101
|
Ninagawa N, Murakami R, Isobe E, Tanaka Y, Nakagawa H, Torihashi S. Mesenchymal stem cells originating from ES cells show high telomerase activity and therapeutic benefits. Differentiation 2011; 82:153-64. [PMID: 21855203 DOI: 10.1016/j.diff.2011.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/19/2011] [Accepted: 07/13/2011] [Indexed: 02/08/2023]
Abstract
We establish a novel method for the induction and collection of mesenchymal stem cells using a typical cell surface marker, CD105, through adipogenesis from mouse ES cells. ES cells were cultured in a medium for adipogenesis. Mesenchymal stem cells from mouse ES cells were easily identified by the expression of CD105, and were isolated and differentiated into multiple mesenchymal cell types. Mesenchymal stem cells showed remarkable telomerase activity and sustained their growth for a long time with a high potential for differentiation involving skeletal myogenesis in vitro. When mesenchymal stem cells were transplanted into the injured tibialis anterior muscles, they differentiated into skeletal muscle cells in vivo. In addition, they improved the vascular formation, but never formed teratoma for longer than 6 months. Gene expression profiles revealed that mesenchymal stem cells lost pluripotency, while they acquired high potential to differentiate into mesenchymal cell lines. They thus indicate a promising new source of cell-based therapy without teratoma formation.
Collapse
Affiliation(s)
- Nana Ninagawa
- Department of Health Sciences, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
102
|
Thoma EC, Wagner TU, Weber IP, Herpin A, Fischer A, Schartl M. Ectopic Expression of Single Transcription Factors Directs Differentiation of a Medaka Spermatogonial Cell Line. Stem Cells Dev 2011; 20:1425-38. [DOI: 10.1089/scd.2010.0290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Eva C. Thoma
- Department of Physiological Chemistry I, University of Wuerzburg, Wuerzburg, Germany
| | - Toni U. Wagner
- Department of Physiological Chemistry I, University of Wuerzburg, Wuerzburg, Germany
| | - Isabell P. Weber
- Department of Physiological Chemistry I, University of Wuerzburg, Wuerzburg, Germany
| | - Amaury Herpin
- Department of Physiological Chemistry I, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Fischer
- Joint Research Division Vascular Biology, Medical Faculty Mannheim, Heidelberg University, and German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Mannheim, Germany
| | - Manfred Schartl
- Department of Physiological Chemistry I, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
103
|
Jadhav U, Jameson JL. Steroidogenic factor-1 (SF-1)-driven differentiation of murine embryonic stem (ES) cells into a gonadal lineage. Endocrinology 2011; 152:2870-82. [PMID: 21610156 PMCID: PMC3192422 DOI: 10.1210/en.2011-0219] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Steroidogenic factor 1 (SF-1) is essential for the development and function of steroidogenic tissues. Stable incorporation of SF-1 into embryonic stem cells (SF-1-ES cells) has been shown to prime the cells for steroidogenesis. When provided with exogenous cholesterol substrate, and after treatment with retinoic acid and cAMP, SF-1-ES cells produce progesterone but do not produce other steroids such as cortisol, estradiol, or testosterone. In this study, we explored culture conditions that optimize SF-1-mediated differentiation of ES cells into defined steroidogenic lineages. When embryoid body formation was used to facilitate cell lineage differentiation, SF-1-ES cells were found to be restricted in their differentiation, with fewer cells entering neuronal pathways and a larger fraction entering the steroidogenic lineage. Among the differentiation protocols tested, leukemia inhibitory factor (LIF) removal, followed by prolonged cAMP treatment was most efficacious for inducing steroidogenesis in SF-1-ES cells. In this protocol, a subset of SF-1-ES cells survives after LIF withdrawal, undergoes morphologic differentiation, and recovers proliferative capacity. These cells are characterized by induction of steroidogenic enzyme genes, use of de novo cholesterol, and production of multiple steroids including estradiol and testosterone. Microarray studies identified additional pathways associated with SF-1 mediated differentiation. Using biotinylated SF-1 in chromatin immunoprecipitation assays, SF-1 was shown to bind directly to multiple target genes, with induction of binding to some targets after steroidogenic treatment. These studies indicate that SF-1 expression, followed by LIF removal and treatment with cAMP drives ES cells into a steroidogenic pathway characteristic of gonadal steroid-producing cells.
Collapse
Affiliation(s)
- Unmesh Jadhav
- Department of Medicine, Northwestern University Feinberg School of Medicine, Arthur J. Rubloff Building, 420 East Superior Street, 12th Floor, Chicago, Illinois 60611, USA
| | | |
Collapse
|
104
|
Barruet E, Hadadeh O, Peiretti F, Renault VM, Hadjal Y, Bernot D, Tournaire R, Negre D, Juhan-Vague I, Alessi MC, Binétruy B. p38 mitogen activated protein kinase controls two successive-steps during the early mesodermal commitment of embryonic stem cells. Stem Cells Dev 2011; 20:1233-1246. [PMID: 20954847 DOI: 10.1089/scd.2010.0213] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Embryonic stem (ES) cells differentiate in vitro into all cell lineages. We previously found that the p38 mitogen activated kinase (p38MAPK) pathway controls the commitment of ES cells toward either cardiomyogenesis (p38 on) or neurogenesis (p38 off ). In this study, we show that p38α knock-out ES cells do not differentiate into cardiac, endothelial, smooth muscle, and skeletal muscle lineages. Reexpression of p38MAPK in these cells partially rescues their mesodermal differentiation defects and corrects the high level of spontaneous neurogenesis of knock-out cells. Wild-type ES cells were treated with a p38MAPK-specific inhibitor during the differentiation process. These experiments allowed us to identify 2 early independent successive p38MAPK functions in the formation of mesodermal lineages. Further, the first one correlates with the regulation of the expression of Brachyury, an essential mesodermal-specific transcription factor, by p38MAPK. In conclusion, by genetic and biochemical approaches, we demonstrate that p38MAPK activity is essential for the commitment of ES cell into cardiac, endothelial, smooth muscle, and skeletal muscle mesodermal lineages.
Collapse
Affiliation(s)
- Emilie Barruet
- Inserm U626, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Lipid metabolism in mammalian tissues and its control by retinoic acid. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:177-89. [PMID: 21669299 DOI: 10.1016/j.bbalip.2011.06.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/10/2011] [Accepted: 06/01/2011] [Indexed: 12/18/2022]
Abstract
Evidence has accumulated that specific retinoids impact on developmental and biochemical processes influencing mammalian adiposity including adipogenesis, lipogenesis, adaptive thermogenesis, lipolysis and fatty acid oxidation in tissues. Treatment with retinoic acid, in particular, has been shown to reduce body fat and improve insulin sensitivity in lean and obese rodents by enhancing fat mobilization and energy utilization systemically, in tissues including brown and white adipose tissues, skeletal muscle and the liver. Nevertheless, controversial data have been reported, particularly regarding retinoids' effects on hepatic lipid and lipoprotein metabolism and blood lipid profile. Moreover, the molecular mechanisms underlying retinoid effects on lipid metabolism are complex and remain incompletely understood. Here, we present a brief overview of mammalian lipid metabolism and its control, introduce mechanisms through which retinoids can impact on lipid metabolism, and review reported activities of retinoids on different aspects of lipid metabolism in key tissues, focusing on retinoic acid. Possible implications of this knowledge in the context of the management of obesity and the metabolic syndrome are also addressed. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
|
106
|
Zamani N, Brown CW. Emerging roles for the transforming growth factor-{beta} superfamily in regulating adiposity and energy expenditure. Endocr Rev 2011; 32:387-403. [PMID: 21173384 PMCID: PMC3365795 DOI: 10.1210/er.2010-0018] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 11/23/2010] [Indexed: 12/12/2022]
Abstract
Members of the TGF-β superfamily regulate many aspects of development, including adipogenesis. Studies in cells and animal models have characterized the effects of superfamily signaling on adipocyte development, adiposity, and energy expenditure. Although bone morphogenetic protein (BMP) 4 is generally considered a protein that promotes the differentiation of white adipocytes, BMP7 has emerged as a selective regulator of brown adipogenesis. Conversely, TGF-β and activin A inhibit adipocyte development, a process augmented in TGF-β-treated cells by Smads 6 and 7, negative regulators of canonical TGF-β signaling. Other superfamily members have mixed effects on adipogenesis depending on cell culture conditions, the timing of expression, and the cell type, and many of these effects occur by altering the expression or activities of proteins that control the adipogenic cascade, including members of the CCAAT/enhancer binding protein family and peroxisome proliferator-activated receptor-γ. BMP7, growth differentiation factor (GDF) 8, and GDF3 are versatile in their mechanisms of action, and altering their normal expression characteristics has significant effects on adiposity in vivo. In addition to their roles in adipogenesis, activins and BMP7 regulate energy expenditure by affecting the expression of genes that contribute to mitochondrial biogenesis and function. GDF8 signals through its own receptors during adipogenesis while antagonizing BMP7, an example of a ligand from one major branch of the superfamily regulating the other. With such intricate relationships that ultimately affect adiposity, TGF-β superfamily signaling holds considerable promise as a target for treating human obesity and its comorbidities.
