101
|
Chang R, Mamun A, Dominic A, Le NT. SARS-CoV-2 Mediated Endothelial Dysfunction: The Potential Role of Chronic Oxidative Stress. Front Physiol 2021; 11:605908. [PMID: 33519510 PMCID: PMC7844210 DOI: 10.3389/fphys.2020.605908] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023] Open
Abstract
Endothelial cells have emerged as key players in SARS-CoV-2 infection and COVID-19 inflammatory pathologies. Dysfunctional endothelial cells can promote chronic inflammation and disease processes like thrombosis, atherosclerosis, and lung injury. In endothelial cells, mitochondria regulate these inflammatory pathways via redox signaling, which is primarily achieved through mitochondrial reactive oxygen species (mtROS). Excess mtROS causes oxidative stress that can initiate and exacerbate senescence, a state that promotes inflammation and chronic endothelial dysfunction. Oxidative stress can also activate feedback loops that perpetuate mitochondrial dysfunction, mtROS overproduction, and inflammation. In this review, we provide an overview of phenotypes mediated by mtROS in endothelial cells - such as mitochondrial dysfunction, inflammation, and senescence - as well as how these chronic states may be initiated by SARS-CoV-2 infection of endothelial cells. We also propose that SARS-CoV-2 activates mtROS-mediated feedback loops that cause long-term changes in host redox status and endothelial function, promoting cardiovascular disease and lung injury after recovery from COVID-19. Finally, we discuss the implications of these proposed pathways on long-term vascular health and potential treatments to address these chronic conditions.
Collapse
Affiliation(s)
- Ryan Chang
- College of Arts & Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Abrar Mamun
- Wiess School of Natural Sciences, Rice University, Houston, TX, United States
| | - Abishai Dominic
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, United States
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
102
|
Sangaran PG, Ibrahim ZA, Chik Z, Mohamed Z, Ahmadiani A. LPS Preconditioning Attenuates Apoptosis Mechanism by Inhibiting NF-κB and Caspase-3 Activity: TLR4 Pre-activation in the Signaling Pathway of LPS-Induced Neuroprotection. Mol Neurobiol 2021; 58:2407-2422. [PMID: 33421016 DOI: 10.1007/s12035-020-02227-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Neuroinflammation, an inflammatory response within the nervous system, has been shown to be implicated in the progression of various neurodegenerative diseases. Recent in vivo studies showed that lipopolysaccharide (LPS) preconditioning provides neuroprotection by activating Toll-like receptor 4 (TLR4), one of the members for pattern recognition receptor (PRR) family that play critical role in host response to tissue injury, infection, and inflammation. Pre-exposure to low dose of LPS could confer a protective state against cellular apoptosis following subsequent stimulation with LPS at higher concentration, suggesting a role for TLR4 pre-activation in the signaling pathway of LPS-induced neuroprotection. However, the precise molecular mechanism associated with this protective effect is not well understood. In this article, we provide an overall review of the current state of our knowledge about LPS preconditioning in attenuating apoptosis mechanism and conferring neuroprotection via TLR4 signaling pathway.
Collapse
Affiliation(s)
- Pushpa Gandi Sangaran
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Abolhassan Ahmadiani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Evin, PO Box 19839-63113, Tehran, Iran.
| |
Collapse
|
103
|
Xu HH, Li SM, Xu R, Fang L, Xu H, Tong PJ. Predication of the underlying mechanism of Bushenhuoxue formula acting on knee osteoarthritis via network pharmacology-based analyses combined with experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113217. [PMID: 32763417 DOI: 10.1016/j.jep.2020.113217] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Knee osteoarthritis (KOA) is the most common chronic joint disorder worldwide, which is also a principle consideration for disability. The Bushenhuoxue formula (BSHXF) is a traditional herbal formula which widely applied to the treatment of KOA. However, its pharmacological mechanisms of action have not been clarified. AIMS OF THE STUDY The study aimed to identify the potential targets and mechanisms of BSHXF in the treatment of KOA through pharmacology-based analyses and experimental validation. MATERIALS AND METHODS The TCMSP database was applied to obtain the chemical compounds and targets of BSHXF, while the protein targets in KOA were determined through GeneCards and OMIM databases. The herb-compound-target and protein-protein interaction (PPI) networks were constructed for topological analyses and hub-targets screening. GO and KEGG enrichment analyses were performed on these core nodes to identify the critical biological processes and signaling pathways. Then destabilization of medial meniscus (DMM)-induced C57BL/6J mice model was established to detect the level of apoptosis via TUNEL assessment, while the expressions of CASP3, CASP8 and CASP9 were determined by immunohistochemistry. RESULTS A total of 154 active compounds and 58 targets were predicted. DAVID, ClueGO and Metascape enrichment analyses all proved that BSHXF plays an essential role in regulating apoptosis. Moreover, 3 central nodes of BSHXF are recognized as the active factors involved in the main biological functions, suggesting a potential mechanism of BSHXF for KOA treatment. In vivo experiment revealed that BSHXF significantly inhibited apoptosis and down-regulated the expressions of CASP3, CASP8 and CASP9. CONCLUSION Based on network pharmacology and experimental validation, our study indicated that BSHXF exerted anti-apoptosis effect through inhibiting the expressions of CASP3, CASP8 and CASP9, which could be considered as an effective method for KOA treatment.
Collapse
Affiliation(s)
- Hui-Hui Xu
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China.
| | - Suo-Mi Li
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China.
| | - Rui Xu
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China.
| | - Liang Fang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China.
| | - Hui Xu
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China.
| | - Pei-Jian Tong
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China; Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| |
Collapse
|
104
|
Ibrahim KA, Abdelgaid HA, El-Desouky MA, Fahmi AA, Abdel-Daim MM. Modulation of Paraoxonase-1 and Apoptotic Gene Expression Involves in the Cardioprotective Role of Flaxseed Following Gestational Exposure to Diesel Exhaust Particles and/or Fenitrothion Insecticide. Cardiovasc Toxicol 2020; 20:604-617. [PMID: 32572764 DOI: 10.1007/s12012-020-09585-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The developmental exposure to a single chemical may elicit apoptosis in the different fetal organs, while the combined effects are restricted. We have examined the protective role of flaxseed (FS) against diesel exhaust particles (DEPs)- and/or fenitrothion (FNT)-induced fetal cardiac oxidative stress and apoptosis. A total of 48 timed pregnant rats were divided into eight groups (n = 6). The first group was saved as the control and the second fed on 20% FS diet. Animals in the third, fourth, and fifth groups were administered with DEPs (2.0 mg/kg), FNT (3.76 mg/kg), and their combination, respectively, while the sixth, seventh, and eighth groups were supplemented with 20% FS through intoxication with DEPs, FNT, and their combination, respectively. Our results revealed that DEPs and/or FNT significantly elevated the level of protein carbonyl and superoxide dismutase activity in the fetal cardiac tissues. However, the catalase activity and total thiol level were decreased; besides the histopathological alterations were remarked. Moreover, DEPs and/or FNT exhibited significant down-regulation in the anti-apoptotic (Bcl-2) and paraoxonase-1 gene expression, and up-regulation in the apoptotic (Bax and caspase-3) gene expression along with DNA fragmentation. Remarkably, FS supplementation significantly ameliorated the fetal cardiac oxidative injury, down-regulated the expression of the apoptotic genes, up-regulated the anti-apoptotic and paraoxonase-1 gene expression, reduced DNA fragmentation, and alleviated the myocardial cell architectures. These findings revealed that FS attenuates DEPs- and/or FNT-induced apoptotic cell death by repairing the disturbance in the anti-apoptotic/pro-apoptotic gene balance toward cell survival in the fetal myocardial cells.
Collapse
Affiliation(s)
- Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, 12618, Egypt.
| | - Hala A Abdelgaid
- Biochemistry Division, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | | | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
105
|
Zhao Y, Cheng X, Wang G, Liao Y, Qing C. Linalool inhibits 22Rv1 prostate cancer cell proliferation and induces apoptosis. Oncol Lett 2020; 20:289. [PMID: 33029205 PMCID: PMC7530887 DOI: 10.3892/ol.2020.12152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/28/2020] [Indexed: 01/09/2023] Open
Abstract
Linalool is an unsaturated terpene that can be found in several plants and exhibits various biological activities. The aim of the present study was to investigate the anticancer activity of linalool using the human prostate cancer 22Rv1 cell line. Flow cytometry was employed to study the effects of linalool on the induction of apoptosis, cell cycle progression, loss of mitochondrial membrane potential and cytochrome c release, whereas the effects of linalool on apoptosis-associated proteins were investigated by western blot analysis. An efficacy study was conducted using 22Rv1 tumor-bearing mice. The expression of the cell proliferation markers Ki-67 and proliferating cell nuclear antigen (PCNA) in xenograft tumors was evaluated by immunohistochemistry. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was used to study the induction of apoptosis in an in vivo model. Linalool exerted an inhibitory effect on 22Rv1 cell proliferation and induced apoptosis in both in vitro and in vivo models. Western blot analysis indicated that both the mitochondria-mediated intrinsic and death-receptor-mediated extrinsic pathways were involved in the induction of apoptosis. Furthermore, linalool significantly reduced the expression of Ki-67 and PCNA in the 22Rv1 ×enograft model. The findings of the present study provide evidence supporting the anti-proliferative effects of linalool on 22Rv1 human prostate cancer cells, and suggest that linalool may be an effective agent for prostate cancer treatment.
Collapse
Affiliation(s)
- Yunqi Zhao
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang 325060, P.R. China
| | - Xianliang Cheng
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Guohui Wang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuan Liao
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Qing
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
106
|
Li P, Jing H, Wang Y, Yuan L, Xiao H, Zheng Q. SUMO modification in apoptosis. J Mol Histol 2020; 52:1-10. [PMID: 33225418 PMCID: PMC7790789 DOI: 10.1007/s10735-020-09924-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022]
Abstract
Apoptosis and clearance of dead cells is highly evolutionarily conserved from nematode to humans, which is crucial to the growth and development of multicellular organism. Fail to remove apoptotic cells often lead to homeostasis imbalance, fatal autoimmune diseases, and neurodegenerative diseases. Small ubiquitin-related modifiers (SUMOs) modification is a post-translational modification of ubiquitin proteins mediated by the sentrin-specific proteases (SENPs) family. SUMO modification is widely involved in many cellular biological process, and abnormal SUMO modification is also closely related to many major human diseases. Recent researches have revealed that SUMO modification event occurs during apoptosis and clearance of apoptotic cells, and plays an important role in the regulation of apoptotic signaling pathways. This review summarizes some recent progress in the revelation of regulatory mechanisms of these pathways and provides some potential researching hotpots of the SUMO modification regulation to apoptosis.
