101
|
Abstract
ActA, a surface protein of Listeria monocytogenes, is able to induce continuous actin polymerization at the rear of the bacterium, in the cytosol of the infected cells. Its N-terminal domain is sufficient to induce actin tail formation and movement. Here, we demonstrate, using the yeast two-hybrid system, that the N-terminal domain of ActA may form homodimers. By using chemical cross-linking to explore the possibility that ActA could be a multimer on the surface of the bacteria, we show that ActA is a dimer. Cross-linking experiments on various L. monocytogenes strains expressing different ActA variants demonstrated that the region spanning amino acids 97-126, and previously identified as critical for actin tail formation, is also critical for dimer formation. A model of actin polymerization by L. monocytogenes, involving the ActA dimer, is presented.
Collapse
Affiliation(s)
- P Mourrain
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
102
|
Smith GA, Portnoy DA. How the Listeria monocytogenes ActA protein converts actin polymerization into a motile force. Trends Microbiol 1997; 5:272-6. [PMID: 9234509 DOI: 10.1016/s0966-842x(97)01048-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ActA protein is an essential determinant of pathogenicity that is responsible for the actin-based motility of Listeria monocytogenes in mammalian cells and cell-free extracts. ActA appears to control at least four functions that collectively lead to actin-based motility: (1) initiation of actin polymerization, (2) polarization of ActA function, (3) transformation of actin polymerization into a motile force and (4) acceleration of movement mediated by the host protein profilin.
Collapse
Affiliation(s)
- G A Smith
- Dept of Molecular Biology, Princeton University, NJ 08544-1014, USA
| | | |
Collapse
|
103
|
Lasa I, Egile C, Cossart P, Sansonetti PJ. Motilité intracellulaire et polymérisation de l'actine par Listeria monocytogenes et Shigella flexneri. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0924-4204(97)84736-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
104
|
Abstract
Interest in bacterial pathogenesis has recently increased because of antibiotic resistance, the emergence of new pathogens and the resurgence of old ones, and the lack of effective therapeutics. The molecular and cellular mechanisms of microbial pathogenesis are currently being defined, with precise knowledge of both the common strategies used by multiple pathogenic bacteria and the unique tactics evolved by individual species to help establish infection. What is emerging is a new appreciation of how bacterial pathogens interact with host cells. Many host cell functions, including signal transduction pathways, cytoskeletal rearrangements, and vacuolar trafficking, are exploited, and these are the focus of this review. A bonus of this work is that bacterial virulence factors are providing new tools to study various aspects of mammalian cell functions, in addition to mechanisms of bacterial disease. Together these developments may lead to new therapeutic strategies.
Collapse
Affiliation(s)
- B B Finlay
- Biotechnology Laboratory, University of British Columbia, Vancouver, B.C., Canada, V6T-1Z3.
| | | |
Collapse
|
105
|
Abstract
A major breakthrough in understanding the bacterial cell is the discovery that the cell is highly organized at the level of protein localization. Proteins are positioned at particular sites in bacteria, including the cell pole, the incipient division plane, and the septum. Differential protein localization can control DNA replication, chromosome segregation, and cytokinesis and is responsible for generating daughter cells with different fates upon cell division. Recent discoveries have revealed that progression through the cell cycle and communication between cellular compartments are mediated by two-component signal transduction systems and signaling pathways involving transcription factor activation by proteolytic processing. Asymmetric cell division in Caulobacter crescentus and sporulation in Bacillus subtilis are used as paradigms for the control of the cell cycle and cellular morphogenesis in bacterial cells.
Collapse
Affiliation(s)
- L Shapiro
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305-5427, USA
| | | |
Collapse
|
106
|
Abstract
Listeria monocytogenes is one of the leading foodborne pathogens and has been implicated in numerous outbreaks in the last 2 decades. Immunocompromised populations are usually the most susceptible to Listeria infections. Although the pathogenic mechanism is a complex process, significant progress has been made in unravelling the mechanism in recent years. It is now clear that numerous extracellular and cell-associated proteins, such as internalin, listeriolysin, actin polymerization protein, phospholipase, metalloprotease, and possibly p60 proteins, are essential for L. monocytogenes entry into mammalian cells, survival inside the phagosome, escape into the cytoplasm, and cell-to-cell spread. Other proteins may be responsible for growth and physiology or to maintain the structural integrity of the bacteria. Monoclonal and polyclonal antibodies have been developed against many of those antigens or their synthetic derivatives that have helped greatly to determine the structure and function of these antigens. The antibodies were also used for the diagnosis and detection, immunocytochemical staining, and serotyping of Listeria. Humoral immune response to live L. monocytogenes cells was examined in naturally or experimentally infected hosts. Studies revealed that only extracellular antigens induced the humoral response, whereas cell-associated antigens had apparently no response. It is speculated that during the occasional bacteremic phase, L. monocytogenes releases extracellular antigens that are then processed by the immune system for antibody production. As L. monocytogenes is an intracellular pathogen, the cell-associated antigens are not persistent in the blood circulation and thus fail to stimulate the humoral immune response.
