101
|
Abstract
Skin is an important organ to the human body as it functions as an interface between the body and environment. Cutaneous injury elicits a complex wound healing process, which is an orchestration of cells, matrix components, and signaling factors that re-establishes the barrier function of skin. In adults, an unavoidable consequence of wound healing is scar formation. However, in early fetal development, wound healing is scarless. This phenomenon is characterized by an attenuated inflammatory response, differential expression of signaling factors, and regeneration of normal skin architecture. Elastin endows a range of mechanical and cell interactive properties to skin. In adult wound healing, elastin is severely lacking and only a disorganized elastic fiber network is present after scar formation. The inherent properties of elastin make it a desirable inclusion to adult wound healing. Elastin imparts recoil and resistance and induces a range of cell activities, including cell migration and proliferation, matrix synthesis, and protease production. The effects of elastin align with the hallmarks of fetal scarless wound healing. Elastin synthesis is substantial in late stage in utero and drops to a trickle in adults. The physical and cell signaling advantages of elastin in a wound healing context creates a parallel with the innate features of fetal skin that can allow for scarless healing.
Collapse
Affiliation(s)
- Jessica F Almine
- School of Molecular Bioscience, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
102
|
Almine JF, Wise SG, Hiob M, Singh NK, Tiwari KK, Vali S, Abbasi T, Weiss AS. Elastin sequences trigger transient proinflammatory responses by human dermal fibroblasts. FASEB J 2013; 27:3455-65. [PMID: 23671273 DOI: 10.1096/fj.13-231787] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Following penetrating injury of the skin, a highly orchestrated and overlapping sequence of events helps to facilitate wound resolution. Inflammation is a hallmark that is initiated early, but the reciprocal relationship between cells and matrix molecules that triggers and maintains inflammation is poorly appreciated. Elastin is enriched in the deep dermis of skin. We propose that deep tissue injury encompasses elastin damage, yielding solubilized elastin that triggers inflammation. As dermal fibroblasts dominate the deep dermis, this means that a direct interaction between elastin sequences and fibroblasts would reveal a proinflammatory signature. Tropoelastin was used as a surrogate for elastin sequences. Tropoelastin triggered fibroblast expression of the metalloelastase MMP-12, which is normally expressed by macrophages. MMP-12 expression increased 1056 ± 286-fold by 6 h and persisted for 24 h. Chemokine expression was more transient, as chemokine C-X-C motif ligand 8 (CXCL8), CXCL1, and CXCL5 transcripts increased 11.8 ± 2.6-, 10.2 ± 0.4-, and 8593 ± 996-fold, respectively, by 6-12 h and then decreased. Through the use of specific inhibitors and protein truncation, we found that transduction of the tropoelastin signal was mediated by the fibroblast elastin binding protein (EBP). In silico modeling using a predictive computational fibroblast model confirmed the up-regulation, and simulations revealed PKA as a key part of the signaling circuit. We tested this prediction with 1 μM PKA inhibitor H-89 and found that 2 h of exposure correspondingly reduced expression of MMP-12 (63.9±12.3%) and all chemokine markers, consistent with the levels seen with EBP inhibition, and validated PKA as a novel node and druggable target to ameliorate the proinflammatory state. A separate trigger that utilized C-terminal RKRK of tropoelastin reduced marker expression to 65.0-76.5% and suggests the parallel involvement of integrin αVβ3. We propose that the solubilization of elastin as a result of dermal damage leads to rapid chemokine up-regulation by fibroblasts that is quenched when exposed elastin is removed by MMP-12.
Collapse
Affiliation(s)
- Jessica F Almine
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Tropoelastin modulates TGF-β1-induced expression of VEGF and CTGF in airway smooth muscle cells. Matrix Biol 2013; 32:407-13. [PMID: 23597635 DOI: 10.1016/j.matbio.2013.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 03/08/2013] [Accepted: 04/01/2013] [Indexed: 01/20/2023]
Abstract
Elastin is predominantly comprised of crosslinked tropoelastin. For many years elastin was considered to serve a solely structural role but is now being increasingly identified as causal in cell signaling, development and repair. We introduced tropoelastin into an in vitro model in which airway smooth muscle cells (ASMCs) were stimulated with transforming growth factor (TGF)-β1 to examine the modulatory effect of this modular elastin sequence on release of angiogenic factors and matrix metalloproteinases (MMPs). Human ASMCs were presented to surfaces coated with tropoelastin or collagen and controls, then stimulated with TGF-β1. Transcript levels of vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) were quantified 4 and 24 h after TGF-β1 stimulation. Protein VEGF release from cells and CTGF sequestered at cell surfaces were measured by ELISA at 24 and 48 h. TGF-β1 increased VEGF mRNA 2.4 fold at 4 h and 5 fold at 24 h, accompanied by elevated cognate protein release 3 fold at 24 h and 2.5 fold at 48 h. TGF-β1 stimulation increased CTGF mRNA 6.9 fold at 4 h and 11.8 fold at 24 h, accompanied by increased sequestering of its protein counterpart 1.2 fold at 24 h and 1.4 fold at 48 h. Pre-incubation of cells with tropoelastin did not modulate VEGF or CTGF mRNA expression, but combined with TGF-β1 stimulation it led to enhanced VEGF release 5.1-fold at 24h and 4.4-fold at 48 h. Pre-incubation with tropoelastin decreased CTGF sequestering 0.6-fold at 24 and 48 h, and increased MMP-2 production. Collagen pre-incubation under the same conditions displayed no effect on TGF-β1 stimulation apart from a slightly decreased (0.9 fold) sequestered CTGF at 48 h. As CTGF is known to anchor VEGF to the matrix and inhibit its angiogenic activity, a process which can be reversed by digestion with MMP-2, these findings reveal that elastin sequences can disrupt the balance of angiogenic factors, with implications for aberrant angiogenesis. The results suggest a model of molecular crosstalk and support an active role for elastin in vascular remodeling.
Collapse
|
104
|
Fang C, Wen G, Zhang L, Lin L, Moore A, Wu S, Ye S, Xiao Q. An important role of matrix metalloproteinase-8 in angiogenesis in vitro and in vivo. Cardiovasc Res 2013; 99:146-55. [PMID: 23512982 DOI: 10.1093/cvr/cvt060] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS Growing evidence suggests a close association of plaque angiogenesis with atherosclerotic plaque formation and progression, and an important role of matrix metalloproteinase (MMP) in angiogenesis and atherosclerosis. We attempted to investigate the functional involvements of MMP8 in angiogenesis. METHODS AND RESULTS Knockdown of MMP8 in human umbilical vein endothelial cells (HuVECs) with MMP-8 shRNA lentivirus resulted in a decrease in in vitro capillary-like network formation, cell proliferation and migration, and impaired its capacity of in vivo angiogenesis. Less nuclear accumulation of β-catenin and lower β-catenin target gene expression levels was observed in the HuVECs expressing lower levels of endogenous MMP8. Knockdown of endogenous MMP8 in HuVECs down-regulated platelet/endothelial cell adhesion molecule-1 (PECAM-1) expression by converting less angiotensin I to II, which is an inducer for PECAM-1 gene expression. Aortic rings isolated from MMP8(-/-)/apoE(-/-) mice had less endothelial cell sprouting, and endothelial cells in MMP8(-/-)/apoE(-/-) mice had a lower ability to migrate into Matrigel plugs and less capacity of proliferation and angiogenesis. Moreover, immunohistochemical analyses revealed that MMP8 was expressed in microvessels within human atherosclerotic plaques and aneurysm. Finally, analyses of MMP8(-/-)/apoE(-/-) and MMP8(+/+)/apoE(-/-) mice fed a Western diet for 12 weeks showed that MMP8-deficient mice had small lesion size and less endothelial cells within atherosclerotic lesions. CONCLUSION We demonstrated for the first time that MMP8 plays an important role in angiogenesis in vitro and in vivo. Our findings provide new insights into the molecular mechanisms of plaque angiogenesis and suggest that MMP8 is a potential therapeutic target of cardiovascular diseases.