Collapse
Affiliation(s)
- Peiyao Li
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Huiru Jing
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yanzhe Wang
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lei Yuan
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hui Xiao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Qian Zheng
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
107
|
Transient transfection of WT-αS and A53T-αS brought about a mild apoptosis due to degradation of released cytochrome c through PARC. Int J Biol Macromol 2020; 166:374-384. [PMID: 33122072 DOI: 10.1016/j.ijbiomac.2020.10.196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/07/2020] [Accepted: 10/24/2020] [Indexed: 11/22/2022]
Abstract
α-Synuclein (αS) aggregates plays a pivotal role in the pathogenesis of synucleinopathies including Parkinson's Disease. The toxicity of αS aggregates has been broadly studied and variant defects have been reported through which these aggregates lead in cell death. Although cell death through apoptosis pathway has been proposed in many studies, the molecular details underlying in this pathway have not been uncovered. To shed a light on the relationships between αS aggregates and apoptotic cell death, changes in levels and behavior of molecular indicators of the intrinsic apoptotic pathway was investigated in HEK-293T cells overexpressing wild-type α-synuclein and A53T-α-synuclein. Overexpression of both WT-αS and A53T-αS resulted in the increase of caspase-9 activity, and rise in Cytochrome c (Cyt c) and PARC content, concurrently. We assume that rising in PARC level may result in Cyt c degradation, and consequently suppressing/attenuating intrinsic apoptosis pathway. Besides, increasing of Casp-9 activity can be related to αS aggregates and subsequent degradation of Cyt c. To understand the mechanisms behind this using theoretical model, molecular dynamic simulation was also applied to investigate the possible interaction of Casp-9 with α-synuclein aggregates. The results showed that the interaction between Casp-9 with αS aggregates could activate Casp-9 by changing the conformation of some crucial residues.
Collapse
|
108
|
Noori AR, Tashakor A, Nikkhah M, Eriksson LA, Hosseinkhani S, Fearnhead HO. Loss of WD2 subdomain of Apaf-1 forms an apoptosome structure which blocks activation of caspase-3 and caspase-9. Biochimie 2020; 180:23-29. [PMID: 33132160 DOI: 10.1016/j.biochi.2020.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022]
Abstract
Split luciferase complementary assay has been used to investigate the effect of WD domain deletion on Apaf-1 oligomerization. Apaf-1 is an adaptor molecule in formation of apoptosome that activates caspase-9, an activation that is a key event in the mitochondrial cell death pathway. Structural studies suggest that normally Apaf-1 is held in an inactive conformation by intramolecular interactions between Apaf-1's nucleotide binding domain and one of its WD40 domains (WD1). In the prevailing model of Apaf-1 activation, cytochrome c binds to sites in WD1 and in Apaf-1's second WD40 domain (WD2), moving WD1 and WD2 closer together and rotating WD1 away from the nucleotide binding domain. This allows Apaf-1 to bind dATP or ATP and to form the apoptosome, which activates caspase-9. This model predicts that cytochrome c binding to both WD domains is necessary for apoptosome formation and that an Apaf-1 with only WD1 will be locked in an inactive conformation that cannot be activated by cytochrome c. Here we investigated the effect of removing one WD domain (Apaf-1 1-921) on Apaf-1 interactions and caspase activation. Apaf-1 1-921 could not activate caspase-9, even in the presence of cytochrome c. These data show that a single WD domain is sufficient to lock Apaf-1 in an inactive state and this state cannot be altered by cytochrome c.
Collapse
Affiliation(s)
- Ali-Reza Noori
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amin Tashakor
- Pharmacology and Therapeutics, School of Medicine, NUI Galway, Galway, Ireland
| | - Maryam Nikkhah
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Howard O Fearnhead
- Pharmacology and Therapeutics, School of Medicine, NUI Galway, Galway, Ireland
| |
Collapse
|
109
|
Bailly AP, Perrin A, Serrano-Macia M, Maghames C, Leidecker O, Trauchessec H, Martinez-Chantar ML, Gartner A, Xirodimas DP. The Balance between Mono- and NEDD8-Chains Controlled by NEDP1 upon DNA Damage Is a Regulatory Module of the HSP70 ATPase Activity. Cell Rep 2020; 29:212-224.e8. [PMID: 31577950 PMCID: PMC6899524 DOI: 10.1016/j.celrep.2019.08.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/27/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin and ubiquitin-like chains are finely balanced by conjugating and de-conjugating enzymes. Alterations in this balance trigger the response to stress conditions and are often observed in pathologies. How such changes are detected is not well understood. We identify the HSP70 chaperone as a sensor of changes in the balance between mono- and poly-NEDDylation. Upon DNA damage, the induction of the de-NEDDylating enzyme NEDP1 restricts the formation of NEDD8 chains, mainly through lysines K11/K48. This promotes APAF1 oligomerization and apoptosis induction, a step that requires the HSP70 ATPase activity. HSP70 binds to NEDD8, and, in vitro, the conversion of NEDD8 chains into mono-NEDD8 stimulates HSP70 ATPase activity. This effect is independent of NEDD8 conjugation onto substrates. The study indicates that the NEDD8 cycle is a regulatory module of HSP70 function. These findings may be important in tumorigenesis, as we find decreased NEDP1 levels in hepatocellular carcinoma with concomitant accumulation of NEDD8 conjugates. Restriction of NEDD8 chains by NEDP1 is required for DNA damage-induced apoptosis The HSP70 chaperone is a sensor of the balance between mono- and NEDD8 chains Mono-NEDD8 stimulates HSP70 activity, which allows the formation of the apoptosome NEDP1 levels are downregulated in mouse hepatocellular carcinoma
Collapse
Affiliation(s)
- Aymeric P Bailly
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France.
| | - Aurelien Perrin
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France
| | - Marina Serrano-Macia
- Liver Disease Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Chantal Maghames
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France
| | - Orsolya Leidecker
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France
| | - Helene Trauchessec
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France
| | - M L Martinez-Chantar
- Liver Disease Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Anton Gartner
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | |
Collapse
|
110
|
Takemura K, Nishi H, Inagi R. Mitochondrial Dysfunction in Kidney Disease and Uremic Sarcopenia. Front Physiol 2020; 11:565023. [PMID: 33013483 PMCID: PMC7500155 DOI: 10.3389/fphys.2020.565023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, there has been an increased focus on the influences of mitochondrial dysfunction on various pathologies. Mitochondria are major intracellular organelles with a variety of critical roles, such as adenosine triphosphate production, metabolic modulation, generation of reactive oxygen species, maintenance of intracellular calcium homeostasis, and the regulation of apoptosis. Moreover, mitochondria are attracting attention as a therapeutic target in several diseases. Additionally, a lot of existing agents have been found to have pharmacological effects on mitochondria. This review provides an overview of the mitochondrial change in the kidney and skeletal muscle, which is often complicated with sarcopenia and chronic kidney disease (CKD). Furthermore, the pharmacological effects of therapeutics for CKD on mitochondria are explored.
Collapse
Affiliation(s)
- Koji Takemura
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiko Inagi
- Division of CKD Pathophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
111
|
Koklesova L, Liskova A, Samec M, Buhrmann C, Samuel SM, Varghese E, Ashrafizadeh M, Najafi M, Shakibaei M, Büsselberg D, Giordano FA, Golubnitschaja O, Kubatka P. Carotenoids in Cancer Apoptosis-The Road from Bench to Bedside and Back. Cancers (Basel) 2020; 12:E2425. [PMID: 32859058 PMCID: PMC7563597 DOI: 10.3390/cancers12092425] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 12/24/2022] Open
Abstract
An incidence and mortality of cancer are rapidly growing worldwide, especially due to heterogeneous character of the disease that is associated with irreversible impairment of cellular homeostasis and function. Targeting apoptosis, one of cancer hallmarks, represents a potent cancer treatment strategy. Carotenoids are phytochemicals represented by carotenes, xanthophylls, and derived compounds such as apocarotenoids that demonstrate a broad spectrum of anti-cancer effects involving pro-apoptotic signaling through extrinsic and intrinsic pathways. As demonstrated in preclinical oncology research, the apoptotic modulation is performed at post-genomic levels. Further, carotenoids demonstrate additive/synergistic action in combination with conventional oncostatic agents. In addition, a sensitization of tumor cells to anti-cancer conventional treatment can be achieved by carotenoids. The disadvantage of anti-cancer application of carotenoids is associated with their low solubility and, therefore, poor bioavailability. However, this deficiency can be improved by using nanotechnological approaches, solid dispersions, microemulsions or biofortification that significantly increase the anti-cancer and pro-apoptotic efficacy of carotenoids. Only limited number of studies dealing with apoptotic potential of carotenoids has been published in clinical sphere. Pro-apoptotic effects of carotenoids should be beneficial for individuals at high risk of cancer development. The article considers the utility of carotenoids in the framework of 3P medicine.
Collapse
Affiliation(s)
- Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Constanze Buhrmann
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (C.B.); (M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, 51368 Tabriz, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, 67146 Kermanshah, Iran;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (C.B.); (M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
112
|
Jubaidi FF, Zainalabidin S, Mariappan V, Budin SB. Mitochondrial Dysfunction in Diabetic Cardiomyopathy: The Possible Therapeutic Roles of Phenolic Acids. Int J Mol Sci 2020; 21:ijms21176043. [PMID: 32842567 PMCID: PMC7503847 DOI: 10.3390/ijms21176043] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
As the powerhouse of the cells, mitochondria play a very important role in ensuring that cells continue to function. Mitochondrial dysfunction is one of the main factors contributing to the development of cardiomyopathy in diabetes mellitus. In early development of diabetic cardiomyopathy (DCM), patients present with myocardial fibrosis, dysfunctional remodeling and diastolic dysfunction, which later develop into systolic dysfunction and eventually heart failure. Cardiac mitochondrial dysfunction has been implicated in the development and progression of DCM. Thus, it is important to develop novel therapeutics in order to prevent the progression of DCM, especially by targeting mitochondrial dysfunction. To date, a number of studies have reported the potential of phenolic acids in exerting the cardioprotective effect by combating mitochondrial dysfunction, implicating its potential to be adopted in DCM therapies. Therefore, the aim of this review is to provide a concise overview of mitochondrial dysfunction in the development of DCM and the potential role of phenolic acids in combating cardiac mitochondrial dysfunction. Such information can be used for future development of phenolic acids as means of treating DCM by alleviating the cardiac mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fatin Farhana Jubaidi
- Center for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Satirah Zainalabidin
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (S.Z.); (V.M.)
| | - Vanitha Mariappan
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (S.Z.); (V.M.)
