a potential source for uterine stem cell therapy. Cell Prolif 2008; 41:709-25. [PMID: 18823496 DOI: 10.1111/j.1365-2184.2008.00553.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Human amnion is an easy-to-obtain novel source of human mesenchymal stem cells, which poses little or no ethical dilemmas. We have previously shown that human amnion-derived mesenchymal (HAM) cells exhibit certain mesenchymal stem cell-like characteristics with respect to expression of stem cell markers and differentiation potentials. MATERIALS AND METHODS In this study, we further characterized HAM cells' potential for in vivo therapeutic application. RESULTS Flow cytometric analyses of HAM cells show that they express several stem cell-related cell surface markers, including CD90, CD105, CD59, CD49d, CD44 and HLA-ABC, but not CD45, CD34, CD31, CD106 or HLA-DR. HAM cells at the 10th passage showed normal karyotype. More interestingly, the AbdB-like HOXA genes HOXA9, HOXA10 and HOXA11 that are expressed in the mesenchyme of the developing female reproductive tract and pregnant uteri are also expressed in HAM cells, suggesting similarities between these two mesenchymal cell types. Progesterone receptor is also highly expressed in HAM cells and expression of genes or proteins in HAM cells could be manipulated with the aid of lentivirus technology or cell-permeable peptides. To test potentials of HAM cells for in vivo application, we introduced enhanced green fluorescence protein (EGFP)-expressing HAM cells to mice by intrauterine infusion (into uteri) or by intravenous injection (into the circulation). Presence of EGFP-expressing cells within the uterine mesenchyme after intrauterine infusion or in lungs after intravenous injection was noted within 1-4 weeks. CONCLUSIONS Collectively, these results suggest that HAM cells are a potential source of mesenchymal stem cells with therapeutic potential.
Collapse
Affiliation(s)
- K Han
- Department of Biomedical Science and Technology, Research Center for Drugs, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Enns GM, Millan MT. Cell-based therapies for metabolic liver disease. Mol Genet Metab 2008; 95:3-10. [PMID: 18640065 DOI: 10.1016/j.ymgme.2008.06.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 12/15/2022]
Abstract
Liver transplantation is an important therapeutic option for many individuals with metabolic liver disease. Nevertheless, the invasive nature of surgery and limitations of donor organ availability have led to the search for alternatives to whole-organ transplantation. Cell-based therapies have been a particularly active area of investigation in recent years. Hepatocyte transplantations have been performed for a variety of indications, including acute liver failure, end-stage liver disease, and inborn errors of metabolism. Individuals with inborn errors of metabolism who have undergone hepatocyte transplantation have shown clinical improvement and partial correction of the underlying metabolic defect. In most cases, sustained benefits have not been observed. This may be related to inadequate cell dose, variations in the quality of hepatocyte preparations, rejection of the transplanted cells, or senescence of transplanted hepatocytes. Though initial proof of concept with hepatocyte transplantation has been demonstrated by a number of investigators, wide application of this technology has been hindered by the inability to secure a reliable and well-characterized cell source(s) for transplantation and by the challenges of sustained engraftment and expansion of transplanted cells in vivo. Cell-based therapies, including those based on stem cells or more differentiated progenitor cells, may represent the future of cell transplantation for treatment of metabolic liver disease.
Collapse
Affiliation(s)
- Gregory M Enns
- Division of Medical Genetics, Department of Pediatrics, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94305-5208, USA.