Collapse
Affiliation(s)
- Changcun Fang
- Department of Cardiovascular Surgery, Qilu Hospital, School of Medicine, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Bäck M, Gasser TC, Michel JB, Caligiuri G. Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc Res 2013; 99:232-41. [PMID: 23459103 PMCID: PMC3695745 DOI: 10.1093/cvr/cvt040] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The biomechanical factors that result from the haemodynamic load on the cardiovascular system are a common denominator of several vascular pathologies. Thickening and calcification of the aortic valve will lead to reduced opening and the development of left ventricular outflow obstruction, referred to as aortic valve stenosis. The most common pathology of the aorta is the formation of an aneurysm, morphologically defined as a progressive dilatation of a vessel segment by more than 50% of its normal diameter. The aortic valve is exposed to both haemodynamic forces and structural leaflet deformation as it opens and closes with each heartbeat to assure unidirectional flow from the left ventricle to the aorta. The arterial pressure is translated into tension-dominated mechanical wall stress in the aorta. In addition, stress and strain are related through the aortic stiffness. Furthermore, blood flow over the valvular and vascular endothelial layer induces wall shear stress. Several pathophysiological processes of aortic valve stenosis and aortic aneurysms, such as macromolecule transport, gene expression alterations, cell death pathways, calcification, inflammation, and neoangiogenesis directly depend on biomechanical factors.
Collapse
Affiliation(s)
- Magnus Bäck
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
106
|
Rnjak-Kovacina J, Wise SG, Li Z, Maitz PK, Young CJ, Wang Y, Weiss AS. Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering. Acta Biomater 2012; 8:3714-22. [PMID: 22750739 DOI: 10.1016/j.actbio.2012.06.032] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 05/15/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
We present an electrospun synthetic human elastin:collagen composite scaffold aimed at dermal tissue engineering. The panel of electrospun human tropoelastin and ovine type I collagen blends comprised 80% tropoelastin+20% collagen, 60% tropoelastin+40% collagen and 50% tropoelastin+50% collagen. Electrospinning efficiency decreased with increasing collagen content under the conditions used. Physical and mechanical characterization encompassed fiber morphology, porosity, pore size and modulus, which were prioritized to identify the optimal candidate for dermal tissue regeneration. Scaffolds containing 80% tropoelastin and 20% collagen (80T20C) were selected on this basis for further cell interaction and animal implantation studies. 80T20C enhanced proliferation and migration rates of dermal fibroblasts in vitro and were well tolerated in a mouse subcutaneous implantation study where they persisted over 6 weeks. The 80T20C scaffolds supported fibroblast infiltration, de novo collagen deposition and new capillary formation.
Collapse
|
107
|
Wise SG, Waterhouse A, Michael P, Ng MKC. Extracellular matrix molecules facilitating vascular biointegration. J Funct Biomater 2012; 3:569-87. [PMID: 24955633 PMCID: PMC4031001 DOI: 10.3390/jfb3030569] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/01/2012] [Accepted: 08/06/2012] [Indexed: 12/16/2022] Open
Abstract
All vascular implants, including stents, heart valves and graft materials exhibit suboptimal biocompatibility that significantly reduces their clinical efficacy. A range of biomolecules in the subendothelial space have been shown to play critical roles in local regulation of thrombosis, endothelial growth and smooth muscle cell proliferation, making these attractive candidates for modulation of vascular device biointegration. However, classically used biomaterial coatings, such as fibronectin and laminin, modulate only one of these components; enhancing endothelial cell attachment, but also activating platelets and triggering thrombosis. This review examines a subset of extracellular matrix molecules that have demonstrated multi-faceted vascular compatibility and accordingly are promising candidates to improve the biointegration of vascular biomaterials.
Collapse
Affiliation(s)
- Steven G Wise
- The Heart Research Institute, Eliza Street, Newtown, NSW 2042, Australia.
| | - Anna Waterhouse
- Wyss Institute for Biologically Inspired Engineering at Harvard, Boston, MA 02115, USA.
| | - Praveesuda Michael
- The Heart Research Institute, Eliza Street, Newtown, NSW 2042, Australia.
| | - Martin K C Ng
- The Heart Research Institute, Eliza Street, Newtown, NSW 2042, Australia.
| |
Collapse
|
108
|
Chao YH, Yang HS, Sun MG, Sun JS, Chen MH. Elastin-derived peptides induce inflammatory responses through the activation of NF-κB in human ligamentum flavum cells. Connect Tissue Res 2012; 53:407-14. [PMID: 22449139 DOI: 10.3109/03008207.2012.679368] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The formation of fibrotic tissue in the ligamentum flavum (LF) is usually preceded by breakdown of elastic fibers. Elastin-derived peptides (EDPs) from breakdown of elastic fibers display a wide range of biological activities in a variety of cells, but there is minimal information regarding the involvement in the processes of LF hypertrophy. The aim of this study is to elucidate the effects of EDPs on cultured human LF cells and to investigate their molecular and biochemical mechanisms. Human LF cells were obtained from 18 patients who underwent lumbar spine surgery. After treatment with different concentrations of EDPs with or without specific inhibitors in culture medium, the viability and proliferation of LF cells, genes expression, and the signaling pathways were evaluated and analyzed. It was found that 50 μg/ml EDPs significantly increased cell proliferation and synthesis of prostaglandin E(2). The gene expression and protein production of proinflammatory cytokines, including interleukin-1α (IL-1α), IL-1β, and IL-6, were also upregulated. The levels of p-ERK (extracellular signal-regulated kinase) and NF-κB increased immediately following EDP treatment and sustained up to 90 min. It was also found that NF-κB inhibitor, but not ERK1/2 inhibitor, attenuated EDP-dependent induction of IL-1α, IL-1β, and IL-6 expression, indicating that NF-κB pathways are required for EDP-induced IL-1α, IL-1β, and IL-6 gene expression in human LF cells. The results of this in vitro experiment suggest that EDPs do induce inflammatory responses in human LF cells and plays the key role in the development of LF hypertrophy.
Collapse
Affiliation(s)
- Yuan-Hung Chao
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
109
|
Fhayli W, Ghandour Z, Mariko B, Pezet M, Faury G. [Elastin and microfibrils in vascular development and ageing: complementary or opposite roles?]. Biol Aujourdhui 2012; 206:87-102. [PMID: 22748047 DOI: 10.1051/jbio/2012009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Indexed: 06/01/2023]
Abstract
Large arteries allow the vascular system to be more than a simple route in which the blood circulates within the organism. The elastic fibers present in the wall endow these vessels with elasticity and are responsible for the smoothing of the blood pressure and flow, which are delivered discontinuously by the heart. This function is very important to ensure appropriate hemodynamics. Elastic fibers are composed of elastin (90%) and fibrillin-rich microfibrils (10%) which provide the vessels with elasticity and are also signals able to bind to relatively specific cell membrane receptors. Stimulation of the high affinity elastin receptor by elastin peptides or tropoelastin--the elastin precursor--triggers an increase in intracellular free calcium in vascular cells, especially endothelial cells, associated with attachment, migration or proliferation. Similar effects of the stimulation of endothelial cells by microfibrils or fibrillin-1 fragments, which bind to integrins, have been demonstrated. This dual function--mechanical and in signaling--makes the elastic fibers an important actor of the development and ageing processes taking place in blood vessels. An alteration of the elastin (Eln) or fibrillin (Fbn) gene products leads to severe genetic pathologies of the cardiovascular system, such as supravalvular aortic stenosis, or Williams Beuren syndrome--in which elastin deficiency induces aortic stenoses--or Marfan syndrome, in which on the contrary fibrillin-1 deficiency promotes the appearance of aortic aneurysms. Genetically-engineered mouse models of these pathologies (such as Eln+/- mice and Fbn-1+/mgΔ mice, Eln+/-Fbn-1+/- mice) have permitted a better understanding of the pathogenesis of these syndromes. In particular, it has been shown that elastin and fibrillin-1 roles can be complementary in some aspects, while they can be opposed in some other situations. For instance, the double heterozygosity in elastin and fibrillin-1 leads to increased arterial wall stress--compared to the level induced by one of these two deficiencies alone--while the decrease in diameter induced by Eln deficiency is partly compensated by an additional deficiency in Fbn-1. Also, it is now clear that early modifications of elastin or fibrillin-1 availability can alter the normal signaling action of these proteins and lead to long term modifications of the vascular physiology and ageing processes.
