101
|
Cekic C, Sag D, Li Y, Theodorescu D, Strieter RM, Linden J. Adenosine A2B receptor blockade slows growth of bladder and breast tumors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:198-205. [PMID: 22116822 PMCID: PMC3819109 DOI: 10.4049/jimmunol.1101845] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The accumulation of high levels of adenosine in tumors activates A(2A) and A(2B) receptors on immune cells and inhibits their ability to suppress tumor growth. Deletion of adenosine A(2A) receptors (A(2A)ARs) has been reported to activate antitumor T cells, stimulate dendritic cell (DC) function, and inhibit angiogenesis. In this study, we evaluated the effects of intermittent intratumor injection of a nonselective adenosine receptor antagonist, aminophylline (AMO; theophylline ethylenediamine) and, for the first time to our knowledge, a selective A(2B)AR antagonist, ATL801. AMO and ATL801 slowed the growth of MB49 bladder and 4T1 breast tumors in syngeneic mice and reduced by 85% metastasizes of breast cancer cells from mammary fat to lung. Based on experiments with A(2A)AR(-/-) or adenosine A(2B) receptor(-/-) mice, the effect of AMO injection was unexpectedly attributed to A(2B)AR and not to A(2A)AR blockade. AMO and ATL801 significantly increased tumor levels of IFN-γ and the IFN-inducible chemokine CXCL10, which is a ligand for CXCR3. This was associated with an increase in activated tumor-infiltrating CXCR3(+) T cells and a decrease in endothelial cell precursors within tumors. Tumor growth inhibition by AMO or ATL801 was eliminated in CXCR3(-/-) mice and RAG1(-/-) mice that lack mature T cells. In RAG1(-/-) mice, A(2B)AR deletion enhanced CD86 expression on CD11b(-) DCs. Bone marrow chimera experiments demonstrated that CXCR3 and A(2B)AR expression on bone marrow cells is required for the antitumor effects of AMO. The data suggest that blockade of A(2B)ARs enhances DC activation and CXCR3-dependent antitumor responses.
Collapse
MESH Headings
- Adenosine A2 Receptor Antagonists/pharmacology
- Animals
- B7-2 Antigen/genetics
- B7-2 Antigen/immunology
- B7-2 Antigen/metabolism
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Bone Marrow Transplantation
- Cell Line, Tumor
- Chemokine CXCL10/genetics
- Chemokine CXCL10/immunology
- Chemokine CXCL10/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/pathology
- Female
- Homeodomain Proteins/genetics
- Homeodomain Proteins/immunology
- Homeodomain Proteins/metabolism
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Mammary Neoplasms, Animal/drug therapy
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/immunology
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Neoplasm Transplantation
- Receptor, Adenosine A2B/genetics
- Receptor, Adenosine A2B/immunology
- Receptor, Adenosine A2B/metabolism
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Receptors, CXCR3/metabolism
- Transplantation Chimera/genetics
- Transplantation Chimera/immunology
- Transplantation Chimera/metabolism
- Transplantation, Isogeneic
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/immunology
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
Collapse
Affiliation(s)
- Caglar Cekic
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology
| | - Duygu Sag
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology
| | - Yuesheng Li
- Department of Medicine, University of Virginia
| | | | | | - Joel Linden
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology
| |
Collapse
|
102
|
Lee J, Romero R, Dong Z, Xu Y, Qureshi F, Jacques S, Yoo W, Chaiworapongsa T, Mittal P, Hassan SS, Kim CJ. Unexplained fetal death has a biological signature of maternal anti-fetal rejection: chronic chorioamnionitis and alloimmune anti-human leucocyte antigen antibodies. Histopathology 2011; 59:928-38. [PMID: 22092404 PMCID: PMC3546834 DOI: 10.1111/j.1365-2559.2011.04038.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Chronic chorioamnionitis is a histological manifestation of maternal anti-fetal cellular rejection. As failure of graft survival is the most catastrophic event in organ transplantation, we hypothesized that fetal death could be a consequence of maternal rejection. The aim of this study was to assess whether there is evidence of cellular and antibody-mediated rejection in fetal death. METHODS AND RESULTS Placental histology was reviewed for the presence of chronic chorioamnionitis in unexplained preterm fetal death (n=30) and preterm live birth (n=103). Amniotic fluid CXCL10 concentrations were measured with a specific immunoassay. Chronic chorioamnionitis was more frequent in fetal death than in live birth (60.0% versus 37.9%; P<0.05) and fetal death had a higher median amniotic fluid CXCL10 concentration than live birth (2.0 versus 1.8 ng/ml, P<0.05), after adjusting for gestational age at amniocentesis. Maternal anti-human leucocyte antigen class II panel-reactive seropositivity determined by flow cytometry was higher in fetal death compared to live birth (35.7% versus 10.9%; P<0.05). CONCLUSIONS Chronic chorioamnionitis is a common pathologic feature in unexplained preterm fetal death. This novel finding suggests that cellular and antibody-mediated anti-fetal rejection of the mother is associated with fetal death (graft failure) in human pregnancy.