Collapse
Affiliation(s)
- Nader Zamani
- Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
107
|
Lijnen HR, Christiaens V, Scroyen L. Growth arrest-specific protein 6 receptor antagonism impairs adipocyte differentiation and adipose tissue development in mice. J Pharmacol Exp Ther 2011; 337:457-64. [PMID: 21285281 DOI: 10.1124/jpet.110.178046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A low-molecular-weight receptor tyrosine kinase inhibitor, 1-(6,7-dihydro-5H-benzo(6,7)cyclohepta(1,2-c)pyridazin-3-yl)-N3-((7-pyrrolidin-1-yl)-6,7,8,9-tetrahydro-5H-benzo(7)annulene-2-yl)-1H-1,2,4-triazole-3,5-diamine (R428) with high affinity and selectivity for the growth arrest-specific protein 6 (GAS6) receptor Axl was used to study a potential role of GAS6 signaling in adiposity. In vitro, R428 caused a concentration-dependent inhibition of preadipocyte differentiation into mature adipocytes, as evidenced by reduced lipid uptake. Inhibition of Axl-mediated signaling was confirmed by reduced levels of phospho-Akt activity. In vivo, oral administration of R428 for 5 weeks to mice kept on a high-fat diet resulted in significantly reduced weight gain and subcutaneous and gonadal fat mass. This was associated with marked adipocyte hypotrophy, enhanced macrophage infiltration, and apoptosis. Thus, affecting GAS6 signaling through receptor antagonism using a low-molecular-weight Axl antagonist impairs adipocyte differentiation and reduces adipose tissue development in a murine model of nutritionally induced obesity.
Collapse
Affiliation(s)
- H Roger Lijnen
- Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg, O and N 1, Herestraat 49, Box 911, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
108
|
Kim JM, Moon SH, Lee SG, Cho YJ, Hong KS, Lee JH, Lee HJ, Chung HM. Assessment of differentiation aspects by the morphological classification of embryoid bodies derived from human embryonic stem cells. Stem Cells Dev 2011; 20:1925-35. [PMID: 21388292 DOI: 10.1089/scd.2010.0476] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In general, the formation of embryoid bodies (EBs) is a commonly known method for initial induction of human embryonic stem cells (hESCs) into their derivatives in vitro. Despite the ability of EBs to mimic developmental processing, the specification and classifications of EBs are not yet well known. Because EBs show various differentiation potentials depending on the size and morphology of the aggregated cells, specification is difficult to attain. Here, we sought to classify the differentiation potentials of EBs by morphologies to enable one to control the differentiation of specific lineages from hESCs with high efficiency. To induce the differentiation of EB formation, we established floating cultures of undifferentiated hESCs in Petri dishes with hESC medium lacking basic fibroblast growth factor. Cells first aggregated into balls; ∼10 days after suspension culture, some different types of EB morphology were present, which we classified as cystic-, bright cavity-, and dark cavity-type EBs. Next, we analyzed the characteristics of each type of EB for its capacity to differentiate into the 3 germ layers via multiplex polymerase chain reaction (PCR), real-time PCR, and immunocytochemistry. Our results indicated that most cells within the cystic EBs were composed of endoderm lineage populations, and both of the cavity EB types were well organized with 3 germ-layer cells. However, the differentiation capacity of the bright cavity EBs was faster than that of the dark cavity EBs. Thus, the bright cavity EBs in this study, which showed equal differentiation tendencies compared with other types of EBs, may serve as the standard for in vitro engineering of EBs. These results indicate that the classification of EB morphologies allows the estimation of the differentiation status of the EBs and may allow the delineation of subsets of conditions necessary for EBs to differentiate into specific cell types.
Collapse
Affiliation(s)
- Jung Mo Kim
- Stem Cell Research Lab, CHA Stem Cell Institute, CHA University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Ye JH, Xu YJ, Gao J, Yan SG, Zhao J, Tu Q, Zhang J, Duan XJ, Sommer CA, Mostoslavsky G, Kaplan DL, Wu YN, Zhang CP, Wang L, Chen J. Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Biomaterials 2011; 32:5065-76. [PMID: 21492931 DOI: 10.1016/j.biomaterials.2011.03.053] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/21/2011] [Indexed: 12/16/2022]
Abstract
Induced pluripotent stem cells (iPSCs) can differentiate into mineralizing cells and thus have a great potential in application in engineered bone substitutes with bioactive scaffolds in regeneration medicine. In the current study we characterized and demonstrated the pluripotency and osteogenic differentiation of mouse iPSCs. To enhance the osteogenic differentiation of iPSCs, we then transduced the iPSCs with the potent transcription factor, nuclear matrix protein SATB2. We observed that in SATB2-overexpressing iPSCs there were increased mineral nodule formation and elevated mRNA levels of key osteogenic genes, osterix (OSX), Runx2, bone sialoprotein (BSP) and osteocalcin (OCN). Moreover, the mRNA levels of HoxA2 was reduced after SATB2 overexpression in iPSCs. The SATB2-overexpressing iPSCs were then combined with silk scaffolds and transplanted into critical-size calvarial bone defects created in nude mice. Five weeks post-surgery, radiological and micro-CT analysis revealed enhanced new bone formation in calvarial defects in SATB2 group. Histological analysis also showed increased new bone formation and mineralization in the SATB2 group. In conclusion, the results demonstrate that SATB2 facilitates the differentiation of iPSCs towards osteoblast-lineage cells by repressing HoxA2 and augmenting the functions of the osteoblast determinants Runx2, BSP and OCN.
Collapse
Affiliation(s)
- Jin-Hai Ye
- Division of Oral Biology, Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Choi JH, Gimble JM, Lee K, Marra KG, Rubin JP, Yoo JJ, Vunjak-Novakovic G, Kaplan DL. Adipose tissue engineering for soft tissue regeneration. TISSUE ENGINEERING PART B-REVIEWS 2011; 16:413-26. [PMID: 20166810 DOI: 10.1089/ten.teb.2009.0544] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Current treatment modalities for soft tissue defects caused by various pathologies and trauma include autologous grafting and commercially available fillers. However, these treatment methods present a number of challenges and limitations, such as donor-site morbidity and volume loss over time. As such, improved therapeutic modalities need to be developed. Tissue engineering techniques offer novel solutions to these problems through development of bioactive tissue constructs that can regenerate adipose tissue in both structure and function. Recently, a number of studies have been designed to explore various methods to engineer human adipose tissue. This review will focus on these developments in the area of adipose tissue engineering for soft tissue replacement. The physiology of adipose tissue and current surgical therapies used to replace lost tissue volume, specifically in breast tissue, are introduced, and current biomaterials, cell sources, and tissue culture strategies are discussed. We discuss future areas of study in adipose tissue engineering.
Collapse
Affiliation(s)
- Jennifer H Choi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | | | | | | | | | |
Collapse
|
111
|
|
112
|
Hajare M, Delphine C, Youssef H, Andree D, Jean-Claude V, nadia BJ. Osteogenic differentiation of ES cell-derived EBs mediated by embedded BMP-2 and TGF-beta-1 in a polyelectrolyte multilayer film. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-0950-d10-04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ABSTRACTIn recent years, considerable effort has been devoted to the design and controlled fabrication of structured materials with functional properties. The layer by layer buildup of polyelectrolyte multilayer films (PEM films) from oppositely charged polyelectrolytes1 offers new opportunities for the preparation of functionalized biomaterial coatings. This technique allows the preparation of supramolecular nano-architectures exhibiting specific properties in terms of control of cell activation and may also play a role in the development of local drug delivery systems. Peptides, proteins or DNA, chemically bound to polyelectrolytes, adsorbed or embedded in PEM films, have been shown to retain their biological activities. Recently, tissue engineering has merged with stem cell technology with interest to develop new sources of transplantable material for injury or disease treatment. Eminently interesting, are bone and joint injuries disorders because of the low self-regenerating capacity of the matrix secreting cells. We present here for the first time that embedded BMP-2 and TGFβ1 in a multilayered polyelectrolyte film can drive embryonic stem cells to the cartilage or bone differentiation depending on supplementary co-factors. We selected a model system made from layer by layer poly-ℓ-glutamic acid (PℓGA) and poly-ℓ-lysine succinylated (PℓLs) films into which BMP-2 and TGFβ1 have been embedded. Our results demonstrate clearly that we are able to induce osteogenesis in embryonic stem cells mediated by growth factors embedded in a polyelectrolyte multilayer film.
