101
|
Chen W, Wang GM, Guo JM, Sun LA, Wang H. NGF/γ-IFN inhibits androgen-independent prostate cancer and reverses androgen receptor function through downregulation of FGFR2 and decrease in cancer stem cells. Stem Cells Dev 2012; 21:3372-80. [PMID: 22731611 DOI: 10.1089/scd.2012.0121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Androgen-independent prostate cancer (AIPC) is difficult to treat. Present study is to explore the inhibitory effect of a cytokine environment on AIPC and its mechanism. We utilized nerve growth factor (NGF)/γ-interferon (γ-IFN) to change the cytokine environment. Animal models and 2 androgen receptor (AR)-negative prostate cancer cell lines were used to evaluate the effect of NGF/γ-IFN. Flow cytometry, immunocytochemistry, western blotting, Tunel assay, colony formation efficiency, gene microarray, and in vivo bioluminescence were used to discern the mechanisms within NGF/γ-IFN that effect the environment. In vitro, NGF/γ-IFN effectively inhibited the proliferation of AIPC cell lines and promoted the apoptosis of the cancer cells. In vivo, NGF/γ-IFN suppressed the growth and metastasis of a tumor mass that arose from the AIPC cell line. After NGF/γ-IFN treatment, the AR-negative cell lines re-expressed AR and were then able to respond to the androgen. Contrary to expectations, the proliferation of cells was inhibited after dihydrotestosterone was added, and the results indicated that NGF/γ-IFN decreased the proportion of cancer stem cells. NGF/γ-IFN worked mainly through the downregulation of fibroblast growth factor receptor 2.
Collapse
Affiliation(s)
- Wei Chen
- Department of Urology, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
102
|
Lee SO, Ma Z, Yeh CR, Luo J, Lin TH, Lai KP, Yamashita S, Liang L, Tian J, Li L, Jiang Q, Huang CK, Niu Y, Yeh S, Chang C. New therapy targeting differential androgen receptor signaling in prostate cancer stem/progenitor vs. non-stem/progenitor cells. J Mol Cell Biol 2012; 5:14-26. [PMID: 22831834 DOI: 10.1093/jmcb/mjs042] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The androgen deprivation therapy (ADT) to systematically suppress/reduce androgens binding to the androgen receptor (AR) has been the standard therapy for prostate cancer (PCa); yet, most of ADT eventually fails leading to the recurrence of castration resistant PCa. Here, we found that the PCa patients who received ADT had increased PCa stem/progenitor cell population. The addition of the anti-androgen, Casodex, or AR-siRNA in various PCa cells led to increased stem/progenitor cells, whereas, in contrast, the addition of functional AR led to decreased stem/progenitor cell population but increased non-stem/progenitor cell population, suggesting that AR functions differentially in PCa stem/progenitor vs. non-stem/progenitor cells. Therefore, the current ADT might result in an undesired expansion of PCa stem/progenitor cell population, which explains why this therapy fails. Using various human PCa cell lines and three different mouse models, we concluded that targeting PCa non-stem/progenitor cells with AR degradation enhancer ASC-J9 and targeting PCa stem/progenitor cells with 5-azathioprine and γ-tocotrienol resulted in a significant suppression of the tumors at the castration resistant stage. This suggests that a combinational therapy that simultaneously targets both stem/progenitor and non-stem/progenitor cells will lead to better therapeutic efficacy and may become a new therapy to battle the PCa before and after castration resistant stages.
Collapse
Affiliation(s)
- Soo Ok Lee
- George Whipple Lab for Cancer Research, Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Ordonez P, Di Girolamo N. Limbal epithelial stem cells: role of the niche microenvironment. Stem Cells 2012; 30:100-7. [PMID: 22131201 DOI: 10.1002/stem.794] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cornea contains a reservoir of self-regenerating epithelial cells that are essential for maintaining its transparency and good vision. The study of stem cells in this functionally important organ has grown over the past four decades, partly due to the ease with which this tissue is visualized, its accessibility with minimally invasive instruments, and the fact that its stem cells are segregated within a transitional zone between two functionally diverse epithelia. While human, animal, and ex vivo models have been instrumental in progressing the corneal stem cell field, there is still much to be discovered about this exquisitely sensitive window for sight. This review will provide an overview of the human cornea, where its stem cells reside and how components of the microenvironment including extracellular matrix proteins and their integrin receptors are thought to govern corneal stem cell homeostasis.
Collapse
Affiliation(s)
- Paula Ordonez
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | |
Collapse
|
104
|
Hu WY, Shi GB, Hu DP, Nelles JL, Prins GS. Actions of estrogens and endocrine disrupting chemicals on human prostate stem/progenitor cells and prostate cancer risk. Mol Cell Endocrinol 2012; 354:63-73. [PMID: 21914459 PMCID: PMC3249013 DOI: 10.1016/j.mce.2011.08.032] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 12/18/2022]
Abstract
Estrogen reprogramming of the prostate gland as a function of developmental exposures (aka developmental estrogenization) results in permanent alterations in structure and gene expression that lead to an increased incidence of prostatic lesions with aging. Endocrine disrupting chemicals (EDCs) with estrogenic activity have been similarly linked to an increased prostate cancer risk. Since it has been suggested that stem cells and cancer stem cells are potential targets of cancer initiation and disease management, it is highly possible that estrogens and EDCs influence the development and progression of prostate cancer through reprogramming and transforming the prostate stem and early stage progenitor cells. In this article, we review recent literature highlighting the effects of estrogens and EDCs on prostate cancer risk and discuss recent advances in prostate stem/progenitor cell research. Our laboratory has recently developed a novel prostasphere model using normal human prostate stem/progenitor cells and established that these cells express estrogen receptors (ERs) and are direct targets of estrogen action. Further, using a chimeric in vivo prostate model derived from these normal human prostate progenitor cells, we demonstrated for the first time that estrogens initiate and promote prostatic carcinogenesis in an androgen-supported environment. We herein discuss these findings and highlight new evidence using our in vitro human prostasphere assay for perturbations in human prostate stem cell self-renewal and differentiation by natural steroids as well as EDCs. These findings support the hypothesis that tissue stem cells may be direct EDC targets which may underlie life-long reprogramming as a consequence of developmental and/or transient adult exposures.
Collapse
Affiliation(s)
- Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, 820 South Wood Street, Suite 132, M/C 955, Chicago, IL, 60612, USA
| | - Guang-Bin Shi
- Department of Urology, University of Illinois at Chicago, 820 South Wood Street, Suite 132, M/C 955, Chicago, IL, 60612, USA
| | - Dan-Ping Hu
- Department of Urology, University of Illinois at Chicago, 820 South Wood Street, Suite 132, M/C 955, Chicago, IL, 60612, USA
| | - Jason L Nelles
- Department of Urology, University of Illinois at Chicago, 820 South Wood Street, Suite 132, M/C 955, Chicago, IL, 60612, USA
| | - Gail S. Prins
- Department of Urology, University of Illinois at Chicago, 820 South Wood Street, Suite 132, M/C 955, Chicago, IL, 60612, USA
| |
Collapse
|
105
|
Guo C, Liu H, Zhang BH, Cadaneanu RM, Mayle AM, Garraway IP. Epcam, CD44, and CD49f distinguish sphere-forming human prostate basal cells from a subpopulation with predominant tubule initiation capability. PLoS One 2012; 7:e34219. [PMID: 22514625 PMCID: PMC3326009 DOI: 10.1371/journal.pone.0034219] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/27/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Human prostate basal cells expressing alpha-6 integrin (CD49f(Hi)) and/or CD44 form prostaspheres in vitro. This functional trait is often correlated with stem/progenitor (S/P) activity, including the ability to self-renew and induce differentiated tubules in vivo. Antigenic profiles that distinguish tubule-initiating prostate stem cells (SCs) from progenitor cells (PCs) and mature luminal cells (LCs) with less regenerative potential are unknown. METHODOLOGY/PRINCIPLE FINDINGS Prostasphere assays and RT-PCR analysis was performed following FACS separation of total benign prostate cells based upon combinations of Epcam, CD44, and/or CD49f expression. Epithelial cell fractions were isolated, including Epcam(+)CD44(+) and Epcam+CD44+CD49f(Hi) basal cells that formed abundant spheres. When non-sphere-forming Epcam(+)CD44(-) cells were fractionated based upon CD49f expression, a distinct subpopulation (Epcam(+)CD44(-)CD49f(Hi)) was identified that possessed a basal profile similar to Epcam(+)CD44(+)CD49f(Hi) sphere-forming cells (p63(+)AR(Lo)PSA(-)). Evaluation of tubule induction capability of fractionated cells was performed, in vivo, via a fully humanized prostate tissue regeneration assay. Non-sphere-forming Epcam(+)CD44(-) cells induced significantly more prostate tubular structures than Epcam(+)CD44(+) sphere-forming cells. Further fractionation based upon CD49f co-expression identified Epcam(+)CD44(-)CD49f(Hi) (non-sphere-forming) basal cells with significantly increased tubule induction activity compared to Epcam(+)CD44(-)CD49f(Lo) (true) luminal cells. CONCLUSIONS/SIGNIFICANCE Our data delineates antigenic profiles that functionally distinguish human prostate epithelial subpopulations, including putative SCs that display superior tubule initiation capability and induce differentiated ductal/acini structures, sphere-forming PCs with relatively decreased tubule initiation activity, and terminally differentiated LCs that lack both sphere-forming and tubule-initiation activity. The results clearly demonstrate that sphere-forming ability is not predictive of tubule-initiation activity. The subpopulations identified are of interest because they may play distinct roles as cells of origin in the development of prostatic diseases, including cancer.