| | | |
Collapse
|
142
|
Loebinger MR, Sage EK, Janes SM. Mesenchymal stem cells as vectors for lung disease. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2008; 5:711-6. [PMID: 18684723 PMCID: PMC2643224 DOI: 10.1513/pats.200801-009aw] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 04/17/2008] [Indexed: 12/26/2022]
Abstract
Stem cells divide asymmetrically, leading to self-renewal and the production of a daughter cell committed to differentiation. This property has engendered excitement as to the use of these cells for treatments. The majority of the work with stem cells has used the relatively accessible and well-characterized adult bone marrow stem cell compartment. Initially the focus of this research was on the potential for these stem cells to repair damaged organs by differentiating into epithelial cells to replace the injured areas. More recently it has become clear that engraftment of these stem cells as epithelial tissue is a rare event with perhaps limited clinical significance. Despite this, stem cells appear to have the ability to home to and be specifically recruited to areas of inflammation and injured tissues often characterized by excessive extracellular matrix deposition. As a consequence they are intimately involved in regions of physiological and pathological repair. Coupled with this, autologous hematopoietic stem cells, or the relatively immunoprivileged mesenchymal stem cells, can be expanded and engineered ex vivo and reintroduced without immunomodulation. The prospect of using such cells clinically as a cellular therapy holds much promise for many conditions and organ pathologies. Here we address the evidence for the incorporation of bone marrow stem cells into areas of stroma formation as a prelude to possible future treatment options for common lung diseases.
Collapse
Affiliation(s)
- Michael R Loebinger
- Centre of Respiratory Research, Rayne Building, University College London, 5 University Street, London WC1E 6JJ, UK
| | | | | |
Collapse
|
143
|
Fang TC, Otto WR, Rao J, Jeffery R, Hunt T, Alison MR, Cook HT, Wright NA, Poulsom R. Haematopoietic lineage-committed bone marrow cells, but not cloned cultured mesenchymal stem cells, contribute to regeneration of renal tubular epithelium after HgCl 2 -induced acute tubular injury. Cell Prolif 2008; 41:575-91. [PMID: 18616694 PMCID: PMC6496902 DOI: 10.1111/j.1365-2184.2008.00545.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 01/29/2008] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Our previous studies have demonstrated that endogenous bone arrow cells (BMCs) contribute to renal tubular regeneration after acute tubular injury. The aim of this study was to examine which fraction of BMCs, haematopoietic lineage marrow cells (HLMCs) or mesenchymal stem cells (MSCs), are effective. MATERIALS AND METHODS Six-week-old female mice were lethally irradiated and were transplanted with female enhanced green fluorescent protein-positive (GFP(+)), plastic on-adherent marrow cells (as a source of HLMCs) plus cloned cultured male GFP(-) MSCs. Four weeks later, they were assigned into two groups: control mice with vehicle treatment and mice treated with HgCl2. Tritiated thymidine was given 1 h before animal killing which occurred at intervals over 2 weeks. Kidney sections were stained for a tubular epithelial marker, cell origin indicated by GFP immunohistochemistry or Y chromosome in situ hybridization; periodic acid-Schiff staining was performed, and samples were subjected to autoradiography. One thousand consecutive renal tubular epithelial cells per mouse, in S phase, were scored as either female (indigenous) GFP+(HLMC-derived) or male (MSC-derived). RESULTS Haematopoietic lineage marrow cells and MSCs stably engrafted into bone marrow and spleen, but only HLMC-derived cells, not MSCs, were found in the renal tubules and were able to undergo DNA synthesis after acute renal injury. A few MSCs were detected in the renal interstitium, but their importance needs to be further explored. CONCLUSION Haematopoietic lineage marrow cells, but not cloned cultured MSCs, can play a role not only in normal wear-and-tear turnover of renal tubular cells, but also in repair after tubular injury.