Collapse
|
113
|
Knelangen JM, van der Hoek MB, Kong WC, Owens JA, Fischer B, Santos AN. MicroRNA expression profile during adipogenic differentiation in mouse embryonic stem cells. Physiol Genomics 2011; 43:611-20. [PMID: 21245416 DOI: 10.1152/physiolgenomics.00116.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pluripotent embryonic stem cells (ESC) have the potential to differentiate into any cell type of the three germ layers. Differentiation processes depend on genetic and epigenetic factors. The guidance of cell fate determination by microRNAs (miRs) seems important for embryonic development and cell lineage decisions. MiRs are short, single-stranded, noncoding RNA molecules that regulate through posttranscriptional modulation, a subset of target genes involved in cell differentiation and specific cell function. We have used microarray profiling of miRs in the mouse embryonic stem cell line CGR8. Comparison of the miR profiles of undifferentiated stem cells with mesodermal progenitors cells (day 5), preadipocytes (day 10), and adipocytes (day 21) showed that the expression level of 129 miRs changed (twofold) during adipogenic differentiation. We identified 10 clusters of differentially expressed miRs, which contain putative markers and regulators of mesodermal differentiation and cell fate determination into adipocytes. Notably, the adipocyte-specific miRs 143 and 103 were upregulated from day 10 onward. We have therefore demonstrated and characterized the dynamic profile of miR expression during murine adipogenic differentiation in vitro, including the initial differentiation from ESC via mesenchymal progenitors up to adipocytes. Our findings and experimental approach provide a suitable system to directly interrogate the role of miRs during adipogenic differentiation of embryonic stem cells.
Collapse
Affiliation(s)
- Julia M Knelangen
- Department of Anatomy and Cell Biology, Martin Luther University, Halle, Germany.
| | | | | | | | | | | |
Collapse
|
114
|
Wobus AM, Löser P. Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol 2011; 85:79-117. [PMID: 21225242 PMCID: PMC3026927 DOI: 10.1007/s00204-010-0641-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/21/2010] [Indexed: 02/08/2023]
Abstract
The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed.
Collapse
Affiliation(s)
- Anna M Wobus
- In Vitro Differentiation Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany.
| | | |
Collapse
|
115
|
Marí-Buyé N, Semino CE. Differentiation of mouse embryonic stem cells in self-assembling peptide scaffolds. Methods Mol Biol 2011; 690:217-237. [PMID: 21042996 DOI: 10.1007/978-1-60761-962-8_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Here, we describe the capacity of mouse embryonic stem cells (mESCs) to differentiate into osteoblast-like cells in a three-dimensional (3D) self-assembling peptide scaffold, a synthetic nanofiber biomaterial with future applications in regenerative medicine. We have previously demonstrated that classical tissue cultures (two-dimensional) as well as 3D-systems promoted differentiation of mESCs into cells with an osteoblast-like phenotype expressing osteopontin (OPN) and collagen type I (Col I), as well as high alkaline phosphatase (Alk Phos) activity and calcium phosphate mineralization. Interestingly, in 3D self-assembling peptide scaffold cultures, the frequency of appearance of embryonic stem-cell-like colonies was substantially enhanced, suggesting that this particular 3D microenvironment promoted the generation of a stem-cell-like niche that allows the maintenance of a small pool of undifferentiated cells. We propose that the 3D system provides a unique microenvironment permissive to promote differentiation of mESCs into osteoblast-like cells while maintaining its regenerative capacity.
Collapse
Affiliation(s)
- Núria Marí-Buyé
- Department of Bioengineering, Institut Químic de Sarrià Universitat Ramon Llull, Barcelona, Spain
| | | |
Collapse
|
116
|
Schaedlich K, Knelangen JM, Navarrete Santos A, Fischer B, Navarrete Santos A. A simple method to sort ESC-derived adipocytes. Cytometry A 2010; 77:990-5. [DOI: 10.1002/cyto.a.20953] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 06/15/2010] [Accepted: 07/02/2010] [Indexed: 12/30/2022]
|
117
|
Jukes JM, van Blitterswijk CA, de Boer J. Skeletal tissue engineering using embryonic stem cells. J Tissue Eng Regen Med 2010; 4:165-80. [PMID: 19967745 DOI: 10.1002/term.234] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Various cell types have been investigated as candidate cell sources for cartilage and bone tissue engineering. In this review, we focused on chondrogenic and osteogenic differentiation of mouse and human embryonic stem cells (ESCs) and their potential in cartilage and bone tissue engineering. A decade ago, mouse ESCs were first used as a model to study cartilage and bone development and essential genes, factors and conditions for chondrogenesis and osteogenesis were unravelled. This knowledge, combined with data from the differentiation of adult stem cells, led to successful chondrogenic and osteogenic differentiation of mouse ESCs and later also human ESCs. Next, researchers focused on the use of ESCs for skeletal tissue engineering. Cartilage and bone tissue was formed in vivo using ESCs. However, the amount, homogeneity and stability of the cartilage and bone formed were still insufficient for clinical application. The current protocols require improvement not only in differentiation efficiency but also in ESC-specific hurdles, such as tumourigenicity and immunorejection. In addition, some of the general tissue engineering challenges, such as cell seeding and nutrient limitation in larger constructs, will also apply for ESCs. In conclusion, there are still many challenges, but there is potential for ESCs in skeletal tissue engineering.
Collapse
Affiliation(s)
- Jojanneke M Jukes
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | | | | |
Collapse
|
118
|
Carnevalli LS, Masuda K, Frigerio F, Le Bacquer O, Um SH, Gandin V, Topisirovic I, Sonenberg N, Thomas G, Kozma SC. S6K1 plays a critical role in early adipocyte differentiation. Dev Cell 2010; 18:763-74. [PMID: 20493810 DOI: 10.1016/j.devcel.2010.02.018] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/04/2010] [Accepted: 02/26/2010] [Indexed: 01/08/2023]
Abstract
Earlier, we reported that S6K1(-/-) mice have reduced body fat mass, have elevated rates of lipolysis, have severely decreased adipocyte size, and are resistant to high fat diet (HFD)-induced obesity. Here we report that adipocytes of S6K1(-/-) mice on a HFD have the capacity to increase in size to a degree comparable to that of wild-type (WT) mice, but not in number, indicating an unexpected lesion in adipogenesis. Tracing this lesion revealed that S6K1 is dispensable for terminal adipocyte differentiation, but is involved in the commitment of embryonic stem cells to early adipocyte progenitors. We further show that absence of S6K1 attenuates the upregulation of transcription factors critical for commitment to adipogenesis. These results led to the conclusion that a lack of S6K1 impairs the generation of de novo adipocytes when mice are challenged with a HFD, consistent with a reduction in early adipocyte progenitors.
Collapse
Affiliation(s)
- Larissa S Carnevalli
- Department of Cancer and Cell Biology, Metabolic Diseases Institute, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Multiple mesodermal lineage differentiation of Apodemus sylvaticus embryonic stem cells in vitro. BMC Cell Biol 2010; 11:42. [PMID: 20565897 PMCID: PMC2900228 DOI: 10.1186/1471-2121-11-42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Accepted: 06/19/2010] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Embryonic stem (ES) cells have attracted significant attention from researchers around the world because of their ability to undergo indefinite self-renewal and produce derivatives from the three cell lineages, which has enormous value in research and clinical applications. Until now, many ES cell lines of different mammals have been established and studied. In addition, recently, AS-ES1 cells derived from Apodemus sylvaticus were established and identified by our laboratory as a new mammalian ES cell line. Hence further research, in the application of AS-ES1 cells, is warranted. RESULTS Herein we report the generation of multiple mesodermal AS-ES1 lineages via embryoid body (EB) formation by the hanging drop method and the addition of particular reagents and factors for induction at the stage of EB attachment. The AS-ES1 cells generated separately in vitro included: adipocytes, osteoblasts, chondrocytes and cardiomyocytes. Histochemical staining, immunofluorescent staining and RT-PCR were carried out to confirm the formation of multiple mesodermal lineage cells. CONCLUSIONS The appropriate reagents and culture milieu used in mesodermal differentiation of mouse ES cells also guide the differentiation of in vitro AS-ES1 cells into distinct mesoderm-derived cells. This study provides a better understanding of the characteristics of AS-ES1 cells, a new species ES cell line and promotes the use of Apodemus ES cells as a complement to mouse ES cells in future studies.