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
- Correspondence: ; Tel.: +603-9289-7645
| |
Collapse
|
113
|
Ofuegbe SO, Oyagbemi AA, Omobowale TO, Adedapo AD, Ayodele AE, Yakubu MA, Oguntibeju OO, Adedapo AA. Methanol leaf extract of Momordica charantia protects alloxan-induced hepatopathy through modulation of caspase-9 and interleukin-1β signaling pathways in rats. Vet World 2020; 13:1528-1535. [PMID: 33061223 PMCID: PMC7522944 DOI: 10.14202/vetworld.2020.1528-1535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background and Aim: Momordica charantia is a highly valued plant, widely distributed in the tropical and subtropical regions. The plant is reported to have a wide range of medicinal uses. This study was designed to explore the ameliorative potential of M. charantia methanol leaf extract in alloxan-induced diabetic animal model with a particular focus on the liver. Materials and Methods: Hepatoprotective effect of methanol leaf extract of M. charantia was assessed in alloxan-induced toxicity in 50 rats divided into five groups (A-E) (n=10). Group A normal control, Group B was toxicant group, and Group C animals received glibenclamide treatment while Groups D and E received extracts at 200 and 400 mg/kg doses, respectively. The experiment lasted for 28 days. Histopathological changes, blood glucose level, and serum enzymes such as aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase, oxidative status and caspase-9, and interleukin-1β (IL-1β) were evaluated. Results: Extract-treatment caused a decreased blood glucose level, markers of oxidative stress such as malondialdehyde and hydrogen peroxide (H2O2). Treatment of rats with leaf extract of M. charantia resulted in increased levels and activities of protein thiols, non-protein thiols, glutathione (GSH), glutathione peroxidase, glutathione S-transferase, and superoxide dismutase indicating its antioxidant potential. The liver section revealed mild distortion of the hepatic architecture compared to the toxicant group, while decreased expressions of caspase-9 and IL-1β in extract-treated groups was observed. Conclusion: The plant extract exhibited antioxidant, anti-apoptotic, and anti-inflammatory effects, thus showing its hepatoprotective property.
Collapse
Affiliation(s)
- Sunday Oluwaseun Ofuegbe
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | | | | | | | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering and Technology, NSB303, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, TX, USA
| | - Oluwafemi O Oguntibeju
- Oxidative Stress Research Centre, Phytomedicine and Phytochemistry, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| |
Collapse
|
114
|
Priyadarshi K, Shirsath K, Waghela NB, Sharma A, Kumar A, Pathak C. Surface modified PAMAM dendrimers with gallic acid inhibit, cell proliferation, cell migration and inflammatory response to augment apoptotic cell death in human colon carcinoma cells. J Biomol Struct Dyn 2020; 39:6853-6869. [DOI: 10.1080/07391102.2020.1802344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Khushbu Priyadarshi
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Kavita Shirsath
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
- Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - N. Bhargav Waghela
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Anupama Sharma
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Ajay Kumar
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Chandramani Pathak
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| |
Collapse
|
115
|
A Comparative Transcriptomics Approach to Analyzing the Differences in Cold Resistance in Pomacea canaliculata between Guangdong and Hunan. J Immunol Res 2020; 2020:8025140. [PMID: 32832573 PMCID: PMC7422425 DOI: 10.1155/2020/8025140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022] Open
Abstract
Pomacea canaliculata, known as an invasive freshwater snail, is also called a golden apple snail; its survival and expansion are greatly affected by temperature. In this study, high-throughput sequencing (RNA-seq) was used to perform comparative transcriptome analysis on the muscular tissue (G_M) of snails in Guangdong and Hunan. Differential gene screening was performed with FDR <0.05 and |log2FoldChange| >1 as the threshold, and a total of 1,368 differential genes were obtained (671 genes showed upregulation in snails from Guangdong, and 697 genes displayed upregulation in snails from Hunan). Fifteen genes were identified as candidate genes for the cold hardiness of Pomacea canaliculata. Among them, three genes were involved in energy metabolism (glycogen synthase, 1; DGK, 1; G6PD, 1); seven genes were involved in homeostasis regulation (HSP70, 2; BIP, 1; GPX, 1; GSTO 1, G6PD, 1; caspase-9, 1); two genes were involved in amino acid metabolism (glutamine synthetase, 1; PDK, 1); and four genes were involved in membrane metabolism (inositol-3-phosphate synthase, 1; Na+/K+-ATPase, 1; calcium-binding protein, 2). This study presents the molecular mechanisms for the cold hardiness of Pomacea canaliculata, which could provide a scientific basis for the forecast and prevention of harm from Pomacea canaliculata.
Collapse
|
116
|
Al-Khayal K, Vaali-Mohammed MA, Elwatidy M, Bin Traiki T, Al-Obeed O, Azam M, Khan Z, Abdulla M, Ahmad R. A novel coordination complex of platinum (PT) induces cell death in colorectal cancer by altering redox balance and modulating MAPK pathway. BMC Cancer 2020; 20:685. [PMID: 32703189 PMCID: PMC7376665 DOI: 10.1186/s12885-020-07165-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
Background Colorectal cancer (CRC) is a heterogeneous tumor having various genetic alterations. The current treatment options had limited impact on disease free survival due to therapeutic resistance. Novel anticancer agents are needed to treat CRC specifically metastatic colorectal cancer. A novel coordination complex of platinum, (salicylaldiminato)Pt(II) complex with dimethylpropylene linkage (PT) exhibited potential anti-cancer activity. In this study, we explored the molecular mechanism of PT-induced cell death in colorectal cancer. Methods Colony formation was evaluated using the clonogenic assay. Apoptosis, cell cycle analysis, reactive oxygen species, mitochondrial membrane potential and caspase-3/− 7 were assessed by flow cytometry. Glutathione level was detected by colorimetric assay. PT-induced alteration in pro-apoptotic/ anti-apoptotic proteins and other signaling pathways were investigated using western blotting. P38 downregulation was performed using siRNA. Results In the present study, we explored the molecular mechanism of PT-mediated inhibition of cell proliferation in colorectal cancer cells. PT significantly inhibited the colony formation in human colorectal cancer cell lines (HT-29, SW480 and SW620) by inducing apoptosis and necrosis. This platinum complex was shown to significantly increase the reactive oxygen species (ROS) generation, depletion of glutathione and reduced mitochondrial membrane potential in colorectal cancer cells. Exposure to PT resulted in the downregulation of anti-apoptotic proteins (Bcl2, BclxL, XIAP) and alteration in Cyclins expression. Furthermore, PT increased cytochrome c release into cytosol and enhanced PARP cleavage leading to activation of intrinsic apoptotic pathway. Moreover, pre-treatment with ROS scavenger N-acetylcysteine (NAC) attenuated apoptosis suggesting that PT-induced apoptosis was driven by oxidative stress. Additionally, we show that PT-induced apoptosis was mediated by activating p38 MAPK and inhibiting AKT pathways. This was demonstrated by using chemical inhibitor and siRNA against p38 kinase which blocked the cytochrome c release and apoptosis in colorectal cancer cells. Conclusion Collectively, our data demonstrates that the platinum complex (PT) exerts its anti-proliferative effect on CRC by ROS-mediated apoptosis and activating p38 MAPK pathway. Thus, our findings reveal a novel mechanism of action for PT on colorectal cancer cells and may have therapeutic implication.
Collapse
Affiliation(s)
- Khayal Al-Khayal
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), Riyadh, 11472, Saudi Arabia
| | - Mansoor-Ali Vaali-Mohammed
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), Riyadh, 11472, Saudi Arabia
| | - Mohammed Elwatidy
- College of Medicine Research Center, King Saud University College of Medicine, Riyadh, 11472, Saudi Arabia
| | - Thamer Bin Traiki
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), Riyadh, 11472, Saudi Arabia
| | - Omar Al-Obeed
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), Riyadh, 11472, Saudi Arabia
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zahid Khan
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha Abdulla
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), Riyadh, 11472, Saudi Arabia
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, PO Box 7805 (37), Riyadh, 11472, Saudi Arabia.
| |
Collapse
|
117
|
Wang H, Zhu J, Jiang L, Shan B, Xiao P, Ai J, Li N, Qi F, Niu S. Mechanism of Heshouwuyin inhibiting the Cyt c/Apaf-1/Caspase-9/Caspase-3 pathway in spermatogenic cell apoptosis. BMC Complement Med Ther 2020; 20:180. [PMID: 32527252 PMCID: PMC7291440 DOI: 10.1186/s12906-020-02904-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The Chinese herbal compound Heshouwuyin has been shown to downregulate the apoptotic rate of testicular tissue cells in Wistar naturally aging rats, and this effect might be related to the mitochondrial pathway [15]. Apoptotic protease activating factor-1 (Apaf-1) is a major component of the apoptotic complex, which is a key element of the mitochondrial endogenous apoptotic pathway [13]. To further clarify the mechanism of Heshouwuyin in the mitochondrial apoptotic pathway, this study used Apaf-1 as a target to explore the mechanism by which Heshouwuyin inhibits the Apaf-1 pathway of spermatogenic cell apoptosis. METHODS In this study, an aging model of rat spermatogenic cells was established using free radical oxidative damage. Flow cytometry was used to detect the apoptosis rate of germ cells and the inhibitory effect of Heshouwuyin. Apaf-1 was specifically knocked down by siRNA interference technology, and mitochondrial membrane potential was measured. qRT-PCR, Western blotting and immunofluorescence analyses were used to detect the expression of the key genes Cyt c, Caspase-9 and Caspase-3 in the mitochondrial apoptotic pathway of spermatogenic cells. RESULTS Heshouwuyin reduced the mRNA and protein expression levels of Cyt c, Caspase-9 and Caspase-3 in senescent spermatogenic cells. In these cells, the mRNA and protein expression levels of Cyt c did not change significantly after specific knockdown of Apaf-1, and the mRNA and protein expression levels of Caspase-9 and Caspase-3 decreased significantly. This finding indicated that knockdown of Apaf-1 could decrease the mRNA and protein expression levels of the downstream pro-apoptotic genes Caspase-9 and Caspase-3. Although Cyt c was an upstream gene of Apaf-1, knockdown of Apaf-1 had no significant effect on Cyt c expression. CONCLUSION The inhibition of spermatogenic cell apoptosis by Heshouwuyin was closely related to the Cyt c/Apaf-1/Caspase-9/Caspase-3 pathway. The inhibition of apoptosis by Heshouwuyin not only involved the Apaf-1 pathway, but other signaling pathways.