Collapse
Affiliation(s)
- A K Bhunia
- Department of Food Science and Animal Industries, Alabama A&M University, Huntsville 35762, USA
| |
Collapse
|
107
|
|
108
|
Gertler FB, Niebuhr K, Reinhard M, Wehland J, Soriano P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 1996; 87:227-39. [PMID: 8861907 DOI: 10.1016/s0092-8674(00)81341-0] [Citation(s) in RCA: 542] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Drosophila Enabled is required for proper formation of axonal structures and is genetically implicated in signaling pathways mediated by Drosophila AbI. We have identified two murine proteins, Mena and Evl, that are highly related to Enabled as well as VASP (Vasodilator-Stimulated Phosphoprotein). A conserved domain targets Mena to localized proteins containing a specific proline-rich motif. The association of Mena with the surface of the intracellular pathogen Listeria monocytogenes and the G-actin binding protein profilin suggests that this molecule may participate in bacterial movement by facilitating actin polymerization. Expression of neural-enriched isoforms of Mena in fibroblasts induces the formation of abnormal F-actin-rich outgrowths, supporting a role for this protein in microfilament assembly and cell motility.
Collapse
Affiliation(s)
- F B Gertler
- Division of Molecular Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | | | | | |
Collapse
|
109
|
Lebrun M, Mengaud J, Ohayon H, Nato F, Cossart P. Internalin must be on the bacterial surface to mediate entry of Listeria monocytogenes into epithelial cells. Mol Microbiol 1996; 21:579-92. [PMID: 8866480 DOI: 10.1111/j.1365-2958.1996.tb02566.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Entry of Listeria monocytogenes into cultured epithelial cells requires production of internalin, a protein with features characteristic of some Gram-positive bacterial surface proteins, in particular an LPXTG motif preceding a hydrophobic sequence and a few basic residues at its C-terminal end. By immunofluorescence and immunogold labelling, we show that in wild-type L. monocytogenes, internalin is present on the cell surface and has a polarized distribution similar to that of ActA, another surface protein of L. monocytogenes involved in actin assembly. Through a genetic analysis, we establish that the C-terminal region of internalin is necessary for cell-surface association, and that although internalin is partially released in the culture medium, its location on the bacterial surface is required to promote entry. Finally, using a 'domain-swapping' strategy-replacement of the cell wall anchor of IniA by the membrane anchor of ActA- we show that the reduced ability to adhere and enter cells of strains expressing IniA-ActA correlates with a lower amount of surface-exposed internalin. Taken together, these results suggest that internalin exposed on the bacterial surface mediates direct contact between the bacterium and the host cell.
Collapse
Affiliation(s)
- M Lebrun
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
110
|
Cudmore S, Reckmann I, Griffiths G, Way M. Vaccinia virus: a model system for actin-membrane interactions. J Cell Sci 1996; 109 ( Pt 7):1739-47. [PMID: 8832396 DOI: 10.1242/jcs.109.7.1739] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our understanding of the interactions between the actin cytoskeleton and cellular membranes at the molecular level is rudimentary. One system that offers an opportunity to examine these interactions in greater detail is provided by vaccinia virus, which induces the nucleation of actin tails from the outer membrane surrounding the virion. To further understand the mechanism of their formation and how they generate motility, we have examined the structure of these actin tails in detail. Actin filaments in vaccinia tails are organized so they splay out at up to 45 degrees from the centre of the tail and are up to 0.74 micron in length, which is considerably longer than those reported in the Listeria system. Actin filaments show unidirectional polarity with their barbed filament ends pointing towards the surface of the virus particle. Rhodamine-actin incorporation experiments show that the first stage of tail assembly involves a polarized recruitment of G-actin, and not pre-formed actin filaments, to the membrane surrounding the virion. Incorporation of actin into the tail only occurs by nucleation from the viral surface, suggesting filament ends in the tail are blocked against further actin addition. As virus particles fuse with the plasma membrane during the extention of projections, actin nucleation sites previously in the viral membrane become localized to the plasma membrane, where they are able to nucleate actin polymerization in a manner analogous to the leading edge of motile cells.