Collapse
|
120
|
Trudel G, Ryan SE, Rakhra K, Uhthoff HK. Extra- and Intramuscular Fat Accumulation Early after Rabbit Supraspinatus Tendon Division: Depiction with CT. Radiology 2010; 255:434-41. [DOI: 10.1148/radiol.10091377] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
121
|
Armani A, Mammi C, Marzolla V, Calanchini M, Antelmi A, Rosano GM, Fabbri A, Caprio M. Cellular models for understanding adipogenesis, adipose dysfunction, and obesity. J Cell Biochem 2010; 110:564-72. [DOI: 10.1002/jcb.22598] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
122
|
Modulation of embryonic stem cell fate and somatic cell reprogramming by small molecules. Reprod Biomed Online 2010; 21:26-36. [PMID: 20462797 DOI: 10.1016/j.rbmo.2010.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/14/2009] [Accepted: 03/03/2010] [Indexed: 12/19/2022]
Abstract
Embryonic stem cells (ESC) are pluripotent cells and have the ability to self-renew in vitro and to differentiate into cells representing all three germ layers. They provide enormous opportunities for basic research, regenerative medicine as well as drug discovery. The mechanisms that govern ESC fate are not completely understood, so a better understanding and control of ESC self-renewal and differentiation are pivotal for therapeutic applications. In contrast to growth factors and genetic manipulations, small molecules offer great advantages in modulating ESC fate. For instance, they could be conveniently identified through high-throughput screening, work across multiple signalling pathways and affect epigenetic modifications as well. This review focuses on the recent progress in the use of small molecules to regulate ESC self-renewal, differentiation and somatic cell reprogramming.
Collapse
|
123
|
St. John JC, Facucho-Oliveira J, Jiang Y, Kelly R, Salah R. Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum Reprod Update 2010; 16:488-509. [DOI: 10.1093/humupd/dmq002] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
124
|
Differentiation of mesodermal cells from pluripotent stem cells. Int J Hematol 2010; 91:373-83. [PMID: 20224874 DOI: 10.1007/s12185-010-0518-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/15/2010] [Accepted: 01/21/2010] [Indexed: 01/12/2023]
Abstract
The pluripotency of embryonic stem cells has been well demonstrated by a vast variety of studies showing the induction of differentiation into desired cell types that have the potential to be used not only in basic studies but also in medical applications. The induction of mesodermal cells, especially blood cells, from embryonic stem cells is notable from the point of view of transplantation, and the methods for this induction have improved over the last few years, with more defined culture conditions in place. Concurrently, the generation of induced pluripotent stem cells from somatic cells opens the possibility of autologous transplantation. In fact, there are a growing number of reports demonstrating that several mesodermal cells can be differentiated from induced pluripotent stem cells using the same methods used for embryonic stem cells. This review summarizes recent advances in the differentiation of mesodermal cells from embryonic stem cells and induced pluripotent stem cells.
Collapse
|
125
|
Facca S, Cortez C, Mendoza-Palomares C, Messadeq N, Dierich A, Johnston APR, Mainard D, Voegel JC, Caruso F, Benkirane-Jessel N. Active multilayered capsules for in vivo bone formation. Proc Natl Acad Sci U S A 2010; 107:3406-11. [PMID: 20160118 PMCID: PMC2840428 DOI: 10.1073/pnas.0908531107] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interest in the development of new sources of transplantable materials for the treatment of injury or disease has led to the convergence of tissue engineering with stem cell technology. Bone and joint disorders are expected to benefit from this new technology because of the low self-regenerating capacity of bone matrix secreting cells. Herein, the differentiation of stem cells to bone cells using active multilayered capsules is presented. The capsules are composed of poly-L-glutamic acid and poly-L-lysine with active growth factors embedded into the multilayered film. The bone induction from these active capsules incubated with embryonic stem cells was demonstrated in vitro. Herein, we report the unique demonstration of a multilayered capsule-based delivery system for inducing bone formation in vivo. This strategy is an alternative approach for in vivo bone formation. Strategies using simple chemistry to control complex biological processes would be particularly powerful, as they make production of therapeutic materials simpler and more easily controlled.
Collapse
Affiliation(s)
- S. Facca
- a: Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 977, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg Cedex, France, b: Faculté de Chirurgie Dentaire Université de Strasbourg (UdS), 1 place de l’hôpital, 67084, Strasbourg, France
| | - C. Cortez
- Center for Nanoscience and Nanotechnology, Department of Chemical and Bimolecular Engineering, University of Melbourne, Victoria 3010, Australia
| | - C. Mendoza-Palomares
- a: Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 977, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg Cedex, France, b: Faculté de Chirurgie Dentaire Université de Strasbourg (UdS), 1 place de l’hôpital, 67084, Strasbourg, France
| | - N. Messadeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut Clinique de la Souris (ICS), Centre National de la Recherche Scientifique (CNRS)/Institut National de la Santé et de la Recherche Médicale INSERM/UdS, Collège de France, BP 10142, Strasbourg, France
| | - A. Dierich
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut Clinique de la Souris (ICS), Centre National de la Recherche Scientifique (CNRS)/Institut National de la Santé et de la Recherche Médicale INSERM/UdS, Collège de France, BP 10142, Strasbourg, France
| | - A. P. R. Johnston
- Center for Nanoscience and Nanotechnology, Department of Chemical and Bimolecular Engineering, University of Melbourne, Victoria 3010, Australia
| | - D. Mainard
- Unité Mixte de Recherches 7561, Center National de la Recherche Scientifique-Université de Nancy, Faculté de Médecine, Vandoeuvre les Nancy, France; and
- Center Hospitalier Universtaire de Nancy, Hôpital Central (service d’orthopédie) 29 Avenue du Maréchal de Lattre de Tassigny, 54000 Nancy, France
| | - J.-C. Voegel
- a: Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 977, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg Cedex, France, b: Faculté de Chirurgie Dentaire Université de Strasbourg (UdS), 1 place de l’hôpital, 67084, Strasbourg, France
| | - F. Caruso
- Center for Nanoscience and Nanotechnology, Department of Chemical and Bimolecular Engineering, University of Melbourne, Victoria 3010, Australia
| | - N. Benkirane-Jessel
- a: Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 977, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg Cedex, France, b: Faculté de Chirurgie Dentaire Université de Strasbourg (UdS), 1 place de l’hôpital, 67084, Strasbourg, France
- Center for Nanoscience and Nanotechnology, Department of Chemical and Bimolecular Engineering, University of Melbourne, Victoria 3010, Australia
- Center Hospitalier Universtaire de Nancy, Hôpital Central (service d’orthopédie) 29 Avenue du Maréchal de Lattre de Tassigny, 54000 Nancy, France
| |
Collapse
|
126
|
Tashiro K, Inamura M, Kawabata K, Sakurai F, Yamanishi K, Hayakawa T, Mizuguchi H. Efficient adipocyte and osteoblast differentiation from mouse induced pluripotent stem cells by adenoviral transduction. Stem Cells 2010; 27:1802-11. [PMID: 19544436 DOI: 10.1002/stem.108] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Induced pluripotent stem (iPS) cells, which are generated from somatic cells by transducing four genes, are expected to have broad application to regenerative medicine. Although establishment of an efficient gene transfer system for iPS cells is considered to be essential for differentiating them into functional cells, the detailed transduction characteristics of iPS cells have not been examined. Previously, by using an adenovirus (Ad) vector containing the elongation factor-1alpha (EF-1alpha) and the cytomegalovirus enhancer/beta-actin (CA) promoters, we developed an efficient transduction system for mouse embryonic stem (ES) cells and their aggregate form, embryoid bodies (EBs). In this study, we applied our transduction system to mouse iPS cells and investigated whether efficient differentiation could be achieved by Ad vector-mediated transduction of a functional gene. As in the case of ES cells, the Ad vector containing EF-1alpha and the CA promoter could efficiently transduce transgenes into mouse iPS cells. At 3,000 vector particles/cell, 80%-90% of iPS cells expressed transgenes by treatment with an Ad vector containing the CA promoter, without a decrease in pluripotency or viability. We also found that the CA promoter had potent transduction ability in iPS cell-derived EBs. Moreover, exogenous expression of a PPARgamma gene or a Runx2 gene into mouse iPS cells by an optimized Ad vector enhanced adipocyte or osteoblast differentiation, respectively. These results suggest that Ad vector-mediated transient transduction is sufficient to increase cellular differentiation and that our transduction methods would be useful for therapeutic applications based on iPS cells.