Collapse
Affiliation(s)
- Hongjie Wang
- School of Medicine, Hebei University, Baoding, 071002, Hebei Province, China.,Affiliated Hospital of Hebei University, Baoding, 071002, Hebei Province, China
| | - Juan Zhu
- School of Medicine, Hebei University, Baoding, 071002, Hebei Province, China
| | - Liping Jiang
- School of Medicine, Hebei University, Baoding, 071002, Hebei Province, China
| | - Boying Shan
- Nanbao Development Zone Hospital, Tangshan, 063305, Hebei Province, China
| | - Peihan Xiao
- School of Medicine, Hebei University, Baoding, 071002, Hebei Province, China
| | - Jiayi Ai
- School of Medicine, Hebei University, Baoding, 071002, Hebei Province, China
| | - Na Li
- School of Medicine, Hebei University, Baoding, 071002, Hebei Province, China
| | - Feng Qi
- Baoding No.1 Hospital, Baoding, 071000, Hebei Province, China.
| | - Siyun Niu
- School of Medicine, Hebei University, Baoding, 071002, Hebei Province, China.
| |
Collapse
|
118
|
Connolly P, Garcia-Carpio I, Villunger A. Cell-Cycle Cross Talk with Caspases and Their Substrates. Cold Spring Harb Perspect Biol 2020; 12:a036475. [PMID: 31727679 PMCID: PMC7263087 DOI: 10.1101/cshperspect.a036475] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Caspases play central roles in mediating both cell death and inflammation. It has more recently become evident that caspases also drive other biological processes. Most prominently, caspases have been shown to be involved in differentiation. Several stem and progenitor cell types rely on caspases to initiate and execute their differentiation processes. These range from neural and glial cells, to skeletal myoblasts and osteoblasts, and several cell types of the hematopoietic system. Beyond differentiation, caspases have also been shown to play roles in other "noncanonical" processes, including cell proliferation, arrest, and senescence, thereby contributing to the mechanisms that regulate tissue homeostasis at multiple levels. Remarkably, caspases directly influence the course of the cell cycle in both a positive and negative manner. Caspases both cleave elements of the cell-cycle machinery and are themselves substrates of cell-cycle kinases. Here we aim to summarize the breadth of interactions between caspases and cell-cycle regulators. We also highlight recent developments in this area.
Collapse
Affiliation(s)
- Patrick Connolly
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Irmina Garcia-Carpio
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| |
Collapse
|
119
|
Nganvongpanit K, Euppayo T, Siengdee P, Buddhachat K, Chomdej S, Ongchai S. Post-treatment of hyaluronan to decrease the apoptotic effects of carprofen in canine articular chondrocyte culture. PeerJ 2020; 8:e8355. [PMID: 32030322 PMCID: PMC6995269 DOI: 10.7717/peerj.8355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/04/2019] [Indexed: 11/20/2022] Open
Abstract
A major concern associated with the use of drugs is their adverse side effects. Specific examples of the drugs of concern include antibiotic agents and non-steroidal anti-inflammatory drugs. Despite the presence of a high degree of efficacy for specific conditions, these drugs may deteriorate the surrounding tissues that are exposed to them. Often, carprofen is used for joint inflammation; however, it may stimulate cartilage degradation which can then lead to osteoarthritis progression. In this study, hyaluronan was combined with carprofen treatment in three different applications (pre-treatment, co-treatment and post-treatment) on normal canine chondrocytes to determine whether Hyaluronan (HA) is capable of mitigating the degree of chondrotoxicity of carprofen. Our findings revealed that carprofen at IC20 (0.16 mg/mL) decreased viability and increased nitric oxide (NO) production. Importantly, carprofen induced the apoptosis of canine chondrocytes via the up-regulation of Bax, Casp3, Casp8, Casp9 and NOS2 as compared to the control group. Although the co-treatment of HA and carprofen appeared not to further alleviate the chondrotoxicity of carprofen due to the presence of a high number of apoptotic chondrocytes, post-treatment with HA (carprofen treatment for 24 h and then changed to HA for 24 h) resulted in a decrease in chondrocyte apoptosis by the down-regulation of Bax, Casp3, Casp8, Casp9, NOS2, along with NO production when compared with the treatment of carprofen for 48 h (P < 0.05). These results suggest that HA can be used as a therapeutic agent to mitigate the degree of chondrotoxicity of carprofen.
Collapse
Affiliation(s)
- Korakot Nganvongpanit
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
| | - Thippaporn Euppayo
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Puntita Siengdee
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand.,Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Kittisak Buddhachat
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Siriwadee Chomdej
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Siriwan Ongchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
120
|
Reconstituting the Mammalian Apoptotic Switch in Yeast. Genes (Basel) 2020; 11:genes11020145. [PMID: 32013249 PMCID: PMC7073680 DOI: 10.3390/genes11020145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
Proteins of the Bcl-2 family regulate the permeabilization of the mitochondrial outer membrane that represents a crucial irreversible step in the process of induction of apoptosis in mammalian cells. The family consists of both proapoptotic proteins that facilitate the membrane permeabilization and antiapoptotic proteins that prevent it in the absence of an apoptotic signal. The molecular mechanisms, by which these proteins interact with each other and with the mitochondrial membranes, however, remain under dispute. Although yeast do not have apparent homologues of these apoptotic regulators, yeast cells expressing mammalian members of the Bcl-2 family have proved to be a valuable model system, in which action of these proteins can be effectively studied. This review focuses on modeling the activity of proapoptotic as well as antiapoptotic proteins of the Bcl-2 family in yeast.
Collapse
|
121
|
Kaman T, Karasakal ÖF, Özkan Oktay E, Ulucan K, Konuk M. In silico approach to the analysis of SNPs in the human APAF1 gene. Turk J Biol 2020; 43:371-381. [PMID: 31892812 PMCID: PMC6911258 DOI: 10.3906/biy-1905-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The apoptotic protease activating factor 1 (APAF1) gene encodes a cytoplasmic protein that initiates apoptosis and is a crucial factor in the mitochondria-dependent death pathway. APAF1 is implicated in many pathways such as apoptosis, neurodegenerative diseases, and cancer. The purpose of this study was to predict deleterious/damaging SNPs in the APAF1 gene viain silicoanalysis. To this end, APAF1 missense SNPs were obtained from the NCBI dbSNP database. In silico analysis of the missense SNPs was carried out by using publicly available online software tools. The stabilization and three-dimensional modeling of mutant proteins were also determined by using the I-Mutant 2.0 and Project HOPE webservers, respectively. In total, 772 missense SNPs were found in the APAF1 gene from the NCBI dbSNP database, 18 SNPs of which were demonstrated to be deleterious or damaging. Of those, 13 SNPs had a decreasing effect on protein stability, while the other 5 SNPs had an increasing effect. Based on the modeling results, some dissimilarities of mutant type amino acids from wild-type amino acids such as size, charge, and hydrophobicity were revealed. The SNPs predicted to be deleterious in this study might be used in the selection of target SNPs for genotyping in disease association studies. Therefore, we could suggest that the present study could pave the way for future experimental studies.
Collapse
Affiliation(s)
- Tuğba Kaman
- Department of Medicinal and Aromatic Plants, Vocational School of Health Services, Üsküdar University, İstanbul Turkey
| | - Ömer Faruk Karasakal
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Üsküdar University, İstanbul Turkey
| | - Ebru Özkan Oktay
- Department of Laboratory Technology, Üsküdar University, Vocational School of Health Services, Üsküdar, İstanbul Turkey
| | - Korkut Ulucan
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Üsküdar University, İstanbul Turkey.,Department of Medical Biology and Genetics, Faculty of Dentistry, Basic Medical Sciences, Marmara University, İstanbul Turkey
| | - Muhsin Konuk
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Üsküdar University, İstanbul Turkey
| |
Collapse
|
122
|
Yadav N, Gogada R, O'Malley J, Gundampati RK, Jayanthi S, Hashmi S, Lella R, Zhang D, Wang J, Kumar R, Suresh Kumar TK, Chandra D. Molecular insights on cytochrome c and nucleotide regulation of apoptosome function and its implication in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118573. [PMID: 31678591 PMCID: PMC7733678 DOI: 10.1016/j.bbamcr.2019.118573] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
Cytochrome c (Cyt c) released from mitochondria interacts with Apaf-1 to form the heptameric apoptosome, which initiates the caspase cascade to execute apoptosis. Although lysine residue at 72 (K72) of Cyt c plays an important role in the Cyt c-Apaf-1 interaction, the underlying mechanism of interaction between Cyt c and Apaf-1 is still not clearly defined. Here we identified multiple lysine residues including K72, which are also known to interact with ATP, to play a key role in Cyt c-Apaf-1 interaction. Mutation of these lysine residues abrogates the apoptosome formation causing inhibition of caspase activation. Using in-silico molecular docking, we have identified Cyt c-binding interface on Apaf-1. Although mutant Cyt c shows higher affinity for Apaf-1, the presence of Cyt c-WT restores the apoptosome activity. ATP addition modulates only mutant Cyt c binding to Apaf-1 but not WT Cyt c binding to Apaf-1. Using TCGA and cBioPortal, we identified multiple mutations in both Apaf-1 and Cyt c that are predicted to interfere with apoptosome assembly. We also demonstrate that transcript levels of various enzymes involved with dATP or ATP synthesis are increased in various cancers. Silencing of nucleotide metabolizing enzymes such as ribonucleotide reductase subunit M1 (RRM1) and ATP-producing glycolytic enzymes PKM2 attenuated ATP production and enhanced caspase activation. These findings suggest important role for lysine residues of Cyt c and nucleotides in the regulation of apoptosome-dependent apoptotic cell death as well as demonstrate how these mutations and nucleotides may have a pivotal role in human diseases such as cancer.