Collapse
Affiliation(s)
- Changyong Guo
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Haibo Liu
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Bao-Hui Zhang
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Radu M. Cadaneanu
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Aqila M. Mayle
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Greater Los Angeles Veterans Affairs Medical Center, Los Angeles, California, United States of America
| | - Isla P. Garraway
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Greater Los Angeles Veterans Affairs Medical Center, Los Angeles, California, United States of America
| |
Collapse
|
106
|
Latifi A, Abubaker K, Castrechini N, Ward AC, Liongue C, Dobill F, Kumar J, Thompson EW, Quinn MA, Findlay JK, Ahmed N. Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile. J Cell Biochem 2012; 112:2850-64. [PMID: 21618587 DOI: 10.1002/jcb.23199] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Epithelial mesenchymal transition (EMT) and cancer stem cells (CSC) have been associated with resistance to chemotherapy. Eighty percent of ovarian cancer patients initially respond to platinum-based combination therapy but most return with recurrence and ultimate demise. To better understand such chemoresistance we have assessed the potential role of EMT in tumor cells collected from advanced-stage ovarian cancer patients and the ovarian cancer cell line OVCA 433 in response to cisplatin in vitro. We demonstrate that cisplatin-induced transition from epithelial to mesenchymal morphology in residual cancer cells correlated with reduced E-cadherin, and increased N-cadherin and vimentin expression. The mRNA expression of Snail, Slug, Twist, and MMP-2 were significantly enhanced in response to cisplatin and correlated with increased migration. This coincided with increased cell surface expression of CSC-like markers such as CD44, α2 integrin subunit, CD117, CD133, EpCAM, and the expression of stem cell factors Nanog and Oct-4. EMT and CSC-like changes in response to cisplatin correlated with enhanced activation of extracellular signal-regulated kinase (ERK)1/2. The selective MEK inhibitor U0126 inhibited ERK2 activation and partially suppressed cisplatin-induced EMT and CSC markers. In vivo xenotransplantation of cisplatin-treated OVCA 433 cells in zebrafish embryos demonstrated significantly enhanced migration of cells compared to control untreated cells. U0126 inhibited cisplatin-induced migration of cells in vivo, suggesting that ERK2 signaling is critical to cisplatin-induced EMT and CSC phenotypes, and that targeting ERK2 in the presence of cisplatin may reduce the burden of residual tumor, the ultimate cause of recurrence in ovarian cancer patients.
Collapse
Affiliation(s)
- Ardian Latifi
- Women's Cancer Research Centre, Royal Women's Hospital, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Tu SM, Lin SH. Prostate cancer stem cells. Clin Genitourin Cancer 2012; 10:69-76. [PMID: 22421313 DOI: 10.1016/j.clgc.2012.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/27/2011] [Accepted: 01/19/2012] [Indexed: 02/07/2023]
Abstract
Stem cells have long been implicated in prostate gland formation. The prostate undergoes regression after androgen deprivation and regeneration after testosterone replacement. Regenerative studies suggest that these cells are found in the proximal ducts and basal layer of the prostate. Many characteristics of prostate cancer indicate that it originates from stem cells. For example, the putative androgen receptor-negative (AR(-)) status of prostate stem cells renders them inherently insensitive to androgen blockade therapy. The androgen-regulated gene fusion TMPRSS2-ERG could be used to clarify both the cells of origin and the evolution of prostate cancer cells. In this review, we show that the hypothesis that distinct subtypes of cancer result from abnormalities within specific cell types-the stem cell theory of cancer-may instigate a major paradigm shift in cancer research and therapy. Ultimately, the stem cell theory of cancers will affect how we practice clinical oncology: our diagnosis, monitoring, and therapy of prostate and other cancers.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Department of Genitourinary Medical Oncology, The University of Texas, MD, Anderson Cancer Center, Houston, TX 77030-3721, USA.
| | | |
Collapse
|
108
|
Cheng L, Alexander R, Zhang S, Pan CX, MacLennan GT, Lopez-Beltran A, Montironi R. The clinical and therapeutic implications of cancer stem cell biology. Expert Rev Anticancer Ther 2012; 11:1131-43. [PMID: 21806335 DOI: 10.1586/era.11.82] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs) have provided new insights into the tumorigenesis and metastatic potential of cancer. The discovery of CSCs has provided many new insights into the complexities of cancer therapy: tumor initiation, treatment resistance, metastasis, recurrence, assessment of prognosis and prediction of clinical course. Recent rapid advances in molecular analysis have contributed to the better understanding of the molecular attributes and pathways that give CSCs their unique attributes. Use of these molecular techniques has facilitated elucidation of specific surface markers and pathways that favor propagation of CSCs - allowing for targeted therapy. Furthermore, it has been discovered that a specific microenvironment, or niche, is essential for the genesis of tumors from CSCs. Therapeutic strategies that alter these microenvironments compromise CSC proliferation and constitute another method of targeted cancer therapy. We review the clinical and therapeutic implications of CSCs, with a focus on treatment resistance and metastasis, and the emerging approaches to target CSCs and their microenvironments in order to attain improved outcomes in cancer. It is noteworthy that CSCs are the only cells capable of sustaining tumorigenesis; however, the cell of origin of cancer, in which tumorigenesis is initiated, may be distinct from CSCs that propagate the tumor.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Pathology, Indiana University School of Medicine, 350 West 11th Street, Room 4010, Indianapolis, IN 4620, USA.
| | | | | | | | | | | | | |
Collapse
|
109
|
Niranjan B, Lawrence MG, Papargiris MM, Richards MG, Hussain S, Frydenberg M, Pedersen J, Taylor RA, Risbridger GP. Primary culture and propagation of human prostate epithelial cells. Methods Mol Biol 2012; 945:365-82. [PMID: 23097118 DOI: 10.1007/978-1-62703-125-7_22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Basic and translational (or preclinical) prostate cancer research has traditionally been conducted with a limited repertoire of immortalized cell lines, which have homogeneous phenotypes and have adapted to long-term tissue culture. Primary cell culture provides a model system that allows a broader spectrum of cell types from a greater number of patients to be studied, in the absence of artificially induced genetic mutations. Nevertheless, primary prostate epithelial cell culture can be technically challenging, even for laboratories experienced in immortalized cell culture. Therefore, we provide methods to isolate and culture primary epithelial cells directly from human prostate tissue. Initially, we describe the isolation of bulk epithelial cells from benign or tumor tissues. These cells have a predominantly basal/intermediate phenotype and co-express cytokeratin 8/18 and high molecular weight cytokeratins. Since prostatic stem cells play a major role in disease progression and are considered to be a therapeutic target, we also describe a prospective approach to specifically isolate prostatic basal cells that include both stem and transit-amplifying basal populations, which can be studied independently or subsequently differentiated to supply luminal cells. This approach allows the study of stem cells for the development of new therapeutics for prostate cancer.
Collapse
Affiliation(s)
- Birunthi Niranjan
- Prostate and Breast Cancer Research Program, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Maitland NJ, Frame FM, Polson ES, Lewis JL, Collins AT. Prostate cancer stem cells: do they have a basal or luminal phenotype? Discov Oncol 2011; 2:47-61. [PMID: 21761340 DOI: 10.1007/s12672-010-0058-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The prostate is a luminal secretory tissue whose function is regulated by male sex hormones. Castration produces involution of the prostate to a reversible basal state, and as the majority of prostate cancers also have a luminal phenotype, drug-induced castration is a front line therapy. It has therefore been assumed that the tumor arises from transformation of a luminal progenitor cell. Here, we demonstrate that a minority basal "cancer stem cell" (CSC) population persists in primary human prostate cancers, as in normal prostate, serving as a reservoir for tumor recurrence after castration therapy. While the CSCs exhibit a degree of phenotypic fluidity from different patients, the tumor-initiating cells in immunocompromised mice express basal markers (such as p63), but do not express androgen receptor (AR) or markers of luminal differentiation (PSA, PAP) when freshly fractionated from human tissues or following culture in vitro. Estrogen receptors α and β and AR are transcriptionally active in the transit amplifying (TA) cell (the progeny of SC). However, AR protein is consistently undetectable in TA cells. The prostate-specific TMPRSS2 gene, while upregulated by AR activity in luminal cells, is also transcribed in basal populations, confirming that AR acts as an expression modulator. Selected cells with basal phenotypes are tumor initiating, but the resultant tumors are phenotypically intermediate, with focal expression of AR, AMACR, and p63. In vitro differentiation experiments, employing lentivirally transduced SCs with a luminal (PSA-probasin) promoter regulating a fluorescent indicator gene, confirm that the basal SCs are the source of luminal progeny.