Collapse
Affiliation(s)
- S Cudmore
- Cell Biology Programme, EMBL, Heidelberg, Germany
| | | | | | | |
Collapse
|
111
|
Affiliation(s)
- F S Southwick
- Division of Infectious Diseases, Department of Medicine, University of Florida College of Medicine, Gainesville, USA
| | | |
Collapse
|
112
|
d'Hauteville H, Dufourcq Lagelouse R, Nato F, Sansonetti PJ. Lack of cleavage of IcsA in Shigella flexneri causes aberrant movement and allows demonstration of a cross-reactive eukaryotic protein. Infect Immun 1996; 64:511-7. [PMID: 8550200 PMCID: PMC173794 DOI: 10.1128/iai.64.2.511-517.1996] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Once in the cytoplasm of mammalian cells, Shigella flexneri expresses a motile phenotype caused by polar directional assembly of actin. This process depends on accumulation of IcsA (VirG), a 120-kDa protein with ATPase activity, at the pole of the bacterium opposite to that at which ongoing septation occurs. IcsA is also secreted into the bacterial supernatant as a 95-kDa species, after cleavage at an SSRRASS sequence which, when mutagenized, blocks processing. MAbF15, an anti-IcsA monoclonal antibody, recognizes an epitope located within repeated Gly-rich boxes in the N-terminal half of the protein. We used this monoclonal antibody to visualize the location of a noncleavable 120-kDa IcsA mutant protein expressed in S. flexneri. We found that this noncleavable IcsA protein no longer localized exclusively to the pole of the bacterium but also could be detected circumferentially. Whereas the monoclonal antibody detected the wild-type cleavable form of IcsA in only 40% of the cells expressing this protein, the noncleavable was easily detectable in all the cells carrying the icsA mutant allele. Similar aberrant localization of the IcsA mutant protein on bacteria growing within the cytoplasm of HeLa cells was observed. The strains expressing the noncleavable IcsA protein expressed abnormal intracellular movement and were often observed moving in a direction perpendicular to their longitudinal axis. The putative protease which processes IcsA may therefore play a role in achieving polar expression of this protein and providing maximum asymmetry essential to directional movement. In addition, MAbF15 allowed us to identify a 70-kDa eukaryotic protein cross-reacting with IcsA. This protein accumulated in the actin tails of motile bacteria and in membrane ruffles of the cells.
Collapse
Affiliation(s)
- H d'Hauteville
- Unité de pathogenie Microbienne Moléculaire, U 389 Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | | | | | |
Collapse
|
113
|
Kristensson K. Sorting signals and targeting of infectious agents through axons: an annotation to the 100 years' birth of the name "axon". Brain Res Bull 1996; 41:327-33. [PMID: 8973836 DOI: 10.1016/s0361-9230(96)00255-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A brief review is given on mechanisms by which axons may be initiated during development and by which the polarity of neurons is maintained by selective sorting and delivery of molecules to axons and dendrites. The use of viruses as tools to study targeting of newly synthesized proteins to axons is described. Emphasis is then given to the hazards that are presented to the individual by the retrograde transport of infectious agents in axons to the brain. Borna disease virus, prions, and Listeria monocytogenes are examined briefly as examples of these mechanisms. These agents have attracted interest previously in veterinary medicine for the most part, but they may present potential and substantial threats to human health. Such infectious agents also represent a new type of virus, a new principle for disease transmission, and a new mechanism for intracellular transport, respectively.
Collapse
Affiliation(s)
- K Kristensson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
114
|
Abstract
Vasodilator-stimulated phosphoprotein (VASP) associates with virulence factors on the surface of intracellular bacteria; by binding to profilin, VASP may help direct the actin assembly that appears to drive bacterial motility.
Collapse
Affiliation(s)
- T D Pollard
- Department of Cell Biology and Anatomy, Johns Hopkins Medical School, Baltimore, Maryland 21205, USA
| |
Collapse
|
115
|
Gouin E, Dehoux P, Mengaud J, Kocks C, Cossart P. iactA of Listeria ivanovii, although distantly related to Listeria monocytogenes actA, restores actin tail formation in an L. monocytogenes actA mutant. Infect Immun 1995; 63:2729-37. [PMID: 7790091 PMCID: PMC173365 DOI: 10.1128/iai.63.7.2729-2737.1995] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A gene homologous to the actA gene of Listeria monocytogenes was cloned from Listeria ivanovii (strain CLIP257) by chromosome walking starting from the ilo gene that encodes the pore-forming toxin ivanolysin. The nucleotide sequence revealed that this gene, named iactA, encodes a protein of 1,044 amino acids (IactA) comprising a central region with seven highly conserved tandem proline-rich repeats of 47 amino acids. Although IactA and ActA share an overall similar structure, these two proteins are only distantly related. Like ActA, IactA migrates aberrantly on sodium dodecyl sulfate gels. When expressed in an L. monocytogenes actA deletion mutant strain, iactA restored actin polymerization.
