101
|
Welz T, Kerkhoff E. Exploring the iceberg: Prospects of coordinated myosin V and actin assembly functions in transport processes. Small GTPases 2017; 10:111-121. [PMID: 28394692 DOI: 10.1080/21541248.2017.1281863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Spir actin nucleators and myosin V motor proteins were recently discovered to coexist in a protein complex. The direct interaction allows the coordinated activation of actin motor proteins and actin filament track generation at vesicle membranes. By now the cooperation of myosin V (MyoV) motors and Spir actin nucleation function has only been shown in the exocytic transport of Rab11 vesicles in metaphase mouse oocytes. Next to Rab11, myosin V motors however interact with a variety of Rab GTPases including Rab3, Rab8 and Rab10. As a common theme most of the MyoV interacting Rab GTPases function at different steps along the exocytic transport routes. We here summarize the different transport functions of class V myosins and provide as proof of principle data showing a colocalization of Spir actin nucleators and MyoVa at Rab8a vesicles. This suggests that besides Rab11/MyoV transport also the Rab8/MyoV and possibly other MyoV transport processes recruit Spir actin filament nucleation function.
Collapse
Affiliation(s)
- Tobias Welz
- a University Hospital Regensburg, Department of Neurology , Molecular Cell Biology Laboratory , Regensburg , Germany
| | - Eugen Kerkhoff
- a University Hospital Regensburg, Department of Neurology , Molecular Cell Biology Laboratory , Regensburg , Germany
| |
Collapse
|
102
|
Alfonzo-Méndez MA, Hernández-Espinosa DA, Carmona-Rosas G, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. Protein Kinase C Activation Promotes α 1B-Adrenoceptor Internalization and Late Endosome Trafficking through Rab9 Interaction. Role in Heterologous Desensitization. Mol Pharmacol 2017; 91:296-306. [PMID: 28082304 DOI: 10.1124/mol.116.106583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/09/2017] [Indexed: 12/25/2022] Open
Abstract
Upon agonist stimulation, α1B-adrenergic receptors couple to Gq proteins, calcium signaling and protein kinase C activation; subsequently, the receptors are phosphorylated, desensitized, and internalized. Internalization seems to involve scaffolding proteins, such as β-arrestin and clathrin. However, the fine mechanisms that participate remain unsolved. The roles of protein kinase C and the small GTPase, Rab9, in α1B-AR vesicular traffic were investigated by studying α1B-adrenergic receptor-Rab protein interactions, using Förster resonance energy transfer (FRET), confocal microscopy, and intracellular calcium quantitation. In human embryonic kidney 293 cells overexpressing Discosoma spp. red fluorescent protein (DsRed)-tagged α1B-ARs and enhanced green fluorescent protein--tagged Rab proteins, pharmacological protein kinase C activation mimicked α1B-AR traffic elicited by nonrelated agents, such as sphingosine 1-phosphate (i.e., transient α1B-AR-Rab5 FRET signal followed by a sustained α1B-AR-Rab9 interaction), suggesting brief receptor localization in early endosomes and transfer to late endosomes. This latter interaction was abrogated by blocking protein kinase C activity, resulting in receptor retention at the plasma membrane. Similar effects were observed when a dominant-negative Rab9 mutant (Rab9-GDP) was employed. When α1B-adrenergic receptors that had been mutated at protein kinase C phosphorylation sites (S396A, S402A) were used, phorbol ester-induced desensitization of the calcium response was markedly decreased; however, interaction with Rab9 was only partially decreased and internalization was observed in response to phorbol esters and sphingosine 1-phosphate. Finally, Rab9-GDP expression did not affect adrenergic-mediated calcium response but abolished receptor traffic and altered desensitization. Data suggest that protein kinase C modulates α1B-adrenergic receptor transfer to late endosomes and that Rab9 regulates this process and participates in G protein-mediated signaling turn-off.
Collapse
Affiliation(s)
- Marco A Alfonzo-Méndez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México (M.A.A.-M., D.A.H.-E., G.C.-R., M.T.R.-A., J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Col. San Pedro Zacatenco, Ciudad de México (G.R.-C.)
| | - David A Hernández-Espinosa
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México (M.A.A.-M., D.A.H.-E., G.C.-R., M.T.R.-A., J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Col. San Pedro Zacatenco, Ciudad de México (G.R.-C.)
| | - Gabriel Carmona-Rosas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México (M.A.A.-M., D.A.H.-E., G.C.-R., M.T.R.-A., J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Col. San Pedro Zacatenco, Ciudad de México (G.R.-C.)
| | - M Teresa Romero-Ávila
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México (M.A.A.-M., D.A.H.-E., G.C.-R., M.T.R.-A., J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Col. San Pedro Zacatenco, Ciudad de México (G.R.-C.)
| | - Guadalupe Reyes-Cruz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México (M.A.A.-M., D.A.H.-E., G.C.-R., M.T.R.-A., J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Col. San Pedro Zacatenco, Ciudad de México (G.R.-C.)
| | - J Adolfo García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México (M.A.A.-M., D.A.H.-E., G.C.-R., M.T.R.-A., J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Col. San Pedro Zacatenco, Ciudad de México (G.R.-C.)
| |
Collapse
|
103
|
Zhou CX, Shi LY, Li RC, Liu YH, Xu BQ, Liu JW, Yuan B, Yang ZX, Ying XY, Zhang D. GTPase-activating protein Elmod2 is essential for meiotic progression in mouse oocytes. Cell Cycle 2017; 16:852-860. [PMID: 28324667 DOI: 10.1080/15384101.2017.1304329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Meiotic failure in oocytes is the major determinant of human zygote-originated reproductive diseases, the successful accomplishment of meiosis largely relay on the normal functions of many female fertility factors. Elmod2 is a member of the Elmod family with the strongest GAP (GTPase-activating protein) activity; although it was identified as a possible maternal protein, its actual physiologic role in mammalian oocytes has not been elucidated. Herein we reported that among Elmod family proteins, Elmod2 is the most abundant in mouse oocytes, and that inhibition of Elmod2 by specific siRNA caused severe meiotic delay and abnormal chromosomal segregation during anaphase. Elmod2 knockdown also significantly decreased the rate of oocyte maturation (to MII, with first polar body extrusion), and significantly greater numbers of Elmod2-knockdown MII oocytes were aneuploid. Correspondingly, Elmod2 knockdown dramatically decreased fertilization rate. To investigate the mechanism(s) involved, we found that Elmod2 knockdown caused significantly more abnormal mitochondrial aggregation and diminished cellular ATP levels; and we also found that Elmod2 co-localized and interacted with Arl2, a GTPase that is known to maintain mitochondrial dynamics and ATP levels in oocytes. In summary, we found that Elmod2 is the GAP essential to meiosis progression of mouse oocytes, most likely by regulating mitochondrial dynamics.
Collapse
Affiliation(s)
- Chun-Xiang Zhou
- a State Key Lab of Reproductive Medicine , Nanjing Medical University , Nanjing , Jiangsu , P.R. China
| | - Li-Ya Shi
- a State Key Lab of Reproductive Medicine , Nanjing Medical University , Nanjing , Jiangsu , P.R. China
| | - Rui-Chao Li
- b Liuzhou Worker's Hospital , Liuzhou , Guangxi , China
| | - Ya-Hong Liu
- c The Second Affiliated Hospital , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Bo-Qun Xu
- c The Second Affiliated Hospital , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Jin-Wei Liu
- d Department of Gynecology , Zhejiang Provincial People's Hospital , Hangzhou , Zhejiang , China
| | - Bo Yuan
- e Wenxi Agriculture Committee , Yuncheng , Shanxi , China
| | - Zhi-Xia Yang
- a State Key Lab of Reproductive Medicine , Nanjing Medical University , Nanjing , Jiangsu , P.R. China
| | - Xiao-Yan Ying
- c The Second Affiliated Hospital , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Dong Zhang
- a State Key Lab of Reproductive Medicine , Nanjing Medical University , Nanjing , Jiangsu , P.R. China
| |
Collapse
|
104
|
Jiang C, Liu Z, Hu R, Bo L, Minshall RD, Malik AB, Hu G. Inactivation of Rab11a GTPase in Macrophages Facilitates Phagocytosis of Apoptotic Neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:1660-1672. [PMID: 28053235 PMCID: PMC5296368 DOI: 10.4049/jimmunol.1601495] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/06/2016] [Indexed: 02/05/2023]
Abstract
The timely and efficient clearance of apoptotic neutrophils by macrophages (efferocytosis) is required for the resolution of inflammation and tissue repair, but the regulatory mechanisms remain unclear. In this study, we investigated the role of the small GTPase Ras-related protein in brain (Rab)11a in regulating efferocytosis, and on this basis the resolution of inflammatory lung injury. We observed that apoptotic neutrophil feeding induced a rapid loss of Rab11a activity in bone marrow-derived macrophages and found that depletion of Rab11a in macrophages by small interfering RNA dramatically increased the phagocytosis of apoptotic neutrophils compared with control cells. Additionally, overexpression of wild-type Rab11a inhibited macrophage efferocytosis, whereas overexpression of dominant-negative Rab11a (Rab11a S25N) increased the clearance of apoptotic neutrophils. Rab11a knockdown also increased the surface level of CD36 in macrophages, but it reduced cell surface expression of a disintegrin and metalloproteinase (ADAM) 17. Depletion of ADAM17 rescued the decreased surface CD36 expression found in macrophages overexpressing wild-type Rab11a. Also, blockade of CD36 abolished the augmented efferocytosis seen in Rab11a-depleted macrophages. In mice challenged with endotoxin, intratracheal instillation of Rab11a-depleted macrophages reduced neutrophil count in bronchoalveolar lavage fluid, increased the number of macrophages containing apoptotic neutrophils, and prevented inflammatory lung injury. Thus, Rab11a inactivation in macrophages as a result of apoptotic cell binding initiates phagocytosis of apoptotic neutrophils via the modulation of ADAM17-mediated CD36 cell surface expression. Our results raise the possibility that inhibition of Rab11a activity in macrophages is a promising strategy for activating the resolution of inflammatory lung injury.
Collapse
Affiliation(s)
- Chunling Jiang
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zheng Liu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Shanghai 200433, China
| | - Rong Hu
- Undergraduate Program, Department of Biology, Washington University in St. Louis, St. Louis, MO 63130; and
| | - Lulong Bo
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Shanghai 200433, China
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Guochang Hu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612;
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612
| |
Collapse
|
105
|
Fu Y, Zhu JY, Zhang F, Richman A, Zhao Z, Han Z. Comprehensive functional analysis of Rab GTPases in Drosophila nephrocytes. Cell Tissue Res 2017; 368:615-627. [PMID: 28180992 DOI: 10.1007/s00441-017-2575-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022]
Abstract
The Drosophila nephrocyte is a critical component of the fly renal system and bears structural and functional homology to podocytes and proximal tubule cells of the mammalian kidney. Investigations of nephrocyte cell biological processes are fundamental to understanding the insect renal system. Nephrocytes are highly active in endocytosis and vesicle trafficking. Rab GTPases regulate endocytosis and trafficking but specific functions of nephrocyte Rabs remain undefined. We analyzed Rab GTPase expression and function in Drosophila nephrocytes and found that 11 out of 27 Drosophila Rabs were required for normal activity. Rabs 1, 5, 7, 11 and 35 were most important. Gene silencing of the nephrocyte-specific Rab5 eliminated all intracellular vesicles and the specialized plasma membrane structures essential for nephrocyte function. Rab7 silencing dramatically increased clear vacuoles and reduced lysosomes. Rab11 silencing increased lysosomes and reduced clear vacuoles. Our results suggest that Rab5 mediates endocytosis that is essential for the maintenance of functionally critical nephrocyte plasma membrane structures and that Rabs 7 and 11 mediate alternative downstream vesicle trafficking pathways leading to protein degradation and membrane recycling, respectively. Elucidating molecular pathways underlying nephrocyte function has the potential to yield important insights into human kidney cell physiology and mechanisms of cell injury that lead to disease. The Drosophila nephrocyte is emerging as a useful in vivo model system for molecular target identification and initial testing of therapeutic approaches in humans.