Collapse
Affiliation(s)
- Norman J Maitland
- YCR Cancer Research Unit, Department of Biology (Area 13), University of York, Heslington, York YO10 5DD, UK.
| | | | | | | | | |
Collapse
|
111
|
Toivanen R, Berman DM, Wang H, Pedersen J, Frydenberg M, Meeker AK, Ellem SJ, Risbridger GP, Taylor RA. Brief report: a bioassay to identify primary human prostate cancer repopulating cells. Stem Cells 2011; 29:1310-4. [PMID: 21674698 DOI: 10.1002/stem.668] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cancer cells are heterogeneous in both their phenotypes and ability to promote tumor growth and spread. Xenografting is used to identify the most highly capable cells of regenerating tumors, referred to as cancer repopulating cells. Because prostate cancers (PCa's) rarely grow as xenografts, indentifying PCa repopulating cells has not been possible. Here, we report improved methods to xenograft localized primary PCa tissues using chimeric grafts with neonatal mouse mesenchyme. Xenograft survival of tumor tissue was significantly increased by neonatal mesenchyme (six of six patients, 66% of grafts, versus four of six patients, 41% of grafts) and doubled the proliferation index of xenografted cancer cells. When applied to isolated PCa cells, neonatal mesenchyme effectively reconstituted PCa's and increased xenograft survival (four of nine patients; 32% of grafts with mesenchyme and 0% without), and supported active cancer cell proliferation. Using this assay, we showed that unfractionated α2β1integrin(hi) and α2β1integrin(lo) cells from primary localized PCa's demonstrated tumor formation at comparable rates, similar to previous reports using metastatic specimens. Thus, this new protocol efficiently established tumors and enabled proliferative expansion of both intact tumor tissue and fractionated cancer cells, providing a bioassay to identify and therapeutically target PCa repopulating cells.
Collapse
Affiliation(s)
- Roxanne Toivanen
- Prostate and Breast Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Xu T, He K, Wang L, Goldkorn A. Prostate tumor cells with cancer progenitor properties have high telomerase activity and are rapidly killed by telomerase interference. Prostate 2011; 71:1390-400. [PMID: 21321978 PMCID: PMC3123672 DOI: 10.1002/pros.21355] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 01/14/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cancer progenitor cells (CPCs) have been postulated to promote treatment resistance and disease progression in prostate and other malignancies. We investigated whether the enzyme telomerase, which is active in cancer cells and in normal stem cells, plays an important role in CPC which can be exploited to neutralize these cells. METHODS We used flow cytometry and assays of gene expression, clonogenicity, and invasiveness to isolate and characterize a putative CPC subpopulation from freshly resected human prostatectomy specimens. Telomerase activity was measured by qPCR-based Telomeric Repeat Amplification Protocol (TRAP). Telomerase interference was achieved by ectopic expression of a mutated telomerase RNA construct which reprograms telomerase to generate "toxic" uncapped telomeres. Treated cells were assayed for apoptosis, proliferation in culture, and xenograft tumor formation. RESULTS CPC in prostate tumors expressed elevated levels of genes associated with a progenitor phenotype and were highly clonogenic and invasive. Significantly, CPC telomerase activity was 20- to 200-fold higher than in non-CPC from the same tumors, and CPC were exquisitely sensitive to telomerase interference which induced rapid apoptosis and growth inhibition. Similarly, induction of telomerase interference in highly tumorigenic CPC isolated from a prostate cancer cell line abrogated their ability to form tumor xenografts. CONCLUSIONS Human prostate tumors contain a CPC subpopulation with markedly elevated telomerase activity which renders them acutely susceptible to telomerase interference. These findings offer the first tumor-derived and in vivo evidence that telomerase may constitute a CPC "Achilles heel" which may ultimately form the basis for more effective new CPC-targeting therapies.
Collapse
Affiliation(s)
- Tong Xu
- Division of Medical Oncology, Department of Internal Medicine, University of Southern California Keck School of Medicine and Norris Comprehensive Cancer Center, Los Angeles, CA 90033
| | - Kaijie He
- Division of Medical Oncology, Department of Internal Medicine, University of Southern California Keck School of Medicine and Norris Comprehensive Cancer Center, Los Angeles, CA 90033
| | - Lina Wang
- Department of Pathology and Translational Pathology Core, University of Southern California Keck School of Medicine and Norris Comprehensive Cancer Center, Los Angeles, CA 90033
| | - Amir Goldkorn
- Division of Medical Oncology, Department of Internal Medicine, University of Southern California Keck School of Medicine and Norris Comprehensive Cancer Center, Los Angeles, CA 90033
| |
Collapse
|
113
|
van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Pelger RCM, van der Pluijm G. Integrin αv expression is required for the acquisition of a metastatic stem/progenitor cell phenotype in human prostate cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2559-68. [PMID: 21907176 DOI: 10.1016/j.ajpath.2011.07.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 07/05/2011] [Accepted: 07/11/2011] [Indexed: 01/02/2023]
Abstract
Integrins participate in multiple cellular processes, including cell adhesion, migration, proliferation, survival, and the activation of growth factor receptors. Recent studies have shown that expression of αv integrins is elevated in the prostate cancer stem/progenitor cell subpopulation compared with more differentiated, committed precursors. Here, we examine the functional role of αv integrin receptor expression in the acquisition of a metastatic stem/progenitor phenotype in human prostate cancer. Stable knockdown of αv integrins expression in PC-3M-Pro4 prostate cancer cells coincided with a significant decrease of prostate cancer stem/progenitor cell characteristics (α2 integrin, CD44, and ALDH(hi)) and decreased expression of invasion-associated genes Snail, Snail2, and Twist. Consistent with these observations, αv-knockdown strongly inhibited the clonogenic and migratory potentials of human prostate cancer cells in vitro and significantly decreased tumorigenicity and metastatic ability in preclinical models of orthotopic growth and bone metastasis. Our data indicate that integrin αv expression is functionally involved in the maintenance of a highly migratory, mesenchymal cellular phenotype as well as the acquisition of a stem/progenitor phenotype in human prostate cancer cells with metastasis-initiating capacity.
Collapse
|
114
|
Heer R. Characterisation of human prostate epithelial progenitor differentiation in response to androgens. Ann R Coll Surg Engl 2011. [DOI: 10.1308/147870811x589245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION A stem cell model of prostate cancer tumourigenesis explains progression to castration resistant prostate cancer (CRPC) and offers novel perspectives in targeting this cancer in its more advanced forms. Androgen receptor (AR) regulated pathways are central mechanisms in progression to CRPC. However, AR was thought to be lacking in prostate stem cell enriched fractions. Potential low levels of AR expression in stem cell enriched cells were investigated and potential direct effects of androgen were examined. METHODS Human prostate stem cell enriched populations, based on high α2β1 integrin expression (α2β1hi), were selected from primary human prostate tissue in men undergoing transurethral prostatectomy or cystoprostatectomy. Effects on differentiation were assayed with flow cytometry using differentiation-specific markers. RESULTS Low levels of AR were demonstrable in α2β1hi cells following inhibition of the proteasome using MG132. Furthermore, a direct effect of androgen was shown in stabilising/inducing AR expression. Androgen treatment of α2β1hi cells was associated with the induction of differentiation using a number of differentiation-specific markers (prostatic acid phosphatase, cytokeratin 18 and AR) with increases ranging from 49% to 67% (p<0.05). These effects were blocked with the AR-specific inhibitor bicalutamide (p<0.05). These data support a role of direct androgen activity on stem cell enriched cells in the prostate and the implications of these findings are discussed.
Collapse
Affiliation(s)
- R Heer
- Freeman Hospital Newcastle upon Tyne, UK
| |
Collapse
|
115
|
Two Domains of Vimentin Are Expressed on the Surface of Lymph Node, Bone and Brain Metastatic Prostate Cancer Lines along with the Putative Stem Cell Marker Proteins CD44 and CD133. Cancers (Basel) 2011; 3:2870-85. [PMID: 24212937 PMCID: PMC3759176 DOI: 10.3390/cancers3032870] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 06/27/2011] [Accepted: 07/06/2011] [Indexed: 11/17/2022] Open
Abstract
Vimentin was originally identified as an intermediate filament protein present only as an intracellular component in many cell types. However, this protein has now been detected on the surface of a number of different cancer cell types in a punctate distribution pattern. Increased vimentin expression has been indicated as an important step in epithelial-mesenchymal transition (EMT) required for the metastasis of prostate cancer. Here, using two vimentin-specific monoclonal antibodies (SC5 and V9 directed against the coil one rod domain and the C-terminus of the vimentin protein, respectively), we examined whether either of these domains would be displayed on the surface of three commonly studied prostate cancer cell lines isolated from different sites of metastases. Confocal analysis of LNCaP, PC3 and DU145 prostate cancer cell lines (derived from lymph node, bone or brain prostate metastases, respectively) demonstrated that both domains of vimentin are present on the surface of these metastatic cancer cell types. In addition, flow cytometric analysis revealed that vimentin expression was readily detected along with CD44 expression but only a small subpopulation of prostate cancer cells expressed vimentin and the putative stem cell marker CD133 along with CD44. Finally, Cowpea mosaic virus (CPMV) nanoparticles that target vimentin could bind and internalize into tested prostate cancer cell lines. These results demonstrate that at least two domains of vimentin are present on the surface of metastatic prostate cancer cells and suggest that vimentin could provide a useful target for nanoparticle- or antibody- cancer therapeutic agents directed against highly invasive cancer and/or stem cells.