Collapse
Affiliation(s)
- Neelu Yadav
- The Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America
| | - Raghu Gogada
- The Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America
| | - Jordan O'Malley
- The Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America
| | - Ravi Kumar Gundampati
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Srinivas Jayanthi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Sana Hashmi
- The Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America
| | - Ravi Lella
- The Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America
| | - Dianmu Zhang
- The Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America
| | - Jianmin Wang
- The Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America
| | - Rahul Kumar
- The Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America
| | | | - Dhyan Chandra
- The Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America.
| |
Collapse
|
123
|
Thi Truong TT, Cao C, Dang DT. Parallel G-quadruplex-mediated protein dimerization and activation. RSC Adv 2020; 10:29957-29960. [PMID: 35518224 PMCID: PMC9059161 DOI: 10.1039/d0ra06173e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 01/29/2023] Open
Abstract
We studied parallel G4-mediated protein dimerization and activation by incorporating a RHAU peptide with a fluorescent protein FRET pair CFP/YFP and an apoptotic casp9. Occurrence of energy tranfer (from donor CFP to acceptor YFP) and enhancement of 60-fold cleavage efficiency of casp9 were observed in the presence of parallel G4, which indicated that parallel G4 can induce dimerization and activation of proteins. This novel approach holds a great promise for studying G4-targeting functional dimeric proteins in celllular biology. Parallel G-quadruplex (G4) can act as a target-inducer of dimerization and activation of proteins fusing with RHAU peptide.![]()
Collapse
Affiliation(s)
| | - Cuong Cao
- School of Biological Sciences
- Queen's University Belfast
- UK
| | - Dung Thanh Dang
- University of Science
- Vietnam National University
- Ho Chi Minh City
- Vietnam
- Ho Chi Minh City Open University
| |
Collapse
|
124
|
Ceruti S, Abbracchio MP. Adenosine Signaling in Glioma Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:13-33. [PMID: 32034707 DOI: 10.1007/978-3-030-30651-9_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purines and pyrimidines are fundamental signaling molecules in controlling the survival and proliferation of astrocytes, as well as in mediating cell-to-cell communication between glial cells and neurons in the healthy brain. The malignant transformation of astrocytes towards progressively more aggressive brain tumours (from astrocytoma to anaplastic glioblastoma) leads to modifications in both the survival and cell death pathways which overall confer a growth advantage to malignant cells and resistance to many cytotoxic stimuli. It has been demonstrated, however, that, in astrocytomas, several purinergic (in particular adenosinergic) pathways controlling cell survival and death are still effective and, in some cases, even enhanced, providing invaluable targets for purine-based chemotherapy, that still represents an appropriate pharmacological approach to brain tumours. In this chapter, the current knowledge on both receptor-mediated and receptor-independent adenosine pathways in astrocytomas will be reviewed, with a particular emphasis on the most promising targets which could be translated from in vitro studies to in vivo pharmacology. Additionally, we have included new original data from our laboratory demonstrating a key involvement of MAP kinases in the cytostastic and cytotoxic effects exerted by an adenosine analogue, 2-CdA, which with the name of Cladribine is already clinically utilized in haematological malignancies. Here we show that 2-CdA can activate multiple intracellular pathways leading to cell cycle block and cell death by apoptosis of a human astrocytoma cell line that bears several pro-survival genetic mutations. Although in vivo data are still lacking, our results suggest that adenosine analogues could therefore be exploited to overcome resistance to chemotherapy of brain tumours.
Collapse
Affiliation(s)
- Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, University of Milan - Università degli Studi di Milano, Milan, Italy.
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, University of Milan - Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
125
|
Cytosolic Gram-negative bacteria prevent apoptosis by inhibition of effector caspases through lipopolysaccharide. Nat Microbiol 2019; 5:354-367. [PMID: 31873204 DOI: 10.1038/s41564-019-0620-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/24/2019] [Indexed: 02/08/2023]
Abstract
The cytosolic appearance and propagation of bacteria cause overwhelming cellular stress responses that induce apoptosis under normal conditions. Therefore, successful bacterial colonization depends on the ability of intracellular pathogens to block apoptosis and to safeguard bacterial replicative niches. Here, we show that the cytosolic Gram-negative bacterium Shigella flexneri stalls apoptosis by inhibiting effector caspase activity. Our data identified lipopolysaccharide (LPS) as a bona fide effector caspase inhibitor that directly binds caspases by involving its O-antigen (O Ag) moiety. Bacterial strains that lacked the O Ag or failed to replicate within the cytosol were incapable of blocking apoptosis and exhibited reduced virulence in a murine model of bacterial infection. Our findings demonstrate how Shigella inhibits pro-apoptotic caspase activity, effectively delays coordinated host-cell demise and supports its intracellular propagation. Next to the recently discovered pro-inflammatory role of cytosolic LPS, our data reveal a distinct mode of LPS action that, through the disruption of the early coordinated non-lytic cell death response, ultimately supports the inflammatory breakdown of infected cells at later time points.
Collapse
|
126
|
Deng H, Ma J, Liu Y, He P, Dong W. Combining α-Hederin with cisplatin increases the apoptosis of gastric cancer in vivo and in vitro via mitochondrial related apoptosis pathway. Biomed Pharmacother 2019; 120:109477. [DOI: 10.1016/j.biopha.2019.109477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
|
127
|
Wang F, Zuo Z, Yang Z, Chen K, Fang J, Cui H, Shu G, Zhou Y, Geng Y, Ouyang P. Delayed Pulmonary Apoptosis of Diet-Induced Obesity Mice following Escherichia coli Infection through the Mitochondrial Apoptotic Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1968539. [PMID: 31772700 PMCID: PMC6854188 DOI: 10.1155/2019/1968539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/26/2019] [Accepted: 08/23/2019] [Indexed: 01/12/2023]
Abstract
Escherichia coli (E. coli) is one of pathogens causing nosocomial pneumonia and could induce pulmonary excessive apoptosis. Although much has been learned about metabolic diseases induced by obesity, the information linking bacterial pneumonia to obesity is limited. Accordingly, we investigated the apoptosis of normal (lean) and diet-induced obesity (DIO, fed a high-fat diet) mice after nasal instillation with E. coli. Lung tissues were obtained at 0 (preinfection), 12, 24, and 72 h after infection, and acute pulmonary inflammation was observed at 12 h. Elevated cell apoptosis and percentage of pulmonary cells depolarized with collapse of the mitochondrial transmembrane potential (Δψm) occurred in response to bacterial infection. The relative mRNA and protein expressions of Bax, caspase-3, and caspase-9 increased, but Bcl-2 decreased in the lung. Interestingly, the apoptotic percentage and most of apoptosis-associated factors mentioned above peaked at 12 or 24 h in the lean-E. coli group, while at 24 or 72 h in the DIO-E. coli group. Taken together, these findings indicated that the E. coli pneumonia caused excessive pulmonary apoptosis through the mitochondria-mediated pathway, and the apoptosis was delayed in the DIO mice with E. coli pneumonia.
Collapse
Affiliation(s)
- Fengyuan Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhuangzhi Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yi Zhou
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
128
|
Cytochrome c: An extreme multifunctional protein with a key role in cell fate. Int J Biol Macromol 2019; 136:1237-1246. [DOI: 10.1016/j.ijbiomac.2019.06.180] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/25/2023]
|
129
|
Mongre RK, Mishra CB, Prakash A, Jung S, Lee BS, Kumari S, Hong JT, Lee MS. Novel Carbazole-Piperazine Hybrid Small Molecule Induces Apoptosis by Targeting BCL-2 and Inhibits Tumor Progression in Lung Adenocarcinoma in Vitro and Xenograft Mice Model. Cancers (Basel) 2019; 11:E1245. [PMID: 31450709 PMCID: PMC6770606 DOI: 10.3390/cancers11091245] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is a type of deadly cancer and a leading cause of cancer associated death worldwide. BCL-2 protein is considered as an imperative target for the treatment of cancer due to their significant involvement in cell survival and death. A carbazole-piperazine hybrid molecule ECPU-0001 was designed and synthesized as a potent BCL-2 targeting agent with effective anticancer cancer activity. Interaction of ECPU-001 has been assessed by docking, molecular dynamics (MD) simulation, and thermal shift assay. Further, in vitro and in vivo anticancer activity was executed by cytotoxicity assay, FACS, colony formation and migration assay, western blotting, immunocyto/histochemistry and xenograft nude mice model. Molecular docking and MD simulation study confirmed that ECPU-0001 nicely interacts with the active site of BCL-2 by displaying a Ki value of 5.72 µM and binding energy (ΔG) of -8.35 kcal/mol. Thermal shift assay also validated strong interaction of this compound with BCL-2. ECPU-0001 effectively exerted a cytotoxic effect against lung adenocarnoma cells A459 with an IC50 value of 1.779 µM. Molecular mechanism of action have also been investigated and found that ECPU-0001 induced apoptosis in A459 cell by targeting BCL-2 to induce intrinsic pathway of apoptosis. Administration of ECPU-0001 significantly inhibited progression of tumor in a xenograft model without exerting severe toxicity and remarkably reduced tumor volume as well as tumor burden in treated animals. Our investigation bestowed ECPU-0001 as an effective tumoricidal agent which exhibited impressive anticancer activity in vitro as well as in vivo by targeting BCL-2 associated intrinsic pathway of apoptosis. Thus, ECPU-0001 may provide a valuable input for therapy of lung adenosarcoma in future, however, further extensive investigation of this compound will be needed.
Collapse
Affiliation(s)
- Raj Kumar Mongre
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Korea
| | - Chandra Bhushan Mishra
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Amity Education Valley, Gurgaon 122413, India
| | - Samil Jung
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Korea
| | - Beom Suk Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Korea
| | - Shikha Kumari
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea
| | - Myeong-Sok Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Korea.
| |
Collapse
|
130
|
A Cell's Fate: An Overview of the Molecular Biology and Genetics of Apoptosis. Int J Mol Sci 2019; 20:ijms20174133. [PMID: 31450613 PMCID: PMC6747454 DOI: 10.3390/ijms20174133] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
Apoptosis is one of the main types of regulated cell death, a complex process that can be triggered by external or internal stimuli, which activate the extrinsic or the intrinsic pathway, respectively. Among various factors involved in apoptosis, several genes and their interactive networks are crucial regulators of the outcomes of each apoptotic phase. Furthermore, mitochondria are key players in determining the way by which cells will react to internal stress stimuli, thus being the main contributor of the intrinsic pathway, in addition to providing energy for the whole process. Other factors that have been reported as important players of this intricate molecular network are miRNAs, which regulate the genes involved in the apoptotic process. Imbalance in any of these mechanisms can lead to the development of several illnesses, hence, an overall understanding of these processes is essential for the comprehension of such situations. Although apoptosis has been widely studied, the current literature lacks an updated and more general overview on this subject. Therefore, here, we review and discuss the mechanisms of apoptosis, highlighting the roles of genes, miRNAs, and mitochondria involved in this type of cell death.