Collapse
Affiliation(s)
- Wassim Fhayli
- Laboratoire Hypoxie: Physiopathologie Cardiovasculaire et Respiratoire (HP2), INSERM U 1042, Université Joseph Fourier, Bâtiment Jean Roget, Facultés de Médecine et de Pharmacie, Domaine de La Merci, 38706 La Tronche, France
| | | | | | | | | |
Collapse
|
110
|
Electrospun elastin-like polypeptide enriched polyurethanes and their interactions with vascular smooth muscle cells. Acta Biomater 2012; 8:2493-503. [PMID: 22459513 DOI: 10.1016/j.actbio.2012.03.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/01/2012] [Accepted: 03/20/2012] [Indexed: 11/23/2022]
Abstract
In vascular tissue, elastin is an essential extracellular matrix protein that plays an important biomechanical and biological signalling role. Native elastin is insoluble and is difficult to extract from tissues, which results in its relatively rare use for the fabrication of vascular tissue engineering scaffolds. Recombinant elastin-like polypeptide-4 (ELP4), which mimics the structure and function of native tropoelastin, represents a practical alternative to the native elastic fibre for vascular applications. In this study, electrospinning was utilized to fabricate fibrous scaffolds which were subsequently surface modified with ELP4 and used as substrates for smooth muscle cell culture. ELP4 surface modified materials demonstrated enhanced smooth muscle cell (SMC) adhesion and maintenance of cell numbers over a 1-week period relative to controls. SMCs seeded on the ELP4 surface modified materials were also shown to exhibit the cell morphology and biological markers of a contractile phenotype including a spindle-like morphology, actin filament organization and smooth muscle myosin heavy chain expression. Competitive inhibition experiments demonstrated that the elastin-laminin cell surface receptor and its affinity for the VGVAPG peptide sequence on ELP4 molecules are likely involved in the initial SMC contact with the ELP4 modified materials. Elastin-like polypeptides show promise as surface modifiers for candidate scaffolds for engineering contractile vascular tissues.
Collapse
|
111
|
Reddy B, Jow T, Hantash BM. Bioactive oligopeptides in dermatology: Part I. Exp Dermatol 2012; 21:563-8. [PMID: 22672743 DOI: 10.1111/j.1600-0625.2012.01528.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2012] [Indexed: 11/28/2022]
Abstract
Short sequence amino acids or oligopeptides represent a relatively new and promising area of dermatology. Oligopeptides are defined as peptide sequences ranging from 2 to 20 amino acids. This class of proteins includes potent biologically active compounds, which can modulate various cellular and molecular processes. The medical potential of short sequence peptides was initially characterized many decades ago with the identification of biological mediators such as angiotensin, vasopressin, oxytocin and bradykinin. However, the role of oligopeptides in affecting biological activity within the skin has only recently been explored. Currently, the dermatologic use of protein peptide fragments is a rapidly growing field of research. Recent studies suggest that treatment with various biologically active peptides can result in favourable clinical outcomes such as for the treatment of hyperpigmentation disorders with tyrosinase inhibitors and the use of collagen synthesis modulators to diminish skin laxity. In this review, we explore the roles of biologically active short sequence peptides as potential therapeutics through the modulation of collagen, elastin and melanin synthesis.
Collapse
Affiliation(s)
- Bobby Reddy
- Department of Dermatology, New Jersey Medical School, Newark, NJ, USA
| | | | | |
Collapse
|
112
|
Hong YJ, Kim J, Oh BR, Lee YJ, Lee EY, Lee EB, Lee SH, Song YW. Serum elastin-derived peptides and anti-elastin antibody in patients with systemic sclerosis. J Korean Med Sci 2012; 27:484-8. [PMID: 22563211 PMCID: PMC3342537 DOI: 10.3346/jkms.2012.27.5.484] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/23/2012] [Indexed: 11/20/2022] Open
Abstract
The elastin metabolism in systemic sclerosis (SSc) has been known to be abnormal. The authors investigated relationship between the clinical manifestations of systemic sclerosis (SSc) and serum levels of soluble elastin-derived peptide (S-EDP) and anti-elastin antibodies. Serum samples were obtained from 79 patients with SSc and 79 age- and sex-matched healthy controls. Concentrations of serum S-EDP and anti-elastin antibodies were measured by ELISA. The serum concentrations of S-EDP in SSc patients were significantly higher than in healthy controls (median, 144.44 ng/mL vs 79.59 ng/mL, P < 0.001). Serum EDP concentrations were found to be correlated with disease duration in SSc (P = 0.002) and particularly in diffuse cutaneous SSc (P = 0.005). Levels of anti-elastin antibodies were found to be more elevated in SSc patients than in healthy controls (median, 0.222 U vs 0.191 U, P = 0.049), more increased in diffuse cutaneous SSc than limited cutaneous SSc (median, 0.368 U vs 0.204 U, P = 0.031). In addition, levels of anti-elastin antibodies were also found to be negatively associated with presence of anti-centromere antibody (P = 0.023). The S-EDP levels were not found to be correlated with levels of anti-elastin antibodies. The increased S-EDP and anti-elastin antibody levels and association with clinical and laboratory characteristics may reflect the abnormal metabolism in SSc.
Collapse
Affiliation(s)
- Yoo Jin Hong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jinhyun Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Bo Ram Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yun Jong Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Young Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Bong Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Hyo Lee
- Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Yeong Wook Song
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
113
|
Patel D, Vandromme SE, Reid ME, Taite LJ. Synergistic Activity of αvβ3 Integrins and the Elastin Binding Protein Enhance Cell-Matrix Interactions on Bioactive Hydrogel Surfaces. Biomacromolecules 2012; 13:1420-8. [DOI: 10.1021/bm300144y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Dhaval Patel
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Susan E. Vandromme
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Michael E. Reid
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Lakeshia J. Taite
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
114
|
Elastin-derived peptides increase invasive capacities of lung cancer cells by post-transcriptional regulation of MMP-2 and uPA. Clin Exp Metastasis 2012; 29:511-22. [PMID: 22434583 DOI: 10.1007/s10585-012-9467-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 03/08/2012] [Indexed: 01/25/2023]
Abstract
Elastin-rich lung extracellular matrix is largely remodeled during tumor invasion. Elastin degradation produces peptides displaying a wide range of biological activities. These elastin derived peptides (EP) interact with the elastin receptor complex (ERC) but also bind to α(V)β(3) integrin and galectin-3. In this study, we explored the role of EP and their receptors in tumor progression of lung carcinomas. Non-invasive and invasive lung tumor cell lines were incubated in presence of kappa-elastin (κE) or with synthetic peptides displaying receptor-specific sequences (VGVAPG, GRKRK, AGVPGLGVG and AGVPGFGAG). Modified Boyden chamber assays revealed an increased invasive capacity of invasive cells induced by κE. EP treatment had no effect on cell proliferation but zymography analysis revealed an increase of pro-MMP-2 and uPA levels in the conditioned media of treated cells. Moreover, the active form of MMP-2 was increased in invasive cells. Interestingly, this regulation was not observed at the mRNA level and actinomycin D was unable to inhibit κE effects. We also observed that the regulation of proteases protein level following κE treatment was an early process detectable after 1 h. All these effects could not be inhibited by lactose and V14, two ERC antagonists, or by blocking antibodies against α(V)β(3) integrin and galectin-3. Finally, VGVAPG and GRKRK failed to reproduce κE effects whereas nonapeptides partially mimicked them. These results demonstrate that treatment with EP up-regulates invasiveness of lung tumor cells via the release of proteolytic enzymes. This modulation involves post-transcriptional mechanisms and a nonapeptide-receptor different from the ERC, α(V)β(3) integrin and galectin-3.
Collapse
|
115
|
Reddel CJ, Weiss AS, Burgess JK. Elastin in asthma. Pulm Pharmacol Ther 2012; 25:144-53. [PMID: 22366197 DOI: 10.1016/j.pupt.2012.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/19/2012] [Accepted: 02/08/2012] [Indexed: 12/15/2022]
Abstract
Extracellular matrix is generally increased in asthma, causing thickening of the airways which may either increase or decrease airway responsiveness, depending on the mechanical requirements of the deposited matrix. However, in vitro studies have shown that the altered extracellular matrix produced by asthmatic airway smooth muscle cells is able to induce increased proliferation of non-asthmatic smooth muscle cells, which is a process believed to contribute to airway hyper-responsiveness in asthma. Elastin is an extracellular matrix protein that is altered in asthmatic airways, but there has been no systematic investigation of the functional effect of these changes. This review reveals divergent reports of the state of elastin in the airway wall in asthma. In some layers of the airway it has been described as increased, decreased and/or fragmented, or unchanged. There is also considerable evidence for an imbalance of matrix metalloproteinases, which degrade elastin, and their respective inhibitors the tissue inhibitors of metalloproteinases, which collectively help to explain observations of both increased elastin and elastin fragments. A loss of lung elastic recoil in asthma suggests a mechanical role for disordered elastin in the aetiology of the disease, but extensive studies of elastin in other tissues show that elastin fragments elicit cellular effects such as increased proliferation and inflammation. This review summarises the current understanding of the role of elastin in the asthmatic airway.