Collapse
|
116
|
van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Pelger RCM, van der Pluijm G. The aldehyde dehydrogenase enzyme 7A1 is functionally involved in prostate cancer bone metastasis. Clin Exp Metastasis 2011; 28:615-25. [PMID: 21647815 PMCID: PMC3198191 DOI: 10.1007/s10585-011-9395-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 05/23/2011] [Indexed: 12/20/2022]
Abstract
High aldehyde dehydrogenase (ALDH) activity can be used to identify tumor-initiating and metastasis-initiating cells in various human carcinomas, including prostate cancer. To date, the functional importance of ALDH enzymes in prostate carcinogenesis, progression and metastasis has remained elusive. Previously we identified strong expression of ALDH7A1 in human prostate cancer cell lines, primary tumors and matched bone metastases. In this study, we evaluated whether ALDH7A1 is required for the acquisition of a metastatic stem/progenitor cell phenotype in human prostate cancer. Knockdown of ALDH7A1 expression resulted in a decrease of the α2hi/αvhi/CD44+ stem/progenitor cell subpopulation in the human prostate cancer cell line PC-3M-Pro4. In addition, ALDH7A1 knockdown significantly inhibited the clonogenic and migratory ability of human prostate cancer cells in vitro. Furthermore, a number of genes/factors involved in migration, invasion and metastasis were affected including transcription factors (snail, snail2, and twist) and osteopontin, an ECM molecule involved in metastasis. Knockdown of ALDH7A1 resulted in decreased intra-bone growth and inhibited experimentally induced (bone) metastasis, while intra-prostatic growth was not affected. In line with these observations, evidence is presented that TGF-β, a key player in cancer invasiveness and bone metastasis, strongly induced ALDH activity while BMP7 (an antagonist of TGF-β signaling) down-regulated ALDH activity. Our findings show, for the first time, that the ALDH7A1 enzyme is functionally involved in the formation of bone metastases and that the effect appeared dependent on the microenvironment, i.e., bone versus prostate.
Collapse
Affiliation(s)
- Christel van den Hoogen
- Department of Urology, Leiden University Medical Centre, J3-100, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Geertje van der Horst
- Department of Urology, Leiden University Medical Centre, J3-100, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Henry Cheung
- Department of Urology, Leiden University Medical Centre, J3-100, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Jeroen T. Buijs
- Department of Urology, Leiden University Medical Centre, J3-100, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Rob C. M. Pelger
- Department of Urology, Leiden University Medical Centre, J3-100, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Centre, J3-100, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Department of Endocrinology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
117
|
Pascal LE, Vêncio RZ, Vessella RL, Ware CB, Vêncio EF, Denyer G, Liu AY. Lineage relationship of prostate cancer cell types based on gene expression. BMC Med Genomics 2011; 4:46. [PMID: 21605402 PMCID: PMC3113924 DOI: 10.1186/1755-8794-4-46] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 05/23/2011] [Indexed: 02/06/2023] Open
Abstract
Background Prostate tumor heterogeneity is a major factor in disease management. Heterogeneity could be due to multiple cancer cell types with distinct gene expression. Of clinical importance is the so-called cancer stem cell type. Cell type-specific transcriptomes are used to examine lineage relationship among cancer cell types and their expression similarity to normal cell types including stem/progenitor cells. Methods Transcriptomes were determined by Affymetrix DNA array analysis for the following cell types. Putative prostate progenitor cell populations were characterized and isolated by expression of the membrane transporter ABCG2. Stem cells were represented by embryonic stem and embryonal carcinoma cells. The cancer cell types were Gleason pattern 3 (glandular histomorphology) and pattern 4 (aglandular) sorted from primary tumors, cultured prostate cancer cell lines originally established from metastatic lesions, xenografts LuCaP 35 (adenocarcinoma phenotype) and LuCaP 49 (neuroendocrine/small cell carcinoma) grown in mice. No detectable gene expression differences were detected among serial passages of the LuCaP xenografts. Results Based on transcriptomes, the different cancer cell types could be clustered into a luminal-like grouping and a non-luminal-like (also not basal-like) grouping. The non-luminal-like types showed expression more similar to that of stem/progenitor cells than the luminal-like types. However, none showed expression of stem cell genes known to maintain stemness. Conclusions Non-luminal-like types are all representatives of aggressive disease, and this could be attributed to the similarity in overall gene expression to stem and progenitor cell types.
Collapse
Affiliation(s)
- Laura E Pascal
- Department of Urology University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Mimeault M, Batra SK. Frequent gene products and molecular pathways altered in prostate cancer- and metastasis-initiating cells and their progenies and novel promising multitargeted therapies. Mol Med 2011; 17:949-64. [PMID: 21607288 DOI: 10.2119/molmed.2011.00115] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/19/2011] [Indexed: 12/14/2022] Open
Abstract
Recent gene expression profiling analyses and gain- and loss-of-function studies performed with distinct prostate cancer (PC) cell models indicated that the alterations in specific gene products and molecular pathways often occur in PC stem/progenitor cells and their progenies during prostate carcinogenesis and metastases at distant sites, including bones. Particularly, the sustained activation of epidermal growth factor receptor (EGFR), hedgehog, Wnt/β-catenin, Notch, hyaluronan (HA)/CD44 and stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) during the epithelial-mesenchymal transition (EMT) process may provide critical functions for PC progression to locally invasive, metastatic and androgen-independent disease states and treatment resistance. Moreover, an enhanced glycolytic metabolism in PC stem/progenitor cells and their progenies concomitant with the changes in their local microenvironment, including the induction of tumor hypoxia and release of diverse soluble factors by tumor myofibroblasts, also may promote the tumor growth, angiogenesis and metastases. More particularly, these molecular transforming events may cooperate to upregulate Akt, nuclear factor (NF)-κB, hypoxia-inducible factors (HIFs) and stemness gene products such as Oct3/4, Sox2, Nanog and Bmi-1 in PC cells that contribute to their acquisition of high self-renewal, tumorigenic and invasive capacities and survival advantages during PC progression. Consequently, the molecular targeting of these deregulated gene products in the PC- and metastasis-initiating cells and their progenies represent new promising therapeutic strategies of great clinical interest for eradicating the total PC cell mass and improving current antihormonal treatments and docetaxel-based chemotherapies, thereby preventing disease relapse and the death of PC patients.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | |
Collapse
|
119
|
Purification and direct transformation of epithelial progenitor cells from primary human prostate. Nat Protoc 2011; 6:656-67. [PMID: 21527922 DOI: 10.1038/nprot.2011.317] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epithelial cell transformation has been demonstrated in numerous animal models for the study of solid tumor biology. However, little evidence exists for human epithelial cell transformation without previous immortalization via genetic influences such as SV40 T-antigen, thus limiting our knowledge of the events that can transform naive human epithelium. Here we describe a system developed in our laboratory to directly transform freshly isolated primary human prostate epithelial cells without previous culture or immortalization. Prostate tissue is obtained from patients and benign tissue is separated from malignant tissue. Benign and malignant tissues are mechanically and enzymatically dissociated to single cells overnight, and immune cells and epithelial subsets are isolated on the basis of differential expression of surface antigens. Epithelial progenitor cells are transduced with lentiviruses expressing oncogenes and combined with inductive stroma for in vivo studies. At 8-16 weeks after transplantation into immune-deficient mice, the development of lesions, histologically classified as benign prostate, prostatic intraepithelial neoplasia and adenocarcinoma, can be evaluated.
Collapse
|
120
|
Dubrovska A, Elliott J, Salamone RJ, Kim S, Aimone LJ, Walker JR, Watson J, Sauveur-Michel M, Garcia-Echeverria C, Cho CY, Reddy VA, Schultz PG. Combination therapy targeting both tumor-initiating and differentiated cell populations in prostate carcinoma. Clin Cancer Res 2011; 16:5692-702. [PMID: 21138868 DOI: 10.1158/1078-0432.ccr-10-1601] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The cancer stem cell hypothesis predicts that standard prostate cancer monotherapy eliminates bulk tumor cells but not a tumor-initiating cell population, eventually leading to relapse. Many studies have sought to determine the underlying differences between bulk tumor and cancer stem cells. EXPERIMENTAL DESIGN Our previous data suggest that the PTEN/PI3K/AKT pathway is critical for the in vitro maintenance of CD133(+)/CD44(+) prostate cancer progenitors and, consequently, that targeting PI3K signaling may be beneficial in treatment of prostate cancer. RESULTS Here, we show that inhibition of PI3K activity by the dual PI3K/mTOR inhibitor NVP-BEZ235 leads to a decrease in the population of CD133(+)/CD44(+) prostate cancer progenitor cells in vivo. Moreover, the combination of the PI3K/mTOR modulator NVP-BEZ235, which eliminates prostate cancer progenitor populations, and the chemotherapeutic drug Taxotere, which targets the bulk tumor, is significantly more effective in eradicating tumors in a prostate cancer xenograft model than monotherapy. CONCLUSION This combination treatment ultimately leads to the expansion of cancer progenitors with a PTEN E91D mutation, suggesting that the analysis of PTEN mutations could predict therapeutic response to the dual therapy.