Collapse
Affiliation(s)
- JoonHo Lee
- Perinatology Research Branch, NICHD/NIH/DHHS, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Dhanushkodi NR, Mohankumar V, Pokkali S, Raju R. Lipopolysaccharide inhibits Sindbis virus-induced IP-10 release in human peripheral blood mononuclear cells. Viral Immunol 2011; 24:237-43. [PMID: 21668365 DOI: 10.1089/vim.2010.0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chemokines play a pivotal role in the innate response to both bacterial and viral infections, and in mixed infections. To determine chemokine responses to Sindbis virus (SIN) in a co-infection model, peripheral blood mononuclear cells (PBMCs) derived from healthy volunteers were exposed to SIN in the presence and absence of lipopolysaccharide (LPS). Culture supernatants recovered at 2, 24, and 72 h post-exposure were evaluated for virus replication and analyzed for chemokines by ELISA. None of the PBMC cultures showed new virus release, GFP reporter expression, or viral RNA synthesis. While SIN had little effect on the induction of IL-8 and RANTES, the chemokines MCP-1, MIP1-α (p < 0.001), and MIP1-β (p < 0.0004) were drastically upregulated by SIN as well as LPS. Both live and UV-inactivated SIN induced secretion of IP-10 and I-TAC. Although LPS did not induce release of IP-10, it sharply inhibited (p = 0.004) SIN-mediated IP-10 secretion. On the contrary, the release of SLC was blocked by SIN. The adjuvant activity of IP-10, its antiangiogenic function, and antagonism between SIN and LPS for the release of select chemokines may be useful in understanding the pathogenesis of mixed infections, cross-talk between cellular pathways, and may have applications in cancer and sepsis.
Collapse
Affiliation(s)
- Nisha R Dhanushkodi
- Department of Microbiology and Immunology, Meharry Medical College, School of Medicine, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
104
|
Abstract
The macrophage is a prominent inflammatory cell in wounds, but its role in healing remains incompletely understood. Macrophages have many functions in wounds, including host defence, the promotion and resolution of inflammation, the removal of apoptotic cells, and the support of cell proliferation and tissue restoration following injury. Recent studies suggest that macrophages exist in several different phenotypic states within the healing wound and that the influence of these cells on each stage of repair varies with the specific phenotype. Although the macrophage is beneficial to the repair of normally healing wounds, this pleotropic cell type may promote excessive inflammation or fibrosis under certain circumstances. Emerging evidence suggests that macrophage dysfunction is a component of the pathogenesis of nonhealing and poorly healing wounds. As a result of advances in the understanding of this multifunctional cell, the macrophage continues to be an attractive therapeutic target, both to reduce fibrosis and scarring, and to improve healing of chronic wounds.
Collapse
|
105
|
Liu M, Guo S, Hibbert JM, Jain V, Singh N, Wilson NO, Stiles JK. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev 2011; 22:121-30. [PMID: 21802343 PMCID: PMC3203691 DOI: 10.1016/j.cytogfr.2011.06.001] [Citation(s) in RCA: 371] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
C-X-C motif chemokine 10 (CXCL10) also known as interferon γ-induced protein 10 kDa (IP-10) or small-inducible cytokine B10 is a cytokine belonging to the CXC chemokine family. CXCL10 binds CXCR3 receptor to induce chemotaxis, apoptosis, cell growth and angiostasis. Alterations in CXCL10 expression levels have been associated with inflammatory diseases including infectious diseases, immune dysfunction and tumor development. CXCL10 is also recognized as a biomarker that predicts severity of various diseases. A review of the emerging role of CXCL10 in pathogenesis of infectious diseases revealed diverse roles of CXCL10 in disease initiation and progression. The potential utilization of CXCL10 as a therapeutic target for infectious diseases is discussed.