Collapse
Affiliation(s)
- Yulong Fu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Jun-Yi Zhu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Fujian Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Adam Richman
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Zhanzheng Zhao
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhe Han
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA.
| |
Collapse
|
106
|
Zhu H, Tan L, Li Y, Li J, Qiu M, Li L, Zhang M, Liang M, Li A. Increased Apoptosis in the Paraventricular Nucleus Mediated by AT1R/Ras/ERK1/2 Signaling Results in Sympathetic Hyperactivity and Renovascular Hypertension in Rats after Kidney Injury. Front Physiol 2017; 8:41. [PMID: 28210225 PMCID: PMC5288364 DOI: 10.3389/fphys.2017.00041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/16/2017] [Indexed: 11/15/2022] Open
Abstract
Background: The central nervous system plays a vital role in the development of hypertension, but the molecular regulatory mechanisms are not fully understood. This study aimed to explore signaling in the paraventricular nucleus (PVN) which might contribute to renal hypertension. Methods: Renal hypertension model was established by five-sixth nephrectomy operation (5/6Nx) in male Sprague Dawley rats. Ten weeks afterwards, they were random assigned to no treatment, or intracerebroventricular injection (ICV) with artificial cerebrospinal fluid, losartan [angiotensin II receptor type 1 (AT1R) antagonist], farnesylthiosalicylic acid (Ras inhibitor), PD98059 (MEK inhibitor), or SB203580 (p38 inhibitor) and Z-DEVD-FMK (caspase-3 inhibitor). Before and after treatment, physiological and biochemical indices were measured. Immunohistochemistry, western blot and RT-PCR were applied to quantify key components of renin-angiotensin system, apoptosis-related proteins, Ras-GTP, and MAPKs in the PVN samples. TUNEL assay was used to measure the situ apoptosis in PVN. Results: The 5/6Nx rats showed significantly elevated systolic blood pressure, urinary protein excretion, serum creatinine, and plasma norepinephrine (p < 0.05) compared to sham rats. The expression of angiotensinogen, Ang II, AT1R, p-ERK1/2, or apoptosis-promoting protein Bax were 1.08-, 2.10-, 0.74-, 0.82-, 0.83-fold higher in the PVN of 5/6Nx rats, than that of sham rats, as indicated by immunohistochemistry. Western blot confirmed the increased levels of AT1R, p-ERK1/2 and Bax; meanwhile, Ras-GTP and p-p38 were also found higher in the PVN of 5/6Nx rats, as well as the apoptosis marker cleaved caspase-3 and TUNEL staining. In 5/6Nx rats, ICV infusion of AT1R antagonist, Ras inhibitor, MEK inhibitor or caspase-3 inhibitor could lower systolic blood pressure (20.8-, 20.8-, 18.9-, 14.3%-fold) together with plasma norepinephrine (53.9-, 57.8-,63.3-, 52.3%-fold). Western blot revealed that blocking the signaling of AT1R, Ras, or MEK/ERK1/2 would significantly reduce PVN apoptosis as indicated by changes of apoptosis-related proteins (p < 0.05). AT1R inhibition would cause reduction in Ras-GTP and p-ERK1/2, but not vice versa; such intervention with corresponding inhibitors also suggested the unidirectional regulation of Ras to ERK1/2. Conclusion: These findings demonstrated that the activation of renin-angiotensin system in PVN could induce apoptosis through Ras/ERK1/2 pathway, which then led to increased sympathetic nerve activity and renal hypertension in 5/6Nx rats.
Collapse
Affiliation(s)
- Hongguo Zhu
- Department of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease Guangzhou, China
| | - Lishan Tan
- Department of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease Guangzhou, China
| | - Yumin Li
- Department of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease Guangzhou, China
| | - Jiawen Li
- Department of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease Guangzhou, China
| | - Minzi Qiu
- Department of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease Guangzhou, China
| | - Lanying Li
- Department of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease Guangzhou, China
| | - Mengbi Zhang
- Department of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease Guangzhou, China
| | - Min Liang
- Department of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease Guangzhou, China
| | - Aiqing Li
- Department of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease Guangzhou, China
| |
Collapse
|
107
|
CMTM3 decreases EGFR expression and EGF-mediated tumorigenicity by promoting Rab5 activity in gastric cancer. Cancer Lett 2017; 386:77-86. [DOI: 10.1016/j.canlet.2016.11.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/27/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023]
|
108
|
Yin C, Karim S, Zhang H, Aronsson H. Arabidopsis RabF1 (ARA6) Is Involved in Salt Stress and Dark-Induced Senescence (DIS). Int J Mol Sci 2017; 18:ijms18020309. [PMID: 28157156 PMCID: PMC5343845 DOI: 10.3390/ijms18020309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/25/2017] [Indexed: 12/02/2022] Open
Abstract
Arabidopsis small GTPase RabF1 (ARA6) functions in endosomal vesicle transport and may play a crucial role in recycling and degradation of molecules, thus involved in stress responses. Here we have reported that complementary overexpression lines RabF1OE (overexpression), GTPase mutants RabF1Q93L (constitutively active) and RabF1S47N (dominant negative) lines show longer root growth than wild-type, rabF1 knockout and N-myristoylation deletion (Δ1−29, N-terminus) complementary overexpression mutant plants under salt induced stress, which indicates that N-myristoylation of RabF1 is indispensable for salt tolerance. Moreover, RabF1 is highly expressed during senescence and RabF1OE lines were more tolerant of dark-induced senescence (DIS) than wild-type and rabF1.
Collapse
Affiliation(s)
- Congfei Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210014, China.
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, Gothenburg SE40530, Sweden.
| | - Sazzad Karim
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, Gothenburg SE40530, Sweden.
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210014, China.
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, Gothenburg SE40530, Sweden.
| |
Collapse
|
109
|
Ticianelli JS, Emanuelli IP, Satrapa RA, Castilho ACS, Loureiro B, Sudano MJ, Fontes PK, Pinto RFP, Razza EM, Surjus RS, Sartori R, Assumpção MEOA, Visintin JA, Barros CM, Paula-Lopes FF. Gene expression profile in heat-shocked Holstein and Nelore oocytes and cumulus cells. Reprod Fertil Dev 2017; 29:1787-1802. [DOI: 10.1071/rd16154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
The present study determined the transcriptome profile in Nelore and Holstein oocytes subjected to heat shock during IVM and the mRNA abundance of selected candidate genes in Nelore and Holstein heat-shocked oocytes and cumulus cells (CC). Holstein and Nelore cows were subjected to in vivo follicle aspiration. Cumulus–oocyte complexes were assigned to control (38.5°C, 22 h) or heat shock (41°C for 12 h, followed by 38.5°C for 10 h) treatment during IVM. Denuded oocytes were subjected to bovine microarray analysis. Transcriptome analysis demonstrated 127, nine and six genes were differentially expressed between breed, temperature and the breed × temperature interaction respectively. Selected differentially expressed genes were evaluated by real-time polymerase chain reaction in oocytes and respective CC. The molecular motor kinesin family member 3A (KIF3A) was upregulated in Holstein oocytes, whereas the pro-apoptotic gene death-associated protein (DAP) and the membrane trafficking gene DENN/MADD domain containing 3 (DENND3) were downregulated in Holstein oocytes. Nelore CC showed increased transcript abundance for tight junction claudin 11 (CLDN11), whereas Holstein CC showed increased transcript abundance for antioxidant metallothionein 1E (MT1E) . Moreover, heat shock downregulated antioxidant MT1E mRNA expression in CC. In conclusion, oocyte transcriptome analysis indicated a strong difference between breeds involving organisation and cell death. In CC, both breed and temperature affected mRNA abundance, involving cellular organisation and oxidative stress.
Collapse
|
110
|
Kumar S, Lee HJ, Park HS, Lee K. Testis-Specific GTPase (TSG): An oligomeric protein. BMC Genomics 2016; 17:792. [PMID: 27724860 PMCID: PMC5057473 DOI: 10.1186/s12864-016-3145-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/30/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Ras-related proteins in brain (Rab)-family proteins are key members of the membrane trafficking pathway in cells. In addition, these proteins have been identified to have diverse functions such as cross-talking with different kinases and playing a role in cellular signaling. However, only a few Rab proteins have been found to have a role in male germ cell development. The most notable functions of this process are performed by numerous testis-specific and/or germ cell-specific genes. Here, we describe a new Rab protein that is specifically expressed in male germ cells, having GTPase activity. RESULTS Testis-specific GTPase (TSG) is a male-specific protein that is highly expressed in the testis. It has an ORF of 1593 base pairs encoding a protein of 530 amino acids. This protein appears in testicular cells approximately 24 days postpartum and is maintained thereafter. Immunohistochemistry of testicular sections indicates localized expression in germ cells, particularly elongating spermatids. TSG has a bipartite nuclear localization signal that targets the protein to the nucleus. The C-terminal region of TSG contains the characteristic domain of small Rab GTPases, which imparts GTPase activity. At the N-terminal region, it has a coiled-coil motif that confers self-interaction properties to the protein and allows it to appear as an oligomer in the testis. CONCLUSION TSG, being expressed in the male gonad in a developmental stage-specific manner, may have a role in male germ cell development. Further investigation of TSG function in vivo may provide new clues for uncovering the secrets of spermatogenesis.
Collapse
Affiliation(s)
- Sudeep Kumar
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Hyun Joo Lee
- Department of Nursing, Dongkang College, Gwangju, Republic of Korea
| | - Hee-Sae Park
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Keesook Lee
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
111
|
Schwenk BM, Hartmann H, Serdaroglu A, Schludi MH, Hornburg D, Meissner F, Orozco D, Colombo A, Tahirovic S, Michaelsen M, Schreiber F, Haupt S, Peitz M, Brüstle O, Küpper C, Klopstock T, Otto M, Ludolph AC, Arzberger T, Kuhn PH, Edbauer D. TDP-43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons. EMBO J 2016; 35:2350-2370. [PMID: 27621269 PMCID: PMC5090220 DOI: 10.15252/embj.201694221] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
Nuclear clearance of TDP-43 into cytoplasmic aggregates is a key driver of neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), but the mechanisms are unclear. Here, we show that TDP-43 knockdown specifically reduces the number and motility of RAB11-positive recycling endosomes in dendrites, while TDP-43 overexpression has the opposite effect. This is associated with delayed transferrin recycling in TDP-43-knockdown neurons and decreased β2-transferrin levels in patient CSF Whole proteome quantification identified the upregulation of the ESCRT component VPS4B upon TDP-43 knockdown in neurons. Luciferase reporter assays and chromatin immunoprecipitation suggest that TDP-43 represses VPS4B transcription. Preventing VPS4B upregulation or expression of its functional antagonist ALIX restores trafficking of recycling endosomes. Proteomic analysis revealed the broad reduction in surface expression of key receptors upon TDP-43 knockdown, including ErbB4, the neuregulin 1 receptor. TDP-43 knockdown delays the surface delivery of ErbB4. ErbB4 overexpression, but not neuregulin 1 stimulation, prevents dendrite loss upon TDP-43 knockdown. Thus, impaired recycling of ErbB4 and other receptors to the cell surface may contribute to TDP-43-induced neurodegeneration by blocking trophic signaling.