Collapse
Affiliation(s)
- Anna Dubrovska
- The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
The epithelium that lines the surface of prostate glands contains several cell types, including luminal secretory cells and basal cells of unclear function. Despite the fact that prostate tumors contain cells with a luminal phenotype and lack basal cells, a recent report indicates that the cell of origin for human prostate cancer is a basal cell and not a luminal cell. In contrast, another study indicates the reverse. It is possible that both basal and luminal stem/progenitor cells may independently give rise to prostate cancer; a comparison of the molecular signatures of the target cells of transformation with those of prostate tumors may aid in predicting the phenotypes of tumors with aggressive characteristics.
Collapse
Affiliation(s)
- David Moscatelli
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
122
|
Epithelial cell-targeted transgene expression enables isolation of cyan fluorescent protein (CFP)-expressing prostate stem/progenitor cells. Transgenic Res 2011; 20:1073-86. [PMID: 21222155 DOI: 10.1007/s11248-010-9478-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 12/15/2010] [Indexed: 12/17/2022]
Abstract
To establish a method for efficient and relatively easy isolation of a cell population containing epithelial prostate stem cells, we developed two transgenic mouse models, K5/CFP and K18/RFP. In these models, promoters of the cytokeratin 5 (Krt5) and the cytokeratin 18 (Krt18) genes regulate cyan and red fluorescent proteins (CFP and RFP), respectively. CFP and RFP reporter protein fluorescence allows for visualization of K5(+) and K18(+) epithelial cells within the cellular spatial context of the prostate gland and for their direct isolation by FACS. Using these models, it is possible to test directly the stem cell properties of prostate epithelial cell populations that are positively selected based on expression of cytoplasmic proteins, K5 and K18. After validating appropriate expression of the K5/CFP and K18/RFP transgenes in the developing and adult prostate, we demonstrate that a subset of CFP-expressing prostate cells exhibits stem cell proliferation potential and differentiation capabilities. Then, using prostate cells sorted from double transgenic mice (K5/CFP + K18/RFP), we compare RNA microarrays of sorted K5(+)K18(+) basal and K5(-)K18(+) luminal epithelial cells, and identify genes that are differentially expressed. Several genes that are over-expressed in K5(+) cells have previously been identified as potential stem cell markers. These results suggest that FACS isolation of prostate cells from these mice based on combining reporter gene fluorescence with expression of potential stem cell surface marker proteins will yield populations of cells enriched for stem cells to a degree that has not been attained by using cell surface markers alone.
Collapse
|
123
|
Novel human prostate epithelial cell culture models for the study of carcinogenesis and of normal stem cells and cancer stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 720:71-80. [PMID: 21901619 DOI: 10.1007/978-1-4614-0254-1_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Research into the mechanisms of prostate cancer progression has been limited by the lack of suitable in vitro systems. A hurdle in understanding the molecular genetic changes in prostate cancer has been the difficulty in establishing premalignant lesions and primary prostate tumors as in vitro cell cultures. Primary prostate epithelial cells grow for a finite life span and then senesce. Immortalization is defined by continuous growth of otherwise senescing cells and is believed to represent an early stage in tumor progression. To examine these early stages, we and others have developed in vitro models of prostate epithelial cell immortalization. Generation of primary human prostate epithelial (HPE) cells has been achieved using the serum-free condition. Retrovirus containing human telomerase reverse transcriptase (hTERT) was successfully used for the immortalization of primary HPE cells. Putative stem cell markers CD133 and CXCR4 were further identified in hTERT-immortalized primary nonmalignant and malignant tumor-derived HPE lines. In addition, an hTERT-immortalized nonmalignant HPE cell were found to retain the properties of multipotent stem cells. These in vitro prostate cell culture models should be useful for the study of carcinogenesis and of normal and cancer stem cells. Prostate cancer is the most common male cancer in the Western World and second leading cause of male cancer death in the United States [1]. The therapy most widely used against advanced disease is androgen ablation and, initially, it almost always produces objective clinical responses. However, most patients eventually relapse with ablation-resistant prostate cancer and develop metastatic disease; currently, there is no treatment that will cure progressive hormone-refractory metastatic prostate cancer. The mechanisms of progression of prostate cancer have been extensively studied, yet are poorly understood. One of the concepts that has been evolved is that cancer arises from the neoplastic transformation of normal prostate epithelial stem cells or transit amplifying cells. Understanding normal stem cells and cancer stem cells (CSCs) may provide insight into the origin of and new therapeutics for prostate cancer. However, research in this field is limited by the lack of suitable in vitro systems.
Collapse
|
124
|
Stearns ME, Amatangelo MD, Varma D, Sell C, Goodyear SM. Combination therapy with epigallocatechin-3-gallate and doxorubicin in human prostate tumor modeling studies: inhibition of metastatic tumor growth in severe combined immunodeficiency mice. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:3169-79. [PMID: 20971741 PMCID: PMC2993277 DOI: 10.2353/ajpath.2010.100330] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/19/2010] [Indexed: 11/20/2022]
Abstract
The polyphenol epigallocatechin-3-gallate (EGCG) in combination with doxorubicin (Dox) exhibits a synergistic activity in blocking the growth and colony-forming ability of human prostate cell lines in vitro. EGCG has been found to disrupt the mitochondrial membrane potential, induce vesiculation of mitochondria, and induce elevated poly (ADP-ribose) polymerase (PARP) cleavage and apoptosis. EGCG in combination with low levels of Dox had a synergistic effect in blocking tumor cell growth. In vivo tumor modeling studies with a highly metastatic tumor line, PC-3ML cells, revealed that EGCG (228 mg/kg or 200 μmol/L) appeared to sensitize tumors to Dox. EGCG combined with low levels of Dox (0.14 mg/kg or 2 μmol/L) blocked tumor growth by PC-3ML cells injected intraperitoneally (ie, in CB17 severe combined immunodeficiencies) and significantly increased mouse survival rates. Similarly, relatively low levels of EGCG (57 mg/kg or 50 μmol/L) plus Dox (0.07 mg/kg or 1 μmol/L) eradicated established tumors (ie, in nonobese diabetic-severe combined immunodeficiencies) that were derived from CD44(hi) tumor-initiating cells isolated from PCa-20a cells. Flow cytometry results showed that EGCG appeared to enhance retention of Dox by tumor cells to synergistically inhibit tumor growth and eradicate tumors. These data suggest that localized delivery of high dosages of EGCG combined with low levels of Dox may have significant clinical application in the treatment of metastatic prostate and/or eradication of primary tumors derived from tumor-initiating cells.
Collapse
Affiliation(s)
- Mark E Stearns
- Drexel University College of Medicine, Dept. of Pathology, MS 435, 245 N. Broad St., Philadelphia, PA 19102, USA.
| | | | | | | | | |
Collapse
|
125
|
Abstract
The cancer stem cell (CSC) model proposes that cells within a tumor are organized in a hierarchical lineage relationship and display different tumorigenic potential, suggesting that effective therapeutics should target rare CSCs that sustain tumor malignancy. Here we review the current status of studies to identify CSCs in human prostate cancer as well as mouse models, with an emphasis on discussing different functional assays and their advantages and limitations. We also describe current controversies regarding the identification of prostate epithelial stem cells and cell types of origin for prostate cancer, and present potential resolutions of these issues. Although definitive evidence for the existence of CSCs in prostate cancer is still lacking, future directions pursuing the identification of tumor-initiating stem cells in the mouse may provide important advances in evaluating the CSC model for prostate cancer.