Collapse
|
131
|
Vringer E, Tait SWG. Mitochondria and Inflammation: Cell Death Heats Up. Front Cell Dev Biol 2019; 7:100. [PMID: 31316979 PMCID: PMC6610339 DOI: 10.3389/fcell.2019.00100] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/23/2019] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial outer membrane permeabilization (MOMP) is essential to initiate mitochondrial apoptosis. Due to the disruption of mitochondrial outer membrane integrity, intermembrane space proteins, notably cytochrome c, are released into the cytosol whereupon they activate caspase proteases and apoptosis. Beyond its well-established apoptotic role, MOMP has recently been shown to display potent pro-inflammatory effects. These include mitochondrial DNA dependent activation of cGAS-STING signaling leading to a type I interferon response. Secondly, via an IAP-regulated mechanism, MOMP can engage pro-inflammatory NF-κB signaling. During cell death, apoptotic caspase activity inhibits mitochondrial dependent inflammation. Importantly, by engaging an immunogenic form of cell death, inhibiting caspase function can effectively inhibit tumorigenesis. Unexpectedly, these studies reveal mitochondria as inflammatory signaling hubs during cell death and demonstrate its potential for therapeutic exploitation.
Collapse
Affiliation(s)
- Esmee Vringer
- Cancer Research UK, Beatson Institute, Glasgow, United Kingdom.,Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stephen W G Tait
- Cancer Research UK, Beatson Institute, Glasgow, United Kingdom.,Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
132
|
Zou L, Liu X, Li J, Li W, Zhang L, Li J, Zhang J. Tetramethylpyrazine Enhances the Antitumor Effect of Paclitaxel by Inhibiting Angiogenesis and Inducing Apoptosis. Front Pharmacol 2019; 10:707. [PMID: 31293426 PMCID: PMC6603208 DOI: 10.3389/fphar.2019.00707] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/31/2019] [Indexed: 01/04/2023] Open
Abstract
Recent published findings have demonstrated the effectiveness of combining molecules from traditional Chinese medicine with chemotherapeutic drugs to treat cancer. Combined administration of these agents can overcome drug-mitigating responses as well as reduce adverse side effects, thereby enhancing the efficacy of the therapy. Tetramethylpyrazine (TMP), an alkaloid monomer from the medicinal herb Ligusticum chuanxiong hort, is known to exert a variety of antitumor effects including inhibition of tumor cell proliferation, metastasis, and drug resistance. In this research, we investigated antitumor effects of TMP combined with paclitaxel (PTX), a frontline chemotherapeutic drug, in vitro and in vivo. Our results indicate that TMP enhances the antitumor effects of PTX in ovarian cancer A2780 and SKOV3 cells. Furthermore, we found that combined treatment of TMP and PTX suppressed angiogenesis by inhibiting both ERK1/2 and Akt pathways and promoted apoptosis of tumor cells compared to TMP or PTX treatment alone. Moreover, TMP augmented the antitumor effects of PTX in ovarian cancer A2780 xenograft mouse models by significantly decreasing tumor burden and partially decreasing the toxicity of PTX, as evidenced by the decreased expression of proliferation and angiogenesis markers as well as the hematoxylin and eosin (H&E) staining and biochemical indexes assay. Overall, our findings provide novel mechanistic insight into the efficacy of combining of potent molecules present in traditional Chinese medicine with chemotherapeutic drugs for therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Liang Zou
- School of Medicine, Chengdu University, Chengdu, China.,Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Xiaowei Liu
- School of Medicine, Chengdu University, Chengdu, China
| | - Jingjing Li
- Department of Pharmacy and Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wei Li
- School of Medicine, Chengdu University, Chengdu, China
| | - Lele Zhang
- School of Medicine, Chengdu University, Chengdu, China
| | - Jian Li
- School of Medicine, Chengdu University, Chengdu, China
| | - Jinming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
133
|
Devi U, Singh M, Roy S, Tripathi AC, Gupta PS, Saraf SK, Ansari MN, Saeedan AS, Kaithwas G. PHD-2 activation: a novel strategy to control HIF-1α and mitochondrial stress to modulate mammary gland pathophysiology in ER+ subtype. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1239-1256. [PMID: 31154466 DOI: 10.1007/s00210-019-01658-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
Abstract
Estrogen receptor-positive mammary gland carcinoma and its involvement in regulation of overexpressed hypoxia-inducible factor-1α and fatty acid synthase level in hypoxia influenced cancer cells are the present molecular crosstalk of this entire study. To test the hypothesis, we have proceed our study through chemical activation of prolyl hydroxylase 2 which leads to inhibition of hypoxia-inducible factor-1α and fatty acid synthase in ER+MCF-7 cancer cell line and n-methyl-n-nitrosourea induced mammary gland carcinoma rat model. ER+MCF-7 cells were evident with array of nuclear changes when stained through acridine orange/ethidium bromide. Afterward, JC-1 staining of the cells was evident in mitochondrial depolarization. The cells were arrested in G2/M phase when analyzed with flow cytometry. The morphological analysis of rat mammary gland tissue revealed decrease in alveolar buds, restoration of histopathological features along with intra-arterial cushion. The western blotting and fold change expressions of the genes validating the anticancer efficacy of BBAPH-1 is mediated through mitochondria-mediated apoptosis pathway. BBAPH-1 also modulates the expression of prolyl hydroxylase-2 with significant curtailment of hypoxia-inducible factor-1α, fatty acid synthase expression, and their respective downstream markers. These finding suggest that the BBAP-1-mediated activation of prolyl hydroxylase-2 significantly decreased the level of hypoxia-inducible factor-1α and fatty acid synthase. BBAPH-1 also activates the mitochondria-mediated death apoptosis pathway.
Collapse
Affiliation(s)
- Uma Devi
- Department of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, Sam Higginbottom Institute of Agricultural Sciences and Technology, Naini, Allahabad, UP, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, UP, 226025, India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, UP, 226025, India
| | - Avinash C Tripathi
- Faculty of Pharmacy, Babu Banarsi Das Northern India Institute of Technology, Babu Banarsi Das University, Faizabad Road, Lucknow, UP, India
| | - Pushpraj S Gupta
- Department of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, Sam Higginbottom Institute of Agricultural Sciences and Technology, Naini, Allahabad, UP, India
| | - Shailendra K Saraf
- Faculty of Pharmacy, Babu Banarsi Das Northern India Institute of Technology, Babu Banarsi Das University, Faizabad Road, Lucknow, UP, India
| | - Md Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, UP, 226025, India.
| |
Collapse
|
134
|
Abstract
Recently, we showed that synthetic anion transporters DSC4P-1 and SA-3 had activity related to cancer cell death. They were found to increase intracellular chloride and sodium ion concentrations. They were also found to induce apoptosis (DSC4P-1) and both induce apoptosis and inhibit autophagy (SA-3). However, determinants underlying these phenomenological findings were not elucidated. The absence of mechanistic understanding has limited the development of yet-improved systems. Here, we show that three synthetic anion transporters, DSC4P-1, SA-3, and 8FC4P, induce osmotic stress in cells by increasing intracellular ion concentrations. This triggers the generation of reactive oxygen species via a sequential process and promotes caspase-dependent apoptosis. In addition, two of the transporters, SA-3 and 8FC4P, induce autophagy by increasing the cytosolic calcium ion concentration promoted by osmotic stress. However, they eventually inhibit the autophagy process as a result of their ability to disrupt lysosome function through a transporter-mediated decrease in a lysosomal chloride ion concentration and an increase in the lysosomal pH.
Collapse
|
135
|
Matsubara H, Tanaka R, Tateishi T, Yoshida H, Yamaguchi M, Kataoka T. The human Bcl-2 family member Bcl-rambo and voltage-dependent anion channels manifest a genetic interaction in Drosophila and cooperatively promote the activation of effector caspases in human cultured cells. Exp Cell Res 2019; 381:223-234. [PMID: 31102594 DOI: 10.1016/j.yexcr.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023]
Abstract
We previously reported that the Bcl-2 family member human Bcl-rambo, also known as BCL2L13, induces apoptosis in human embryonic kidney 293T cells. Mouse Bcl-rambo has recently been reported to mediate mitochondrial fragmentation and mitophagy. In the present study, we showed that the transfection of human Bcl-rambo and its microtubule-associated protein light chain 3-interacting region motif mutant (W276A/I279A) caused mitochondrial fragmentation and the perinuclear accumulation of fragmented mitochondria in human lung adenocarcinoma A549 cells. In comprehensive screening using the Drosophila model in which human Bcl-rambo was ectopically expressed in eye imaginal discs, voltage-dependent anion channels (VDAC), also known as mitochondrial porin, were found to manifest a genetic interaction with human Bcl-rambo. In addition to human adenine nucleotide translocase (ANT) 1 and ANT2, the human Bcl-rambo protein bound to human VDAC1, albeit to a lesser extent than ANT2. Moreover, human VDAC1 and human VDAC2 in particular promoted the activation of effector caspases only when they were co-expressed with human Bcl-rambo in 293T cells. Bcl-rambo induced the perinuclear accumulation of fragmented mitochondria by the knockdown of VDAC1, VDAC2, and VDAC3 in A549 cells. Thus, the present study revealed that human Bcl-rambo and VDAC cooperatively promote the activation of effector caspases in human cultured cells.