Collapse
Affiliation(s)
- Benjamin M Schwenk
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | | | - Alperen Serdaroglu
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Advanced Study Technische Universität München, München, Germany
| | - Martin H Schludi
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | | | - Felix Meissner
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Denise Orozco
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Meike Michaelsen
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | | | - Michael Peitz
- Institute of Reconstructive Neurobiology University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology University of Bonn, Bonn, Germany
| | - Clemens Küpper
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Friedrich-Baur-Institute LMU Munich, Munich, Germany
| | - Thomas Klopstock
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Friedrich-Baur-Institute LMU Munich, Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, LMU Munich, Munich, Germany
| | - Peer-Hendrik Kuhn
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Advanced Study Technische Universität München, München, Germany.,Institut für Allgemeine Pathologie Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany .,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Institute for Metabolic Biochemistry LMU Munich, Munich, Germany
| |
Collapse
|
112
|
Cromm PM, Spiegel J, Küchler P, Dietrich L, Kriegesmann J, Wendt M, Goody RS, Waldmann H, Grossmann TN. Protease-Resistant and Cell-Permeable Double-Stapled Peptides Targeting the Rab8a GTPase. ACS Chem Biol 2016; 11:2375-82. [PMID: 27336832 DOI: 10.1021/acschembio.6b00386] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Small GTPases comprise a family of highly relevant targets in chemical biology and medicinal chemistry research and have been considered "undruggable" due to the persisting lack of effective synthetic modulators and suitable binding pockets. As molecular switches, small GTPases control a multitude of pivotal cellular functions, and their dysregulation is associated with many human diseases such as various forms of cancer. Rab-GTPases represent the largest subfamily of small GTPases and are master regulators of vesicular transport interacting with various proteins via flat and extensive protein-protein interactions (PPIs). The only reported synthetic inhibitor of a PPI involving an activated Rab GTPase is the hydrocarbon stapled peptide StRIP3. However, this macrocyclic peptide shows low proteolytic stability and cell permeability. Here, we report the design of a bioavailable StRIP3 analogue that harbors two hydrophobic cross-links and exhibits increased binding affinity, combined with robust cellular uptake and extremely high proteolytic stability. Localization experiments reveal that this double-stapled peptide and its target protein Rab8a accumulate in the same cellular compartments. The reported approach offers a strategy for the implementation of biostability into conformationally constrained peptides while supporting cellular uptake and target affinity, thereby conveying drug-like properties.
Collapse
Affiliation(s)
- Philipp M. Cromm
- Department
of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | - Jochen Spiegel
- Department
of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | - Philipp Küchler
- Department
of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Laura Dietrich
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | - Julia Kriegesmann
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
- VU University Amsterdam, Department of Chemistry & Pharmaceutical Sciences, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Mathias Wendt
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
- VU University Amsterdam, Department of Chemistry & Pharmaceutical Sciences, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Roger S. Goody
- Structural
Biochemistry, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse
11, D-44227 Dortmund, Germany
| | - Herbert Waldmann
- Department
of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Tom N. Grossmann
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
- VU University Amsterdam, Department of Chemistry & Pharmaceutical Sciences, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
113
|
Nagano M, Toshima JY, Toshima J. [Rab GTPases networks in membrane traffic in Saccharomyces cerevisiae]. YAKUGAKU ZASSHI 2016; 135:483-92. [PMID: 25759056 DOI: 10.1248/yakushi.14-00246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular membrane trafficking between membranous compartments is essential for organelle biogenesis, structure, and identity. Rab/Ypt GTPases are well-characterized regulators of intracellular membrane trafficking, functioning as molecular switches that alternate between GTP- and GDP-bound forms. In Saccharomyces cerevisiae, 11 Rab/Ypt GTPases have been identified and their functions are known to be conserved in their mammalian counterparts. In yeast, the secretory pathway is regulated by sequential activation and inactivation (the so-called Rab cascade) of three types of yeast Rab protein -Ypt1p, Ypt31p/32p and Sec4p -via specific guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). In addition to these Rabs, we and others have recently demonstrated that Ypt6p is predominantly localized to the early Golgi compartment, and functions as another regulator of anterograde transport for intra-Golgi trafficking in the secretory pathway. On the other hand, the endocytic pathway is known to be regulated by three yeast Rab5s (Vps21p, Ypt52p and Ypt53p) and one Rab7 (Ypt7p). Rab5 and Rab7 are key determinants of endosome identity, and the Rab5-Rab7 cascade is important for the progression from early to late endosome. Our recent study demonstrates that the endocytic pathway branches into two vacuolar targeting pathways, the Rab5-dependent vacuole protein sorting (VPS) pathway and the Rab5-independent pathway. In this review, we focus on recent advances in our understanding of molecular mechanisms that regulate the localization and activity of yeast Rab GTPases in intracellular membrane trafficking.
Collapse
Affiliation(s)
- Makoto Nagano
- Research Center for RNA Science, RIST, Tokyo University of Science
| | | | | |
Collapse
|
114
|
Abstract
Viruses have evolved many mechanisms by which to evade and subvert the immune system to ensure survival and persistence. However, for each method undertaken by the immune system for pathogen removal, there is a counteracting mechanism utilized by pathogens. The new and emerging role of microvesicles in immune intercellular communication and function is no different. Viruses across many different families have evolved to insert viral components in exosomes, a subtype of microvesicle, with many varying downstream effects. When assessed cumulatively, viral antigens in exosomes increase persistence through cloaking viral genomes, decoying the immune system, and even by increasing viral infection in uninfected cells. Exosomes therefore represent a source of viral antigen that can be used as a biomarker for disease and targeted for therapy in the control and eradication of these disorders. With the rise in the persistence of new and reemerging viruses like Ebola and Zika, exploring the role of exosomes become more important than ever.
Collapse
Affiliation(s)
- Monique R Anderson
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, Bethesda, MD, 20892, USA.
- Department of Pathology Molecular and Cellular Basis of Disease Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| | - Fatah Kashanchi
- George Mason University, National Center for Biodefense and Infectious Disease, Laboratory of Molecular Virology, Manassas, VA, 20110, USA
| | - Steven Jacobson
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, Bethesda, MD, 20892, USA
| |
Collapse
|
115
|
Han F, Zhang Y, Zhang D, Liu L, Tsai HJ, Wang Z. The Rab5A gene of marine fish, large yellow croaker (Larimichthys crocea), and its response to the infection of Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2016; 54:364-373. [PMID: 27108380 DOI: 10.1016/j.fsi.2016.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/12/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
Rab GTPases, members of the Ras superfamily, encode monomeric G-proteins. Rab proteins regulate key steps in membrane traffic transport and endocytic pathway of host immune responses. Rab5A is involved in immune regulation, particularly in T cell migration and macrophage endocytosis in higher vertebrates. However, little is known of the molecular structure of Rab5A gene in marine teleost fish species and its expression profile during the parasite infection. In this study, the full-length cDNA sequence and genomic structure of Rab5A gene of the large yellow croaker (Larimichthys crocea) (LycRab5A), one of the most economical marine fishes, were identified and characterized. The LycRab5A protein, containing the ATPase/GTPase binding motifs and the effector molecules binding motifs, was highly homologous to that of other animals. The expression plasmid containing LycRab5A cDNA fused with GST was engineered and transformed into Escherichia coli to produce recombinant protein GST-LycRab5A, which was purified to prepare a polyclonal antibody specifically against LycRab5A. Subcellular localization revealed that LycRab5A expressed in the membrane and cytoplasm. Based on real-time PCR and Western blot analysis, we found that both mRNA and protein of LycRab5A were expressed in all tissues we examined; especially it was highly expressed in blood and gill. Interestingly, both mRNA and protein of LycRab5A were substantially up-regulated when parasitic ciliate protozoan (Cryptocaryon irritans) was infected. The expression of LycRab5A was reached to the maximal level at 24 h after infection. The line of evidence suggested that LycRab5A might play an important role in large yellow croaker defense against parasite infection. Moreover, on the basis of protein interaction, it was found that the LycRab5A interacted with myosin light chain (designated as LycMLC), a crucial protein in the process of phagocytosis. This discovery might contribute better understanding to the molecular events involved in fish immune responses.
Collapse
Affiliation(s)
- Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Yu Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Dongling Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Lanping Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Huai Jen Tsai
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
116
|
Moftah H, Dias K, Apu EH, Liu L, Uttagomol J, Bergmeier L, Kermorgant S, Wan H. Desmoglein 3 regulates membrane trafficking of cadherins, an implication in cell-cell adhesion. Cell Adh Migr 2016; 11:211-232. [PMID: 27254775 DOI: 10.1080/19336918.2016.1195942] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
E-cadherin mediated cell-cell adhesion plays a critical role in epithelial cell polarization and morphogenesis. Our recent studies suggest that the desmosomal cadherin, desmoglein 3 (Dsg3) cross talks with E-cadherin and regulates its adhesive function in differentiating keratinocytes. However, the underlying mechanism remains not fully elucidated. Since E-cadherin trafficking has been recognized to be a central determinant in cell-cell adhesion and homeostasis we hypothesize that Dsg3 may play a role in regulating E-cadherin trafficking and hence the cell-cell adhesion. Here we investigated this hypothesis in cells with loss of Dsg3 function through RNAi mediated Dsg3 knockdown or the stable expression of the truncated mutant Dsg3ΔC. Our results showed that loss of Dsg3 resulted in compromised cell-cell adhesion and reduction of adherens junction and desmosome protein expression as well as the cortical F-actin formation. As a consequence, cells failed to polarize but instead displayed aberrant cell flattening. Furthermore, retardation of E-cadherin internalization and recycling was consistently observed in these cells during the process of calcium induced junction assembling. In contrast, enhanced cadherin endocytosis was detected in cells with overexpression of Dsg3 compared to control cells. Importantly, this altered cadherin trafficking was found to be coincided with the reduced expression and activity of Rab proteins, including Rab5, Rab7 and Rab11 which are known to be involved in E-cadherin trafficking. Taken together, our findings suggest that Dsg3 functions as a key in cell-cell adhesion through at least a mechanism of regulating E-cadherin membrane trafficking.
Collapse
Affiliation(s)
- Hanan Moftah
- a Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry , Queen Mary University of London , Whitechapel, London , UK
| | - Kasuni Dias
- a Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry , Queen Mary University of London , Whitechapel, London , UK
| | - Ehsanul Hoque Apu
- a Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry , Queen Mary University of London , Whitechapel, London , UK
| | - Li Liu
- a Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry , Queen Mary University of London , Whitechapel, London , UK
| | - Jutamas Uttagomol
- a Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry , Queen Mary University of London , Whitechapel, London , UK
| | - Lesley Bergmeier
- a Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry , Queen Mary University of London , Whitechapel, London , UK
| | - Stephanie Kermorgant
- b Barts Cancer Institute, John Vane Science Center , Charterhouse Square, London , UK
| | - Hong Wan
- a Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry , Queen Mary University of London , Whitechapel, London , UK
| |
Collapse
|
117
|
Shinde SR, Maddika S. A modification switch on a molecular switch: Phosphoregulation of Rab7 during endosome maturation. Small GTPases 2016; 7:164-7. [PMID: 27070490 DOI: 10.1080/21541248.2016.1175539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Rab GTPases, the highly conserved members of Ras GTPase superfamily are the pivotal regulators of vesicle-mediated trafficking. Rab GTPases, each with a specific subcellular localization, exert tremendous control over various aspects of vesicular transport, identity and dynamics. Several lines of research have established that GDI, GEFs and GAPs are the critical players to orchestrate Rab GTPase activity and function. The importance of post translational modifications in Rab GTPase functional regulation is poorly or not yet been addressed except for prenylation. Our recent study has revealed a novel dephosphorylation dependent regulatory mechanism for Rab7 activity and function. We have shown the importance of PTEN mediated dephosphorylation of Rab7 on highly conserved S72 and Y183 residues, which is essential for its GDI mediated membrane targeting and further activation by GEF. In conclusion, our study highlighted the importance of a phosphorylation/dephosphorylation switch in controlling timely Rab7 localization and activity on endosomes.