Collapse
Affiliation(s)
- Z A Wang
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | | |
Collapse
|
126
|
Development and limitations of lentivirus vectors as tools for tracking differentiation in prostate epithelial cells. Exp Cell Res 2010; 316:3161-71. [DOI: 10.1016/j.yexcr.2010.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/31/2010] [Accepted: 08/07/2010] [Indexed: 11/20/2022]
|
127
|
Cancer stem cells in urologic cancers. Urol Oncol 2010; 28:585-90. [DOI: 10.1016/j.urolonc.2009.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/14/2009] [Accepted: 06/16/2009] [Indexed: 12/31/2022]
|
128
|
Chauchereau A, Al Nakouzi N, Gaudin C, Le Moulec S, Compagno D, Auger N, Bénard J, Opolon P, Rozet F, Validire P, Fromont G, Fizazi K. Stemness markers characterize IGR-CaP1, a new cell line derived from primary epithelial prostate cancer. Exp Cell Res 2010; 317:262-75. [PMID: 20974126 DOI: 10.1016/j.yexcr.2010.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 09/20/2010] [Accepted: 10/16/2010] [Indexed: 01/06/2023]
Abstract
Deciphering molecular pathways involved in the early steps of prostate oncogenesis requires both in vitro and in vivo models derived from human primary tumors. However the few recognized models of human prostate epithelial cancer originate from metastases. To date, very few models are proposed from primary tumors and immortalizing normal human prostate cells does not recapitulate the natural history of the disease. By culturing human prostate primary tumor cells onto human epithelial extra-cellular matrix, we successfully selected a new prostate cancer cell line, IGR-CaP1, and clonally-derived subclones. IGR-CaP1 cells, that harbor a tetraploid karyotype, high telomerase activity and mutated TP53, rapidly induced subcutaneous xenografts in nude mice. Furthermore, IGR-CaP1 cell lines, all exhibiting negativity for the androgen receptor and PSA, express the specific prostate markers alpha-methylacyl-CoA racemase and a low level of the prostate-specific membrane antigen PSMA, along with the prostate basal epithelial markers CK5 and CK14. More importantly, these clones express high CD44, CD133, and CXCR4 levels associated with high expression of α2β1-integrin and Oct4 which are reported to be prostate cancer stemness markers. RT-PCR data also revealed high activation of the Sonic Hedgehog signalling pathway in these cells. Additionally, the IGR-CaP1 cells possess a 3D sphere-forming ability and a renewal capacity by maintaining their CSC potential after xenografting in mice. As a result, the hormone-independent IGR-CaP1 cellular clones exhibit the original features of both basal prostate tissue and cancer stemness. Tumorigenic IGR-CaP1 clones constitute invaluable human models for studying prostate cancer progression and drug assessment in vitro as well as in animals specifically for developing new therapeutic approaches targeting prostate cancer stem cells.
Collapse
Affiliation(s)
- Anne Chauchereau
- Prostate Cancer Group, INSERM U981, Institut Gustave Roussy, Villejuif F-94805, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Grimm M, Lazariotou M, Kircher S, Stuermer L, Reiber C, Höfelmayr A, Gattenlöhner S, Otto C, Germer CT, von Rahden BHA. MMP-1 is a (pre-)invasive factor in Barrett-associated esophageal adenocarcinomas and is associated with positive lymph node status. J Transl Med 2010; 8:99. [PMID: 20946664 PMCID: PMC2967517 DOI: 10.1186/1479-5876-8-99] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 10/14/2010] [Indexed: 12/19/2022] Open
Abstract
Background Esophageal adenocarcinomas (EACs) arise due to gastroesophageal reflux, with Barrett's esophagus (BE) regarded as precancerous lesion. Matrix metalloproteinases (MMPs) might play a role during the multistep carcinogenetic process. Methods Expression of MMP-1 and -13 was analyzed in esophageal cancer (n = 41 EAC with BE, n = 19 EAC without BE, and n = 10 esophageal squamous-cell carcinomas, ESCC), furthermore in BE without intraepithelial neoplasia (IN) (n = 18), and the cell line OE-33. MMP-1 was co-labelled with Ki-67 (proliferation), Cdx-2 (marker for intestinal metaplasia, BE) and analyzed on mRNA level. MMP-1 staining results were correlated with clinicopatholocical parameters. Results On protein level, MMP-1 expression was found in 39 of 41 (95%) EAC with BE, in 19 of 19 (100%) EAC without BE, in 6 of 10 (60%) ESCC, and in 10 of 18 (56%) BE without IN. No expression of MMP-13 was found in these specimens. Quantification showed 48% MMP-1 positive cells in EAC with BE, compared to 35% in adjacent BE (p < 0.05), 44% in EAC without BE, 32% in ESCC, and 4% in BE without IN. Immunofluorescence double staining experiments revealed increased MMP-1 expressing in proliferating cells (MMP-1+/Ki-67+) (r = 0.943 for BE and r = 0.811 for EAC). On mRNA-level, expression of MMP-1 was significantly higher in EAC compared to BE (p = 0.01) and confirmed immunohistochemical staining results. High MMP-1 levels were associated with lymph node metastases but not with poorer survival (p = 0.307). Conclusions Our findings suggest that MMP-1 plays a role as preinvasive factor in BE-associated EAC. Expression of MMP-1 in proliferating BE and EAC cells suggest malignant proliferation following the clonal expansion model.
Collapse
Affiliation(s)
- Martin Grimm
- Department of General-, Visceral-, Vascular and Pediatric Surgery, University of Wuerzburg Hospital, Oberduerrbacher Strasse 6, 97080 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Goldstein AS, Stoyanova T, Witte ON. Primitive origins of prostate cancer: in vivo evidence for prostate-regenerating cells and prostate cancer-initiating cells. Mol Oncol 2010; 4:385-96. [PMID: 20688584 PMCID: PMC2939195 DOI: 10.1016/j.molonc.2010.06.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 01/16/2023] Open
Abstract
Tissue stem cells have been linked to cancers of epithelial origin including the prostate. There are three relevant issues concerning stem cells and cancer that rely solely on functional studies: 1. Are there tissue-regenerating stem cells in the adult organ? 2. Can tissue-regenerating cells serve as targets for transformation? 3. Do primary tumors contain tumor-propagating (cancer stem) cells? We will review the recent literature with respect to these critical issues to provide a direct link between primitive cells and prostate cancer.
Collapse
Affiliation(s)
- Andrew S Goldstein
- Molecular Biology Institute, University of California, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|
131
|
Lang SH, Anderson E, Fordham R, Collins AT. Modeling the prostate stem cell niche: an evaluation of stem cell survival and expansion in vitro. Stem Cells Dev 2010; 19:537-46. [PMID: 20102283 DOI: 10.1089/scd.2009.0291] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The goal of this work was to engineer a clinically relevant in vitro model of human prostate stem cells (PSCs) that could be used to interrogate the mechanisms of stem cell control. We, therefore, compared the growth potential of stem cells in 3D culture (where the conditions would favor a quiescent state) with monolayer culture that has previously been demonstrated to induce PSC division. We found a fundamental difference between cultures of primary, adult PSCs grown as monolayers compared to those grown as spheres. The first supported the expansion and maintenance of PSCs from single cells while the latter did not. In an attempt to determine the mechanisms governing stem cell control, several known stem cell activators (including IFNalpha, FGF2, anti-TGFbeta, and dihydrotestosterone) were studied. However, cell division was not observed. CD133+ cells derived from a prostate cell line did not grow as spheres from single cells but did grow from aggregates. We conclude that PSCs can be expanded and maintained in monolayer culture from single cells, but that PSCs are growth quiescent when grown as spheres. It is likely that the physical arrangement of cells in monolayer provides an injury-type response, which can activate stem cells into cycle.
Collapse
Affiliation(s)
- Shona H Lang
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| | | | | | | |
Collapse
|
132
|
Marian CO, Wright WE, Shay JW. The effects of telomerase inhibition on prostate tumor-initiating cells. Int J Cancer 2010; 127:321-31. [PMID: 19908230 DOI: 10.1002/ijc.25043] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate cancer is the most common malignancy in men, and patients with metastatic disease have poor outcome even with the most advanced therapeutic approaches. Most cancer therapies target the bulk tumor cells, but may leave intact a small population of tumor-initiating cells (TICs), which are believed to be responsible for the subsequent relapse and metastasis. Using specific surface markers (CD44, integrin alpha(2)beta(1) and CD133), Hoechst 33342 dye exclusion, and holoclone formation, we isolated TICs from a panel of prostate cancer cell lines (DU145, C4-2 and LNCaP). We have found that prostate TICs have significant telomerase activity which is inhibited by imetelstat sodium (GRN163L), a new telomerase antagonist that is currently in Phase I/II clinical trials for several hematological and solid tumor malignancies. Prostate TICs telomeres were of similar average length to the telomeres of the main population of cells and significant telomere shortening was detected in prostate TICs as a result of imetelstat treatment. These findings suggest that telomerase inhibition therapy may be able to efficiently target the prostate TICs in addition to the bulk tumor cells, providing new opportunities for combination therapies.
Collapse
Affiliation(s)
- Calin O Marian
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
133
|
Alpha1 and beta1 integrins enhance the homing and differentiation of cultured prostate cancer stem cells. Asian J Androl 2010; 12:548-55. [PMID: 20531279 DOI: 10.1038/aja.2010.20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CD133(+) prostate cancer stem cells (PCSCs) have recently been identified in human prostate cancer tissues. The present study reports the integrin profile of prostate cancer progenitor cells and the role of alpha(1) and beta(1) integrins in the homing and differentiation of PCSCs in vitro. PCSCs were isolated from the tissue specimens of patients with prostate cancer and the expression of surface integrins and adhesion patterns were determined. Our analysis of the expression of surface integrins and their adhesion patterns of prostate cancer stem cells derived from prostate cancer tissues revealed that the levels of beta(1) and alpha(2)beta(1) integrins were significantly higher (P < 0.05) than those of the other integrins. By contrast, peripheral blood-derived CD133(+) cells from prostate cancer patients showed a high level of expression (P < 0.01) of alpha(2)beta(1), alpha(v)beta(3), alpha(v)beta(5), beta(1) and alpha(1) integrins and a minimal expression of alpha(4)beta(1) integrins. Moreover, CD133(+) cells derived from both prostate cancer tissues and peripheral blood exhibited an increased degree of attachment to extracellular matrix proteins (P < 0.001) and a high expression level of alpha(2)beta(1) integrin. In vitro experiments using blocking antibodies indicated that alpha(1) and beta(1) integrins have a role in the homing and differentiation of PCSCs. This is the first report to suggest the importance of integrins in mediating the homing and differentiation of PCSCs.