Collapse
Affiliation(s)
- T-C Fang
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Liao X, Li F, Wang X, Yanoso J, Niyibizi C. Distribution of murine adipose-derived mesenchymal stem cells in vivo following transplantation in developing mice. Stem Cells Dev 2008; 17:303-14. [PMID: 18447645 DOI: 10.1089/scd.2007.0086] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Systemic delivery of mesenchymal stem cells (MSCs) or stromal cells in vivo is attractive because it offers means of disseminating therapeutic cells to various tissues and organs in vivo. In the present study, we investigated the distribution and engraftment of the murine adipose-derived mesenchymal stem cells (ADSCs) without exposure to or exposed to bone microenvironment or transforming growth factor-beta1 (TGF-beta1) prior to transplantation into developing mice. The ADSCs harvested from the murine inguinal fat pad exhibited potential for differentiation toward osteogenic and adipogenic cell lineages in vitro. Fourteen days after systemic transplantation of the ADSCs marked with enhanced green fluorescent protein (EGFP) into developing mice, minimal donor GFP(+) cells were detected in the skeletal tissues in a limited number of the recipient mice. Exposure of the ADSCs to bone microenvironment for 7 or 14 days prior to transplantation into developing mice enhanced their migration and survival in the bones of the recipient mice. Exposure of ADSCs to TGF-beta1 prior to systemic transplantation exerted similar effects on cell migration and engraftment in various tissues, including the bones of the recipient developing mice. At 28 days following systemic transplantation, the ADSCs exposed to bone microenvironment were restricted mostly to the skeletal tissues of the recipient mice. Donor cells retrieved from the bones of the recipient mice at 28 days following cell transplantation expressed the differentiation markers Runx2 and Osterix (Osx). These data suggest that exposure of ADSCs to bone microenvironment or to TGF-beta1 prior to transplantation enhances their survival in the skeletal tissues following transplantation.
Collapse
Affiliation(s)
- Xinbo Liao
- Pennsylvania State University College of Medicine, Department of Orthopaedics and Rehabilitation, Division of Musculoskeletal Sciences, Hershey PA 17033, USA
| | | | | | | | | |
Collapse
|
145
|
Henschler R, Deak E, Seifried E. Homing of Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2008; 35:306-312. [PMID: 21512647 DOI: 10.1159/000143110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Accepted: 07/02/2008] [Indexed: 12/20/2022]
Abstract
SUMMARY: Mesenchymal stem cells (MSCs) are primarily fibroblast-like cells. Yet, once studied under conditions of shear stress when flowing along endothelial cells in vitro or in blood vessels, as well as in classic migration assays such as chemotaxis assays, MSCs have recently been found to function similarly to leukocytes in many ways. Firstly, MSCs express several homing receptors which are typically activated during extravasation of leukocytes. Secondly, some of these receptors are definitely functional, and required for their tissue localization in certain physiological or pathological contexts. Clinical protocols have in the last few years provided the first data on whether and how human MSCs may work in patients once delivered locally e.g. by injection, or systemically via the intra-arterial or intravenous route. Still, analysis of the ability of MSCs to activate specific homing receptors has up to now received relatively little attention. Moreover, maintenance or alterations of homing receptor expression or functions during good manufacturing practice (GMP) preparation steps, and documentation of presence and function of individual pathways on MSC preparations for clinical use are often missed. Hence, we review here mechanisms predicted to be relevant for adhesion, migration, and homing competence of MSCs. We also discuss some early data on homing of MSCs, deduced from preclinical experiments and from the few clinical studies with MSCs. Finally, we introduce some assays which could be applied to monitor preservation of the homing capacity of MSCs during GMP preparation.
Collapse
Affiliation(s)
- Reinhard Henschler
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Center, Johann Wolfgang Goethe-University Frankfurt, Germany
| | | | | |
Collapse
|
146
|
Tong S, Yao Q, Wan Y, Zhou J, Shu M, Zhong L, Li Y, Zhang Q, Yindai J, Song Z. Development of functional I f channels in mMSCs after transfection with mHCN4: effects on cell morphology and mechanical activity in vitro. Cardiology 2008; 112:114-21. [PMID: 18594141 DOI: 10.1159/000141919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 03/06/2008] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To study the functional properties of I(f) channels and the changes in mechanical activity of mouse mesenchymal stem cells (mMSCs) transfected with mHCN4. METHODS mMSCs were purified by using CD11b-immunomagnetic microbeads and transfected with pMSCV-mHCN4-EGFP or pMSCV-EGFP. We examined the kinetic characteristics of the mHCN4 channel. The morphological changes of positively transfected mMSCs were investigated at the same time. RESULTS The I(f) current recorded from the experimental group was sensitive to extracellular Cs(+) (-44.5 +/- 4.2 vs. -5.5 +/- 1.0 pA/pF, p < 0.001). The half-maximal activation was -99.0 +/- 5.8 mV. The time constant of activation was 451 +/- 61 ms under -140 mV. The control cells did not show the current under the same conditions. The absolute values of half-maximal activation decreased in the presence of cAMP or cGMP in the experimental group (-78.6 +/- 10.4 and -85.7 +/- 8.6 vs. -99.0 +/- 5.8 mV, respectively, p < 0.05). mMSCs transfected with pMSCV-mHCN4-EGFP could form spontaneous beating cells. Extracellular Cs(+) decreased the beating rate significantly (196 +/- 50 vs. 66 +/- 23 bmp, p < 0.01). CONCLUSIONS Functional I(f) channels can be reconstructed in mMSCs infected with mHCN4. mMSCs modified by successful transfection with mHCN4 can differentiate so as to develop spontaneous mechanical activity.