Collapse
Affiliation(s)
- Swapnil Rohidas Shinde
- a Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally , Hyderabad , India.,b Graduate Studies, Manipal University , Manipal , India
| | - Subbareddy Maddika
- a Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally , Hyderabad , India
| |
Collapse
|
118
|
Abstract
In eukaryotic cells, Rab guanosine triphosphate-ases serve as key regulators of membrane-trafficking events, such as exocytosis and endocytosis. Rab3, Rab6, and Rab27 control the regulatory secretory pathway of neuropeptides and neurotransmitters. The cDNAs of Rab3, Rab6, and Rab27 from B. mori were inserted into a plasmid, transformed into Escherichia coli, and then subsequently purified. We then produced antibodies against Rab3, Rab6, and Rab27 of Bombyx mori in rabbits and rats for use in western immunoblotting and immunohistochemistry. Western immunoblotting of brain tissue revealed a single band at approximately 26 kDa. Immunohistochemistry results revealed that Rab3, Rab6, and Rab27 expression was restricted to neurons in the pars intercerebralis and dorsolateral protocerebrum of the brain. Rab3 and Rab6 co-localized with bombyxin, an insect neuropeptide. However, there was no Rab that co-localized with prothoracicotropic hormone. The corpus allatum secretes neuropeptides synthesized in the brain into the hemolymph. Results showed that Rab3 and Rab6 co-localized with bombyxin in the corpus allatum. These findings suggest that Rab3 and Rab6 are involved in neurosecretion in B. mori. This study is the first to report a possible relationship between Rab and neurosecretion in the insect corpus allatum.
Collapse
|
119
|
Chandra M, Saran R, Datta S. Deciphering the role of Atg5 in nucleotide dependent interaction of Rab33B with the dimeric complex, Atg5-Atg16L1. Biochem Biophys Res Commun 2016; 473:8-16. [PMID: 26975471 DOI: 10.1016/j.bbrc.2016.03.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/18/2022]
Abstract
Autophagy is a lysosomal degradation pathway that degrades cytosolic constituents, including whole organelles and intracellular pathogens. Previous studies on various autophagy related genes revealed the importance of the Atg12-Atg5-Atg16 complex in autophagy. Atg16L1 is an effector of Golgi-resident Rab33B and the molecular mechanism of the interaction of Rab33B with either Atg16L1 or in complex with Atg5 is still elusive. In the current study, using the pull down and calorimetric approaches, we have dissected the molecular insights into the interaction of Rab33B with different regions of mouse Atg16L1 as well as with the dimeric complex, Atg5-mAtg16L1. Our in vitro observation suggests that Atg5 is pre-requisite for the augmented nucleotide dependent interaction of Rab33B with the dimeric complex, Atg5-Atg16L1. Moreover, the results reported here suggest that Arg-24 of Atg16L1 is crucial for its interaction with Atg5 which will have further implication in the binding of the dimeric complex to Rab33B.
Collapse
Affiliation(s)
- Mintu Chandra
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal-462023, India
| | - Runjhun Saran
- University of Waterloo, Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal-462023, India.
| |
Collapse
|
120
|
Rab GTPases and the Autophagy Pathway: Bacterial Targets for a Suitable Biogenesis and Trafficking of Their Own Vacuoles. Cells 2016; 5:cells5010011. [PMID: 27005665 PMCID: PMC4810096 DOI: 10.3390/cells5010011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/18/2022] Open
Abstract
Autophagy is an intracellular process that comprises degradation of damaged organelles, protein aggregates and intracellular pathogens, having an important role in controlling the fate of invading microorganisms. Intracellular pathogens are internalized by professional and non-professional phagocytes, localizing in compartments called phagosomes. To degrade the internalized microorganism, the microbial phagosome matures by fusion events with early and late endosomal compartments and lysosomes, a process that is regulated by Rab GTPases. Interestingly, in order to survive and replicate in the phagosome, some pathogens employ different strategies to manipulate vesicular traffic, inhibiting phagolysosomal biogenesis (e.g., Staphylococcus aureus and Mycobacterium tuberculosis) or surviving in acidic compartments and forming replicative vacuoles (e.g., Coxiellaburnetti and Legionella pneumophila). The bacteria described in this review often use secretion systems to control the host’s response and thus disseminate. To date, eight types of secretion systems (Type I to Type VIII) are known. Some of these systems are used by bacteria to translocate pathogenic proteins into the host cell and regulate replicative vacuole formation, apoptosis, cytokine responses, and autophagy. Herein, we have focused on how bacteria manipulate small Rab GTPases to control many of these processes. The growing knowledge in this field may facilitate the development of new treatments or contribute to the prevention of these types of bacterial infections.
Collapse
|
121
|
Hou X, Zhang J, Li L, Ma R, Ge J, Han L, Wang Q. Rab6a is a novel regulator of meiotic apparatus and maturational progression in mouse oocytes. Sci Rep 2016; 6:22209. [PMID: 26915694 PMCID: PMC4768169 DOI: 10.1038/srep22209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/08/2016] [Indexed: 11/09/2022] Open
Abstract
Rab family GTPases have been well known to regulate intracellular vesicle transport, however their function in mammalian oocytes has not been addressed. In this study, we report that when Rab6a is specifically knockdown, mouse oocytes are unable to progress normally through meiosis, arresting at metaphase I. Moreover, in these oocytes, the defects of chromosome alignment and spindle organization are readily observed during maturation, and resultantly increasing the aneuploidy incidence. We further reveal that kinetochore-microtubule attachments are severely compromised in Rab6a-depleted oocytes, which may in part mediate the meiotic phenotypes described above. In addition, when Rab6a function is altered, BubR1 levels on the kinetochores are markedly increased in metaphase oocytes, indicating the activation of spindle assembly checkpoint. In sum, we identify Rab6a as an important player in modulating oocyte meiosis, specifically the chromosome/spindle organization and metaphase-anaphase transition.
Collapse
Affiliation(s)
- Xiaojing Hou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jiaqi Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Rujun Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Center of Reproductive Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
122
|
Ravi S, Johnson MS, Chacko BK, Kramer PA, Sawada H, Locy ML, Wilson LS, Barnes S, Marques MB, Darley-Usmar VM. Modification of platelet proteins by 4-hydroxynonenal: Potential Mechanisms for inhibition of aggregation and metabolism. Free Radic Biol Med 2016; 91:143-53. [PMID: 26475426 PMCID: PMC4761519 DOI: 10.1016/j.freeradbiomed.2015.10.408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 01/23/2023]
Abstract
Platelet aggregation is an essential response to tissue injury and is associated with activation of pro-oxidant enzymes, such as cyclooxygenase, and is also a highly energetic process. The two central energetic pathways in the cell, glycolysis and mitochondrial oxidative phosphorylation, are susceptible to damage by reactive lipid species. Interestingly, how platelet metabolism is affected by the oxidative stress associated with aggregation is largely unexplored. To address this issue, we examined the response of human platelets to 4-hydroxynonenal (4-HNE), a reactive lipid species which is generated during thrombus formation and during oxidative stress. Elevated plasma 4-HNE has been associated with renal failure, septic shock and cardiopulmonary bypass surgery. In this study, we found that 4-HNE decreased thrombin stimulated platelet aggregation by approximately 60%. The metabolomics analysis demonstrated that underlying our previous observation of a stimulation of platelet energetics by thrombin glycolysis and TCA (Tricarboxylic acid) metabolites were increased. Next, we assessed the effect of both 4-HNE and alkyne HNE (A-HNE) on bioenergetics and targeted metabolomics, and found a stimulatory effect on glycolysis, associated with inhibition of bioenergetic parameters. In the presence of HNE and thrombin glycolysis was further stimulated but the levels of the TCA metabolites were markedly suppressed. Identification of proteins modified by A-HNE followed by click chemistry and mass spectrometry revealed essential targets in platelet activation including proteins involved in metabolism, adhesion, cytoskeletal reorganization, aggregation, vesicular transport, protein folding, antioxidant proteins, and small GTPases. In summary, the biological effects of 4-HNE can be more effectively explained in platelets by the integrated effects of the modification of an electrophile responsive proteome rather than the isolated effects of candidate proteins.
Collapse
Affiliation(s)
- Saranya Ravi
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Michelle S Johnson
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Balu K Chacko
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Philip A Kramer
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Hirotaka Sawada
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | - Morgan L Locy
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology
| | | | - Stephen Barnes
- The Targeted Metabolomics and Proteomics Laboratory; Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Victor M Darley-Usmar
- Department of Pathology; UAB Mitochondrial Medicine Laboratory; Center for Free Radical Biology.
| |
Collapse
|
123
|
Wang HH, Cui Q, Zhang T, Wang ZB, Ouyang YC, Shen W, Ma JY, Schatten H, Sun QY. Rab3A, Rab27A, and Rab35 regulate different events during mouse oocyte meiotic maturation and activation. Histochem Cell Biol 2016; 145:647-57. [PMID: 26791531 DOI: 10.1007/s00418-015-1404-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2015] [Indexed: 01/22/2023]
Abstract
Rab family members play important roles in membrane trafficking, cell growth, and differentiation. Almost all components of the cell endomembrane system, the nucleus, and the plasma membrane are closely related to RAB proteins. In this study, we investigated the distribution and functions of three members of the Rab family, Rab3A, Rab27A, and Rab35, in mouse oocyte meiotic maturation and activation. The three Rab family members showed different localization patterns in oocytes. Microinjection of siRNA, antibody injection, or inhibitor treatment showed that (1) Rab3A regulates peripheral spindle and cortical granule (CG) migration, polarity establishment, and asymmetric division; (2) Rab27A regulates CG exocytosis following MII-stage oocyte activation; and (3) Rab35 plays an important role in spindle organization and morphology maintenance, and thus meiotic nuclear maturation. These results show that Rab proteins play important roles in mouse oocyte meiotic maturation and activation and that different members exert different distinct functions.