Collapse
Affiliation(s)
- Caroline J Reddel
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
116
|
Barthelemi S, Robinet J, Garnotel R, Antonicelli F, Schittly E, Hornebeck W, Lorimier S. Mechanical forces-induced human osteoblasts differentiation involves MMP-2/MMP-13/MT1-MMP proteolytic cascade. J Cell Biochem 2012; 113:760-72. [DOI: 10.1002/jcb.23401] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
117
|
Le Brun AP, Chow J, Bax DV, Nelson A, Weiss AS, James M. Molecular Orientation of Tropoelastin is Determined by Surface Hydrophobicity. Biomacromolecules 2012; 13:379-86. [DOI: 10.1021/bm201404x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anton P. Le Brun
- Bragg Institute, Australian Nuclear Science and Technology
Organisation, Locked
Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - John Chow
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel V. Bax
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew Nelson
- Bragg Institute, Australian Nuclear Science and Technology
Organisation, Locked
Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Anthony S. Weiss
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael James
- Bragg Institute, Australian Nuclear Science and Technology
Organisation, Locked
Bag 2001, Kirrawee DC, NSW 2232, Australia
- School of Chemistry, University of New South Wales, Kensington, NSW 2052,
Australia
| |
Collapse
|
118
|
Skeie JM, Hernandez J, Hinek A, Mullins RF. Molecular responses of choroidal endothelial cells to elastin derived peptides through the elastin-binding protein (GLB1). Matrix Biol 2011; 31:113-9. [PMID: 22178079 DOI: 10.1016/j.matbio.2011.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
PURPOSE Neovascular AMD involves the activation of choroidal endothelial cells to increase their inflammatory and angiogenic behaviors. Elastin derived peptides (EDPs) can elicit some of these phenotypic changes in endothelial cells. This investigation was performed to follow up on those findings by determining a receptor for these peptides in the human eye as well as evaluating the effects of elevated EDPs on choroidal cells in vitro and in vivo. METHODS The expression of elastin receptor genes including GLB1 was analyzed using reverse transcription PCR. Migration of choroidal endothelial cells was quantified in the presence of inhibitors to different EDP binding proteins. C57BL6 mice were injected with EDPs and studied by electroretinography, transmission electron microscopy, and microarray analysis. RESULTS An alternatively spliced form of beta-galactosidase (GLB1) is present on human choroidal endothelial cells and acts as a receptor for EDPs. Elevated levels of circulating EDPs do not affect retinal function in the mouse, but do increase the expression and deposition of collagen IV in the RPE/choroid complex. CONCLUSIONS EDPs may play a role in neovascular AMD by binding to and inducing neovascular phenotypes in choroidal endothelial cells through their receptor, GLB1. These peptides also cause an increased mRNA expression and deposition of collagen IV in the RPE/choroid, which may alter diffusion properties between the retina and choriocapillaris.
Collapse
Affiliation(s)
- Jessica M Skeie
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
119
|
Rnjak-Kovacina J, Wise SG, Li Z, Maitz PK, Young CJ, Wang Y, Weiss AS. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials 2011; 32:6729-36. [DOI: 10.1016/j.biomaterials.2011.05.065] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/24/2011] [Indexed: 11/25/2022]
|
120
|
Perrotta I, Russo E, Camastra C, Filice G, Di Mizio G, Colosimo F, Ricci P, Tripepi S, Amorosi A, Triumbari F, Donato G. New evidence for a critical role of elastin in calcification of native heart valves: immunohistochemical and ultrastructural study with literature review. Histopathology 2011; 59:504-13. [DOI: 10.1111/j.1365-2559.2011.03977.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
121
|
Platelet inhibition and endothelial cell adhesion on elastin-like polypeptide surface modified materials. Biomaterials 2011; 32:5790-800. [DOI: 10.1016/j.biomaterials.2011.04.067] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 04/23/2011] [Indexed: 11/20/2022]
|
122
|
van der Veen VC, Boekema BKHL, Ulrich MMW, Middelkoop E. New dermal substitutes. Wound Repair Regen 2011; 19 Suppl 1:s59-65. [DOI: 10.1111/j.1524-475x.2011.00713.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
123
|
Huang W, Wang T, Zhang D, Zhao T, Dai B, Ashraf A, Wang X, Xu M, Millard RW, Fan GC, Ashraf M, Yu XY, Wang Y. Mesenchymal stem cells overexpressing CXCR4 attenuate remodeling of postmyocardial infarction by releasing matrix metalloproteinase-9. Stem Cells Dev 2011; 21:778-89. [PMID: 21671800 DOI: 10.1089/scd.2011.0126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Myocardial infarction (MI) results in loss of myofibers in the ischemic zone of the heart, followed by scar formation. These factors increase barriers to mobilization of mesenchymal stem cells (MSC), thereby impeding their effectiveness in cardiac repair. This study examined MSC overexpressing CXCR4 (MSC(CX4)) to determine penetration into infarcted myocardium by releasing collagen degrading enzyme, matrix metalloproteinase-9 (MMP-9). In vitro, mouse MSC were utilized, including MSC using adenoviral transduction, to express CXCR4/green fluorescent protein (GFP) (MSC(CX4)), Null/GFP (MSC(Null)), MSC treated with siRNA targeting CXCR4 (MSC(siR)), MSC treated with control siRNA(MSC(Con-siR)), MSC(CX4) treated with siRNA targeting MMP-9 (MSC(CX4-siRMP9)) and MMP-14 (MSC(CX4-siRMP14)), MSC derived from MMP-9 knockout mouse with adenoviral transduction for GFP (MSC(MP9-)), or MSC(MP9-) plus overexpressing CXCR4 (MSC(MP9-CX4)). The ability to cross the basement membrane was evaluated in all MSC using a trans-collagen gel invasion assay. The CXCR4 and MMP expression were analyzed by Western blot. In vivo, MSC with various treatments were infused into mice via tail vein injections 7 days after MI. Echocardiography was performed before harvesting hearts for analysis at 4 weeks after MSC injection. Both in vitro and in vivo studies demonstrated upregulation of MMP-9 induced by MSC(CX4), promoting increased GFP(+) cell migration into the infarcted area in comparison to control group. This enhanced response was associated with reduced left ventricular (LV) fibrosis, increased LV free wall thickness, angiogenesis, and improved LV function. Under hypoxic conditions, MMP-9 is upregulated in MSC(CX4), thus facilitating cross of the basement membrane, resulting in an improved remodeling of post-MI tissue.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0529, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Bax DV, Wang Y, Li Z, Maitz PKM, McKenzie DR, Bilek MMM, Weiss AS. Binding of the cell adhesive protein tropoelastin to PTFE through plasma immersion ion implantation treatment. Biomaterials 2011; 32:5100-11. [PMID: 21527206 DOI: 10.1016/j.biomaterials.2011.03.079] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 03/30/2011] [Indexed: 12/27/2022]
Abstract
The interaction of proteins and cells with polymers is critical to their use in scientific and medical applications. In this study, plasma immersion ion implantation (PIII) was used to modify the surface of polytetrafluorethylene (PTFE), enabling the covalent binding of a cell adhesive protein, tropoelastin, without employing chemical linking molecules. Tropoelastin coating of untreated or PIII treated PFTE simultaneously promoted and blocked cell interactions respectively, i.e. PIII treatment of the PTFE surface completely inverses the cell interactive properties of bound tropoelastin. This activity persisted over long term storage of the PIII treated surfaces. The integrin binding C-terminus of tropoelastin was markedly less solvent exposed when bound to PIII treated PTFE than untreated PTFE, accounting for the modulation of cell adhesive activity. This presents a new methodology to specifically modulate cell behavior on a polymer surface using a simple one step treatment process, by adjusting the adhesive activity of a single extracellular matrix protein.