Collapse
Affiliation(s)
- Hisanori Matsubara
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Reiji Tanaka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tatsuya Tateishi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
136
|
Carbon-Doped TiO 2 Activated by X-Ray Irradiation for the Generation of Reactive Oxygen Species to Enhance Photodynamic Therapy in Tumor Treatment. Int J Mol Sci 2019; 20:ijms20092072. [PMID: 31035468 PMCID: PMC6540153 DOI: 10.3390/ijms20092072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Traditional photodynamic therapy (PDT) is limited by the penetration depth of visible light. Although the light source has been changed to near infrared, infrared light is unable to overcome the penetration barrier and it is only effective at the surface of the tumors. In this study, we used X-ray as a light source for deep-seated tumor treatment. A particle with a narrow band gap when exposed to soft X-rays would produce reactive oxygen species (ROS) to kill tumor cell, with less damage to the normal tissues. Anatase TiO2 has been studied as a photosensitizer in PDT. In the experiment, C was doped into the anatase lattice at an optimum atomic ratio to make the band gap narrower, which would be activated by X-ray to produce more ROS and kill tumor cells under stress. The results showed that the synthesized TiO2:C particles were identified as crystal structures of anatase. The synthesized particles could be activated effectively by soft X-rays to produce ROS, to degrade methylene blue by up to 30.4%. Once TiO2:C was activated by X-ray irradiation, the death rate of A549 cells in in vitro testing was as high as 16.57%, on day 2. In the animal study, the tumor size gradually decreased after treatment with TiO2:C and exposure to X-rays on day 0 and day 8. On day 14, the tumor declined to nearly half of its initial volume, while the tumor in the control group was twice its initial volume. After the animal was sacrificed, blood, and major organs were harvested for further analysis and examination, with data fully supporting the safety of the treatment. Based on the results of the study, we believe that TiO2:C when exposed to X-rays could overcome the limitation of penetration depth and could improve PDT effects by inhibiting tumor growth effectively and safely, in vivo.
Collapse
|
137
|
Devi U, Singh M, Roy S, Gupta PS, Ansari MN, Saeedan AS, Kaithwas G. Activation of prolyl hydroxylase-2 for stabilization of mitochondrial stress along with simultaneous downregulation of HIF-1α/FASN in ER + breast cancer subtype. Cell Biochem Funct 2019; 37:216-227. [PMID: 30950543 DOI: 10.1002/cbf.3389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 11/05/2022]
Abstract
The present study was undertaken to inquest the chemical activation of prolyl hydroxylase-2 for the curtailment of hypoxia-inducible factor-1α and fatty acid synthase. It was well documented that hypoxia-inducible factor-1α and fatty acid synthase were overexpressed in mammary gland carcinomas. After screening a battery of compounds, BBAP-2 was retrieved as a potential prolyl hydroxylase-2 activator and validates its activity using ER + MCF-7 cell line and n-methyl-n-nitrosourea-induced rat in vivo model, respectively. BBAP-2 was palpable for the morphological characteristics of apoptosis along with changes in the mitochondrial intergrity as visualized by acridine orange/ethidium bromide and JC-1 staining against ER + MCF-7 cells. BBAP-2 also arrest the cell cycle of ER + MCF-7 cells at G2/M phase. Afterward, BBAP-2 has scrutinized against n-methyl-n-nitrosourea-induced mammary gland carcinoma in albino Wistar rats. BBAP-2 restored the morphological architecture when screened through carmine staining, haematoxylin and eosin staining, and scanning electron microscopy. BBAP-2 also delineated the markers of oxidative stress favourably. The immunoblotting and mRNA expression analysis validated that BBAP-2 has a potentialty activate the prolyl hydroxylase-2 with sequential downregulating effect on hypoxia-inducible factor-1α and its downstream checkpoint. BBAP-2 also fostered apoptosis through mitochondrial-mediated death pathway. The present study elaborates the chemical activation of prolyl hydroxylase-2 by which the increased expression of HIF-1α and FASN can be reduced in mammary gland carcinoma.
Collapse
Affiliation(s)
- Uma Devi
- Department of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, Sam Higginbottom University of Agricultural, Technology and Sciences, Allahabad, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Pushpraj S Gupta
- Department of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, Sam Higginbottom University of Agricultural, Technology and Sciences, Allahabad, India
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, KSA
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, KSA
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| |
Collapse
|
138
|
Abstract
Cancer metastasis is the second leading cause of death in the United States. Despite its morbidity, metastasis is an inefficient process that few cells can survive. However, cancer cells can overcome these metastatic barriers via cellular responses to microenvironmental cues, such as through mechanotransduction. This review focuses on the mechanosensitive ion channels TRPV4 and P2X7, and their roles in metastasis, as both channels have been shown to significantly affect tumor cell dissemination. Upon activation, these channels help form tumor neovasculature, promote transendothelial migration, and increase cell motility. Conversely, they have also been linked to forms of cancer cell death dependent upon levels of activation, implying the complex functionality of mechanosensitive ion channels. Understanding the roles of TRPV4, P2X7 and other mechanosensitive ion channels in these processes may reveal new possible drug targets that modify channel function to reduce a tumor's metastatic potential.
Collapse
|
139
|
Vong CT, Tseng HHL, Kwan YW, Lee SMY, Hoi MPM. Novel protective effect of O-1602 and abnormal cannabidiol, GPR55 agonists, on ER stress-induced apoptosis in pancreatic β-cells. Biomed Pharmacother 2019; 111:1176-1186. [DOI: 10.1016/j.biopha.2018.12.126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/27/2018] [Accepted: 12/30/2018] [Indexed: 01/09/2023] Open
|
140
|
Sizek H, Hamel A, Deritei D, Campbell S, Ravasz Regan E. Boolean model of growth signaling, cell cycle and apoptosis predicts the molecular mechanism of aberrant cell cycle progression driven by hyperactive PI3K. PLoS Comput Biol 2019; 15:e1006402. [PMID: 30875364 PMCID: PMC6436762 DOI: 10.1371/journal.pcbi.1006402] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 03/27/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
The PI3K/AKT signaling pathway plays a role in most cellular functions linked to cancer progression, including cell growth, proliferation, cell survival, tissue invasion and angiogenesis. It is generally recognized that hyperactive PI3K/AKT1 are oncogenic due to their boost to cell survival, cell cycle entry and growth-promoting metabolism. That said, the dynamics of PI3K and AKT1 during cell cycle progression are highly nonlinear. In addition to negative feedback that curtails their activity, protein expression of PI3K subunits has been shown to oscillate in dividing cells. The low-PI3K/low-AKT1 phase of these oscillations is required for cytokinesis, indicating that oncogenic PI3K may directly contribute to genome duplication. To explore this, we construct a Boolean model of growth factor signaling that can reproduce PI3K oscillations and link them to cell cycle progression and apoptosis. The resulting modular model reproduces hyperactive PI3K-driven cytokinesis failure and genome duplication and predicts the molecular drivers responsible for these failures by linking hyperactive PI3K to mis-regulation of Polo-like kinase 1 (Plk1) expression late in G2. To do this, our model captures the role of Plk1 in cell cycle progression and accurately reproduces multiple effects of its loss: G2 arrest, mitotic catastrophe, chromosome mis-segregation / aneuploidy due to premature anaphase, and cytokinesis failure leading to genome duplication, depending on the timing of Plk1 inhibition along the cell cycle. Finally, we offer testable predictions on the molecular drivers of PI3K oscillations, the timing of these oscillations with respect to division, and the role of altered Plk1 and FoxO activity in genome-level defects caused by hyperactive PI3K. Our model is an important starting point for the predictive modeling of cell fate decisions that include AKT1-driven senescence, as well as the non-intuitive effects of drugs that interfere with mitosis.
Collapse
Affiliation(s)
- Herbert Sizek
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| | - Andrew Hamel
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| | - Dávid Deritei
- Department of Physics, Pennsylvania State University, State College, PA, United States of America
- Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Sarah Campbell
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| | - Erzsébet Ravasz Regan
- Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH, United States of America
| |
Collapse
|
141
|
Jiao W, Han Q, Xu Y, Jiang H, Xing H, Teng X. Impaired immune function and structural integrity in the gills of common carp (Cyprinus carpio L.) caused by chlorpyrifos exposure: Through oxidative stress and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:239-245. [PMID: 30176333 DOI: 10.1016/j.fsi.2018.08.060] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
As one of the mucosal lymphatic tissues, the gill is an important immune organ in fish. Water environmental pollutants enter fish body through the gill. Therefore, the gill is the initial site where pollutants produce toxic effects in water. Chlorpyrifos (CPF), a broad-spectrum organophosphate insecticide, is widely used for agricultural pests and causes river pollution. In the present study, we investigated histopathological effect, oxidative stress indexes (SOD, GSH, T-AOC, and MDA), and apoptosis-related genes (P53, PUMA, Bax, Bcl-2, Apaf-1, Caspase-9, and Caspase-3) in the gills of common carp exposed to CPF. The results indicated that CPF exposure decreased SOD, T-AOC, and GSH; increased MDA; decreased Bcl-2 mRNA expression; and increased P53, PUMA, Bax, Apaf-1, Caspase-9, and Caspase-3 mRNA expressions in common carp gills. Our results proved that CPF exposure caused oxidative stress and apoptosis in common carp gills; CPF exposure destroyed the structural integrity and affected the immune function through oxidative stress and apoptosis in common carp gills. These will provide evidence for the toxic effects of water environmental pollutants on immune function and structural integrity in fish gills.
Collapse
Affiliation(s)
- Wanying Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yanmin Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huijie Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
142
|
Abstract
Drug-induced liver injury (DILI) is an important cause of liver toxicity which can have varying clinical presentations, the most severe of which being acute liver failure. Hepatocyte death as a cause of drug toxicity is a feature of DILI. There are multiple cell death subroutines; some, like apoptosis, necroptosis, autophagy, and necrosis have been extensively studied, while others such as pyroptosis and ferroptosis have been more recently described. The mode of cell death in DILI depends on the culprit drug, as it largely dictates the mechanism and extent of injury. The main cell death subroutines in DILI are apoptosis and necrosis, with mitochondrial involvement being pivotal for the execution of both. A few drugs such as acetaminophen (APAP) can cause direct, dose-dependent toxicity, while the majority of drugs cause idiosyncratic DILI (IDILI). IDILI is an unpredictable form of liver injury that is not dose dependent, occurs in individuals with a genetic predisposition, and presents with variable latency. APAP-induced programmed necrosis has been extensively studied. However, the mechanisms and pathogenesis of cell death from drugs causing IDILI are harder to elucidate due to the complex and multifactorial nature of the disease. Cell death in IDILI is likely death receptor-mediated apoptosis and the result of an activated innate and adaptive immune system, compounded by other host factors such as genetics, gender, age, and capacity for immune tolerance. This chapter will review the different modes of cell death, namely apoptosis, necrosis, necroptosis, autophagy, pyroptosis, and ferroptosis and their pertinence to DILI.