Collapse
Affiliation(s)
- E Gouin
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
116
|
Norris V. Hypothesis: chromosome separation in Escherichia coli involves autocatalytic gene expression, transertion and membrane-domain formation. Mol Microbiol 1995; 16:1051-7. [PMID: 8577241 DOI: 10.1111/j.1365-2958.1995.tb02330.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To explain how daughter chromosomes are separated into discrete nucleoids and why chromosomes are partitioned with pole preferences, I propose that differential gene expression occurs during DNA replication in Escherichia coli. This differential gene expression means that the daughter chromosomes have different patterns of gene expression and that cell division is not a simple process of binary fission. Differential gene expression arises from autocatalytic gene expression and creates a separate proteolipid domain around each developing chromosome via the coupled transcription-translation-insertion of proteins into membranes (transertion). As these domains are immiscible, daughter chromosomes are simultaneously replicated and separated into discrete nucleoids. I also propose that the partitioning relationship between chromosome age and cell age arises because the poles of cells have a proteolipid composition that favours transertion from one nucleoid rather than from the other. This hypothesis forms part of an ensemble of related hypotheses which attempt to explain cell division, differentiation and wall growth in bacteria in terms of the physical properties and interactions of the principal constituents of cells.
Collapse
Affiliation(s)
- V Norris
- Department of Microbiology and Immunology, School of Medicine, University of Leicester, UK
| |
Collapse
|
117
|
Pistor S, Chakraborty T, Walter U, Wehland J. The bacterial actin nucleator protein ActA of Listeria monocytogenes contains multiple binding sites for host microfilament proteins. Curr Biol 1995; 5:517-25. [PMID: 7583101 DOI: 10.1016/s0960-9822(95)00104-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Several intracellular pathogens, including Listeria monocytogenes, use components of the host actin-based cytoskeleton for intracellular movement and for cell-to-cell spread. These bacterial systems provide relatively simple model systems with which to study actin-based motility. Genetic analysis of L. monocytogenes led to the identification of the 90 kD surface-bound ActA polypeptide as the sole bacterial factor required for the initiation of recruitment of host actin filaments. Numerous host actin-binding proteins have been localized within the actin-based cytoskeleton that surrounds Listeria once it is inside a mammalian cell, including alpha-actinin, fimbrin, filamin, villin, ezrin/radixin, profilin and the vasodilator-stimulated phosphoprotein, VASP. Only VASP is known to bind directly to ActA. We sought to determine which regions of the ActA molecule interact with VASP and other components of the host microfilament system. RESULTS We used the previously developed mitochondrial targeting assay to determine regions of the ActA protein that are involved in the recruitment of the host actin-based cytoskeleton. By examining amino-terminally truncated ActA derivatives for their ability to recruit cytoskeletal proteins, an essential element for actin filament nucleation was identified between amino acids 128 and 151 of ActA. An ActA derivative from which the central proline-rich repeats were deleted retained its ability to recruit filamentous actin, albeit poorly, but was unable to bind VASP. CONCLUSIONS Our studies reveal the initial interactions that take place between invading Listeria and host microfilament proteins. The listerial ActA polypeptide contains at least two essential sites that are required for efficient microfilament assembly: an amino-terminal 23 amino-acid region for actin filament nucleation, and VASP-binding proline-rich repeats. Hence, ActA represents a prototype actin filament nucleator. We suggest that host cell analogues of ActA exist and are important components of structures involved in cell motility.
Collapse
Affiliation(s)
- S Pistor
- Gesellschaft für Biotechnologische Forschung, Abteilung Zellbiologie und Immunologie, Braunschweig, Germany
| | | | | | | |
Collapse
|
118
|
Fukuda I, Suzuki T, Munakata H, Hayashi N, Katayama E, Yoshikawa M, Sasakawa C. Cleavage of Shigella surface protein VirG occurs at a specific site, but the secretion is not essential for intracellular spreading. J Bacteriol 1995; 177:1719-26. [PMID: 7896693 PMCID: PMC176798 DOI: 10.1128/jb.177.7.1719-1726.1995] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The large plasmid-encoded outer membrane protein VirG (IcsA) of Shigella flexneri is essential for bacterial spreading by eliciting polar deposition of filamentous actin (F-actin) in the cytoplasm of epithelial cells. Recent studies have indicated that VirG is located at one pole on the surface of the bacterium and secreted into the culture supernatant and that in host cells it is localized along the length of the F-actin tail. The roles of these VirG phenotypes in bacterial spreading still remain to be elucidated. In this study, we examined the surface-exposed portion of the VirG protein by limited trypsin digestion of S. flexneri YSH6000 and determined the sites for VirG processing during secretion into the culture supernatant. Our results indicated that the 85-kDa amino-terminal portion of VirG is located on the external side of the outer membrane, while the 37-kDa carboxy-terminal portion is embedded in it. The VirG cleavage required for release of the 85-kDa protein into the culture supernatant occurred at the Arg-Arg bond at positions 758 to 759. VirG-specific cleavage was observed in Shigella species and enteroinvasive Escherichia coli, which requires an as yet unidentified protease activity governed by the virB gene on the large plasmid. To investigate whether the VirG-specific cleavage occurring in extracellular and intracellular bacteria is essential for VirG function in bacterial spreading, the Arg-Arg cleavage site was modified to an Arg-Asp or Asp-Asp bond. The virG mutants thus constructed were capable of unipolar deposition of VirG on the bacterial surface but were unable to cleave VirG under in vitro or in vivo conditions. However, these mutants were still capable of eliciting aggregation of F-actin at one pole, spreading into adjacent cells, and giving rise to a positive Sereny test. Therefore, the ability to cleave and secrete VirG in Shigella species is not a prerequisite for intracellular spreading.