Collapse
Affiliation(s)
- Katsuhisa Tashiro
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
127
|
Coppola V, Galli C, Musumeci M, Bonci D. Manipulating the cell differentiation through lentiviral vectors. Methods Mol Biol 2010; 614:149-160. [PMID: 20225042 DOI: 10.1007/978-1-60761-533-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The manipulation of cell differentiation is important to create new sources for the treatment of degenerative diseases or solve cell depletion after aggressive therapy against cancer. In this chapter, the use of a tissue-specific promoter lentiviral vector to obtain a myocardial pure lineage from murine embryonic stem cells (mES) is described in detail. Since the cardiac isoform of troponin I gene product is not expressed in skeletal or other muscle types, short mouse cardiac troponin proximal promoter is used to drive reporter genes. Cells are infected simultaneously with two lentiviral vectors, the first expressing EGFP to monitor the transduction efficiency, and the other expressing a puromycin resistance gene to select the specific cells of interest. This technical approach describes a method to obtain a pure cardiomyocyte population and can be applied to other lineages of interest.
Collapse
Affiliation(s)
- Valeria Coppola
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore Sanità, Rome, Italy
| | | | | | | |
Collapse
|
128
|
Jackson M, Taylor AH, Jones EA, Forrester LM. The culture of mouse embryonic stem cells and formation of embryoid bodies. Methods Mol Biol 2010; 633:1-18. [PMID: 20204616 DOI: 10.1007/978-1-59745-019-5_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Embryonic stem (ES) cells are pluripotent cells isolated from the inner cell mass of the pre-implantation blastocyst. They have the capacity to undergo indefinite rounds of self-renewing cell division and differentiate into all the cell lineages of the developing embryo. In suspension culture, ES cells will differentiate into aggregates known as embryoid bodies in a manner similar to the early embryo. This culture system therefore provides a useful model to study the relatively inaccessible stages of mammalian development. We describe methods for the routine maintenance of mouse embryonic stem cells in culture, assays of stem cell self-renewal potential in monolayer culture and the generation of embryoid bodies to study differentiation pathways.
Collapse
Affiliation(s)
- Melany Jackson
- John Hughes Bennett Laboratory, Queen's Medical Research Institute, University of Edinburgh, EH164TJ, Edinburgh, UK
| | | | | | | |
Collapse
|
129
|
Bouchard F, Paquin J. Skeletal and cardiac myogenesis accompany adipogenesis in P19 embryonal stem cells. Stem Cells Dev 2009; 18:1023-32. [PMID: 19012474 DOI: 10.1089/scd.2008.0288] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
P19 embryonic carcinoma cells resemble normal embryonic stem (ES) cells. They generate cardiac and skeletal myocytes in response to retinoic acid (RA) or oxytocin (OT). RA treatment followed by exposure to triiodothyronine (T3) and insulin induces ES cells differentiation into adipocytes and skeletomyocytes. On the other hand, OT (10(-7) M) was reported to inhibit 3T3 preadipocyte maturation. The present work was undertaken to determine whether P19 cells have an adipogenic potential that could be affected by OT. Cells were treated with RA (10(-6) M)/T3+insulin (adipogenic protocol) or 10(-7) M OT (cardiomyogenic protocol), and analyzed by polymerase chain reaction, immunotechniques, and cytochemistry. Oil-Red-O staining and expression of peroxisome proliferator-activated receptor-gamma (PPARgamma) and aP2 indicated the generation of adipocytes in cultures submitted to the adipogenic protocol. Contracting cells were also generated. Cells positive for sarcomeric actinin and negative for cardiac troponin inhibitor (cTpnI) indicated generation of skeletomyocytes, and cTpnI positive cells revealed generation of cardiomyocytes. Levels of cTpnI and of the skeletal marker MyoD were almost similar in both protocols, whereas no Oil-Red-O staining was associated with the cardiomyogenic protocol. Addition of 10(-7) M OT to the adipogenic protocol did not affect Oil-Red-O staining and PPARgamma expression. Interestingly, Oct3/4 pluripotency marker disappeared in the adipogenic protocol but remained expressed in the cardiomyogenic one. P19 cells thus have an adipogenic potential non affected by 10(-7) M OT. RA/T3+insulin combination generates a larger spectrum of mesodermal cell derivatives and is a more potent morphogenic treatment than OT. P19 cells could help investigating mechanisms of cell fate decision during development.
Collapse
Affiliation(s)
- Frédéric Bouchard
- Département de Chimie-Biochimie and Centre BioMed, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada
| | | |
Collapse
|
130
|
Schulz TJ, Tseng YH. Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev 2009; 20:523-31. [PMID: 19896888 DOI: 10.1016/j.cytogfr.2009.10.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone morphogenetic proteins (BMPs) regulate many processes in embryonic development as well as in the maintenance of normal tissue function later in adult life. However, the role of this family of proteins in formation of adipose tissue has been underappreciated in the field of developmental biology. With the growing epidemic of obesity, improved knowledge of adipocyte development and function is urgently needed. Recently, there have been significant advances in understanding the role of different members of the BMP superfamily in control of adipocyte differentiation and systemic energy homeostasis. This review summarizes recent progress in understanding how BMPs specify adipose cell fate in stem/progenitor cells and their potential role in energy metabolism. We propose that BMPs provide instructive signals for adipose cell fate determination and regulate adipocyte function. These findings have opened up exciting opportunities for developing new therapeutic approaches for the treatment of obesity and its many associated metabolic disorders.
Collapse
Affiliation(s)
- Tim J Schulz
- Joslin Diabetes Center, One Joslin Place, and Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
131
|
Abraham S, Eroshenko N, Rao RR. Role of bioinspired polymers in determination of pluripotent stem cell fate. Regen Med 2009; 4:561-78. [PMID: 19580405 DOI: 10.2217/rme.09.23] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human pluripotent stem cells, including embryonic and induced pluripotent stem cells, hold enormous potential for the treatment of many diseases, owing to their ability to generate cell types useful for therapeutic applications. Currently, many stem cell culture propagation and differentiation systems incorporate animal-derived components for promoting self-renewal and differentiation. However, use of these components is labor intensive, carries the risk of xenogeneic contamination and yields compromised experimental results that are difficult to duplicate. From a biomaterials perspective, the generation of an animal- and cell-free biomimetic microenvironment that provides the appropriate physical and chemical cues for stem cell self-renewal or differentiation into specialized cell types would be ideal. This review presents the use of natural and synthetic polymers that support propagation and differentiation of stem cells, in an attempt to obtain a clear understanding of the factors responsible for the determination of stem cell fate.
Collapse
Affiliation(s)
- Sheena Abraham
- Department of Chemical & Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | | | | |
Collapse
|
132
|
Lu J, Tan L, Li P, Gao H, Fang B, Ye S, Geng Z, Zheng P, Song H. All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways. BMC Cell Biol 2009; 10:57. [PMID: 19642999 PMCID: PMC2728515 DOI: 10.1186/1471-2121-10-57] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 07/30/2009] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND All-trans retinoic acid (RA) is one of the most important morphogens with pleiotropic actions. Its embryonic distribution correlates with neural differentiation in the developing central nervous system. To explore the precise effects of RA on neural differentiation of mouse embryonic stem cells (ESCs), we detected expression of RA nuclear receptors and RA-metabolizing enzymes in mouse ESCs and investigated the roles of RA in adherent monolayer culture. RESULTS Upon addition of RA, cell differentiation was directed rapidly and exclusively into the neural lineage. Conversely, pharmacological interference with RA signaling suppressed this neural differentiation. Inhibition of fibroblast growth factor (FGF) signaling did not suppress significantly neural differentiation in RA-treated cultures. Pharmacological interference with extracellular signal-regulated kinase (ERK) pathway or activation of Wnt pathway effectively blocked the RA-promoted neural specification. ERK phosphorylation was enhanced in RA-treated cultures at the early stage of differentiation. CONCLUSION RA can promote neural lineage entry by ESCs in adherent monolayer culture systems. This effect depends on RA signaling and its crosstalk with the ERK and Wnt pathways.