Collapse
Affiliation(s)
- Shifei Tong
- Department of Cardiology, Southwest Hospital, Third Military Medical Academy, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Post S, Abdallah BM, Bentzon JF, Kassem M. Demonstration of the presence of independent pre-osteoblastic and pre-adipocytic cell populations in bone marrow-derived mesenchymal stem cells. Bone 2008; 43:32-39. [PMID: 18456590 DOI: 10.1016/j.bone.2008.03.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 03/04/2008] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
Abstract
Mesenchymal stem cells (MSC) are defined as plastic-adherent, clonal cells that are common progenitors for osteoblasts and adipocytes. An inverse relationship between bone and fat has been observed in several clinical conditions and has been suggested to be caused by re-directing MSC differentiation into one particular lineage. However, this inverse relationship between bone and fat is not consistent and under certain in vivo conditions, bone and fat can change independently suggesting separate precursor cell populations. In order to test for this hypothesis, we extensively characterized two plastic-adherent clonal MSC lines (mMSC1 and mMSC2) derived from murine bone marrow. The two cell lines grew readily in culture and have undergone more than 100 population doublings with no apparent differences in their growth rates. Both cell lines were positive for the murine MSC marker Sca-1 and mMSC1 was also positive for CD13. Both cell lines were exposed to in vitro culture induction of osteogenesis and adipogenesis. mMSC1 and not mMSC2 were only able to differentiate to adipocytes evidenced by the expression of adipocyte markers (aP2, adiponectin, adipsin, PPARgamma2 and C/EBPa) and the presence of mature adipocytes visualized by Oil Red O staining. On the other hand, mMSC2 and not mMSC1 differentiated to osteoblast lineage as demonstrated by up-regulation of osteoblastic makers (CBFA1/RUNX2, Osterix, alkaline phosphatase, bone sialoprotein and osteopontin) and formation of alizarin red stained mineralized matrix in vitro. Consistent with the in vitro results, mMSC2 and not mMSC1, were able to form bone in vivo after subcutaneous implantation in immune-deficient (NOD/SCID) mice. Our data suggest that contrary to the current belief, bone marrow contains clonal subpopulations of cells that are committed to either osteoblast or adipocyte lineage. These cell populations may undergo independent changes during aging and in bone diseases and thus represent important targets for therapy.
Collapse
Affiliation(s)
- S Post
- Laboratory for Molecular Endocrinology (KMEB), Department of Endocrinology and Metabolism, University Hospital of Odense, DK-5000 Odense C, Denmark
| | - B M Abdallah
- Laboratory for Molecular Endocrinology (KMEB), Department of Endocrinology and Metabolism, University Hospital of Odense, DK-5000 Odense C, Denmark
| | - J F Bentzon
- Department of Cardiology Research Unit, Clinical Institute, Skejby University Hospital, Aarhus, Denmark
| | - M Kassem
- Laboratory for Molecular Endocrinology (KMEB), Department of Endocrinology and Metabolism, University Hospital of Odense, DK-5000 Odense C, Denmark.