Collapse
Affiliation(s)
- H H Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Q Cui
- Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - T Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Z B Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Y C Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - W Shen
- Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - J Y Ma
- Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - H Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Q Y Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China. .,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
124
|
Vuorenpää A, Jørgensen TN, Newman AH, Madsen KL, Scheinin M, Gether U. Differential Internalization Rates and Postendocytic Sorting of the Norepinephrine and Dopamine Transporters Are Controlled by Structural Elements in the N Termini. J Biol Chem 2016; 291:5634-5651. [PMID: 26786096 DOI: 10.1074/jbc.m115.702050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 11/06/2022] Open
Abstract
The norepinephrine transporter (NET) mediates reuptake of synaptically released norepinephrine in central and peripheral noradrenergic neurons. The molecular processes governing availability of NET in the plasma membrane are poorly understood. Here we use the fluorescent cocaine analogue JHC 1-64, as well as several other approaches, to investigate the trafficking itinerary of NET in live noradrenergic neurons. Confocal imaging revealed extensive constitutive internalization of JHC 1-64-labeled NET in the neuronal somata, proximal extensions and presynaptic boutons. Phorbol 12-myristate 13-acetate increased intracellular accumulation of JHC 1-64-labeled NET and caused a parallel reduction in uptake capacity. Internalized NET strongly colocalized with the "long loop" recycling marker Rab11, whereas less overlap was seen with the "short loop" recycling marker Rab4 and the late endosomal marker Rab7. Moreover, mitigating Rab11 function by overexpression of dominant negative Rab11 impaired NET function. Sorting of NET to the Rab11 recycling compartment was further supported by confocal imaging and reversible biotinylation experiments in transfected differentiated CATH.a cells. In contrast to NET, the dopamine transporter displayed markedly less constitutive internalization and limited sorting to the Rab11 recycling compartment in the differentiated CATH.a cells. Exchange of domains between the two homologous transporters revealed that this difference was determined by non-conserved structural elements in the intracellular N terminus. We conclude that NET displays a distinct trafficking itinerary characterized by continuous shuffling between the plasma membrane and the Rab11 recycling compartment and that the functional integrity of the Rab11 compartment is critical for maintaining proper presynaptic NET function.
Collapse
Affiliation(s)
- Anne Vuorenpää
- From the Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Panum Institute 18.6, University of Copenhagen, DK-2200 Copenhagen, Denmark,; the Department of Pharmacology, Drug Development, and Therapeutics, University of Turku, Turku FI-20014, Finland,; the Unit of Clinical Pharmacology, Turku University Hospital, Turku FI-20520, Finland, and
| | - Trine N Jørgensen
- From the Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Panum Institute 18.6, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Amy H Newman
- the Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224
| | - Kenneth L Madsen
- From the Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Panum Institute 18.6, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Mika Scheinin
- the Department of Pharmacology, Drug Development, and Therapeutics, University of Turku, Turku FI-20014, Finland,; the Unit of Clinical Pharmacology, Turku University Hospital, Turku FI-20520, Finland, and
| | - Ulrik Gether
- From the Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Panum Institute 18.6, University of Copenhagen, DK-2200 Copenhagen, Denmark,.
| |
Collapse
|
125
|
Schafer JC, McRae RE, Manning EH, Lapierre LA, Goldenring JR. Rab11-FIP1A regulates early trafficking into the recycling endosomes. Exp Cell Res 2016; 340:259-73. [PMID: 26790954 PMCID: PMC4744548 DOI: 10.1016/j.yexcr.2016.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/19/2015] [Accepted: 01/10/2016] [Indexed: 12/31/2022]
Abstract
The Rab11 family of small GTPases, along with the Rab11-family interacting proteins (Rab11-FIPs), are critical regulators of intracellular vesicle trafficking and recycling. We have identified a point mutation of Threonine-197 site to an Alanine in Rab11-FIP1A, which causes a dramatic dominant negative phenotype when expressed in HeLa cells. The normally perinuclear distribution of GFP-Rab11-FIP1A was condensed into a membranous cisternum with almost no GFP-Rab11-FIP1A(T197A) remaining outside of this central locus. Also, this condensed GFP-FIP1A(T197A) altered the distribution of proteins in the Rab11a recycling pathway including endogenous Rab11a, Rab11-FIP1C, and transferrin receptor (CD71). Furthermore, this condensed GFP-FIP1A(T197A)-containing structure exhibited little movement in live HeLa cells. Expression of GFP-FIP1A(T197A) caused a strong blockade of transferrin recycling. Treatment of cells expressing GFP-FIP1A(T197A) with nocodazole did not disperse the Rab11a-containing recycling system. We also found that Rab5 and EEA1 were accumulated in membranes by GFP-Rab11-FIP1A but Rab4 was unaffected, suggesting that a direct pathway may exist from early endosomes into the Rab11a-containing recycling system. Our study of a potent inhibitory trafficking mutation in Rab11-FIP1A shows that Rab11-FIP1A associates with and regulates trafficking at an early step in the process of membrane recycling.
Collapse
Affiliation(s)
- Jenny C Schafer
- Departments of Surgery, Nashville, TN, USA; Epithelial Biology Center, Nashville, TN, USA
| | - Rebecca E McRae
- Departments of Surgery, Nashville, TN, USA; Cell & Developmental Biology, Nashville, TN, USA; Epithelial Biology Center, Nashville, TN, USA
| | - Elizabeth H Manning
- Departments of Surgery, Nashville, TN, USA; Epithelial Biology Center, Nashville, TN, USA
| | - Lynne A Lapierre
- Departments of Surgery, Nashville, TN, USA; Epithelial Biology Center, Nashville, TN, USA
| | - James R Goldenring
- Departments of Surgery, Nashville, TN, USA; Cell & Developmental Biology, Nashville, TN, USA; Epithelial Biology Center, Nashville, TN, USA; Vanderbilt University School of Medicine and the Nashville VA Medical Center, Nashville, TN, USA.
| |
Collapse
|
126
|
Sunada M, Goh T, Ueda T, Nakano A. Functional analyses of the plant-specific C-terminal region of VPS9a: the activating factor for RAB5 in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2016; 129:93-102. [PMID: 26493488 DOI: 10.1007/s10265-015-0760-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/17/2015] [Indexed: 05/23/2023]
Abstract
Recent studies demonstrated that endosomal transport played important roles in various plant functions. The RAB GTPase regulates the tethering and fusion steps of vesicle trafficking to target membranes in each trafficking pathway by acting as a molecular switch. RAB GTPase activation is catalyzed by specific guanine nucleotide exchange factors (GEFs) that promote the exchange of GDP on the RAB GTPase with GTP. RAB5 is a key regulator of endosomal trafficking and is uniquely diversified in plants; the plant-unique RAB5 group ARA6 was acquired in addition to conventional RAB5 during evolution. In Arabidopsis thaliana, conventional RAB5, ARA7 and RHA1 regulate the endosomal/vacuolar trafficking pathways, whereas ARA6 acts in the pathway from the endosome to the plasma membrane. Despite their distinct functions, all RAB5 members are activated by the common GEF VACUOLAR PROTEIN SORTING 9a (VPS9a). VPS9a consists of an N-terminal conserved domain and C-terminal region (CTR) with no similarity to known functional domains. In this study, we investigated the function of the CTR by generating truncated versions of VPS9a and found that it was specifically responsible for ARA6 regulation; moreover, the CTR was required for the oligomerization and correct localization of VPS9a. The oligomerization of VPS9a was mediated by a distinctive region consisting of 36 amino acids in the CTR that was conserved in plant RAB5 GEFs. Thus the VPS9a CTR plays an important role in the regulation of the two RAB5 groups in plants.
Collapse
Affiliation(s)
- Mariko Sunada
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tatsuaki Goh
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advances Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
127
|
Capalbo L. Commentary: Rab GTPase: A New Mitotic Delivery Service. Front Cell Dev Biol 2015; 3:72. [PMID: 26636081 PMCID: PMC4646951 DOI: 10.3389/fcell.2015.00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/26/2015] [Indexed: 11/26/2022] Open
Affiliation(s)
- Luisa Capalbo
- Department of Pathology, University of Cambridge Cambridge, UK
| |
Collapse
|
128
|
Molecular imaging analysis of Rab GTPases in the regulation of phagocytosis and macropinocytosis. Anat Sci Int 2015; 91:35-42. [DOI: 10.1007/s12565-015-0313-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/26/2015] [Indexed: 12/22/2022]
|
129
|
De Zio D, Molinari F, Rizza S, Gatta L, Ciotti MT, Salvatore AM, Mathiassen SG, Cwetsch AW, Filomeni G, Rosano G, Ferraro E. Apaf1-deficient cortical neurons exhibit defects in axonal outgrowth. Cell Mol Life Sci 2015; 72:4173-91. [PMID: 25975226 PMCID: PMC11113842 DOI: 10.1007/s00018-015-1927-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/07/2015] [Accepted: 05/06/2015] [Indexed: 01/14/2023]
Abstract
The establishment of neuronal polarity and axonal outgrowth are key processes affecting neuronal migration and synapse formation, their impairment likely leading to cognitive deficits. Here we have found that the apoptotic protease activating factor 1 (Apaf1), apart from its canonical role in apoptosis, plays an additional function in cortical neurons, where its deficiency specifically impairs axonal growth. Given the central role played by centrosomes and microtubules in the polarized extension of the axon, our data suggest that Apaf1-deletion affects axonal outgrowth through an impairment of centrosome organization. In line with this, centrosomal protein expression, as well as their centrosomal localization proved to be altered upon Apaf1-deletion. Strikingly, we also found that Apaf1-loss affects trans-Golgi components and leads to a robust activation of AMP-dependent protein kinase (AMPK), this confirming the stressful conditions induced by Apaf1-deficiency. Since AMPK hyper-phosphorylation is known to impair a proper axon elongation, our finding contributes to explain the effect of Apaf1-deficiency on axogenesis. We also discovered that the signaling pathways mediating axonal growth and involving glycogen synthase kinase-3β, liver kinase B1, and collapsing-response mediator protein-2 are altered in Apaf1-KO neurons. Overall, our results reveal a novel non-apoptotic role for Apaf1 in axonal outgrowth, suggesting that the neuronal phenotype due to Apaf1-deletion could not only be fully ascribed to apoptosis inhibition, but might also be the result of defects in axogenesis. The discovery of new molecules involved in axonal elongation has a clinical relevance since it might help to explain neurological abnormalities occurring during early brain development.
Collapse
Affiliation(s)
- Daniela De Zio
- Department of Biology, "Tor Vergata" University of Rome, Via della Ricerca Scientifica, 00133, Rome, Italy
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Francesca Molinari
- Laboratory of Skeletal Muscle Development and Metabolism, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166, Rome, Italy
| | - Salvatore Rizza
- Department of Biology, "Tor Vergata" University of Rome, Via della Ricerca Scientifica, 00133, Rome, Italy
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Lucia Gatta
- Laboratory of Skeletal Muscle Development and Metabolism, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166, Rome, Italy
| | - Maria Teresa Ciotti
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Rome, Italy
| | - Anna Maria Salvatore
- Institute of Neurobiology and Molecular Medicine, National Research Council (CNR), Rome, Italy
| | - Søs Grønbæk Mathiassen
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Andrzej W Cwetsch
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), via Morego 30, 16163, Genoa, Italy
| | - Giuseppe Filomeni
- Department of Biology, "Tor Vergata" University of Rome, Via della Ricerca Scientifica, 00133, Rome, Italy
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Giuseppe Rosano
- Laboratory of Skeletal Muscle Development and Metabolism, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166, Rome, Italy
| | - Elisabetta Ferraro
- Laboratory of Skeletal Muscle Development and Metabolism, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166, Rome, Italy.
| |
Collapse
|
130
|
Lowry MC, Gallagher WM, O'Driscoll L. The Role of Exosomes in Breast Cancer. Clin Chem 2015; 61:1457-65. [PMID: 26467503 DOI: 10.1373/clinchem.2015.240028] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Although it has been long realized that eukaryotic cells release complex vesicular structures into their environment, only in recent years has it been established that these entities are not merely junk or debris, but that they are tailor-made specialized minimaps of their cell of origin and of both physiological and pathological relevance. These exosomes and microvesicles (ectosomes), collectively termed extracellular vesicles (EVs), are often defined and subgrouped first and foremost according to size and proposed origin (exosomes approximately 30-120 nm, endosomal origin; microvesicles 120-1000 nm, from the cell membrane). There is growing interest in elucidating the relevance and roles of EVs in cancer. CONTENT Much of the pioneering work on EVs in cancer has focused on breast cancer, possibly because breast cancer is a leading cause of cancer-related deaths worldwide. This review provides an in-depth summary of such studies, supporting key roles for exosomes and other EVs in breast cancer cell invasion and metastasis, stem cell stimulation, apoptosis, immune system modulation, and anti-cancer drug resistance. Exosomes as diagnostic, prognostic, and/or predictive biomarkers and their potential use in the development of therapeutics are discussed. SUMMARY Although not fully elucidated, the involvement of exosomes in breast cancer development, progression, and resistance is becoming increasingly apparent from preclinical and clinical studies, with mounting interest in the potential exploitation of these vesicles for breast cancer biomarkers, as drug delivery systems, and in the development of future novel breast cancer therapies.