Collapse
Affiliation(s)
- Mingli Liu
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Shanchun Guo
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Jacqueline M. Hibbert
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Vidhan Jain
- National Institute of Malaria Research (ICMR), Jabalpur, India
| | - Neeru Singh
- National Institute of Malaria Research (ICMR), Jabalpur, India
| | - Nana O. Wilson
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Jonathan K. Stiles
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
106
|
Penafuerte C, Bautista-Lopez N, Bouchentouf M, Birman E, Forner K, Galipeau J. Novel TGF-β Antagonist Inhibits Tumor Growth and Angiogenesis by Inducing IL-2 Receptor-Driven STAT1 Activation. THE JOURNAL OF IMMUNOLOGY 2011; 186:6933-44. [DOI: 10.4049/jimmunol.1003816] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
107
|
Morita T, Kakinuma Y, Kurabayashi A, Fujieda M, Sato T, Shuin T, Furihata M, Wakiguchi H. Conditional VHL gene deletion activates a local NO-VEGF axis in a balanced manner reinforcing resistance to endothelium-targeted glomerulonephropathy. Nephrol Dial Transplant 2011; 26:4023-31. [PMID: 21493813 DOI: 10.1093/ndt/gfr176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/AIMS We have reported that tubular epithelial cell injury caused by renal ischemia-reperfusion is attenuated in conditional VHL knockout (VHL-KO) mice and also that induction of hypoxia-inducible factor (HIF) suppresses angiotensin II-accelerated Habu snake venom (HV) glomerulonephropathy in rats. However, it remains unknown whether VHL knockdown protects glomerular endothelial cells from endothelium-targeted glomerulonephritis. METHODS AND RESULTS VHL-KO mice with HV glomerulonephropathy (HV GN) had fewer injured glomeruli, a lower mesangiolysis score and reduced blood urea nitrogen levels. Immunoreactivity of vascular endothelial growth factor (VEGF) in the glomerular capillaries was enhanced by VHL knockdown and was conserved even in VHL-KO mice with HV GN, despite HV-attenuating endothelial VEGF expression in vitro. VHL-KO mice showed enhanced nitric oxide (NO) production in glomerular endothelial cells and tubular cells, associated with activated VEGF expression in the kidney (i.e. an activated NO-VEGF axis). The levels of NO in glomeruli and tubules were conserved even in mice with HV GN. In contrast, suppressing NO production in glomerular endothelial cells by an NO synthase inhibitor, N(ϖ)-nitro-L-arginase, completely blunted the protection of VHL-KO from HV GN. The activated NO-VEGF axis in the kidney of VHL-KO mice was also associated with an elevation in Flk-1 phosphorylation and increased levels of IL-10 and IP-10. CONCLUSION Conditional VHL knockdown may enhance the NO-VEGF axis and protect glomerular endothelial cells from HV GN, thereby providing resistance to injury of tubular epithelial cells and glomerular endothelial cells.
Collapse
Affiliation(s)
- Taku Morita
- Department of Pediatrics, Kochi Medical School, Nankoku, Japan
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Yates CC, Bodnar R, Wells A. Matrix control of scarring. Cell Mol Life Sci 2011; 68:1871-81. [PMID: 21390544 DOI: 10.1007/s00018-011-0663-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/24/2011] [Accepted: 02/22/2011] [Indexed: 02/06/2023]
Abstract
Repair of wounds usually results in restoration of organ function, even if suboptimal. However, in a minority of situations, the healing process leads to significant scarring that hampers homeostasis and leaves the tissue compromised. This scar is characterized by an excess of matrix deposition that remains poorly organized and weakened. While we know much of the early stages of the repair process, the transition to wound resolution that limits scar formation is poorly understood. This is particularly true of the inducers of scar formation. Here, we present a hypothesis that it is the matrix itself that is a primary driver of scar, rather than being simply the result of other cellular dysregulations.