Collapse
Affiliation(s)
- I Fukuda
- Department of Bacteriology, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
119
|
Kreft J, Dumbsky M, Theiss S. The actin-polymerization protein from Listeria ivanovii is a large repeat protein which shows only limited amino acid sequence homology to ActA from Listeria monocytogenes. FEMS Microbiol Lett 1995; 126:113-21. [PMID: 7705602 DOI: 10.1111/j.1574-6968.1995.tb07403.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Within infected eukaryotic cells the two pathogenic Listeria species, L. monocytogenes and L. ivanovii, induce polymerization of cellular actin and the formation of a propulsive actin tail at one bacterial pole. For L. monocytogenes it has been shown that the product of the listerial actA gene is required for this process which is regarded as a model for actin-based motility. We have now cloned and sequenced a functionally analogous gene from L. ivanovii; its product, as deduced from the DNA sequence, is considerably larger (108 kDa) than L. monocytogenes ActA (67 kDa) and shares only a limited amino acid sequence homology (46% similarity on average) with the latter protein. This is the first example of a virulence gene product from L. ivanovii which is significantly different from its L. monocytogenes counterpart. Comparison of the two ActA proteins gives new insight into the structure of this class of actin-polymerization proteins, in particular with respect to their proline-rich repeat region.
Collapse
Affiliation(s)
- J Kreft
- Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Universität Würzburg, Lehrstuhl Mikrobiologie, Germany
| | | | | |
Collapse
|
120
|
Abstract
Listeria monocytogenes and other bacterial pathogens move in the host cell cytoplasm, propelled by continuous actin assembly at one pole of the bacterium. This actin-based motility requires the presence of the bacterial proteins ActA on L. monocytogenes and IcsA on Shigella flexneri. There have been several major discoveries in the past year: the discovery of the polar distribution of ActA and IcsA on the bacterial surface; the demonstration that bacterial ActA is phosphorylated in infected host cells; the involvement of some host cell proteins, particularly profilin; and the dramatic effect of ActA expression in transfected eukaryotic cells. A cell-free system that reconstitutes faithfully the actin-based motility of L. monocytogenes promises to be instrumental in the further dissection of this fascinating phenomenon.
Collapse
Affiliation(s)
- P Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
| |
Collapse
|
121
|
Sanger JM, Mittal B, Southwick FS, Sanger JW. Listeria monocytogenes intracellular migration: inhibition by profilin, vitamin D-binding protein and DNase I. CELL MOTILITY AND THE CYTOSKELETON 1995; 30:38-49. [PMID: 7728867 DOI: 10.1002/cm.970300106] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Infection of host cells by Listeria monocytogenes results in the recruitment of cytoplasmic actin into a tail-like appendage that projects from one end of the bacterium. Each filamentous actin tail progressively lengthens, providing the force which drives the bacterium in a forward direction through the cytoplasm and later results in Listeria cell-to-cell spread. Host cell actin monomers are incorporated into the filamentous actin tail at a discrete site, the bacterial-actin tail interface. We have studied the consequences of microinjecting three different actin monomer-binding proteins on the actin tail assembly and Listeria intracellular movement. Introduction of high concentrations of profilin (estimated injected intracellular concentration 11-22 microM) into infected PtK2 cells causes a marked slowing of actin tail elongation and bacterial migration. Lower intracellular concentrations of two other injected higher affinity monomer-sequestering proteins, Vitamin D-binding protein (DBP; 1-2 microM) and DNase I (6-7 microM) completely block bacterial-induced actin assembly and bacterial migration. The onset of inhibition by each protein is gradual (10-20 min) indicating that the mechanisms by which these proteins interfere with Listeria-induced actin assembly are likely to be complex. To exclude the possibility that Listeria recruits preformed actin filaments to generate the tails and that these monomer-binding proteins act by depolymerizing such performed actin filaments, living infected cells have been injected with fluorescently labeled phalloidin (3 microM). Although the stress fibers are labeled, no fluorescent phalloidin is found in the tails of the moving bacteria. These results demonstrate that Listeria-induced actin assembly in PtK2 cells is the result of assembly of actin monomers into new filaments and that Listeria's ability to recruit polymerization competent monomeric actin is very sensitive to the introduction of exogenous actin monomer-binding proteins.