Collapse
Affiliation(s)
- Michelle C Lowry
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - William M Gallagher
- School of Biomolecular and Biomedical Science, University College Dublin Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland;
| |
Collapse
|
131
|
Mata IF, Jang Y, Kim CH, Hanna DS, Dorschner MO, Samii A, Agarwal P, Roberts JW, Klepitskaya O, Shprecher DR, Chung KA, Factor SA, Espay AJ, Revilla FJ, Higgins DS, Litvan I, Leverenz JB, Yearout D, Inca-Martinez M, Martinez E, Thompson TR, Cholerton BA, Hu SC, Edwards KL, Kim KS, Zabetian CP. The RAB39B p.G192R mutation causes X-linked dominant Parkinson's disease. Mol Neurodegener 2015; 10:50. [PMID: 26399558 PMCID: PMC4581468 DOI: 10.1186/s13024-015-0045-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/17/2015] [Indexed: 11/10/2022] Open
Abstract
Objective To identify the causal gene in a multi-incident U.S. kindred with Parkinson’s disease (PD). Methods We characterized a family with a classical PD phenotype in which 7 individuals (5 males and 2 females) were affected with a mean age at onset of 46.1 years (range, 29-57 years). We performed whole exome sequencing on 4 affected and 1 unaffected family members. Sanger-sequencing was then used to verify and genotype all candidate variants in the remainder of the pedigree. Cultured cells transfected with wild-type or mutant constructs were used to characterize proteins of interest. Results We identified a missense mutation (c.574G > A; p.G192R) in the RAB39B gene that closely segregated with disease and exhibited X-linked dominant inheritance with reduced penetrance in females. The mutation occurred in a highly conserved amino acid residue and was not observed among 87,725 X chromosomes in the Exome Aggregation Consortium dataset. Sequencing of the RAB39B coding region in 587 familial PD cases yielded two additional mutations (c.428C > G [p.A143G] and c.624_626delGAG [p.R209del]) that were predicted to be deleterious in silico but occurred in families that were not sufficiently informative to assess segregation with disease. Experiments in PC12 and SK-N-BE(2)C cells demonstrated that p.G192R resulted in mislocalization of the mutant protein, possibly by altering the structure of the hypervariable C-terminal domain which mediates intracellular targeting. Conclusions Our findings implicate RAB39B, an essential regulator of vesicular-trafficking, in clinically typical PD. Further characterization of normal and aberrant RAB39B function might elucidate important mechanisms underlying neurodegeneration in PD and related disorders. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0045-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ignacio F Mata
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA. .,Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA.
| | - Yongwoo Jang
- Molecular Neurobiology Laboratory, Department of Psychiatry and Program in Neuroscience, McLean Hospital/Harvard Medical School, Belmont, MA, USA.
| | - Chun-Hyung Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and Program in Neuroscience, McLean Hospital/Harvard Medical School, Belmont, MA, USA.
| | - David S Hanna
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA. .,Department of Pathology, University of Washington, Seattle, WA, USA.
| | - Michael O Dorschner
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA. .,Department of Pathology, University of Washington, Seattle, WA, USA.
| | - Ali Samii
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA. .,Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA.
| | - Pinky Agarwal
- Booth Gardner Parkinson's Care Center, Evergreen Hospital Medical Center, Kirkland, WA, USA.
| | | | | | - David R Shprecher
- Department of Neurology, University of Utah, Salt Lake City, UT, USA.
| | - Kathryn A Chung
- Parkinson's Disease Research, Education, and Clinical Center, Portland Veterans Affairs Medical Center, Portland, OR, USA. .,Department of Neurology, Oregon Health and Science University, Portland, OR, USA.
| | - Stewart A Factor
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Alberto J Espay
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Fredy J Revilla
- Division of Neurology at Greenville Health System and the University of South Carolina Medical School-Greenville, Greenville, SC, USA.
| | - Donald S Higgins
- Samuel Stratton Veterans Affairs Medical Center, Albany, NY, USA.
| | - Irene Litvan
- Movement Disorder Center, Department of Neurosciences, University of California, San Diego, CA, USA.
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, OH, USA.
| | - Dora Yearout
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA. .,Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA.
| | - Miguel Inca-Martinez
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru.
| | - Erica Martinez
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA. .,Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA.
| | | | - Brenna A Cholerton
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA. .,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| | - Shu-Ching Hu
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA. .,Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA.
| | - Karen L Edwards
- Department of Epidemiology, University of California, Irvine, CA, USA.
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and Program in Neuroscience, McLean Hospital/Harvard Medical School, Belmont, MA, USA.
| | - Cyrus P Zabetian
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA. .,Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
132
|
Naj X, Linder S. ER-Coordinated Activities of Rab22a and Rab5a Drive Phagosomal Compaction and Intracellular Processing of Borrelia burgdorferi by Macrophages. Cell Rep 2015; 12:1816-30. [DOI: 10.1016/j.celrep.2015.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/24/2015] [Accepted: 08/08/2015] [Indexed: 01/26/2023] Open
|
133
|
Lim YS, Tang BL. A role for Rab23 in the trafficking of Kif17 to the primary cilium. J Cell Sci 2015; 128:2996-3008. [PMID: 26136363 DOI: 10.1242/jcs.163964] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/25/2015] [Indexed: 01/07/2023] Open
Abstract
The small GTPase Rab23 is an antagonist of sonic hedgehog (Shh) signaling during mouse development. Given that modulation of Shh signaling depends on the normal functioning of the primary cilium, and overexpression of Evi5L, a putative Rab23 GTPase-activating protein (GAP), leads to reduced ciliogenesis, Rab23 could have a role at the primary cilium. Here, we found that wild-type Rab23 and the constitutively active Rab23 Q68L mutant were enriched at the primary cilium. Therefore, we tested the role of Rab23 in the ciliary targeting of known cargoes and found that ciliary localization of the kinesin-2 motor protein Kif17 was disrupted in Rab23-depleted cells. Co-immunoprecipitation and affinity-binding studies revealed that Rab23 exists in a complex with Kif17 and importin β2 (the putative Kif17 ciliary import carrier), implying that Kif17 needs to bind to regulatory proteins like Rab23 for its ciliary transport. Although a ciliary-cytoplasmic gradient of nuclear Ran is necessary to regulate the ciliary transport of Kif17, Rab23 and Ran appear to have differing roles in regulating the ciliary entry of Kif17. Our findings have uncovered a hitherto unknown effector of Rab23 and demonstrate how Rab23 could mediate the transport of Kif17 to the primary cilium.
Collapse
Affiliation(s)
- Yi Shan Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, 8 Medical Drive, 117597 Singapore
| | - Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, 8 Medical Drive, 117597 Singapore National University of Singapore Graduate School of Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, 117456 Singapore
| |
Collapse
|
134
|
Activation-Inactivation Cycling of Rab35 and ARF6 Is Required for Phagocytosis of Zymosan in RAW264 Macrophages. J Immunol Res 2015; 2015:429439. [PMID: 26229970 PMCID: PMC4502309 DOI: 10.1155/2015/429439] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/25/2015] [Indexed: 12/26/2022] Open
Abstract
Phagocytosis of zymosan by phagocytes is a widely used model of microbial recognition by the innate immune system. Live-cell imaging showed that fluorescent protein-fused Rab35 accumulated in the membranes of phagocytic cups and then dissociated from the membranes of newly formed phagosomes. By our novel pull-down assay for Rab35 activity, we found that Rab35 is deactivated immediately after zymosan internalization into the cells. Phagosome formation was inhibited in cells expressing the GDP- or GTP-locked Rab35 mutant. Moreover, the simultaneous expression of ACAP2-a Rab35 effector protein-with GTP-locked Rab35 or the expression of plasma membrane-targeted ACAP2 showed a marked inhibitory effect on phagocytosis through ARF6 inactivation by the GAP activity of ACAP2. ARF6, a substrate for ACAP2, was also localized on the phagocytic cups and dissociated from the membranes of internalized phagosomes. In support of the microscopic observations, ARF6-GTP pull-down experiments showed that ARF6 is transiently activated during phagosome formation. Furthermore, the expression of GDP- or GTP-locked ARF6 mutants also suppresses the uptake of zymosan. These data suggest that the activation-inactivation cycles of Rab35 and ARF6 are required for the uptake of zymosan and that ACAP2 is an important component that links Rab35/ARF6 signaling during phagocytosis of zymosan.
Collapse
|
135
|
Seven D, Dogan S, Kiliç E, Karaman E, Koseoglu H, Buyru N. Downregulation of Rab25 activates Akt1 in head and neck squamous cell carcinoma. Oncol Lett 2015; 10:1927-1931. [PMID: 26622777 DOI: 10.3892/ol.2015.3433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 06/11/2015] [Indexed: 12/31/2022] Open
Abstract
Several studies have suggested that Ras-associated binding 25 protein (Rab25) is involved in the pathogenesis of human cancer. Although it has been demonstrated that the development of head and neck squamous cell carcinoma (HNSCC) is the result of an accumulation of multiple sequential genetic and epigenetic alterations in key genes with important functions in cell growth and the cell cycle, recent studies have indicated that HNSCC is a complex and heterogenous disease. To the best of our knowledge, there is no data regarding the regulation of the Rab25 gene at the mRNA or protein level in HNSCC. Furthermore, available data on Rab25 expression in other types of cancer are conflicting. The aim of the present study was to investigate whether Rab25 is involved in the development and/or progression of HNSCC, and to analyze the mechanisms underlying its effects in this type of cancer. The expression of Rab25 mRNA in HNSCC tissues and adjacent non-tumor tissue samples was measured using reverse transcription-quantitative polymerase chain reaction, while the level of the Rab25, Akt1 and phosphorylated-Akt1 proteins was measured using western blotting. Expression of Rab25 mRNA and protein was downregulated in 69.1% and 56.1% of tumor tissue samples, respectively. This downregulation was associated with an increase in p-Akt1 expression, in the absence of a change in total Akt1 protein levels, in tumor tissues compared with normal tissues. The current findings suggest that Rab25 acts as a tumor suppressor in HNSCC.