Collapse
|
134
|
van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Lippitt JM, Guzmán-Ramírez N, Hamdy FC, Eaton CL, Thalmann GN, Cecchini MG, Pelger RCM, van der Pluijm G. High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 2010; 70:5163-73. [PMID: 20516116 DOI: 10.1158/0008-5472.can-09-3806] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metastatic progression of advanced prostate cancer is a major clinical problem. Identifying the cell(s) of origin in prostate cancer and its distant metastases may permit the development of more effective treatment and preventive therapies. In this study, aldehyde dehydrogenase (ALDH) activity was used as a basis to isolate and compare subpopulations of primary human prostate cancer cells and cell lines. ALDH-high prostate cancer cells displayed strongly elevated clonogenicity and migratory behavior in vitro. More strikingly, ALDH-high cells readily formed distant metastases with strongly enhanced tumor progression at both orthotopic and metastatic sites in preclinical models. Several ALDH isoforms were expressed in human prostate cancer cells and clinical specimens of primary prostate tumors with matched bone metastases. Our findings suggest that ALDH-based viable cell sorting can be used to identify and characterize tumor-initiating and, more importantly perhaps, metastasis-initiating cells in human prostate cancer.
Collapse
|
135
|
Eaton CL, Colombel M, van der Pluijm G, Cecchini M, Wetterwald A, Lippitt J, Rehman I, Hamdy F, Thalman G. Evaluation of the frequency of putative prostate cancer stem cells in primary and metastatic prostate cancer. Prostate 2010; 70:875-82. [PMID: 20127735 DOI: 10.1002/pros.21121] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Tumour cells with a stem cell-like phenotype have recently been identified in prostate tumors and it has been suggested that this population may be responsible for the diversity of cell types within tumors and also for the initiation of metastases. These cells carry a number of defined markers: they are cd133 and cd44+ve and express high levels of alpha2beta1 integrin. In this study we have, for the first time, assessed matched primary and bone marrow biopsies from prostate cancer patients for the distribution of cells carrying these and a number of other putative stem cell markers. METHODS Eleven matched (primary and bone metastasis) specimens from prostate cancer patients were assessed for the presence of cd133, cd44, alpha2beta1 integrin, CXCR4, c-met, alpha6 integrin, and nestin using immunohistochemistry and stain intensity and distribution scored. RESULTS In the bone metastases, tumor cells staining positively for cd133 were detected at low frequency in approximately 50% of samples. Staining for nestin was confined to endothelium. Positive staining of tumor cells for the other antigens was present at variable frequency in >70% of metastases with the exception of CXCR4 which was absent from all but 2 specimens. Where positive staining of tumor cells was present in the metastasis, cells staining for each antigen were present in the matched primary with the exception of cd44 which was absent in all but 2/11 matched primary tissues. CONCLUSIONS In established metastases no single or combination of marker expression profiles identify the established metastatic phenotype, although cd44 expression was shown to be more frequent in metastases that in primary cancers.
Collapse
Affiliation(s)
- Colby L Eaton
- School of Medicine, University of Sheffield, Sheffield, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Shay JW, Wright WE. Telomeres and telomerase in normal and cancer stem cells. FEBS Lett 2010; 584:3819-25. [PMID: 20493857 DOI: 10.1016/j.febslet.2010.05.026] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/16/2010] [Indexed: 01/05/2023]
Abstract
Differences between normal adult tissue stem cells and cancer stem/initiating cells remain poorly defined. For example, it is controversial if cancer stem cells can become fully quiescent, require a stem cell niche, are better at repairing DNA damage than the bulk of the cancer cells, and if and how they regulate symmetric versus asymmetric cell divisions. This minireview will not only provide our personal views to address some of these outstanding questions, but also present evidence that an understanding of telomere dynamics and telomerase activity in normal and cancer stem cells may provide additional insights into how tumors are initiated, and how they should be monitored and treated.
Collapse
Affiliation(s)
- Jerry W Shay
- UT Southwestern Medical Center, Department of Cell Biology, Dallas, TX 75390, USA.
| | | |
Collapse
|
137
|
Li Y, Cozzi PJ, Russell PJ. Promising tumor-associated antigens for future prostate cancer therapy. Med Res Rev 2010; 30:67-101. [PMID: 19536865 DOI: 10.1002/med.20165] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Prostate cancer (CaP) is one of the most prevalent malignant diseases among men in Western countries. There is currently no cure for metastatic castrate-resistant CaP, and median survival for these patients is about 18 months; the high mortality rate seen is associated with widespread metastases. Progression of CaP from primary to metastatic disease is associated with several molecular and genetic changes that can affect the expression of specific tumor-associated antigens (TAAs) or receptors on the cell surface. Targeting TAAs is emerging as an area of promise for controlling late-stage and recurrent CaP. Several reviews have summarized the progress made in targeting signaling pathways for CaP but will not be discussed here. We describe some important CaP TAAs. These include prostate stem-cell antigen, prostate-specific membrane antigen, MUC1, epidermal growth factor receptor, platelet-derived growth factor and its receptor, urokinase plasminogen activator and its receptor, and extracellular matrix metalloproteinase inducer. We summarize recent advancements in our understanding of their role in CaP metastasis, as well as potential therapeutic options for targeting CaP TAAs. We also discuss the origin, identification, and characterization of prostate cancer stem cells (CSCs) and the potential benefits of targeting prostate CSCs to overcome chemoresistance and CaP recurrence.
Collapse
Affiliation(s)
- Yong Li
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.
| | | | | |
Collapse
|
138
|
Garraway IP, Sun W, Tran CP, Perner S, Zhang B, Goldstein AS, Hahm SA, Haider M, Head CS, Reiter RE, Rubin MA, Witte ON. Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. Prostate 2010; 70:491-501. [PMID: 19938015 PMCID: PMC2885946 DOI: 10.1002/pros.21083] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Prostate stem/progenitor cells function in glandular development and maintenance. They may be targets for tumor initiation, so characterization of these cells may have therapeutic implications. Cells from dissociated tissues that form spheres in vitro often represent stem/progenitor cells. A subset of human prostate cells that form prostaspheres were evaluated for self-renewal and tissue regeneration capability in the present study. METHODS Prostaspheres were generated from 59 prostatectomy specimens. Lineage marker expression and TMPRSS-ERG status was determined via immunohistochemistry and fluorescence in situ hybridization (FISH). Subpopulations of prostate epithelial cells were isolated by cell sorting and interrogated for sphere-forming activity. Tissue regeneration potential was assessed by combining sphere-forming cells with rat urogenital sinus mesenchyme (rUGSM) subcutaneously in immunocompromised mice. RESULTS Prostate tissue specimens were heterogeneous, containing both benign and malignant (Gleason 3-5) glands. TMPRSS-ERG fusion was found in approximately 70% of cancers examined. Prostaspheres developed from single cells at a variable rate (0.5-4%) and could be serially passaged. A basal phenotype (CD44+CD49f+CK5+p63+CK8-AR-PSA-) was observed among sphere-forming cells. Subpopulations of prostate cells expressing tumor-associated calcium signal transducer 2 (Trop2), CD44, and CD49f preferentially formed spheres. In vivo implantation of sphere-forming cells and rUGSM regenerated tubular structures containing discreet basal and luminal layers. The TMPRSS-ERG fusion was absent in prostaspheres derived from fusion-positive tumor tissue, suggesting a survival/growth advantage of benign prostate epithelial cells. CONCLUSION Human prostate sphere-forming cells self-renew, have tissue regeneration capability, and represent a subpopulation of basal cells.
Collapse
Affiliation(s)
- Isla P Garraway
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Hurt EM, Chan K, Serrat MAD, Thomas SB, Veenstra TD, Farrar WL. Identification of vitronectin as an extrinsic inducer of cancer stem cell differentiation and tumor formation. Stem Cells 2010; 28:390-8. [PMID: 19998373 PMCID: PMC3448441 DOI: 10.1002/stem.271] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is mounting evidence that tumors are initiated by a rare subset of cells called cancer stem cells (CSCs). CSCs are generally quiescent, self-renew, form tumors at low numbers, and give rise to the heterogeneous cell types found within a tumor. CSCs isolated from multiple tumor types differentiate both in vivo and in vitro when cultured in serum, yet the factors responsible for their differentiation have not yet been identified. Here we show that vitronectin is the component of human serum driving stem cell differentiation through an integrin alpha V beta 3-dependent mechanism. CSCs cultured on vitronectin result in downregulation of stem cell genes, modulation of differentiation markers, and loss of beta-catenin nuclear localization. Blocking integrin alpha V beta 3 inhibits differentiation and subsequently tumor formation. Thus, CSCs must be engaged by one or more extracellular signals to differentiate and initiate tumor formation, defining a new axis for future novel therapies aimed at both the extrinsic and intracellular pathways.