Collapse
Affiliation(s)
- Cecelia C Yates
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
109
|
Abstract
INTRODUCTION The intracellular signaling cysteine proteases, calpains (specifically the ubiquitous calpains 1 and 2), are involved in numerous physiological and pathological phenomena. Several works have highlighted the implication of calpains in processes crucial for cancer development and progression. For these reasons, calpains are considered by several authors as potential anti-cancer targets. AREAS COVERED How calpains are implicated in cancer formation and development, how these enzymes are deregulated in cancer cells and how these proteases could be targeted by anti-cancer drugs. Studies published in the last 10 years are focused on. EXPERT OPINION Targeting calpain activity with specific inhibitors could be a novel approach to limiting development of primary tumors and formation of metastases, by inhibiting tumor cell migration and invasion, which allows dissemination as well as tumor neovascularization, which in turn allows expansion. However, such drugs could interfere with anti-cancer treatments, as ubiquitous calpains play crucial roles in chemotherapy-induced apoptosis. For these reasons, drugs targeting calpains would have to be used selectively to avoid interference with other treatments and physiological processes. Further studies will be required concerning the other members of the calpain family and their potential implication in cancer development before considering treatments targeting their activity.
Collapse
Affiliation(s)
- Ludovic Leloup
- INSERM UMR 911 (CRO2), Aix-Marseille Université, Faculté de Pharmacie, 13385 Marseille cedex 5, France
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
110
|
Abstract
Chemokines are a family of small heparin-binding proteins, mostly known for their role in inflammation and immune surveillance, which have emerged as important regulators of angiogenesis. Chemokines influence angiogenesis either through recruitment of pro-angiogenic immune cells and endothelial progenitors to the neo-vascular niche or via direct regulation of endothelial function downstream of activation of G-protein coupled chemokine receptors. The dual function of chemokines in regulating immune response and angiogenesis confers a central role in modulating the tissue microenvironment. Therefore, chemokines may constitute attractive targets for therapeutic intervention in several pathological disorders. This review will summarize the current understanding of the role of chemokines in angiogenesis, and give an overview of angiostatic and angiogenic chemokines and their crosstalk with other angiogenic factors.
Collapse
Affiliation(s)
- Anna Dimberg
- Department of Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden.
| |
Collapse
|
111
|
Su L, Zhao H, Sun C, Zhao B, Zhao J, Zhang S, Su H, Miao J. Role of Hmbox1 in endothelial differentiation of bone-marrow stromal cells by a small molecule. ACS Chem Biol 2010; 5:1035-43. [PMID: 20822188 DOI: 10.1021/cb100153r] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bone marrow stromal cells (BMSCs) play critical roles in repairing endothelium damage. However, the mechanisms underlying BMSC differentiation into vascular endothelial cells (VECs) is not well understood. We aimed to find new factors involved in this process by exploiting a novel chemical inducer in a gene microarray assay. We first identified a novel benzoxazine derivative (6-amino-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine; ABO) that can induce BMSC differentiation to VECs in a capillary-like tube formation assay, promote analysis of endothelial cell-specific marker expression, and facilitate uptake of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-acetylated low-density lipoprotein (Dil-Ac-LDL). Microarray analysis of BMSCs treated with ABO for 4 h revealed changes in only a handful of genes. The only one upregulated was homeobox-containing 1 (Hmbox1) gene, whereas six genes, including IP-10 and others, were downregulated. The upregulation of Hmbox1 and downregulation of IP-10 were confirmed by RT-PCR, quantitative PCR (qPCR), and Western blot analysis. It is reported that IP-10 could suppresse EC differentiation into capillary structures. In this study ABO could not induce BMSC differentiation to VECs in the presence of IP-10. Small interfering RNA knockdown of Hmbox1 blocked ABO-induced BMSC differentiation and increased the level of IP-10 but decreased Ets-1. Thus, ABO is a novel inducer for BMSC differentiation to VECs, and Hmbox1 is a key factor in the differentiation. IP-10 and Ets-1 might be relevant targets of Hmbox1 in BMSC differentiation to VECs. These findings provide information on a novel target and a new platform for further investigating the gene control of BMSC differentiation to VECs.