Collapse
Affiliation(s)
- Jianfeng Lu
- Department of Molecular Genetics, Shanghai Medical School, Fudan University, Shanghai, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Esposito F, Pierantoni GM, Battista S, Melillo RM, Scala S, Chieffi P, Fedele M, Fusco A. Interaction between HMGA1 and retinoblastoma protein is required for adipocyte differentiation. J Biol Chem 2009; 284:25993-6004. [PMID: 19633359 DOI: 10.1074/jbc.m109.034280] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is generally accepted that the regulation of adipogenesis prevents obesity. However, the mechanisms controlling adipogenesis have not been completely defined. We have previously demonstrated that HMGA1 proteins play a critical role in adipogenesis. In fact, suppression of HMGA1 protein synthesis by antisense technology dramatically increased growth rate and impaired adipocyte differentiation in 3T3-L1 cells. Furthermore, we showed that HMGA1 strongly potentiates the capacity of the CCAAT/enhancer-binding protein beta (C/EBPbeta) transcriptional factor to transactivate the leptin promoter, an adipocytic-specific promoter. In this study we demonstrate that HMGA1 physically interacts with retinoblastoma protein (RB), which is also required in adipocyte differentiation. Moreover, we show that RB, C/EBPbeta, and HMGA1 proteins all cooperate in controlling both Id1 and leptin gene transcriptions, which are down- and up-regulated during adipocyte differentiation, respectively. We also demonstrate that HMGA1/RB interaction regulates CDC25A and CDC6 promoter activities, which are induced by E2F-1 protein during early adipocyte differentiation, by displacing HDAC1 from the RB-E2F1 complex. Furthermore, by using Hmga1(-/-) embryonic stem cells, which failed to undergo adipocyte differentiation, we show the crucial role of HMGA1 proteins in adipocyte differentiation due to its pivotal involvement in the formation of the RB-C/EBPbeta complex. Altogether these data demonstrate a key role of the interaction between HMGA1 and RB in adipocyte differentiation.
Collapse
Affiliation(s)
- Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Monteiro MC, Wdziekonski B, Villageois P, Vernochet C, Iehle C, Billon N, Dani C. Commitment of mouse embryonic stem cells to the adipocyte lineage requires retinoic acid receptor beta and active GSK3. Stem Cells Dev 2009; 18:457-63. [PMID: 18690793 DOI: 10.1089/scd.2008.0154] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Key events leading to terminal differentiation of preadipocytes into adipocytes have been identified in recent years. However, signaling pathways involved in the decision of stem cells to follow the adipogenic lineage have not yet been characterized. We have previously shown that differentiating mouse embryonic stem (mES) cells give rise to functional adipocytes upon an early treatment with retinoic acid (RA). The goal of this work was to identify regulators of RA-induced commitment of mES cells to the adipocyte lineage. First, we investigated the role of RA receptor (RAR) isotypes in the induction of mES cell adipogenesis. Using synthetic retinoids selective of RAR isotypes, we show that RARbeta activation is both sufficient and necessary to trigger commitment of mES cells to adipocytes. Then, we performed a small-scale drug screening to find signaling pathways involved in RARbeta-induced mES cell adipogenesis. We show that pharmacological inhibitors of glycogen synthase kinase (GSK) 3, completely inhibit RARbeta-induced adipogenesis in mES cells. This finding uncovers the requirement of active GSK3 in RARbeta-induced commitment of mES cells toward the adipocyte lineage. Finally, we investigated the role of the Wnt pathway, in which GSK3 is a critical negative regulator, in adipocyte commitment by analyzing Wnt pathway activity in RA- and RARbeta-induced mES cell adipogenesis. Our results suggest that although RARbeta and active GSK3 are required for RA-induced adipogenesis, they might be acting through a Wnt pathway-independent mechanism.
Collapse
Affiliation(s)
- Miguel C Monteiro
- Institute of Developmental Biology and Cancer, Centre de Biochimie, Faculté des Sciences, Université Nice Sophia-Antipolis, Nice, France
| | | | | | | | | | | | | |
Collapse
|
135
|
Zhang XZ, Li XJ, Ji HF, Zhang HY. Impact of drug discovery on stem cell biology. Biochem Biophys Res Commun 2009; 383:275-9. [DOI: 10.1016/j.bbrc.2009.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 04/02/2009] [Indexed: 01/01/2023]
|
136
|
Shyr CR, Kang HY, Tsai MY, Liu NC, Ku PY, Huang KE, Chang C. Roles of testicular orphan nuclear receptors 2 and 4 in early embryonic development and embryonic stem cells. Endocrinology 2009; 150:2454-62. [PMID: 19131575 DOI: 10.1210/en.2008-1165] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The testicular orphan nuclear receptors (TRs) 2 and 4 act as either transcriptional activators or regulatory proteins of other nuclear receptor superfamily members. With no identified cognate ligands, their physiological roles remain unclear. Here we showed the phenotypes of TR2(-/-):TR4(-/-) mutant embryos, which reveal that the loss of TR2 and TR4 causes early embryonic lethality and increased cell death. We also found that TR2 and TR4 are expressed in blastocysts and embryonic stem (ES) cells, and can act as transcriptional activators in ES cells. The results on further investigating the roles of TR2 and TR4 in ES cells showed that TR2 and TR4 were differentially expressed when ES cells were induced into different specialized cell types, and their expression is regulated by retinoic acid. Knocking down TR2 and TR4 mRNAs decreased the expression of Oct-3/4 and Nanog genes. Mechanism dissection suggests that TR2 and TR4 may affect the Oct-3/4 gene by binding to a direct repeat-1 element located in its promoter region, which is influenced by retinoic acid. Together, our findings highlight possible roles for TR2 and TR4 in early embryonic development by regulating key genes involved in stem cell self-renewal, commitment, and differentiation.
Collapse
MESH Headings
- Adipogenesis/genetics
- Animals
- Blastocyst/metabolism
- Blastocyst/physiology
- Cell Differentiation/genetics
- Cells, Cultured
- Crosses, Genetic
- Embryo, Mammalian
- Embryonic Development/genetics
- Embryonic Stem Cells/metabolism
- Embryonic Stem Cells/physiology
- Female
- Gene Expression Regulation, Developmental/drug effects
- Male
- Mice
- Mice, Knockout
- Neurogenesis/genetics
- Nuclear Receptor Subfamily 2, Group C, Member 1
- Osteogenesis/genetics
- Pregnancy
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Steroid/physiology
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Receptors, Thyroid Hormone/physiology
- Testis/metabolism
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Chih-Rong Shyr
- Department of Pathology, The Cancer Center, George Whipple Lab for Cancer Research, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
137
|
Hillel AT, Varghese S, Petsche J, Shamblott MJ, Elisseeff JH. Embryonic germ cells are capable of adipogenic differentiation in vitro and in vivo. Tissue Eng Part A 2009; 15:479-86. [PMID: 18673089 DOI: 10.1089/ten.tea.2007.0352] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is an extensive clinical need for soft tissue filler materials, such as adipose tissue, for plastic and reconstructive surgery. Due to limitations with autologous adipose transplantation, engineered adipose tissue provides a potential alternative therapy. Embryonic germ cells form embryoid bodies and subsequent embryoid body-derived (EBD) cells have the ability to differentiate toward multiple tissue types. The objective of this study was to demonstrate that EBD cells were capable of adipogenic differentiation in vitro and in vivo using a poly(ethylene glycol)-based hydrogel scaffold. EBD cells underwent adipogenic differentiation in vitro and in vivo. Results were directly compared to adipogenic differentiation of adult bone marrow-derived mesenchymal stem cells (MSCs). Differentiated EBD cells in both monolayer and three-dimensional in vitro culture demonstrated fat granules by light microscopy, stained positive for lipids with oil red-O, and expressed adipocyte-specific genes (lipoprotein lipase [LPL], peroxisome proliferator activated receptor gamma2, and adipocyte-specific fatty acid binding protein [alphaP2]). In vivo constructs demonstrated adipogenic differentiation by alphaP2 and LPL gene expression and oil red-O staining of lipid granules. In conclusion, EBD cells are capable of differentiating toward an adipogenic lineage in vitro and in vivo. EBD cells' adipogenic differentiation is comparable to that of MSCs and demonstrate therapeutic potential for soft tissue augmentation and reconstruction.