Collapse
Affiliation(s)
- J M Sanger
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia 19104-6058, USA
| | | | | | | |
Collapse
|
122
|
Temm-Grove CJ, Jockusch BM, Rohde M, Niebuhr K, Chakraborty T, Wehland J. Exploitation of microfilament proteins by Listeria monocytogenes: microvillus-like composition of the comet tails and vectorial spreading in polarized epithelial sheets. J Cell Sci 1994; 107 ( Pt 10):2951-60. [PMID: 7876360 DOI: 10.1242/jcs.107.10.2951] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Effective cell-to-cell spreading of the facultative intracellular pathogen Listeria monocytogenes requires the interaction between bacteria and the microfilament system of the host cell. By recruiting actin filaments into a ‘comet tail’ localized at one pole of the bacterial cell wall, Listeria become mobile and propel themselves through the cytoplasm. They create protrusions at the plasma membrane that can invaginate adjacent cells. In this work, we have analysed the structural composition of Listeria-recruited microfilaments in various epithelial cell lines by immunofluorescence microscopy. The microfilament-crosslinking proteins alpha-actinin, fimbrin and villin were localized around bacteria as soon as actin filaments could be detected on the bacterial surface. Surprisingly, the same was found for ezrin/radixin, proteins involved in linking microfilaments to the plasma membrane. We found that in a polarized cell line derived from brush border kidney epithelium (LLC-PK1), the actin filaments surrounding intracytoplasmic motile bacteria show the same immunoreactivity as the brush border-like microvilli, when analysed by a specific actin antibody. The successful invasion of polarized LLC-PK1 islets is vectorial, i.e. it progresses predominantly from the periphery of the islets towards the centre. Infection of the peripheral cells is sufficient for infiltration of the entire cellular islets, without any further contact with the extracellular milieu. This is in contrast to nonpolarized epithelial sheets, which can be invaded from the apical surface of any individual cell. The importance of active bacterial motility in this vectorial spreading is emphasized by our finding that an isogenic Listeria mutant that is unable to recruit actin filaments cannot colonize polarized epithelial layers but accumulates in the peripheral cells of the islets.
Collapse
Affiliation(s)
- C J Temm-Grove
- Zoological Institute, Technical University Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
123
|
Portnoy DA, Jones S. The cell biology of Listeria monocytogenes infection (escape from a vacuole). Ann N Y Acad Sci 1994; 730:15-25. [PMID: 8080169 DOI: 10.1111/j.1749-6632.1994.tb44235.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- D A Portnoy
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104-6076
| | | |
Collapse
|
124
|
Cossart P, Kocks C. The actin-based motility of the facultative intracellular pathogen Listeria monocytogenes. Mol Microbiol 1994; 13:395-402. [PMID: 7997157 DOI: 10.1111/j.1365-2958.1994.tb00434.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular parasite that invades and multiplies within diverse eukaryotic cell types. An essential pathogenicity determinant is its ability to move in the host cell cytoplasm and to spread within tissues by directly passing from one cell to another. The propulsive force for intracellular movement is thought to be generated by continuous actin assembly at the rear end of the bacterium. Moving bacteria that reach the plasma membrane induce the formation of long membranous protrusions that are internalized by neighbouring cells, thus mediating the spread of infection. The unrelated pathogens Shigella and Rickettsia use a similar process of actin-based motility to disseminate in infected tissues. This review focuses on the bacterial and cellular factors involved in the actin-based motility of L. monocytogenes.
Collapse
Affiliation(s)
- P Cossart
- Unité des Interactions Bactéries-Cellules, CNRS URA, Institut Pasteur, Paris, France
| | | |
Collapse
|
125
|
Abstract
It is becoming increasingly clear that bacterial pathogens can manipulate the host cell to their advantage. Recently, we have learnt more about the different strategies that microorganisms have evolved to subvert normal host-cellular functions. These strategies allow bacteria to gain access to, survive, and replicate within host cells, as well as to spread to neighboring cells, without the need for an extracellular phase. During the next few years, we expect to learn much more about these mechanisms and, in the process, it is likely that we will learn more about the host itself.
Collapse
Affiliation(s)
- J E Galán
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook 11794-5222
| |
Collapse
|
126
|
Abstract
Intracellular motility of the bacterial pathogen Listeria monocytogenes depends on actin polymerization that is coordinated by the bacterial surface protein ActA and host actin-binding protein profilin.