Collapse
Affiliation(s)
- Le Su
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| | - HongLing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| | - ChunHui Sun
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| | - BaoXiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| | - ShangLi Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| | - Hua Su
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| | - JunYing Miao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| |
Collapse
|
112
|
Wietecha MS, Chen L, Ranzer MJ, Anderson K, Ying C, Patel TB, DiPietro LA. Sprouty2 downregulates angiogenesis during mouse skin wound healing. Am J Physiol Heart Circ Physiol 2010; 300:H459-67. [PMID: 21076020 DOI: 10.1152/ajpheart.00244.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiogenesis is regulated by signals received by receptor tyrosine kinases such as vascular endothelial growth factor receptors. Mammalian Sprouty (Spry) proteins are known to function by specifically antagonizing the activation of the mitogen-activated protein kinase signaling pathway by receptor tyrosine kinases, a pathway known to promote angiogenesis. To examine the role of Spry2 in the regulation of angiogenesis during wound repair, we used a model of murine dermal wound healing. Full-thickness excisional wounds (3 mm) were made on the dorsum of anesthetized adult female FVB mice. Samples were harvested at multiple time points postwounding and analyzed using real-time RT-PCR, Western blot analysis, and immunofluorescent histochemistry. Spry2 mRNA and protein levels in the wound bed increased significantly during the resolving phases of healing, coincident with the onset of vascular regression in this wound model. In another experiment, intracellular levels of Spry2 or its dominant-negative mutant (Y55F) were elevated by a topical application to the wounds of controlled-release gel containing cell permeable, transactivator of transcription-tagged Spry2, Spry2Y55F, or green fluorescent protein (as control). Wound samples were analyzed for vascularity using CD31 immunofluorescent histochemistry as well as for total and phospho-Erk1/2 protein content. The treatment of wounds with Spry2 resulted in a significant decrease in vascularity and a reduced abundance of phospho-Erk1/2 compared with wounds treated with the green fluorescent protein control. In contrast, the wounds treated with the dominant-negative Spry2Y55F exhibited a moderate increase in vascularity and elevated phospho-Erk1/2 content. These results indicate that endogenous Spry2 functions to downregulate angiogenesis in the healing murine skin wound, potentially by inhibiting the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Mateusz S Wietecha
- University of Illinois at Chicago, College of Dentistry, Center for Wound Healing & Tissue Regeneration (MC 859 801 S. Paulina, Rm. 401B, Chicago, IL 60612-7211, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Campanella GSV, Colvin RA, Luster AD. CXCL10 can inhibit endothelial cell proliferation independently of CXCR3. PLoS One 2010; 5:e12700. [PMID: 20856926 PMCID: PMC2938333 DOI: 10.1371/journal.pone.0012700] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 08/17/2010] [Indexed: 01/22/2023] Open
Abstract
CXCL10 (or Interferon-inducible protein of 10 kDa, IP-10) is an interferon-inducible chemokine with potent chemotactic activity on activated effector T cells and other leukocytes expressing its high affinity G protein-coupled receptor CXCR3. CXCL10 is also active on other cell types, including endothelial cells and fibroblasts. The mechanisms through which CXCL10 mediates its effects on non-leukocytes is not fully understood. In this study, we focus on the anti-proliferative effect of CXCL10 on endothelial cells, and demonstrate that CXCL10 can inhibit endothelial cell proliferation in vitro independently of CXCR3. Four main findings support this conclusion. First, primary mouse endothelial cells isolated from CXCR3-deficient mice were inhibited by CXCL10 as efficiently as wildtype endothelial cells. We also note that the proposed alternative splice form CXCR3-B, which is thought to mediate CXCL10's angiostatic activity, does not exist in mice based on published mouse CXCR3 genomic sequences as an in-frame stop codon would terminate the proposed CXCR3-B splice variant in mice. Second, we demonstrate that human umbilical vein endothelial cells and human lung microvascular endothelial cells that were inhibited by CXL10 did not express CXCR3 by FACS analysis. Third, two different neutralizing CXCR3 antibodies did not inhibit the anti-proliferative effect of CXCL10. Finally, fourth, utilizing a panel of CXCL10 mutants, we show that the ability to inhibit endothelial cell proliferation correlates with CXCL10's glycosaminoglycan binding affinity and not with its CXCR3 binding and signaling. Thus, using a very defined system, we show that CXCL10 can inhibit endothelial cell proliferation through a CXCR3-independent mechanism.