Collapse
Affiliation(s)
- Daniel V Bax
- Applied and Plasma Physics, School of Physics, University of Sydney, Building A28, Sydney, NSW 2006, Australia.
| | | | | | | | | | | | | |
Collapse
|
125
|
Selvais C, D'Auria L, Tyteca D, Perrot G, Lemoine P, Troeberg L, Dedieu S, Noël A, Nagase H, Henriet P, Courtoy PJ, Marbaix E, Emonard H. Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function. FASEB J 2011; 25:2770-81. [PMID: 21518850 DOI: 10.1096/fj.10-169508] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP-1) is a plasma membrane scavenger and signaling receptor, composed of a large ligand-binding subunit (515-kDa α-chain) linked to a shorter transmembrane subunit (85-kDa β-chain). LRP-1 cell-surface level and function are controlled by proteolytic shedding of its ectodomain. Here, we identified ectodomain sheddases in human HT1080 cells and demonstrated regulation of the cleavage by cholesterol by comparing the classical fibroblastoid type with a spontaneous epithelioid variant, enriched ∼ 2-fold in cholesterol. Two membrane-associated metalloproteinases were involved in LRP-1 shedding: a disintegrin and metalloproteinase-12 (ADAM-12) and membrane-type 1 matrix metalloproteinase (MT1-MMP). Although both variants expressed similar levels of LRP-1, ADAM-12, MT1-MMP, and specific tissue inhibitor of metalloproteinases-2 (TIMP-2), LRP-1 shedding from epithelioid cells was ∼4-fold lower than from fibroblastoid cells. Release of the ectodomain was triggered by cholesterol depletion in epithelioid cells and impaired by cholesterol overload in fibroblastoid cells. Modulation of LRP-1 shedding on clearance was reflected by accumulation of gelatinases (MMP-2 and MMP-9) in the medium. We conclude that cholesterol exerts an important control on LRP-1 levels and function at the plasma membrane by modulating shedding of its ectodomain, and therefore represents a novel regulator of extracellular proteolytic activities.
Collapse
Affiliation(s)
- Charlotte Selvais
- Cell Biology Laboratory, de Duve Institute, UCL-75.41, 75 avenue Hippocrate, B-1200 Bruxelles, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Waterhouse A, Wise SG, Ng MKC, Weiss AS. Elastin as a nonthrombogenic biomaterial. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:93-9. [PMID: 21166482 DOI: 10.1089/ten.teb.2010.0432] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Surface-induced thrombosis is a significant issue for artificial blood-contacting materials used in the treatment of cardiovascular diseases. The development of biomaterials and tissue-engineered constructs that mimic the vasculature represents a way to overcome this problem. Elastin is an extracellular matrix macromolecule that imparts arterial elasticity where it comprises up to 50% of the nonhydrated mass of the vessel. In addition to its critical role in maintaining vessel integrity and elastic properties under pulsatile flow, elastin plays an important role in signaling and regulating luminal endothelial cells and smooth muscle cells in the arterial wall. Despite its well-established significance in the vasculature and its growing use as a biomaterial in tissue engineering, the hemocompatibility of elastin is often overlooked. Past studies pointing to the potential of arterial elastin and decellularized elastin as nonthrombogenic materials have begun to be realized, with elastin scaffolds and coatings displaying increased hemocomptibility. This review explores the mechanisms of elastin's nonthrombogenicity and highlights the current problems limiting its wider application as a biomaterial. We discuss the benefits of constructing biomaterials encompassing the relevant mechanical and biological features of elastin to provide enhanced hemocompatibility to biomaterials.
Collapse
Affiliation(s)
- Anna Waterhouse
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|
127
|
Demidova-Rice TN, Geevarghese A, Herman IM. Bioactive peptides derived from vascular endothelial cell extracellular matrices promote microvascular morphogenesis and wound healing in vitro. Wound Repair Regen 2011; 19:59-70. [PMID: 21134032 PMCID: PMC3059781 DOI: 10.1111/j.1524-475x.2010.00642.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Studies in our laboratory indicate that collagenase from Clostridium histolyticum promotes endothelial cell and keratinocyte responses to injury in vitro and wound healing in vivo. We postulate that matrix degradation by Clostridial collagenase creates bioactive fragments that can stimulate cellular responses to injury and angiogenesis. To test this hypothesis, we performed limited digestion of defined capillary-endothelial-derived extracellular matrices using purified human or bacterial collagenases. Immunoprecipitation with antibodies recognizing collagens I, II, III, IV, and V, followed by mass spectrometry reveals the presence of unique fragments in bacterial, but not human-enzyme-digested matrix. Results show that there are several bioactive peptides liberated from Clostridial collagenase-treated matrices, which facilitate endothelial responses to injury, and accelerate microvascular remodeling in vitro. Fragments of collagen IV, fibrillin-1, tenascin X, and a novel peptide created by combining specific amino acids contained within fibrillin 1 and tenascin X each have profound proangiogenic properties. The peptides used at 10-100 nM increase rates of microvascular endothelial cell proliferation by up to 47% and in vitro angiogenesis by 200% when compared with serum-stimulated controls. Current studies are aimed at revealing the molecular mechanisms regulating peptide-induced wound healing while extending these in vitro observations using animal modeling.
Collapse
Affiliation(s)
- Tatiana N. Demidova-Rice
- Graduate Programs in Cell, Molecular and Developmental Biology, Cell and Molecular Physiology and The Center for Innovations in Wound Healing Research, Sackler School of Graduate Biomedical Sciences, School of Medicine, Tufts University, Boston, MA 02111
- The Wellman Center For Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Anita Geevarghese
- Graduate Programs in Cell, Molecular and Developmental Biology, Cell and Molecular Physiology and The Center for Innovations in Wound Healing Research, Sackler School of Graduate Biomedical Sciences, School of Medicine, Tufts University, Boston, MA 02111
| | - Ira M. Herman
- Graduate Programs in Cell, Molecular and Developmental Biology, Cell and Molecular Physiology and The Center for Innovations in Wound Healing Research, Sackler School of Graduate Biomedical Sciences, School of Medicine, Tufts University, Boston, MA 02111
| |
Collapse
|
128
|
Patel D, Menon R, Taite LJ. Self-Assembly of Elastin-Based Peptides into the ECM: the Importance of Integrins and the Elastin Binding Protein in Elastic Fiber Assembly. Biomacromolecules 2010; 12:432-40. [DOI: 10.1021/bm101214f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Dhaval Patel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Rohan Menon
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Lakeshia J. Taite
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
129
|
Rusciani A, Duca L, Sartelet H, Chatron-Colliet A, Bobichon H, Ploton D, Le Naour R, Blaise S, Martiny L, Debelle L. Elastin peptides signaling relies on neuraminidase-1-dependent lactosylceramide generation. PLoS One 2010; 5:e14010. [PMID: 21103358 PMCID: PMC2982818 DOI: 10.1371/journal.pone.0014010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 10/25/2010] [Indexed: 11/19/2022] Open
Abstract
The sialidase activity of neuraminidase-1 (Neu-1) is responsible for ERK 1/2 pathway activation following binding of elastin peptide on the elastin receptor complex. In this work, we demonstrate that the receptor and lipid rafts colocalize at the plasma membrane. We also show that the disruption of these microdomains as well as their depletion in glycolipids blocks the receptor signaling. Following elastin peptide treatment, the cellular GM3 level decreases while lactosylceramide (LacCer) content increases consistently with a GM3/LacCer conversion. The use of lactose or Neu-1 siRNA blocks this process suggesting that the elastin receptor complex is responsible for this lipid conversion. Flow cytometry analysis confirms this elastin peptide-driven LacCer generation. Further, the use of a monoclonal anti-GM3 blocking antibody shows that GM3 is required for signaling. In conclusion, our data strongly suggest that Neu-1-dependent GM3/LacCer conversion is the key event leading to signaling by the elastin receptor complex. As a consequence, we propose that LacCer is an early messenger for this receptor.