Collapse
Affiliation(s)
- C Kocks
- Institute for Genetics, University of Cologne, Germany
| |
Collapse
|
127
|
Bohne J, Sokolovic Z, Goebel W. Transcriptional regulation of prfA and PrfA-regulated virulence genes in Listeria monocytogenes. Mol Microbiol 1994; 11:1141-50. [PMID: 8022283 DOI: 10.1111/j.1365-2958.1994.tb00390.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ActA protein, the lecithinase PlcB and listeriolysin are the major PrfA-dependent proteins synthesized when brain-heart infusion (BHI)-cultured Listeria monocytogenes is shifted to minimum essential medium (MEM) in the presence of the transcriptional inhibitor rifampicin. Enhanced synthesis of all three proteins under these conditions depends, however, on a short incubation (about 5 min) of the bacteria in MEM without rifampicin, suggesting that induction of these proteins in MEM requires de novo transcription. The enhanced synthesis of these three proteins is observed in the L. monocytogenes wild-type strains EGD and NCTC 7973, both of which belong to the serotype 1/2 a. A significant induction of the bicistronic mRNA for ActA and PlcB is observed in both strains shortly after shifting the bacteria from BHI to MEM. This mRNA as well as the monocistronic listeriolysin (hly)-specific mRNA is highly stable in L. monocytogenes NCTC 7973 shifted to MEM. In contrast to the actA-plcB mRNA, no enhanced transcription in MEM is observed for the regulatory prfA gene or for the PrfA-controlled virulence genes hlyA and plcA in strain NCTC 7973. However, transcription of these genes is induced in strain EGD. Transcriptional induction of the mpl gene is observed in neither strain NCTC 7973 nor in strain EGD. The life-time of the prfA, plcA, and mpl transcripts is short. ActA was also found to be the most abundant newly synthesized surface protein when the two wild-type strains of L. monocytogenes replicated within the phagocytic cell line J774. ActA synthesis seemed to be induced in the cytoplasm since the non-haemolytic mutant M3 did not induce ActA when taken up by J774 cells.
Collapse
Affiliation(s)
- J Bohne
- Theodor-Boveri-Institut für Biowissenschaften (Lehrstuhl für Mikrobiologie), Universität Würzburg, Germany
| | | | | |
Collapse
|
128
|
Theriot JA, Rosenblatt J, Portnoy DA, Goldschmidt-Clermont PJ, Mitchison TJ. Involvement of profilin in the actin-based motility of L. monocytogenes in cells and in cell-free extracts. Cell 1994; 76:505-17. [PMID: 8313471 DOI: 10.1016/0092-8674(94)90114-7] [Citation(s) in RCA: 213] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Within hours of Listeria monocytogenes infection, host cell actin filaments form a dense cloud around the intracytoplasmic bacteria and then rearrange to form a polarized comet tail that is associated with moving bacteria. We have devised a cell-free extract system capable of faithfully reconstituting L. monocytogenes motility, and we have used this system to demonstrate that profilin, a host actin monomer-binding protein, is necessary for bacterial actin-based motility. We find that extracts from which profilin has been depleted do not support comet tail formation or bacterial motility. In extracts and host cells, profilin is localized to the back half of the surface of motile L. monocytogenes, the site of actin filament assembly in the tail. This association is not observed with L. monocytogenes mutants that do not express the ActA protein, a bacterial gene product necessary for motility and virulence. Profilin also fails to bind L. monocytogenes grown outside of host cytoplasm, suggesting that at least one other host cell factor is required for this association.
Collapse
Affiliation(s)
- J A Theriot
- Department of Biochemistry, University of California at San Francisco 94143
| | | | | | | | | |
Collapse
|
129
|
Sheehan B, Kocks C, Dramsi S, Gouin E, Klarsfeld AD, Mengaud J, Cossart P. Molecular and genetic determinants of the Listeria monocytogenes infectious process. Curr Top Microbiol Immunol 1994; 192:187-216. [PMID: 7859506 DOI: 10.1007/978-3-642-78624-2_9] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- B Sheehan
- Unité des Interactions Bacteria-Cellules, CNRS URA 1300, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
130
|
Parsot C. Shigella flexneri: genetics of entry and intercellular dissemination in epithelial cells. Curr Top Microbiol Immunol 1994; 192:217-41. [PMID: 7859507 DOI: 10.1007/978-3-642-78624-2_10] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- C Parsot
- Unité de Pathogénie Microbienne Moléculaire et Unité INSERM 199, Institut Pasteur, Paris, France
| |
Collapse
|
131
|
Abstracts of the BBSRC and MRC Workshop on the Molecular Approaches to Bacterial-Host Interactions in Relation to Infection and Disease. Warwick, UK 8-10 May 1994. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 1994. [DOI: 10.3109/08910609409141373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
132
|
Nanavati D, Ashton FT, Sanger JM, Sanger JW. Dynamics of actin and alpha-actinin in the tails of Listeria monocytogenes in infected PtK2 cells. CELL MOTILITY AND THE CYTOSKELETON 1994; 28:346-58. [PMID: 7954861 DOI: 10.1002/cm.970280408] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Listeria monocytogenes can penetrate and multiply within a variety of cell types, including the PtK2 kidney epithelial line. Once released within the cytoplasm, L. monocytogenes acquires the capacity for rapid movement through the host cell [Dabiri et al., 1990: Proc. Natl. Acad. Sci. 87:6068-6072]. In the process, actin monomers are inserted in proximity to one end of the bacterium, forming a column or tail of actin filaments [Sanger et al., 1992: Infect. Immun. 60:3609-3619]. The rate of new actin filament growth correlates closely with the speed of bacterial migration. In this study we have used fluorescently labeled actin and alpha-actinin to monitor the movement and turnover rate of actin and alpha-actinin molecules in the tails. The half-lives of the actin and alpha-actinin present in the tails are approximately the same: actin, 58.7 sec; alpha-actinin, 55.3 sec. The half-life of alpha-actinin surrounding a dividing bacterium was 30 sec, whereas its half-life in the tails that formed behind the two daughter cells was about 20-30% longer. We discovered that the speeds of the bacteria are not constant, but show aperiodic episodes of decreased and increased speeds. There is a fluctuation also in the intensities of the fluorescent probes at the bacterium/tail interface, implying that there is a fluctuation in the number of actin filaments forming there. There was no strong correlation, however, between these fluctuating intensities and changes in speed of the bacteria. These measurements suggest that while actin polymerization at the bacterial surface is coupled to the movement of the bacterium, the periodic changes in intracellular motility are not a simple function of the number of actin filaments nucleating at the bacterial surfaces.