Collapse
|
143
|
Fu B, Xi S, Wang Y, Zhai X, Wang Y, Gong Y, Xu Y, Yang J, Qiu Y, Wang J, Lu D, Huang S. The Protective Effects of Ciji-Hua'ai-Baosheng II Formula on Chemotherapy-Treated H 22 Hepatocellular Carcinoma Mouse Model by Promoting Tumor Apoptosis. Front Pharmacol 2019; 9:1539. [PMID: 30670974 PMCID: PMC6331466 DOI: 10.3389/fphar.2018.01539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022] Open
Abstract
Ciji-Hua'ai-Baosheng II Formula (CHB-II-F) is a traditional Chinese medical formula that has been shown in clinical practice to relieve side effects of chemotherapy and improve quality of life for cancer patients. In order to understand the mechanism of its protective effects on chemotherapy, mice with transplanted H22 hepatocellular carcinoma were employed in this study. Ninety-two mice were injected subcutaneously with H22 HCC cell suspension into the right anterior armpit. After mice were treated with 5-fluorine pyrimidine (5-FU), they were divided into six groups as untreated group, 5-FU group, 5-FU plus Yangzheng Xiaoji Capsule group and three groups of 5-FU plus different concentrations of CHB-II-F. Twenty mice were euthanized after 7 days of treatment in untreated and medium concentration of CHB-II-F groups and all other mice were euthanized after 14 days of treatment. Herbal components/metabolites were analyzed by UPLC-MS. Tumors were evaluated by weight and volume, morphology of light and electron microscope, and cell cycle. Apoptosis were examined by apoptotic proteins expression by western blot. Four major components/metabolites were identified from serum of mice treated with CHB-II-F and they are β-Sitosterol, Salvianolic acid, isobavachalcone, and bakuchiol. Treatment of CHB-II-F significantly increased body weights of mice and decreased tumor volume compared to untreated group. Moreover, CHB-II-F treatment increased tumor cells in G0-G1 transition instead of in S phase. Furthermore, CHB-II-F treatment increased the expression of pro-apoptotic proteins and decreased the expression anti-apoptotic protein. Therefore, CHB-II-F could improve mice general condition and reduce tumor cell malignancy. Moreover, CHB-II-F regulates apoptosis of tumor cells, which could contribute its protective effect on chemotherapy.
Collapse
Affiliation(s)
- Biqian Fu
- Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, China
| | - Shengyan Xi
- Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, China.,Cancer Research Center, Xiamen University, Xiamen, China.,Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yanhui Wang
- Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, China.,Cancer Research Center, Xiamen University, Xiamen, China.,Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Xiangyang Zhai
- Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, China
| | - Yanan Wang
- Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, China
| | - Yuewen Gong
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Yangxinzi Xu
- Department of Physiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jiaqi Yang
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Yingkun Qiu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jing Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Dawei Lu
- Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, China
| | - Shuqiong Huang
- Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, China
| |
Collapse
|
144
|
Zou D, Li J, Fan Q, Zheng X, Deng J, Wang S. Reactive oxygen and nitrogen species induce cell apoptosis via a mitochondria‐dependent pathway in hyperoxia lung injury. J Cell Biochem 2018; 120:4837-4850. [PMID: 30592322 DOI: 10.1002/jcb.27382] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/03/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Dongmei Zou
- Department of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China
| | - Jing Li
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen, China
| | - Qianqian Fan
- Neonatal Intensive Care Unit, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Xuemei Zheng
- Neonatal Intensive Care Unit, Women and Children Health Institute Futian, Shenzhen, China
| | - Jian Deng
- Neonatal Intensive Care Unit, Women and Children Health Institute Futian, Shenzhen, China
| | - Shaohua Wang
- Neonatal Intensive Care Unit, Women and Children Health Institute Futian, Shenzhen, China
| |
Collapse
|
145
|
Szczepaniak J, Strojny B, Chwalibog ES, Jaworski S, Jagiello J, Winkowska M, Szmidt M, Wierzbicki M, Sosnowska M, Balaban J, Winnicka A, Lipinska L, Pilaszewicz OW, Grodzik M. Effects of Reduced Graphene Oxides on Apoptosis and Cell Cycle of Glioblastoma Multiforme. Int J Mol Sci 2018; 19:ijms19123939. [PMID: 30544611 PMCID: PMC6320889 DOI: 10.3390/ijms19123939] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/02/2018] [Accepted: 12/02/2018] [Indexed: 02/06/2023] Open
Abstract
Graphene (GN) and its derivatives (rGOs) show anticancer properties in glioblastoma multiforme (GBM) cells in vitro and in tumors in vivo. We compared the anti-tumor effects of rGOs with different oxygen contents with those of GN, and determined the characteristics of rGOs useful in anti-glioblastoma therapy using the U87 glioblastoma line. GN/ExF, rGO/Term, rGO/ATS, and rGO/TUD were structurally analysed via transmission electron microscopy, Raman spectroscopy, FTIR, and AFM. Zeta potential, oxygen content, and electrical resistance were determined. We analyzed the viability, metabolic activity, apoptosis, mitochondrial membrane potential, and cell cycle. Caspase- and mitochondrial-dependent apoptotic pathways were investigated by analyzing gene expression. rGO/TUD induced the greatest decrease in the metabolic activity of U87 cells. rGO/Term induced the highest level of apoptosis compared with that induced by GN/ExF. rGO/ATS induced a greater decrease in mitochondrial membrane potential than GN/ExF. No significant changes were observed in the cytometric study of the cell cycle. The effectiveness of these graphene derivatives was related to the presence of oxygen-containing functional groups and electron clouds. Their cytotoxicity mechanism may involve electron clouds, which are smaller in rGOs, decreasing their cytotoxic effect. Overall, cytotoxic activity involved depolarization of the mitochondrial membrane potential and the induction of apoptosis in U87 glioblastoma cells.
Collapse
Affiliation(s)
- Jaroslaw Szczepaniak
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Barbara Strojny
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Ewa Sawosz Chwalibog
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Slawomir Jaworski
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Joanna Jagiello
- Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Magdalena Winkowska
- Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Maciej Szmidt
- Department of Morphologic Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Malwina Sosnowska
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Jasmina Balaban
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Anna Winnicka
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Ludwika Lipinska
- Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Olga Witkowska Pilaszewicz
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| |
Collapse
|
146
|
Encephalitozoon cuniculi and Vittaforma corneae (Phylum Microsporidia) inhibit staurosporine-induced apoptosis in human THP-1 macrophages in vitro. Parasitology 2018; 146:569-579. [PMID: 30486909 DOI: 10.1017/s0031182018001968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Obligately intracellular microsporidia regulate their host cell life cycles, including apoptosis, but this has not been evaluated in phagocytic host cells such as macrophages that can facilitate infection but also can be activated to kill microsporidia. We examined two biologically dissimilar human-infecting microsporidia species, Encephalitozoon cuniculi and Vittaforma corneae, for their effects on staurosporine-induced apoptosis in the human macrophage-differentiated cell line, THP1. Apoptosis was measured after exposure of THP-1 cells to live and dead mature organisms via direct fluorometric measurement of Caspase 3, colorimetric and fluorometric TUNEL assays, and mRNA gene expression profiles using Apoptosis RT2 Profiler PCR Array. Both species of microsporidia modulated the intrinsic apoptosis pathway. In particular, live E. cuniculi spores inhibited staurosporine-induced apoptosis as well as suppressed pro-apoptosis genes and upregulated anti-apoptosis genes more broadly than V. corneae. Exposure to dead spores induced an opposite effect. Vittaforma corneae, however, also induced inflammasome activation via Caspases 1 and 4. Of the 84 apoptosis-related genes assayed, 42 (i.e. 23 pro-apoptosis, nine anti-apoptosis, and 10 regulatory) genes were more affected including those encoding members of the Bcl2 family, caspases and their regulators, and members of the tumour necrosis factor (TNF)/TNF receptor R superfamily.
Collapse
|
147
|
Involvement of the uridine cytidine kinase 2 enzyme in cancer cell death: A molecular crosstalk between the enzyme and cellular apoptosis induction. Biomed Pharmacother 2018; 109:1506-1510. [PMID: 30551402 DOI: 10.1016/j.biopha.2018.10.200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/04/2018] [Accepted: 10/31/2018] [Indexed: 02/01/2023] Open
Abstract
Apoptosis is a series of molecular signalling regulating normal cellular growth and development. Cells resistance to apoptosis, however, leads to uncontrolled proliferation. Research involving cancer cell death is one of the most important targeted areas in the discovery of novel anticancer therapy. There are several biochemical pathways that are liked towards cancer cell death of which, uridine-cytidine kinase 2 (UCK2) was recently linked to cell apoptosis induction. UCK2 is responsible for the phosphorylation of uridine and cytidine to their corresponding monophosphate in a salvage pathway of pyrimidine nucleotides biosynthesis. Cytotoxic ribonucleoside analogues that target UCK2 enzyme activity are currently being investigated in clinical trials useful for cancer treatment. Whilst findings have clearly shown that these antimetabolites inhibit cancer development in clinical settings, they have yet to establish linking cytotoxic nucleoside analogues to cancer cell death. In this present review, we propose the probable molecular crosstalk involving UCK2 protein and cancer cell death through cell cycle arrest and triggering of apoptosis involving proteins, MDM2 and the subsequent activation of p53.
Collapse
|
148
|
Park SH, Baek KH, Shin I, Shin I. Subcellular Hsp70 Inhibitors Promote Cancer Cell Death via Different Mechanisms. Cell Chem Biol 2018; 25:1242-1254.e8. [DOI: 10.1016/j.chembiol.2018.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/10/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
|
149
|
Triptolide induces p53-dependent cardiotoxicity through mitochondrial membrane permeabilization in cardiomyocytes. Toxicol Appl Pharmacol 2018; 355:269-285. [DOI: 10.1016/j.taap.2018.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
|
150
|
Zhang L, Ma L, Yan T, Han X, Xu J, Xu J, Xu X. Activated mitochondrial apoptosis in hESCs after dissociation involving the PKA/p-p53/Bax signaling pathway. Exp Cell Res 2018; 369:226-233. [DOI: 10.1016/j.yexcr.2018.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 01/27/2023]
|