Collapse
Affiliation(s)
- Alexander T Hillel
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
138
|
Taura D, Noguchi M, Sone M, Hosoda K, Mori E, Okada Y, Takahashi K, Homma K, Oyamada N, Inuzuka M, Sonoyama T, Ebihara K, Tamura N, Itoh H, Suemori H, Nakatsuji N, Okano H, Yamanaka S, Nakao K. Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells. FEBS Lett 2009; 583:1029-33. [PMID: 19250937 DOI: 10.1016/j.febslet.2009.02.031] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 02/10/2009] [Accepted: 02/21/2009] [Indexed: 02/06/2023]
Abstract
Induced pluripotent stem (iPS) cells were recently established from human fibroblasts. In the present study we investigated the adipogenic differentiation properties of four human iPS cell lines and compared them with those of two human embryonic stem (ES) cell lines. After 12 days of embryoid body formation and an additional 10 days of differentiation on Poly-l-ornithine and fibronectin- coated dishes with adipogenic differentiation medium, human iPS cells exhibited lipid accumulation and transcription of adipogenesis-related molecules such as C/EBPalpha, PPARgamma2, leptin and aP2. These results demonstrate that human iPS cells have an adipogenic potential comparable to human ES cells.
Collapse
Affiliation(s)
- Daisuke Taura
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Ström K, Gundersen TE, Hansson O, Lucas S, Fernandez C, Blomhoff R, Holm C. Hormone-sensitive lipase (HSL) is also a retinyl ester hydrolase: evidence from mice lacking HSL. FASEB J 2009; 23:2307-16. [PMID: 19246492 DOI: 10.1096/fj.08-120923] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Here, we investigated the importance of hormone-sensitive lipase (HSL) as a retinyl ester hydrolase (REH). REH activity was measured in vitro using recombinant HSL and retinyl palmitate. The expression of retinoic acid (RA)-regulated genes and retinoid metabolites were measured in high-fat diet fed HSL-null mice using real-time quantitative PCR and triple-stage liquid chromatography/tandem mass spectrometry, respectively. Age- and gender-matched wild-type littermates were used as controls. The REH activity of rat HSL was found to be higher than that against the hitherto best known HSL substrate, i.e., diacylglycerols. REH activity in white adipose tissue (WAT) of HSL-null mice was completely blunted and accompanied by increased levels of retinyl esters and decreased levels of retinol, retinaldehyde and all-trans RA. Accordingly, genes known to be positively regulated by RA were down-regulated in HSL-null mice, including pRb and RIP140, key factors promoting differentiation into the white over the brown adipocyte lineage. Dietary RA supplementation partly restored WAT mass and the expression of RA-regulated genes in WAT of HSL-null mice. These findings demonstrate the importance of HSL as an REH of adipose tissue and suggest that HSL via this action provides RA and other retinoids for signaling events that are crucial for adipocyte differentiation and lineage commitment.
Collapse
Affiliation(s)
- Kristoffer Ström
- Division of Diabetes, Metabolism and Endocrinology, Department of Experimental Medical Science, Lund University, BMC C11, SE-221 84 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
140
|
Abstract
Type 1 and type 2 diabetes mellitus together are predicted to affect over 300 million people worldwide by the year 2020. A relative or absolute paucity of functional β-cells is a central feature of both types of disease, and identifying the pathways that mediate the embryonic origin of new β-cells and mechanisms that underlie the proliferation of existing β-cells are major efforts in the fields of developmental and islet biology. A poor secretory response of existing β-cells to nutrients and hormones and the defects in hormone processing also contribute to the hyperglycemia observed in type 2 diabetes and has prompted studies aimed at enhancing β-cell function. The factors that contribute to a greater susceptibility in aging individuals to develop diabetes is currently unclear and may be linked to a poor turnover of β-cells and/or enhanced susceptibility of β-cells to apoptosis. This review is an update on the recent work in the areas of islet/β-cell regeneration and hormone processing that are relevant to the pathophysiology of the endocrine pancreas in type 1, type 2 and obesity-associated diabetes.
Collapse
Affiliation(s)
- Anke Assmann
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
141
|
Silva C, Wood JR, Salvador L, Zhang Z, Kostetskii I, Williams CJ, Strauss JF. Expression profile of male germ cell-associated genes in mouse embryonic stem cell cultures treated with all-trans retinoic acid and testosterone. Mol Reprod Dev 2009; 76:11-21. [PMID: 18425777 DOI: 10.1002/mrd.20925] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cells that morphologically and functionally resemble male germ cells can be spontaneously derived from ES cells. However, this process is inefficient and unpredictable suggesting that the expression pattern of male germ cell associated genes during spontaneous ES cell differentiation does not mimic the in vivo profiles of the genes. Thus, in the present study, the temporal profile of genes expressed at different stages of male germ cell development was examined in differentiating ES cells. The effect of all-trans retinoic acid (RA) which is a known inducer of primordial germ cell (PGC) proliferation/survival in vitro and testosterone which is required for spermatogenesis in vivo on the expression of these genes was also determined. Each of the 12 genes analyzed exhibited one of four temporal expression patterns in untreated differentiating ES cells: progressively decreased (Dppa3, Sycp3, Msy2), initially low and then increased (Stra8, Sycp1, Dazl, Act, Prm1), initially decreased and then increased (Piwil2, Tex14), or relatively unchanged (Akap3, Odf2). RA-treated cells exhibited increased expression of Stra8, Dazl, Act, and Prm1 and suppressed expression of Dppa3 compared to untreated controls. Furthermore, testosterone increased expression of Stra8 while the combination of RA and testosterone synergistically increased expression of Act. Our findings establish a comprehensive profile of male germ cell gene expression during spontaneous differentiation of murine ES cells and describe the capacity of RA and testosterone to modulate the expression of these genes. Furthermore, these data represent an important first step in designing a plausible directed differentiation protocol for male germ cells.
Collapse
Affiliation(s)
- Celso Silva
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of South Florida, Tampa, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
Pluripotent embryonic stem (ES) cells are characterized by their almost unlimited potential to self-renew and to differentiate into virtually any cell type of the organism. Here we describe basic protocols for the in vitro differentiation of mouse ES cells into cells of the cardiac, neuronal, pancreatic, and hepatic lineage. The protocols include (1) the formation of embryoid bodies (EBs) followed by (2) the spontaneous differentiation of EBs into progenitor cells of the ecto-, endo-, and mesodermal germ layer and (3) the directed differentiation of early progenitors into the respective lineages. Differentiation induction via growth and extracellular matrix factors leads to titin-expressing spontaneously beating cardiac cells, tyrosine hydroxylase-expressing dopaminergic neurons, insulin and c-peptide co-expressing pancreatic islet-like clusters, and albumin-positive hepatic cells, respectively. The differentiated cells show tissue-specific proteins and electrophysiological properties (action potentials and ion channels) in cardiac and neuronal cells, glucose-dependent insulin release in pancreatic cells, or glycogen storage and albumin synthesis in hepatic cells. The protocols presented here provide basic systems to study differentiation processes in vitro and to establish strategies for the use of stem cells in regenerative therapies.
Collapse
|
143
|
Controlling α-SMA expression in adult human pancreatic stem cells by soluble factors. Ann Anat 2009; 191:116-25. [DOI: 10.1016/j.aanat.2008.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/11/2008] [Accepted: 07/18/2008] [Indexed: 01/21/2023]
|
144
|
Park JR, Jung JW, Lee YS, Kang KS. The roles of Wnt antagonists Dkk1 and sFRP4 during adipogenesis of human adipose tissue-derived mesenchymal stem cells. Cell Prolif 2008; 41:859-874. [PMID: 19040566 DOI: 10.1111/j.1365-2184.2008.00565.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The canonical Wnt signalling pathway performs an important function in the control of adipogenesis. However, the mechanisms and mediators underlying these interactions have yet to be defined in detail. Thus, this study was performed in order to elucidate the roles of the Wnt family during adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hAMSCs). MATERIALS AND METHODS We assessed several members of the Frizzled (FZD) family, the receptors of Wnts, inhibitors including the secreted frizzled-related protein (sFRP) family and Dickkopfs (Dkks), and the downstream factor, beta-catenin. Expressional levels of adipogenic markers regulated by the small interfering RNA of Dkk1 (siDkk1) and sFRP4 (sisFRP4) were assessed using real-time quantitative PCR and Western blot analysis. RESULTS The mRNA level of Dkk1 was expressed abundantly in the early stages of adipogenesis and decreased rapidly during the late stages of adipogenesis. However, sFRP4 mRNA was up-regulated gradually during adipogenic differentiation in hAMSCs. Expression of FZD1, FZD7 and beta-catenin were reduced during adipogenic differentiation. Transfection of hAMSCs with siDkk1 or sisFRP4 partially inhibited differentiation of hAMSCs into adipocytes and restored levels of beta-catenin. CONCLUSIONS We determined that Dkk1 was up-regulated transiently in the early stages of adipogenesis, and that sFRP4 levels increased gradually during adipogeneis via inhibition of Wnt signalling. Collectively, these results show that Dkk1 and sFRP4 perform an important function in adipogenesis in hAMSCs.