Collapse
Affiliation(s)
- Anthony Rusciani
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 6237, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Laurent Duca
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 6237, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
- * E-mail:
| | - Hervé Sartelet
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 6237, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Aurore Chatron-Colliet
- Laboratoire Médicament, Dynamique Intracellulaire, Architecture Nucléaire (MéDIAN), UMR CNRS 6237, Université de Reims Champagne Ardenne, Faculté de Pharmacie, Reims, France
| | - Hélène Bobichon
- Laboratoire Médicament, Dynamique Intracellulaire, Architecture Nucléaire (MéDIAN), UMR CNRS 6237, Université de Reims Champagne Ardenne, Faculté de Pharmacie, Reims, France
| | - Dominique Ploton
- Laboratoire Médicament, Dynamique Intracellulaire, Architecture Nucléaire (MéDIAN), UMR CNRS 6237, Université de Reims Champagne Ardenne, Faculté de Pharmacie, Reims, France
| | - Richard Le Naour
- Laboratoire d'Immunologie et de Microbiologie, EA 4303 Inflammation et Immunité de l'appareil respiratoire, Faculté de Pharmacie, Reims, France
| | - Sébastien Blaise
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 6237, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Laurent Martiny
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 6237, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Laurent Debelle
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 6237, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| |
Collapse
|
130
|
Shirvaikar N, Marquez-Curtis LA, Ratajczak MZ, Janowska-Wieczorek A. Hyaluronic acid and thrombin upregulate MT1-MMP through PI3K and Rac-1 signaling and prime the homing-related responses of cord blood hematopoietic stem/progenitor cells. Stem Cells Dev 2010; 20:19-30. [PMID: 20629539 DOI: 10.1089/scd.2010.0118] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
One of the hurdles of cord blood (CB) transplantation is delayed hematopoietic engraftment. Previously, we demonstrated that supernatants isolated from leukapheresis products of granulocyte-colony stimulating factor (G-CSF)-mobilized patients primed the homing of hematopoietic stem/progenitor cells (HSPC) by enhancing their chemotactic responses to stromal cell-derived factor (SDF)-1 and stimulating matrix metalloproteinases (MMPs) MMP-2 and MMP-9. Since membrane type 1 (MT1)-MMP activates proMMP-2 and localizes proteolytic activity at the leading edge of migrating cells, in this study we investigated whether MT1-MMP contributes to the priming of the homing-related responses of CB HSPC. We found that components of supernatants of leukapheresis products such as hyaluronic acid and thrombin (i) increase the secretion of proMMP-9 and transcription and protein synthesis of MT1-MMP in CB CD34(+) cells; (ii) increase the levels of active MMP-2 in co-cultures of CD34(+) cells with endothelial cells; (iii) increase the chemoinvasion across reconstituted basement membrane Matrigel of CD34(+) cells toward a low SDF-1 gradient (20 ng/mL); and (iv) activate mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and Rac-1 signaling pathways. Inhibition of phosphatidylinositol 3-kinase and Rac-1 by their respective inhibitors LY290042 and NSC23766 attenuated MT1-MMP expression in CB CD34(+) cells, leading to reduced proMMP-2 activation and HSPC trans-Matrigel chemoinvasion toward SDF-1. Thus, our data suggest that MT1-MMP plays an important role in the homing-related responses of HSPC, and we propose that pretreatment of CB HSPC with hyaluronic acid or thrombin before transplantation could improve their homing and engraftment.
Collapse
|
131
|
Abstract
Matrix metalloproteases (MMPs) comprise a family of enzymes that cleave protein substrates based on a conserved mechanism involving activation of an active site-bound water molecule by a Zn(2+) ion. Although the catalytic domain of MMPs is structurally highly similar, there are many differences with respect to substrate specificity, cellular and tissue localization, membrane binding and regulation that make this a very versatile family of enzymes with a multitude of physiological functions, many of which are still not fully understood. Essentially, all members of the MMP family have been linked to disease development, notably to cancer metastasis, chronic inflammation and the ensuing tissue damage as well as to neurological disorders. This has stimulated a flurry of studies into MMP inhibitors as therapeutic agents, as well as into measuring MMP levels as diagnostic or prognostic markers. As with most protein families, deciphering the function(s) of MMPs is difficult, as they can modify many proteins. Which of these reactions are physiologically or pathophysiologically relevant is often not clear, although studies on knockout animals, human genetic and epigenetic, as well as biochemical studies using natural or synthetic inhibitors have provided insight to a great extent. In this review, we will give an overview of 23 members of the human MMP family and describe functions, linkages to disease and structural and mechanistic features. MMPs can be grouped into soluble (including matrilysins) and membrane-anchored species. We adhere to the 'MMP nomenclature' and provide the reader with reference to the many, often diverse, names for this enzyme family in the introduction.
Collapse
|
132
|
Almine JF, Bax DV, Mithieux SM, Nivison-Smith L, Rnjak J, Waterhouse A, Wise SG, Weiss AS. Elastin-based materials. Chem Soc Rev 2010; 39:3371-9. [PMID: 20449520 DOI: 10.1039/b919452p] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elastin is a versatile elastic protein that dominates flexible tissues capable of recoil, and facilitates commensurate cell interactions in these tissues in all higher vertebrates. Elastin's persistence and insolubility hampered early efforts to construct versatile biomaterials. Subsequently the field has progressed substantially through the adapted use of solubilized elastin, elastin-based peptides and the increasing availability of recombinant forms of the natural soluble elastin precursor, tropoelastin. These interactions allow for the formation of a sophisticated range of biomaterial constructs and composites that benefit from elastin's physical properties of innate assembly and elasticity, and cell interactive properties as discussed in this tutorial review.
Collapse
Affiliation(s)
- Jessica F Almine
- School of Molecular Bioscience, University of Sydney, NSW, 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
133
|
van der Veen VC, van der Wal MB, van Leeuwen MC, Ulrich MM, Middelkoop E. Biological background of dermal substitutes. Burns 2010; 36:305-21. [DOI: 10.1016/j.burns.2009.07.012] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 07/13/2009] [Indexed: 12/11/2022]
|
134
|
Heinz A, Jung MC, Duca L, Sippl W, Taddese S, Ihling C, Rusciani A, Jahreis G, Weiss AS, Neubert RHH, Schmelzer CEH. Degradation of tropoelastin by matrix metalloproteinases--cleavage site specificities and release of matrikines. FEBS J 2010; 277:1939-56. [PMID: 20345904 DOI: 10.1111/j.1742-4658.2010.07616.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To provide a basis for the development of approaches to treat elastin-degrading diseases, the aim of this study was to investigate the degradation of the natural substrate tropoelastin by the elastinolytic matrix metalloproteinases MMP-7, MMP-9, and MMP-12 and to compare the cleavage site specificities of the enzymes using complementary MS techniques and molecular modeling. Furthermore, the ability of the three proteases to release bioactive peptides was studied. Tropoelastin was readily degraded by all three MMPs. Eighty-nine cleavage sites in tropoelastin were identified for MMP-12, whereas MMP-7 and MMP-9 were found to cleave at only 58 and 63 sites, respectively. Cleavages occurred predominantly in the N-terminal and C-terminal regions of tropoelastin. With respect to the cleavage site specificities, the study revealed that all three MMPs similarly tolerate hydrophobic and/or aliphatic amino acids, including Pro, Gly, Ile, and Val, at P(1)'. MMP-7 shows a strong preference for Leu at P(1)', which is also well accepted by MMP-9 and MMP-12. Of all three MMPs, MMP-12 best tolerates bulky charged and aromatic amino acids at P(1)'. All three MMPs showed a clear preference for Pro at P(3) that could be structurally explained by molecular modeling. Analysis of the generated peptides revealed that all three MMPs show a similar ability to release bioactive sequences, with MMP-12 producing the highest number of these peptides. Furthermore, the generated peptides YTTGKLPYGYGPGG, YGARPGVGVGGIP, and PGFGAVPGA, containing GxxPG motifs that have not yet been proven to be bioactive, were identified as new matrikines upon biological activity testing.
Collapse
Affiliation(s)
- Andrea Heinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Moroy G, Ostuni A, Pepe A, Tamburro AM, Alix AJP, Héry-Huynh S. A proposed interaction mechanism between elastin-derived peptides and the elastin/laminin receptor-binding domain. Proteins 2010; 76:461-76. [PMID: 19241470 DOI: 10.1002/prot.22361] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Elastin-derived peptides (EDPs) have been intensively studied in view of their widely diverse biological activities. These are triggered both in normal and tumor cells, through peptide anchoring at the surface of the elastin-binding protein (EBP), a subunit of the elastin/laminin receptor. In this study, we investigated both the structure of the Sgal peptide, representing the elastin-binding domain of EBP, and its interaction with EDPs, through a combination of experimental and theoretical methods. Although the conformation of the Sgal peptide is highly flexible, we detected a type I beta-turn at the QDEA sequence. This represents the best structured motif in the entire Sgal peptide, which might therefore contribute to its binding activity. We further propose a novel three-dimensional model for the interaction between the Sgal peptide and EDPs; folding of the EDPs at the GXXP motif, in a conformation close to a type VIII beta-turn, provides the efficient contact of the protein with the Q residue of the Sgal peptide. This residue is exposed to the peptide surface, because of the beta-turn structure of the QDEA residues in the peptide sequence. We further show that this complex is stabilized by three hydrogen bonds involving EDPs backbone atoms.