Collapse
Affiliation(s)
- D Nanavati
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia
| | | | | | | |
Collapse
|
133
|
Dold FG, Sanger JM, Sanger JW. Intact alpha-actinin molecules are needed for both the assembly of actin into the tails and the locomotion of Listeria monocytogenes inside infected cells. CELL MOTILITY AND THE CYTOSKELETON 1994; 28:97-107. [PMID: 8087876 DOI: 10.1002/cm.970280202] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
After the infectious bacterium, Listeria monocytogenes, is phagocytosed by a host cell, it leaves the lysosome and recruits the host cell's cytoskeletal proteins to assemble a stationary tail composed primarily of actin filaments cross-linked with alpha-actinin. The continual recruitment of contractile proteins to the interface between the bacterium and the tail accompanies the propulsion of the bacterium ahead of the elongating tail. When a bacterium contacts the host cell membrane, it pushes out the membrane into an undulating tubular structure or filopodium that envelops the bacterium at the tip with the tail of cytoskeletal proteins behind it. Previous work has demonstrated that alpha-actinin can be cleaved into two proteolytic fragments whose microinjection into cells interferes with stress fiber integrity. Microinjection of the 53 kD alpha-actinin fragment into cells infected with Listeria monocytogenes, induces the loss of tails from bacteria and causes the bacteria to become stationary. Infected cells that possess filopodia when injected with the 53 kD fragment lose their filopodia. These results indicate that intact alpha-actinin molecules play an important role in the intracellular motility of Listeria, presumably by stabilizing the actin fibers in the stationary tails that are required for the bacteria to move forward. Fluorescently labeled vinculin associated with the tails when it was injected into infected cells. Talin antibody staining indicated that this protein, also, is present in the tails. These observations suggest that the tails share properties of attachment plaques normally present in the host cells. This model would explain the ability of the bacterium (1) to move within the cytoplasm and (2) to push out the surface of the cell to form a filopodium. The attachment plaque proteins, alpha-actinin, talin, and vinculin, may bind and stabilize the actin filaments as they polymerize behind the bacteria and additionally could also enable the tails to bind to the cell membrane in the filopodia.
Collapse
Affiliation(s)
- F G Dold
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia 19104-6058
| | | | | |
Collapse
|
134
|
Abstract
The recognition of polar bacterial organization is just emerging. The examples of polar localization given here are from a variety of bacterial species and concern a disparate array of cellular functions. A number of well-characterized instances of polar localization of bacterial proteins, including the chemoreceptor complex in both C. crescentus and E. coli, the maltose-binding protein in E. coli, the B. japonicum surface attachment proteins, and the actin tail of L. monocytogenes within a mammalian cell, involve proteins or protein complexes that facilitate bacterial interaction with the environment, either the extracellular milieux or that within a plant or mammalian host. The significance of this observation remains unclear. Polarity in bacteria poses many problems, including the necessity for a mechanism for asymmetrically distributing proteins as well as a mechanism by which polar localization is maintained. Large structures, such as a flagellum, are anchored at the pole by means of the basal body that traverses the peptidoglycan wall. But for proteins and small complexes, whether in the periplasm or the membrane, one must invoke a mechanism that prevents the diffusion of these proteins away from the cell pole. Perhaps the periplasmic proteins are retained at the pole by the presence of the periseptal annulus (35). The constraining features for membrane components are not known. For large aggregates, such as the clusters of MCP, CheA, and CheW complexes, perhaps the size of the aggregate alone prevents displacement. In most cases of cellular asymmetry, bacteria are able to discriminate between the new pole and the old pole and to utilize this information for localization specificity. The maturation of new pole to old pole appears to be a common theme as well. Given numerous examples reported thus far, we propose that bacterial polarity displays specific rules and is a more general phenomenon than has been previously recognized.
Collapse
Affiliation(s)
- J R Maddock
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, California 94305-5427
| | | | | |
Collapse
|