Collapse
Affiliation(s)
- J-R Park
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea, andLaboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | - J-W Jung
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea, andLaboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Y-S Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea, andLaboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | - K-S Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea, andLaboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
145
|
Embryoid body morphology influences diffusive transport of inductive biochemicals: a strategy for stem cell differentiation. Biomaterials 2008; 29:4471-80. [PMID: 18793799 DOI: 10.1016/j.biomaterials.2008.08.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 08/20/2008] [Indexed: 02/08/2023]
Abstract
Differentiation of human embryonic stem (hES) cells into cells for regenerative medicine is often initiated by embryoid body (EB) formation. EBs may be treated with soluble biochemicals such as cytokines, growth factors and vitamins to induce differentiation. A scanning electron microscopy analysis, conducted over 14 days, revealed time-dependent changes in EB structure which led to the formation of a shell that significantly reduced the diffusive transport of a model molecule (374 Da) by >80%. We found that the shell consists of 1) an extracellular matrix (ECM) comprised of collagen type I; 2) a squamous cellular layer with tight cell-cell adhesions associated with E-cadherin; and 3) a collagen type IV lining indicative of a basement membrane. Disruption of the basement membrane, by either inhibiting its formation with noggin or permeabilizing it with collagenase, resulted in recovery of diffusive transport. Increasing the diffusive transport of retinoic acid (RA) and serum in EBs by a 15-min collagenase digestion on days 4, 5, 6 and 7 promoted neuronal differentiation. Flow cytometry and quantitative RT-PCR analysis of collagenase-treated EBs revealed 68% of cells expressing neural cell adhesion molecule (NCAM) relative to 28% for untreated EBs. Our results suggest that limitations in diffusive transport of biochemicals need to be considered when formulating EB differentiation strategies.
Collapse
|
146
|
Abstract
Stem cells are a powerful resource for cell-based transplantation therapies in osteodegenerative disorders, but before some kinds of stem cells can be applied clinically, several aspects of their expansion and differentiation need to be better controlled. Wnt molecules and members of the Wnt signaling cascade have been ascribed a role in both these processes in vitro as well as normal development in vivo. However some results are controversial. In this review we will present the hypothesis that both canonical and non-canonical signaling are involved in mesenchymal cell fate regulation, such as adipogenesis, chondrogenesis and osteogenesis, and that in vitro it is a timely switch between the two that specifies the identity of the differentiating cell. We will specifically focus on the in vitro differentiation of adipocytes, chondrocytes and osteoblasts contrasting embryonic and mesenchymal stem cells as well as the role of Wnts in mesenchymal fate specification during embryogenesis.
Collapse
Affiliation(s)
- L. A. Davis
- Department of Surgery and Cambridge Institute for Medical Research, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 2XY United Kingdom
| | - N. I. zur Nieden
- Fraunhofer Institute for Cell Therapy and Immunology, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
147
|
Leung JK, Cases S, Vu TH. P311 functions in an alternative pathway of lipid accumulation that is induced by retinoic acid. J Cell Sci 2008; 121:2751-8. [PMID: 18664493 DOI: 10.1242/jcs.027151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lipid droplets are complex and dynamic intracellular organelles that have an essential role in cholesterol and lipid homeostasis, and profoundly affect cellular structure and function. Variations in lipid-droplet composition exist between different cell types, but whether there are differences in the mechanisms of lipid-droplet accumulation remains to be elucidated. Here, we report that P311, previously identified to have a function in neuronal regeneration and a potential role in distal lung generation, regulates lipid droplet accumulation. P311 upregulates several classes of genes associated with lipid synthesis, significantly increases intracellular cholesterol and triglyceride levels, and increases intracellular lipid droplets. Interestingly, P311 expression is not necessary for lipogenesis in the well-established NIH3T3-L1 cell model of adipogenic differentiation. Instead, we demonstrate a novel role for P311 in an alternative pathway of lipid-droplet accumulation that is induced by the regeneration-inducing molecule retinoic acid.
Collapse
Affiliation(s)
- James K Leung
- Lung Biology Center and Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
148
|
Szabo E, Qiu Y, Baksh S, Michalak M, Opas M. Calreticulin inhibits commitment to adipocyte differentiation. ACTA ACUST UNITED AC 2008; 182:103-16. [PMID: 18606846 PMCID: PMC2447897 DOI: 10.1083/jcb.200712078] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Calreticulin, an endoplasmic reticulum (ER) resident protein, affects many critical cellular functions, including protein folding and calcium homeostasis. Using embryonic stem cells and 3T3-L1 preadipocytes, we show that calreticulin modulates adipogenesis. We find that calreticulin-deficient cells show increased potency for adipogenesis when compared with wild-type or calreticulin-overexpressing cells. In the highly adipogenic crt−/− cells, the ER lumenal calcium concentration was reduced. Increasing the ER lumenal calcium concentration led to a decrease in adipogenesis. In calreticulin-deficient cells, the calmodulin–Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathway was up-regulated, and inhibition of CaMKII reduced adipogenesis. Calreticulin inhibits adipogenesis via a negative feedback mechanism whereby the expression of calreticulin is initially up-regulated by peroxisome proliferator–activated receptor γ (PPARγ). This abundance of calreticulin subsequently negatively regulates the expression of PPARγ, lipoprotein lipase, CCAAT enhancer–binding protein α, and aP2. Thus, calreticulin appears to function as a Ca2+-dependent molecular switch that regulates commitment to adipocyte differentiation by preventing the expression and transcriptional activation of critical proadipogenic transcription factors.
Collapse
Affiliation(s)
- Eva Szabo
- Department of Laboratory Medicine and Pathobiology, Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
149
|
Effect of 17β-estradiol on the in vitro differentiation of murine embryonic stem cells into the osteogenic lineage. In Vitro Cell Dev Biol Anim 2008; 44:368-78. [DOI: 10.1007/s11626-008-9126-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Accepted: 05/19/2008] [Indexed: 12/30/2022]
|
150
|
Deb KD, Jayaprakash AD, Sharma V, Totey S. Embryonic stem cells: from markers to market. Rejuvenation Res 2008; 11:19-37. [PMID: 17973601 DOI: 10.1089/rej.2007.0558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT Embryonic stem cells are considered the mother of all kinds of tissues and cells and it is envisioned as the holy grail of regenerative medicine. However, their use in cell replacement therapies (CRT) has so far been limited and their potentials are yet to be fully realized. The use of human embryonic stem cells (hESC) involves many safety issues pertaining to culture conditions and epigenetic changes. The role and importance of an epigenomic signature in derivation and maintenance of hESC are discussed. We provide a list of important epigenetic markers, which should be studied for evaluation of safety in hESC-based cell replacement therapies. These genes also need to be screened to determine an epigenetic signature for pluripotency in the hESCs. Finally a comprehensive list of all known stemness signature genes and the marker genes for different germ line lineages are presented. This review aims at summing up most of the intriguing molecules that can play a role in the maintenance of pluripotency and can help in determining hESC differentiation to various lineages. Extensive understanding of these markers will eventually help the researchers to transform the hESC research from bench to the bedside. The use of hESCs in CRTs is still in its infancy; much effort is warranted to turn them into the much dreamed about magic wand of regenerative medicine.
Collapse
Affiliation(s)
- Kaushik Dilip Deb
- Embryonic Stem Cells Program, Manipal Institute of Regenerative Medicine, Manipal University Branch Campus, Bangalore, India
| | | | | | | |
Collapse
|