| |
Collapse
|
148
|
Morigi M, Introna M, Imberti B, Corna D, Abbate M, Rota C, Rottoli D, Benigni A, Perico N, Zoja C, Rambaldi A, Remuzzi A, Remuzzi G. Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells 2008; 26:2075-82. [PMID: 18499895 DOI: 10.1634/stemcells.2007-0795] [Citation(s) in RCA: 285] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transplantation of bone marrow mesenchymal stem cells (BM-MSC) or stromal cells from rodents has been identified as a strategy for renal repair in experimental models of acute kidney injury (AKI), a highly life-threatening clinical setting. The therapeutic potential of BM-MSC of human origin has not been reported so far. Here, we investigated whether human BM-MSC treatment could prevent AKI induced by cisplatin and prolong survival in an immunodeficient mouse model. Results showed that human BM-MSC infusion decreased proximal tubular epithelial cell injury and ameliorated the deficit in renal function, resulting in reduced recipient mortality. Infused BM-MSC became localized predominantly in peritubular areas and acted to reduce renal cell apoptosis and to increase proliferation. BM-MSC also induced protection against AKI-related peritubular capillary changes consisting of endothelial cell abnormalities, leukocyte infiltration, and low endothelial cell and lumen volume density as assessed by morphometric analysis. These findings indicate that human MSC of bone marrow origin hold potential to prolong survival in AKI and should be considered for testing in a clinical trial. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Marina Morigi
- "Mario Negri" Institute for Pharmacological Research, Via Gavazzeni 11, 24125 Bergamo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Quinn C, Flake AW. In vivo Differentiation Potential of Mesenchymal Stem Cells: Prenatal and Postnatal Model Systems. ACTA ACUST UNITED AC 2008; 35:239-247. [PMID: 21547121 DOI: 10.1159/000129129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 03/31/2008] [Indexed: 01/28/2023]
Abstract
SUMMARY: Most of our knowledge of mesenchymal stem cell (MSC) biology is derived from in vitro systems that are often highly contrived to favor culture expansion or specific differentiation events. However, any conclusions drawn from in vitro studies regarding MSC differentiation capacity, immune properties, or therapeutic potential must be validated by in vivo studies to ultimately be meaningful. At the present time, there are relatively few in vivo studies demonstrating differentiation and functional integration of MSCs into host tissues after transplantation. There is a need for in vivo model systems to assay MSC biology and to move potential therapeutic strategies forward. Here, we review prenatal model systems as potentially advantageous for the in vivo characterization of MSCs, and we critically review the results of in vivo studies of MSC transplantation in prenatal and postnatal model systems with an emphasis on proven engraftment and differentiation.
Collapse
Affiliation(s)
- Courtney Quinn
- The Children's Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
150
|
Kiss J, Urbán VS, Dudics V, Vas V, Uher F. [Mesenchymal stem cells and the immune system--immunosuppression without drugs?]. Orv Hetil 2008; 149:339-46. [PMID: 18281229 DOI: 10.1556/oh.2008.28291] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSC) - isolated from various tissues in humans and other species - are one of the most promising adult stem cell types due to their availability and the relatively simple requirements for in vitro expansion. They have the capacity to differentiate into several tissues, including bone, cartilage, tendon, muscle and adipose, and produce growth factors and cytokines that promote hematopoietic cell expansion and differentiation. In vivo, MSCs are able to repair damaged tissue from kidney, heart, liver, pancreas and gastrointestinal tract. Furthermore, they also have anti-proliferative, immunomodulatory and anti-inflammatory effects, but evoke only little immune reactivity. Although the mechanism underlying the immunosuppressive effects of MSCs has not been clearly defined, their immunosuppressive properties have already been exploited in the clinical setting. Therefore, in the future, MSCs might have implications for treatment of allograft rejection, graft-versus-host disease, rheumatoid arthritis, autoimmune inflammatory bowel disease and other disorders in which immunomodulation and tissue repair are required. The aim of this review is to critically analyze the field of MSC biology, particularly with respect to their immunomodulatory properties and potential clinical use in the future.
Collapse
Affiliation(s)
- Judit Kiss
- Országos Vérellátó Szolgálat, Ossejt-biológia Budapest
| | | | | | | | | |
Collapse
|