Collapse
Affiliation(s)
- Didem Seven
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty, Istanbul 34098, Turkey
| | - Soydan Dogan
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty, Istanbul 34098, Turkey
| | - Erkan Kiliç
- Department of Otorhinolaryngology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34098, Turkey
| | - Emin Karaman
- Department of Otorhinolaryngology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34098, Turkey
| | - Hikmet Koseoglu
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty, Istanbul 34098, Turkey
| | - Nur Buyru
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty, Istanbul 34098, Turkey
| |
Collapse
|
136
|
Eom HJ, Roca CP, Roh JY, Chatterjee N, Jeong JS, Shim I, Kim HM, Kim PJ, Choi K, Giralt F, Choi J. A systems toxicology approach on the mechanism of uptake and toxicity of MWCNT in Caenorhabditis elegans. Chem Biol Interact 2015; 239:153-63. [PMID: 26111764 DOI: 10.1016/j.cbi.2015.06.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 05/05/2015] [Accepted: 06/21/2015] [Indexed: 01/08/2023]
Abstract
The increased volumes of carbon nanotubes (CNTs) being utilized in industrial and biomedical processes carries with it an increased risk of unintentional release into the environment, requiring a thorough hazard and risk assessment. In this study, the toxicity of pristine and hydroxylated (OH-) multiwall CNTs (MWCNTs) was investigated in the nematode Caenorhabditis elegans using an integrated systems toxicology approach. To gain an insight into the toxic mechanism of MWCNTs, microarray and proteomics were conducted for C. elegans followed by pathway analyses. The results of pathway analyses suggested endocytosis, phagocytosis, oxidative stress and endoplasmic reticulum (ER) stress, as potential mechanisms of uptake and toxicity, which were subsequently investigated using loss-of-function mutants of genes of those pathways. The expression of phagocytosis related genes (i.e. ced-10 and rab-7) were significantly increased upon exposure to OH-MWCNT, concomitantly with the rescued toxicity by loss-of-function mutants of those genes, such as ced-10(n3246) and rab-7(ok511). An increased sensitivity of the hsp-4(gk514) mutant by OH-MWCNT, along with a decreased expression of hsp-4 at both gene and protein level suggests that MWCNTs may affect ER stress response in C. elegans. Collectively, the results implied phagocytosis to be a potential mechanism of uptake of MWCNTs, and ER and oxidative stress as potential mechanisms of toxicity. The integrated systems toxicology approach applied in this study provided a comprehensive insight into the toxic mechanism of MWCNTs in C. elegans, which may eventually be used to develop an "Adverse Outcome Pathway (AOP)", a recently introduced concept as a conceptual framework to link molecular level responses to higher level effects.
Collapse
Affiliation(s)
- Hyun-Jeong Eom
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, Republic of Korea
| | - Carlos P Roca
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalunya, Spain
| | - Ji-Yeon Roh
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, Republic of Korea
| | - Nivedita Chatterjee
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, Republic of Korea
| | - Jae-Seong Jeong
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, Republic of Korea
| | - Ilseob Shim
- Risk Assessment Division, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Hyun-Mi Kim
- Risk Assessment Division, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Phil-Je Kim
- Risk Assessment Division, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Kyunghee Choi
- Risk Assessment Division, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Francesc Giralt
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalunya, Spain
| | - Jinhee Choi
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, Republic of Korea.
| |
Collapse
|
137
|
Kuhlee A, Raunser S, Ungermann C. Functional homologies in vesicle tethering. FEBS Lett 2015; 589:2487-97. [PMID: 26072291 DOI: 10.1016/j.febslet.2015.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 11/24/2022]
Abstract
The HOPS multisubunit tethering factor (MTC) is a macromolecular protein complex composed of six different subunits. It is one of the key components in the perception and subsequent fusion of multivesicular bodies and vacuoles. Electron microscopy studies indicate structural flexibility of the purified HOPS complex. Inducing higher rigidity into HOPS by biochemically modifying the complex declines the potential to mediate SNARE-driven membrane fusion. Thus, we propose that integral flexibility seems to be not only a feature, but of essential need for the function of HOPS. This review focuses on the general features of membrane tethering and fusion. For this purpose, we compare the structure and mode of action of different tethering factors to highlight their common central features and mechanisms.
Collapse
Affiliation(s)
- Anne Kuhlee
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Christian Ungermann
- Department of Biology, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany
| |
Collapse
|
138
|
Intracellular Transport of Vaccinia Virus in HeLa Cells Requires WASH-VPEF/FAM21-Retromer Complexes and Recycling Molecules Rab11 and Rab22. J Virol 2015; 89:8365-82. [PMID: 26041286 DOI: 10.1128/jvi.00209-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/26/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Vaccinia virus, the prototype of the Orthopoxvirus genus in the family Poxviridae, infects a wide range of cell lines and animals. Vaccinia mature virus particles of the WR strain reportedly enter HeLa cells through fluid-phase endocytosis. However, the intracellular trafficking process of the vaccinia mature virus between cellular uptake and membrane fusion remains unknown. We used live imaging of single virus particles with a combination of various cellular vesicle markers, to track fluorescent vaccinia mature virus particle movement in cells. Furthermore, we performed functional interference assays to perturb distinct vesicle trafficking processes in order to delineate the specific route undertaken by vaccinia mature virus prior to membrane fusion and virus core uncoating in cells. Our results showed that vaccinia virus traffics to early endosomes, where recycling endosome markers Rab11 and Rab22 are recruited to participate in subsequent virus trafficking prior to virus core uncoating in the cytoplasm. Furthermore, we identified WASH-VPEF/FAM21-retromer complexes that mediate endosome fission and sorting of virus-containing vesicles prior to virus core uncoating in the cytoplasm. IMPORTANCE Vaccinia mature virions of the WR strain enter HeLa cells through fluid phase endocytosis. We previously demonstrated that virus-containing vesicles are internalized into phosphatidylinositol 3-phosphate positive macropinosomes, which are then fused with Rab5-positive early endosomes. However, the subsequent process of sorting the virion-containing vesicles prior to membrane fusion remains unclear. We dissected the intracellular trafficking pathway of vaccinia mature virions in cells up to virus core uncoating in cytoplasm. We show that vaccinia mature virions first travel to early endosomes. Subsequent trafficking events require the important endosome-tethered protein VPEF/FAM21, which recruits WASH and retromer protein complexes to the endosome. There, the complex executes endosomal membrane fission and cargo sorting to the Rab11-positive and Rab22-positive recycling pathway, resulting in membrane fusion and virus core uncoating in the cytoplasm.
Collapse
|
139
|
Li J, Song CX, Li YP, Li L, Wei XH, Wang JL, Liu XS. Rab3 is involved in cellular immune responses of the cotton bollworm, Helicoverpa armigera. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 50:78-86. [PMID: 25662061 DOI: 10.1016/j.dci.2015.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/23/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
Rab3, a member of the Rab GTPase family, has been found to be involved in innate immunity. However, the precise function of this GTPase in innate immunity remains unknown. In this study, we identified a Rab3 gene (Ha-Rab3) from the cotton bollworm, Helicoverpa armigera and studied its roles in innate immune responses. Expression of Ha-Rab3 was upregulated in the hemocytes of H. armigera larvae after the injection of Escherichia coli or chromatography beads. The dsRNA-mediated knockdown of Ha-Rab3 gene in H. armigera larval hemocytes led to significant reduction in the phagocytosis and nodulation activities of hemocytes against E. coli, significant increase in the bacterial load in larval hemolymph, and significant reduction in the encapsulation activities of hemocytes toward invading chromatography beads. Furthermore, Ha-Rab3 knockdown significantly suppressed spreading of plasmatocytes. These results suggest that Ha-Rab3 plays important roles in H. armigera cellular immune responses, possibly by mediating spreading of hemocytes.
Collapse
Affiliation(s)
- Jie Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Cai-Xia Song
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Yu-Ping Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Li Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Xiu-Hong Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| |
Collapse
|
140
|
Gargalionis AN, Karamouzis MV, Adamopoulos C, Papavassiliou AG. Protein trafficking in colorectal carcinogenesis--targeting and bypassing resistance to currently applied treatments. Carcinogenesis 2015; 36:607-615. [PMID: 25863128 DOI: 10.1093/carcin/bgv052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
|
141
|
Hoepflinger MC, Geretschlaeger A, Sommer A, Hoeftberger M, Hametner C, Ueda T, Foissner I. Molecular Analysis and Localization of CaARA7 a Conventional RAB5 GTPase from Characean Algae. Traffic 2015; 16:534-54. [PMID: 25639563 PMCID: PMC4898595 DOI: 10.1111/tra.12267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 11/28/2022]
Abstract
RAB5 GTPases are important regulators of endosomal membrane traffic. Among them Arabidopsis thaliana ARA7/RABF2b is highly conserved and homologues are present in fungal, animal and plant kingdoms. In land plants ARA7 and its homologues are involved in endocytosis and transport towards the vacuole. Here we report on the isolation of an ARA7 homologue (CaARA7/CaRABF2) in the highly evolved characean green alga Chara australis. It encodes a polypeptide of 202 amino acids with a calculated molecular mass of 22.2 kDa and intrinsic GTPase activity. Immunolabelling of internodal cells with a specific antibody reveals CaARA7 epitopes at multivesicular endosomes (MVEs) and at MVE-containing wortmannin (WM) compartments. When transiently expressed in epidermal cells of Nicotiana benthamiana leaves, fluorescently tagged CaARA7 localizes to small organelles (putative MVEs) and WM compartments, and partially colocalizes with AtARA7 and CaARA6, a plant specific RABF1 GTPase. Mutations in membrane anchoring and GTP binding sites alter localization of CaARA7 and affect GTPase activity, respectively. This first detailed study of a conventional RAB5 GTPase in green algae demonstrates that CaARA7 is similar to RAB5 GTPases from land plants and other organisms and shows conserved structure and localization.
Collapse
Affiliation(s)
- Marion C. Hoepflinger
- Department of Cell Biology/Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Anja Geretschlaeger
- Department of Cell Biology/Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Aniela Sommer
- Department of Cell Biology/Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Margit Hoeftberger
- Department of Cell Biology/Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Christina Hametner
- Department of Organismic Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Ilse Foissner
- Department of Cell Biology/Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| |
Collapse
|
142
|
Burkhardt A, Buchanan A, Cumbie JS, Savory EA, Chang JH, Day B. Alternative Splicing in the Obligate Biotrophic Oomycete Pathogen Pseudoperonospora cubensis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:298-309. [PMID: 25372122 DOI: 10.1094/mpmi-09-14-0300-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pseudoperonospora cubensis is an obligate pathogen and causative agent of cucurbit downy mildew. To help advance our understanding of the pathogenicity of P. cubensis, we used RNA-Seq to improve the quality of its reference genome sequence. We also characterized the RNA-Seq dataset to inventory transcript isoforms and infer alternative splicing during different stages of its development. Almost half of the original gene annotations were improved and nearly 4,000 previously unannotated genes were identified. We also demonstrated that approximately 24% of the expressed genome and nearly 55% of the intron-containing genes from P. cubensis had evidence for alternative splicing. Our analyses revealed that intron retention is the predominant alternative splicing type in P. cubensis, with alternative 5'- and alternative 3'-splice sites occurring at lower frequencies. Representatives of the newly identified genes and predicted alternatively spliced transcripts were experimentally validated. The results presented herein highlight the utility of RNA-Seq for improving draft genome annotations and, through this approach, we demonstrate that alternative splicing occurs more frequently than previously predicted. In total, the current study provides evidence that alternative splicing plays a key role in transcriptome regulation and proteome diversification in plant-pathogenic oomycetes.