Collapse
Affiliation(s)
- G Moroy
- Université de Reims Champagne Ardenne, IFR, UFR Sciences Exactes et Naturelles, France.
| | | | | | | | | | | |
Collapse
|
136
|
Thevenard J, Ramont L, Devy J, Brassart B, Dupont-Deshorgue A, Floquet N, Schneider L, Ouchani F, Terryn C, Maquart FX, Monboisse JC, Brassart-Pasco S. The YSNSG cyclopeptide derived from tumstatin inhibits tumor angiogenesis by down-regulating endothelial cell migration. Int J Cancer 2010; 126:1055-66. [PMID: 19551865 DOI: 10.1002/ijc.24688] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We previously demonstrated that the CNYYSNS peptide derived from tumstatin inhibited in vivo tumor progression. The YSNS motif formed a beta-turn crucial for biological activity. More recently, a YSNSG cyclopeptide with a constrained beta-turn on the YSNS residues was designed. Intraperitoneal administration of the YSNSG cyclopeptide inhibited in vivo melanoma progression more efficiently than the native linear peptide. In the present article, we showed that the YSNSG cyclopeptide also triggered an inhibition of in vivo tumor neovascularization and we further analyzed its in vitroantiangiogenic effect. The YSNSG cyclopeptide did not alter endothelial cell proliferation but inhibited cell migration by 83% in an in vitro wound healing model. The inhibition was mediated by a decrease in active MT1-MMP at the migration front as well as a decrease in u-PA and u-PAR expression. The cyclopeptide also altered beta1-integrin distribution in endothelial cell lamellipodia, induced a strong decrease in the phosphorylated focal adhesion kinase (p125(FAK)), disorganized F-actin stress fibers and decreased the number of lamellipodia, resulting in a non migratory phenotype. Our results confirm the YSNSG cyclopeptide as a potent antitumor agent, through both the inhibition of invasive properties of tumor cells and the antiangiogenic activity.
Collapse
Affiliation(s)
- Jessica Thevenard
- CNRS UMR 6237, Université de Reims Champagne-Ardenne, CHU de Reims, Reims, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Coquerel B, Poyer F, Torossian F, Dulong V, Bellon G, Dubus I, Reber A, Vannier JP. Elastin-derived peptides: matrikines critical for glioblastoma cell aggressiveness in a 3-D system. Glia 2010; 57:1716-26. [PMID: 19373935 DOI: 10.1002/glia.20884] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the most common primary brain tumors, malignant glioma cells invade the extracellular matrix (ECM) and proliferate rapidly in the cerebral tissue, which is mainly composed of hyaluronan (HA) along with the elastin present in the basement membrane of blood vessels. To determine the role of ECM components in the invasive capacity of glioma cell lines, we developed a 3-D cell-culture system, based on a hydrogel in which HA can be coreticulated with kappa-elastin (HA-kappaE). Using this system, the invasiveness of cells from four glioma cell lines was dramatically increased by the presence of kappaE and a related, specific peptide (VGVAPG)(3). In addition, MMP-2 secretion increased and MMP-12 synthesis occurred. Extracellular injections of kappaE or (VGVAPG)(3) provoked a pronounced and dose-dependent increase in [Ca(2+)](i). kappaE significantly enhanced the expression of the genes encoding elastin-receptor and tropoelastin. We propose the existence of a positive feedback loop in which degradation of elastin generates fragments that stimulate synthesis of tropoelastin followed by further degradation as well as migration and proliferation of the very cells responsible for degradation. All steps in this ECM-based loop could be blocked by the addition of either of the EBP antagonists, lactose, and V-14 peptide, suggesting that the loop itself should be considered as a new therapeutic target.
Collapse
Affiliation(s)
- Bérénice Coquerel
- Groupe de Recherche, Micro-Environnement et Renouvellement Cellulaire Intégré, MERCI UPRES EA3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
In nature, the majority of chemical reactions, biological responses, and regulatory processes are modulated in some part by specific amino acid sequences. The transfer of these interactive sequences and the biological activities they induce to short, stable, and readily synthesized peptides has created a diverse new field of modulating molecules applicable to dermatology and skin care industries. Areas such as inflammation, pigmentation, cell proliferation and migration, angiogenesis, innate immunity, and extracellular matrix synthesis have yielded peptide candidates for application to this area.
Collapse
|
139
|
Bax DV, McKenzie DR, Weiss AS, Bilek MM. Linker-free covalent attachment of the extracellular matrix protein tropoelastin to a polymer surface for directed cell spreading. Acta Biomater 2009; 5:3371-81. [PMID: 19463976 DOI: 10.1016/j.actbio.2009.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/02/2009] [Accepted: 05/12/2009] [Indexed: 12/28/2022]
Abstract
Polymers are used for the fabrication of many prosthetic implants. It is desirable for these polymers to promote biological function by promoting the adhesion, differentiation and viability of cells. Here we have used plasma immersion ion implantation (PIII) treatment of polystyrene to modify the polymer surface, and so modulate the binding of the extracellular matrix protein tropoelastin. PIII treated, but not untreated polystyrene, bound tropoelastin in a sodium dodecyl sulfate (SDS)-resistant manner, consistent with previous enzyme-binding data that demonstrated the capability of these surfaces to covalently attach proteins without employing chemical linking molecules. Furthermore sulfo-NHS acetate (SNA) blocking of tropoelastin lysine side chains eliminated the SDS-resistant binding of tropoelastin to PIII-treated polystyrene. This implies tropoelastin is covalently attached to the PIII-treated surface via its lysine side chains. Cell spreading was only observed on tropoelastin coated, PIII-treated polystyrene surfaces, indicating that tropoelastin was more biologically active on the PIII-treated surface compared to the untreated surface. A contact mask was used to pattern the PIII treatment. Following tropoelastin attachment, cells spread preferentially on the PIII-treated sections of the polystyrene surface. This demonstrates that PIII treatment of polystyrene improves the polymer's tropoelastin binding properties, with advantages for tissue engineering and prosthetic design.
Collapse
|
140
|
Annabi B, Lachambre MP, Plouffe K, Sartelet H, Béliveau R. Modulation of invasive properties of CD133+ glioblastoma stem cells: a role for MT1-MMP in bioactive lysophospholipid signaling. Mol Carcinog 2009; 48:910-919. [PMID: 19326372 DOI: 10.1002/mc.20541] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Future breakthroughs in cancer therapy must accompany targeted agents that will neutralize cancer stem cells response to circulating growth factors. Since the brain tissue microenvironmental niche is a prerequisite for expression of the stem cell marker CD133 antigen in brain tumors, we investigated the invasion mechanisms specific to CD133(+) U87 glioblastoma cells in response to lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), two circulating bioactive lysophospholipids and potent inducers of cancer. A CD133(+) U87 glioma cell population was isolated from parental U87 glioblastoma cells using magnetic cell sorting technology. The CD133(+)-enriched cell population grew as neurospheres and showed enhanced maximal response to both LPA (approximately 5.0-fold) and S1P (approximately 2.5-fold) at 1 microM when compared to parental U87 cells. The increased response to LPA in CD133(+) cells, reflected by increased levels of phosphorylated ERK, was found independent of the cooperative functions of the membrane-type-1 matrix metalloproteinase (MT1-MMP), while this cooperativity was essential to the S1P response. Quantitative RT-PCR was performed and we found higher gene expression levels of the S1P receptors S1P1 and S1P2, and of the LPA receptor LPA1 in CD133(+) cells than in their parental U87 cells. These increased levels reflected those observed from in vivo experimental U87 tumor implants. Our data suggest that the CD133(+) cell subpopulation evokes most of the lysophospholipid response within brain tumors through a combined regulation of S1P/LPA cell surface receptors signaling and by MT1-MMP. The emergence of lead compounds targeting the stem cell niche and S1P/LPA signaling in CD133(+) cancer cells is warranted.
Collapse
Affiliation(s)
- Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
141
|
Antonicelli F, Bellon G, Lorimier S, Hornebeck W. Role of the elastin receptor complex (S-Gal/Cath-A/Neu-1) in skin repair and regeneration. Wound Repair Regen 2009; 17:631-8. [DOI: 10.1111/j.1524-475x.2009.00525.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
142
|
Nakamura M, Yamaguchi K, Mie M, Nakamura M, Akita K, Kobatake E. Promotion of Angiogenesis by an Artificial Extracellular Matrix Protein Containing the Laminin-1-Derived IKVAV Sequence. Bioconjug Chem 2009; 20:1759-64. [DOI: 10.1021/bc900126b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Makiko Nakamura
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, and Department of Biomedical Engineering, University of Toyama
| | - Kumiko Yamaguchi
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, and Department of Biomedical Engineering, University of Toyama
| | - Masayasu Mie
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, and Department of Biomedical Engineering, University of Toyama
| | - Makoto Nakamura
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, and Department of Biomedical Engineering, University of Toyama
| | - Keiichi Akita
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, and Department of Biomedical Engineering, University of Toyama
| | - Eiry Kobatake
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, and Department of Biomedical Engineering, University of Toyama
| |
Collapse
|
143
|
Bax DV, Rodgers UR, Bilek MMM, Weiss AS. Cell adhesion to tropoelastin is mediated via the C-terminal GRKRK motif and integrin alphaVbeta3. J Biol Chem 2009; 284:28616-23. [PMID: 19617625 DOI: 10.1074/jbc.m109.017525] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Elastin fibers are predominantly composed of the secreted monomer tropoelastin. This protein assembly confers elasticity to all vertebrate elastic tissues including arteries, lung, skin, vocal folds, and elastic cartilage. In this study we examined the mechanism of cell interactions with recombinant human tropoelastin. Cell adhesion to human tropoelastin was divalent cation-dependent, and the inhibitory anti-integrin alpha(V)beta(3) antibody LM609 inhibited cell spreading on tropoelastin, identifying integrin alpha(V)beta(3) as the major fibroblast cell surface receptor for human tropoelastin. Cell adhesion was unaffected by lactose and heparin sulfate, indicating that the elastin-binding protein and cell surface glycosaminoglycans are not involved. The C-terminal GRKRK motif of tropoelastin can bind to cells in a divalent cation-dependent manner, identifying this as an integrin binding motif required for cell adhesion.