Collapse
Affiliation(s)
- Gabriele S. V. Campanella
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Richard A. Colvin
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Andrew D. Luster
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
114
|
Leloup L, Shao H, Bae YH, Deasy B, Stolz D, Roy P, Wells A. m-Calpain activation is regulated by its membrane localization and by its binding to phosphatidylinositol 4,5-bisphosphate. J Biol Chem 2010; 285:33549-33566. [PMID: 20729206 DOI: 10.1074/jbc.m110.123604] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
m-Calpain plays a critical role in cell migration enabling rear de-adhesion of adherent cells by cleaving structural components of the adhesion plaques. Growth factors and chemokines regulate keratinocyte, fibroblast, and endothelial cell migration by modulating m-calpain activity. Growth factor receptors activate m-calpain secondary to phosphorylation on serine 50 by ERK. Concurrently, activated m-calpain is localized to its inner membrane milieu by binding to phosphatidylinositol 4,5-bisphosphate (PIP(2)). Opposing this, CXCR3 ligands inhibit cell migration by blocking m-calpain activity secondary to a PKA-mediated phosphorylation in the C2-like domain. The failure of m-calpain activation in the absence of PIP(2) points to a key regulatory role, although whether this PIP(2)-mediated membrane localization is regulatory for m-calpain activity or merely serves as a docking site for ERK phosphorylation is uncertain. Herein, we report the effects of two CXCR3 ligands, CXCL11/IP-9/I-TAC and CXCL10/IP-10, on the EGF- and VEGF-induced redistribution of m-calpain in human fibroblasts and endothelial cells. The two chemokines block the tail retraction and, thus, the migration within minutes, preventing and reverting growth factor-induced relocalization of m-calpain to the plasma membrane of the cells. PKA phosphorylation of m-calpain blocks the binding of the protease to PIP(2). Unexpectedly, we found that this was due to membrane anchorage itself and not merely serine 50 phosphorylation, as the farnesylation-induced anchorage of m-calpain triggers a strong activation of this protease, leading notably to an increased cell death. Moreover, the ERK and PKA phosphorylations have no effect on this membrane-anchored m-calpain. However, the presence of PIP(2) is still required for the activation of the anchored m-calpain. In conclusion, we describe a novel mechanism of m-calpain activation by interaction with the plasma membrane and PIP(2) specifically, this phosphoinositide acting as a cofactor for the enzyme. The phosphorylation of m-calpain by ERK and PKA by growth factors and chemokines, respectively, act in cells to regulate the enzyme only indirectly by controlling its redistribution.
Collapse
Affiliation(s)
- Ludovic Leloup
- From the Departments of Pathology, Pittsburgh, Pennsylvania 15261
| | - Hanshuang Shao
- From the Departments of Pathology, Pittsburgh, Pennsylvania 15261
| | - Yong Ho Bae
- Bioengineering, Pittsburgh, Pennsylvania 15261
| | | | - Donna Stolz
- Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Partha Roy
- From the Departments of Pathology, Pittsburgh, Pennsylvania 15261; Bioengineering, Pittsburgh, Pennsylvania 15261
| | - Alan Wells
- From the Departments of Pathology, Pittsburgh, Pennsylvania 15261; Bioengineering, Pittsburgh, Pennsylvania 15261; Pittsburgh Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
115
|
Yates CC, Krishna P, Whaley D, Bodnar R, Turner T, Wells A. Lack of CXC chemokine receptor 3 signaling leads to hypertrophic and hypercellular scarring. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1743-55. [PMID: 20203286 DOI: 10.2353/ajpath.2010.090564] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CXC chemokine receptor 3 (CXCR3) signaling promotes keratinocyte migration while terminating fibroblast and endothelial cell immigration into wounds; this signaling also directs epidermal and matrix maturation. Herein, we investigated the long-term effects of failure to activate the "stop-healing" CXCR3 axis. Full-thickness excisional wounds were created on CXCR3 knockout((-/-)) or wild-type mice and examined at up to 180 days after wounding. Grossly, the CXCR3(-/-) mice presented a thick keratinized scar compared with the wild-type mice in which the scar was scarcely noticeable; histological examination revealed thickening of both the epidermis and dermis. The dermis was disorganized with thick and long collagen fibrils and contained excessive collagen content in comparison with the wild-type mice. Interestingly, the CXCR3(-/-) wounds presented lower tensile/burst strength, which correlates with decreased alignment of collagen fibers, similar to published findings of human scars. Persistent Extracellular matrix turnover and immaturity was shown by the elevated expression of proteins of the immature matrix as well as expression of matrix metallopeptidase-9 MMP-9. Interestingly, the scars in the CXCR3(-/-) mice presented evidence of de novo development of a sterile inflammatory response only months after wounding; earlier periods showed resolution of the initial inflammatory stage. These in vivo studies establish that the absence of CXCR3(-/-) signaling network results in hypertrophic and hypercellular scarring characterized by on-going wound regeneration, cellular proliferation, and scars in which immature matrix components are undergoing increased turnover resulting in a chronic inflammatory process.
Collapse
Affiliation(s)
- Cecelia C Yates
- University of Pittsburgh, Department of Pathology, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|