Collapse
|
143
|
Shubin AV, Demidyuk IV, Lunina NA, Komissarov AA, Roschina MP, Leonova OG, Kostrov SV. Protease 3C of hepatitis A virus induces vacuolization of lysosomal/endosomal organelles and caspase-independent cell death. BMC Cell Biol 2015; 16:4. [PMID: 25886889 PMCID: PMC4355371 DOI: 10.1186/s12860-015-0050-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 01/26/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND 3C proteases, the main proteases of picornaviruses, play the key role in viral life cycle by processing polyproteins. In addition, 3C proteases digest certain host cell proteins to suppress antiviral defense, transcription, and translation. The activity of 3C proteases per se induces host cell death, which makes them critical factors of viral cytotoxicity. To date, cytotoxic effects have been studied for several 3C proteases, all of which induce apoptosis. This study for the first time describes the cytotoxic effect of 3C protease of human hepatitis A virus (3Cpro), the only proteolytic enzyme of the virus. RESULTS Individual expression of 3Cpro induced catalytic activity-dependent cell death, which was not abrogated by the pan-caspase inhibitor (z-VAD-fmk) and was not accompanied by phosphatidylserine externalization in contrast to other picornaviral 3C proteases. The cell survival was also not affected by the inhibitors of cysteine proteases (z-FA-fmk) and RIP1 kinase (necrostatin-1), critical enzymes involved in non-apoptotic cell death. A substantial fraction of dying cells demonstrated numerous non-acidic cytoplasmic vacuoles with not previously described features and originating from several types of endosomal/lysosomal organelles. The lysosomal protein Lamp1 and GTPases Rab5, Rab7, Rab9, and Rab11 were associated with the vacuolar membranes. The vacuolization was completely blocked by the vacuolar ATPase inhibitor (bafilomycin A1) and did not depend on the activity of the principal factors of endosomal transport, GTPases Rab5 and Rab7, as well as on autophagy and macropinocytosis. CONCLUSIONS 3Cpro, apart from other picornaviral 3C proteases, induces caspase-independent cell death, accompanying by cytoplasmic vacuolization. 3Cpro-induced vacuoles have unique properties and are formed from several organelle types of the endosomal/lysosomal compartment. The data obtained demonstrate previously undocumented morphological characters of the 3Cpro-induced cell death, which can reflect unknown aspects of the human hepatitis A virus-host cell interaction.
Collapse
Affiliation(s)
- Andrey V Shubin
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, Moscow, 123182, Russia.
| | - Ilya V Demidyuk
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, Moscow, 123182, Russia.
| | - Nataliya A Lunina
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, Moscow, 123182, Russia.
| | - Alexey A Komissarov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, Moscow, 123182, Russia.
| | - Marina P Roschina
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, Moscow, 123182, Russia.
| | - Olga G Leonova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119992, Russia.
| | - Sergey V Kostrov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, Moscow, 123182, Russia.
- National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| |
Collapse
|
144
|
Chen Y, Jiang C, Jin M, Gong Y, Zhang X. The role of Rab6 GTPase in the maturation of phagosome against Staphylococcus aureus. Int J Biochem Cell Biol 2015; 61:35-44. [PMID: 25660370 DOI: 10.1016/j.biocel.2015.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/18/2015] [Accepted: 01/28/2015] [Indexed: 02/02/2023]
Abstract
Phagocytosis, an evolutionarily conserved process in animals, plays a central role in host defense against pathogens. As reported, Rab6 GTPase was involved in the regulation of hemocytic phagocytosis in invertebrates. However, the role of Rab6 GTPase in mammalian phagocytosis remains to be addressed. In this study, the results showed that Rab6 GTPase took great effects on phagocytosis of mouse leukemic monocyte macrophages (RAW 264.7 cells). It was revealed that Rab6 GTPase was required during the phagosome maturation by its interaction with bicaudal-D1 (BICD1) protein. Further data presented that the Rab6 GTPase-regulated phagocytosis could influence the proliferation of Staphylococcus aureus in macrophages. Therefore, our study demonstrated a novel insight into the mechanism of regulation of mammalian phagocytosis by Rab6 GTPase and a novel strategy for the control of Staphylococcus aureus.
Collapse
Affiliation(s)
- Yulei Chen
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chunxia Jiang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Min Jin
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yi Gong
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaobo Zhang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
145
|
Li Y, Xu J, Xiong H, Ma Z, Wang Z, Kipreos ET, Dalton S, Zhao S. Cancer driver candidate genes AVL9, DENND5A and NUPL1 contribute to MDCK cystogenesis. Oncoscience 2014; 1:854-865. [PMID: 25621300 PMCID: PMC4303893 DOI: 10.18632/oncoscience.107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/14/2014] [Indexed: 12/12/2022] Open
Abstract
AVL9, DENND5A and NUPL1 are among the cancer driver candidate genes previously identified via dog-human comparison, and may function in epithelial cell polarity as indicated by bioinformatics analysis. To better understand their cellular functions and roles in cancer, we knocked down each gene in MDCKII cells through shRNA and performed three-dimensional culture. Compared to the control, the knockdown clones developed significantly more abnormal cysts, e.g., cysts with the lumen harboring dead and/or live cells, or cysts having multiple lumens. Further analysis revealed that abnormalities initiated at the first cell division and persisted throughout the entire cystogenesis process. For NUPL1-knockdown cells, abnormal cytogenesis largely arose from faulty cell divisions, notably monopolar spindles or spindles with poorly separated poles. For AVL9- or DENND5A-knockdown cells, abnormalities originated from both aberrant intracellular trafficking and defective mitosis. Moreover, while all knockdown clones displayed an accelerated rate of both cell proliferation and death, only AVL9- and DENND5A-knockdowns, but not NUPL1-knockdown, promoted cell migration. These observations indicate that NUPL1 contributes to bipolar spindle formation, whereas AVL9 and DENND5A participate in both intracellular trafficking and cell cycle progression. Our study shed lights on these genes' normal cellular functions and on how their alteration contributes to carcinogenesis.
Collapse
Affiliation(s)
- Yaping Li
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens
| | - Jianing Xu
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens.,Current Address: Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York
| | - Huan Xiong
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens
| | - Zhongyao Ma
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens
| | - Zhenghe Wang
- Department of Genetics & Genome Sciences and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | | | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens
| |
Collapse
|
146
|
Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep 2014; 16:24-43. [PMID: 25488940 DOI: 10.15252/embr.201439363] [Citation(s) in RCA: 546] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An effective immune response requires the engagement of host receptors by pathogen-derived molecules and the stimulation of an appropriate cellular response. Therefore, a crucial factor in our ability to control an infection is the accessibility of our immune cells to the foreign material. Exosomes-which are extracellular vesicles that function in intercellular communication-may play a key role in the dissemination of pathogen- as well as host-derived molecules during infection. In this review, we highlight the composition and function of exosomes and other extracellular vesicles produced during viral, parasitic, fungal and bacterial infections and describe how these vesicles could function to either promote or inhibit host immunity.
Collapse
Affiliation(s)
- Jeffrey S Schorey
- Department of Biological Sciences, Eck Institute for Global Health University of Notre Dame, Notre Dame, IN, USA
| | - Yong Cheng
- Department of Biological Sciences, Eck Institute for Global Health University of Notre Dame, Notre Dame, IN, USA
| | - Prachi P Singh
- Department of Biological Sciences, Eck Institute for Global Health University of Notre Dame, Notre Dame, IN, USA
| | - Victoria L Smith
- Department of Biological Sciences, Eck Institute for Global Health University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
147
|
Wilson LA, McKeown L, Tumova S, Li J, Beech DJ. Expression of a long variant of CRACR2A that belongs to the Rab GTPase protein family in endothelial cells. Biochem Biophys Res Commun 2014; 456:398-402. [PMID: 25475730 PMCID: PMC4300414 DOI: 10.1016/j.bbrc.2014.11.095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022]
Abstract
Knockdown of CRACR2A lacks effect on CRAC channels in endothelial cells. Knockdown of CRACR2A depletes a protein twice the mass of CRACR2A. A long variant of CRACR2A, CRACR2A-L, occurs in endothelial cells. CRACR2A-L is a previously unrecognised EF-hand-containing Rab GTPase. CRACR2A-L has a positive role in endothelial tube formation.
CRACR2A protein is described in T cells as an EF-hand-containing modulator of calcium-release-activated calcium (CRAC) channels. Here we sought relevance to calcium entry of endothelial cells. Unexpectedly, short interfering RNA designed to deplete CRACR2A had no effect on CRAC channels in endothelial cells but reduced the abundance of a protein with about twice the mass of CRACR2A. Reference to gene sequence data indicated the potential for a variant transcript encoding a C-terminal Rab GTPase extension of CRACR2A. Full-length cloning demonstrated expression of the long variant in endothelial cells. It was designated CRACR2A-L. Sequence analysis suggested it to be a previously unrecognised member of the Rab GTPase family. It made a positive contribution to endothelial tube formation. The data suggest that endothelial cells contain a long variant of CRACR2A which is an EF-hand-containing Rab protein that lacks impact on CRAC channels.
Collapse
Affiliation(s)
| | - Lynn McKeown
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Sarka Tumova
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Jing Li
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - David J Beech
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
148
|
Evaluation of immune and apoptosis related gene responses using an RNAi approach in vaccinated Penaeus monodon during oral WSSV infection. Mar Genomics 2014; 18 Pt A:55-65. [DOI: 10.1016/j.margen.2014.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/10/2023]
|
149
|
Xu D, Liu W, Alvarez A, Huang T. Cellular immune responses against viral pathogens in shrimp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:287-297. [PMID: 25111591 DOI: 10.1016/j.dci.2014.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
Shrimp is one of the most important commercial marine species worldwide; however, viral diseases threaten the healthy development of shrimp aquaculture. In order to develop efficient control strategies against viral diseases, researchers have begun focusing increasing attention to the molecular mechanism of shrimp innate immunity. Although knowledge of shrimp humoral immunity has grown significantly in recent years, very little information is available about the cell-mediated immune responses. Several cellular processes such as phagocytosis, apoptosis, and RNA interference critical in cellular immune response play a significant role in endogenous antiviral activity in shrimp. In this review, we summarize the emerging research and highlight key mediators of cellular immune response to viral pathogens.
Collapse
Affiliation(s)
- Dandan Xu
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Weifeng Liu
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Angel Alvarez
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Tianzhi Huang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, USA..
| |
Collapse
|
150
|
Itzstein C, Coxon FP, Rogers MJ. The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases 2014; 2:117-130. [PMID: 21776413 DOI: 10.4161/sgtp.2.3.16453] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 01/11/2023] Open
Abstract
Osteoclasts are multinucleated cells that are responsible for resorption of bone, and increased activity of these cells is associated with several common bone diseases, including postmenopausal osteoporosis. Upon adhesion to bone, osteoclasts become polarized and reorganise their cytoskeleton and membrane to form unique domains including the sealing zone (SZ), which is a dense ring of F-actin-rich podosomes delimiting the ruffled border (RB), where protons and proteases are secreted to demineralise and degrade the bone matrix, respectively. These processes are dependent on the activity of small GTPases. Rho GTPases are well known to control the organization of F-actin and adhesion structures of different cell types, affecting subsequently their migration. In osteoclasts, RhoA, Rac, Cdc42, RhoU and also Arf6 regulate podosome assembly and their organization into the SZ. By contrast, the formation of the RB involves vesicular trafficking pathways that are regulated by the Rab family of GTPases, in particular lysosomal Rab7. Finally, osteoclast survival is dependent on the activity of Ras GTPases. The correct function of almost all these GTPases is absolutely dependent on post-translational prenylation, which enables them to localize to specific target membranes. Bisphosphonate drugs, which are widely used in the treatment of bone diseases such as osteoporosis, act by preventing the prenylation of small GTPases, resulting in the loss of the SZ and RB and therefore inhibition of osteoclast activity, as well as inducing osteoclast apoptosis. In this review we summarize current understanding of the role of specific prenylated small GTPases in osteoclast polarization, function and survival.
Collapse
Affiliation(s)
- Cecile Itzstein
- Musculoskeletal Research Programme; Institute of Medical Sciences; University of Aberdeen; Aberdeen, Scotland UK
| | | | | |
Collapse
|