Collapse
Affiliation(s)
- Daniel V Bax
- Applied and Plasma Physics, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | | | |
Collapse
|
144
|
Abstract
Natural processes within the body are modulated almost exclusively by the interaction of specific amino acid sequences, either as peptides or as subsections of proteins. With respect to skin, proteins and peptides are involved in the modulation of cell proliferation, cell migration, inflammation, angiogenesis, melanogenesis, and protein synthesis and regulation. The creation of therapeutic or bioactive peptide analogs of specific interactive sequences has opened the door to a diverse new field of pharmaceutical and active cosmetic ingredients for the skincare industry. Here, we describe the origin of such sequences, their role in nature, their application to dermatology, as well as the advantages and challenges posed by this new technology.
Collapse
Affiliation(s)
- K Fields
- Helix Biomedix Inc, Bothell, WA, USA
| | | | | | | |
Collapse
|
145
|
Taddese S, Weiss AS, Jahreis G, Neubert RHH, Schmelzer CEH. In vitro degradation of human tropoelastin by MMP-12 and the generation of matrikines from domain 24. Matrix Biol 2008; 28:84-91. [PMID: 19144321 DOI: 10.1016/j.matbio.2008.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 11/16/2008] [Accepted: 12/10/2008] [Indexed: 10/21/2022]
Abstract
Degradation of elastic fibers in tissues can result in the development of disorders that include aneurysms, atherosclerosis, and loss of skin elasticity. Tropoelastin is the precursor of the cross-linked elastin and its expression is triggered by elastin-degrading factors as a response to damage. Factors like UV radiation not only increase the expression of tropoelastin but also potent metalloelastases such as macrophage elastase (MMP-12). The development of elastin-degrading diseases, moreover, is a chronic process during which elastin and tropoelastin are repeatedly exposed to attacks by MMP-12. Hence, in this work we report the in vitro susceptibility of tropoelastin and the potential of MMP-12 to generate matrikines. This work provides evidence that tropoelastin is substantially and rapidly degraded by MMP-12 even at very dilute enzyme concentrations. MMP-12 cleaves at least 86 sites in tropoelastin. Analysis of the generated peptides revealed that some small peptides contained the motif GXXPG that may enable them to bind with the elastin binding protein (EBP). Furthermore, using synthesized peptides it was confirmed that several sites in the sequence encoded by exon 24 which contains repetitive units of biologically active VGVAPG domains are susceptible to attack by MMP-12, provided that the active subsites in MMP-12 (S(4) to S(4)') are occupied. Such cleavage events have lead to the generation of ligands that may bind to EBP.
Collapse
Affiliation(s)
- Samuel Taddese
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
146
|
Skeie JM, Mullins RF. Elastin-mediated choroidal endothelial cell migration: possible role in age-related macular degeneration. Invest Ophthalmol Vis Sci 2008; 49:5574-80. [PMID: 18708613 PMCID: PMC2609900 DOI: 10.1167/iovs.08-1984] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Endothelial cell (EC) migration is a key event in angiogenesis, and is likely to play an important role in choroidal neovascularization in age-related macular degeneration (AMD). Altered elastin metabolism has been described in AMD, and the present study sought to determine the effects of elastin-derived peptides (EDPs) on choroidal EC migration and proliferation. METHODS Migration of the chorioretinal EC line Rf/6a and a primary culture of human choroidal ECs through polycarbonate membrane inserts was quantified in the presence of elastin bioactive hexapeptides (BPs), EDPs, bovine serum albumin (BSA), or balanced salt solution. Proliferation assays and in vitro wound closure experiments were also performed in the presence of elastin fragments or balanced salt solution (control). Elastin overlay experiments were performed on sections of human eyes. RESULTS For both Rf/6a and human primary choroidal ECs exposed to EDPs or BPs, the number of ECs that migrated through the polycarbonate membrane was significantly higher than ECs exposed to balanced salt solution alone or to BSA (P < 0.05) in all experiments. In contrast, the rate of EC proliferation did not significantly change in comparison to controls. Elastin binding sites were identified on choroidal ECs in human eyes. CONCLUSIONS Elastin fragments increase choroidal EC migration, whereas they do not appear to increase or decrease EC proliferation. Local or systemic abnormalities in elastin physiology may participate in pathologic neovascular membrane formation in AMD.
Collapse
Affiliation(s)
- Jessica M. Skeie
- Center for Macular Degeneration, Department of Ophthalmology and Visual Science, University of Iowa, Iowa City, Iowa
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Robert F. Mullins
- Center for Macular Degeneration, Department of Ophthalmology and Visual Science, University of Iowa, Iowa City, Iowa
| |
Collapse
|
147
|
Joo CK, Seomun Y. Matrix metalloproteinase (MMP) and TGF beta 1-stimulated cell migration in skin and cornea wound healing. Cell Adh Migr 2008; 2:252-3. [PMID: 19262153 DOI: 10.4161/cam.2.4.6772] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell migration during wound healing is a complex process that involves the expression of a number of growth factors and cytokines. One of these factors, transforming growth factor-beta (TGFbeta) controls many aspects of normal and pathological cell behavior. It induces migration of keratinocytes in wounded skin and of epithelial cells in damaged cornea. Furthermore, this TGFbeta-induced cell migration is correlated with the production of components of the extracellular matrix (ECM) proteins and expression of integrins and matrix metalloproteinases (MMPs). MMP digests ECMs and integrins during cell migration, but the mechanisms regulating their expression and the consequences of their induction remain unclear. It has been suggested that MMP-14 activates cellular signaling processes involved in the expression of MMPs and other molecules associated with cell migration. Because of the manifold effects of MMP-14, it is important to understand the roles of MMP-14 not only the cleavage of ECM but also in the activation of signaling pathways.
Collapse
Affiliation(s)
- Choun-Ki Joo
- Laboratory of Ophthalmology and Visual Science, Korean Eye Tissue and Gene Bank related to Blindness, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | | |
Collapse
|
148
|
Seomun Y, Kim JT, Joo CK. MMP-14 mediated MMP-9 expression is involved in TGF-beta1-induced keratinocyte migration. J Cell Biochem 2008; 104:934-41. [PMID: 18307173 DOI: 10.1002/jcb.21675] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The importance of expression of matrix metalloproteinase (MMP) in keratinocyte migration is well established, but its role remains unclear. Here we investigated the function of MMP-14 in TGF-beta1-induced keratinocyte migration. TGF-beta1 stimulated cell migration and the expression of MMP-2, -9 in HaCaT human keratinocyte cells. When we lowered MMP-14 mRNA with siRNA, cell migration, and MMP-9 expression decreased. Furthermore, the MMP-14 siRNA also reduced activation of JNK in response to TGF-beta1, and a JNK-specific inhibitor decreased both cell migration and MMP-9 expression. Taken together, these results suggest that TGF-beta1-induced HaCaT cell migration is mediated by MMP-14, which regulates MMP-9 expression via JNK signaling.
Collapse
Affiliation(s)
- Young Seomun
- Laboratory of Ophthalmology and Visual Science, Korean Eye Tissue and Gene Bank Related to Blindness, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | |
Collapse
|
149
|
Hobeika MJ, Edlin RS, Muhs BE, Sadek M, Gagne PJ. Matrix Metalloproteinases in Critical Limb Ischemia. J Surg Res 2008; 149:148-54. [DOI: 10.1016/j.jss.2007.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 03/14/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
|
150
|
Construction of multi-functional extracellular matrix proteins that promote tube formation of endothelial cells. Biomaterials 2008; 29:2977-86. [DOI: 10.1016/j.biomaterials.2008.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 04/02/2008] [Indexed: 10/22/2022]
|