Collapse
Affiliation(s)
- Elaine M Hurt
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
140
|
Nilsson CL, Dillon R, Devakumar A, Shi SDH, Greig M, Rogers JC, Krastins B, Rosenblatt M, Kilmer G, Major M, Kaboord BJ, Sarracino D, Rezai T, Prakash A, Lopez M, Ji Y, Priebe W, Lang FF, Colman H, Conrad CA. Quantitative phosphoproteomic analysis of the STAT3/IL-6/HIF1alpha signaling network: an initial study in GSC11 glioblastoma stem cells. J Proteome Res 2010; 9:430-43. [PMID: 19899826 DOI: 10.1021/pr9007927] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Initiation and maintenance of several cancers including glioblastoma (GBM) may be driven by a small subset of cells called cancer stem cells (CSCs). CSCs may provide a repository of cells in tumor cell populations that are refractory to chemotherapeutic agents developed for the treatment of tumors. STAT3 is a key transcription factor associated with regulation of multiple stem cell types. Recently, a novel autocrine loop (IL-6/STAT3/HIF1alpha) has been observed in multiple tumor types (pancreatic, prostate, lung, and colon). The objective of this study was to probe perturbations of this loop in a glioblastoma cancer stem cell line (GSC11) derived from a human tumor by use of a JAK2/STAT3 phosphorylation inhibitor (WP1193), IL-6 stimulation, and hypoxia. A quantitative phosphoproteomic approach that employed phosphoprotein enrichment, chemical tagging with isobaric tags, phosphopeptide enrichment, and tandem mass spectrometry in a high-resolution instrument was applied. A total of 3414 proteins were identified in this study. A rapid Western blotting technique (<1 h) was used to confirm alterations in key protein expression and phosphorylation levels observed in the mass spectrometric experiments. About 10% of the phosphoproteins were linked to the IL-6 pathway, and the majority of remaining proteins could be assigned to other interlinked networks. By multiple comparisons between the sample conditions, we observed expected changes and gained novel insights into the contribution of each factor to the IL6/STAT3/HIF1alpha autocrine loop and the CSC response to perturbations by hypoxia, inhibition of STAT3 phosphorylation, and IL-6 stimulation.
Collapse
Affiliation(s)
- Carol L Nilsson
- Pfizer Global Research and Development, 10770 Science Center Drive, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Mimeault M, Johansson SL, Henichart JP, Depreux P, Batra SK. Cytotoxic effects induced by docetaxel, gefitinib, and cyclopamine on side population and nonside population cell fractions from human invasive prostate cancer cells. Mol Cancer Ther 2010; 9:617-30. [PMID: 20179163 DOI: 10.1158/1535-7163.mct-09-1013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present study has been undertaken to establish the therapeutic benefit of cotargeting epidermal growth factor receptor (EGFR) and sonic hedgehog pathways by using gefitinib and cyclopamine, respectively, for improving the efficacy of the current chemotherapeutic drug docetaxel to counteract the prostate cancer progression from locally invasive to metastatic and recurrent disease stages. The data from immuofluorescence analyses revealed that EGFR/Tyr(1173)-pEGFR, sonic hedgehog ligand, smoothened coreceptor, and GLI-1 were colocalized with the CD133(+) stem cell-like marker in a small subpopulation of prostate cancer cells. These signaling molecules were also present in the bulk tumor mass of CD133(-) prostate cancer cells with a luminal phenotype detected in patient's adenocarcinoma tissues. Importantly, the results revealed that the CD133(+)/CD44(high)/AR(-/low) side population (SP) cell fraction endowed with a high self-renewal potential isolated from tumorigenic and invasive WPE1-NB26 cells by the Hoechst dye technique was insensitive to the current chemotherapeutic drug, docetaxel. In contrast, the docetaxel treatment induced significant antiproliferative and apoptotic effects on the CD133(-)/CD44(low)/AR(+) non-SP cell fraction isolated from the WPE1-NB26 cell line. Of therapeutic interest, the results have also indicated that combined docetaxel, gefitinib, and cyclopamine induced greater antiproliferative and apoptotic effects on SP and non-SP cell fractions isolated from WPE1-NB26 cells than individual drugs or two-drug combinations. Altogether, these observations suggest that EGFR and sonic hedgehog cascades may represent the potential therapeutic targets of great clinical interest to eradicate the total prostate cancer cell mass and improve the current docetaxel-based therapies against locally advanced and invasive prostate cancers, and thereby prevent metastases and disease relapse.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | | | | | |
Collapse
|
142
|
Collins AT, Maitland NJ. Prostate cancer: regeneration of interest in the prostate. Nat Rev Urol 2010; 6:184-6. [PMID: 19352391 DOI: 10.1038/nrurol.2009.48] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anne T Collins
- Yorkshire Cancer Research Cancer Research Unit, University of York, York, UK
| | | |
Collapse
|
143
|
Estrogen receptor-beta activated apoptosis in benign hyperplasia and cancer of the prostate is androgen independent and TNFalpha mediated. Proc Natl Acad Sci U S A 2010; 107:3123-8. [PMID: 20133657 DOI: 10.1073/pnas.0905524107] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prostate cancer (PCa) and benign prostatic hyperplasia (BPH) are androgen-dependent diseases commonly treated by inhibiting androgen action. However, androgen ablation or castration fail to target androgen-independent cells implicated in disease etiology and recurrence. Mechanistically different to castration, this study shows beneficial proapoptotic actions of estrogen receptor-beta (ERbeta) in BPH and PCa. ERbeta agonist induces apoptosis in prostatic stromal, luminal and castrate-resistant basal epithelial cells of estrogen-deficient aromatase knock-out mice. This occurs via extrinsic (caspase-8) pathways, without reducing serum hormones, and perturbs the regenerative capacity of the epithelium. TNFalpha knock-out mice fail to respond to ERbeta agonist, demonstrating the requirement for TNFalpha signaling. In human tissues, ERbeta agonist induces apoptosis in stroma and epithelium of xenografted BPH specimens, including in the CD133(+) enriched putative stem/progenitor cells isolated from BPH-1 cells in vitro. In PCa, ERbeta causes apoptosis in Gleason Grade 7 xenografted tissues and androgen-independent cells lines (PC3 and DU145) via caspase-8. These data provide evidence of the beneficial effects of ERbeta agonist on epithelium and stroma of BPH, as well as androgen-independent tumor cells implicated in recurrent disease. Our data are indicative of the therapeutic potential of ERbeta agonist for treatment of PCa and/or BPH with or without androgen withdrawal.
Collapse
|
144
|
Li T, Su Y, Mei Y, Leng Q, Leng B, Liu Z, Stass SA, Jiang F. ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients' outcome. J Transl Med 2010; 90:234-44. [PMID: 20010854 PMCID: PMC3552330 DOI: 10.1038/labinvest.2009.127] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Prostate cancer (PCa) contains a small population of cancer stem cells (CSCs) that contribute to its initiation and progression. The development of specific markers for identification of the CSCs may lead to new diagnostic strategies of PCa. Increased aldehyde dehydrogenase 1A1 (ALDH1A1) activity has been found in the stem cell populations of leukemia and some solid tumors. The aim of the study was to investigate the stem-cell-related function and clinical significance of the ALDH1A1 in human PCa. ALDEFLUOR assay was used to isolate ALDH1A1(+) cells from PCa cell lines. Stem cell characteristics of the ALDH1A1(+) cells were then investigated by in vitro and in vivo approaches. The ALDH1A1 expression was also analyzed by immunohistochemistry in 18 normal prostate and 163 PCa tissues. The ALDH1A1(+) PCa cells showed high clonogenic and tumorigenic capacities, and serially reinitiated transplantable tumors that resembled histopathologic characteristics and heterogeneity of the parental PCa cells in mice. Immunohistochemical analysis of human prostate tissues showed that ALDH1A1(+) cells were sparse and limited to the basal component in normal prostates. However, in tumor specimens, increased ALDH1A1 immunopositivity was found not only in secretory type cancer epithelial cells but also in neuroendocrine tumor populations. Furthermore, the high ALDH1A1 expression in PCa was positively correlated with Gleason score (P=0.01) and pathologic stage (P=0.01), and inversely associated with overall survival and cancer-specific survival of the patients (P=0.00093 and 0.00017, respectively). ALDH1A1 could be a prostate CSC-related marker. Measuring its expression might provide a potential approach to study tumorigenesis of PCa and predict outcome of the disease.
Collapse
Affiliation(s)
- Ting Li
- Department of Pathology and Division of Biostatistics of The University of Maryland, Baltimore, MD.
| | - Yun Su
- Department of Surgery, Zhongda Hospital, The School of Clinical Medicine, Southeast University, Nanjing, China.
| | - Yuping Mei
- Department of Pathology and Division of Biostatistics of The University of Maryland, Baltimore, MD.
| | - Qixin Leng
- Department of Pathology and Division of Biostatistics of The University of Maryland, Baltimore, MD.
| | - Bingjie Leng
- Department of Pathology and Division of Biostatistics of The University of Maryland, Baltimore, MD.
| | - Zhenqiu Liu
- Department of Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD.
| | - Sanford A. Stass
- Department of Pathology and Division of Biostatistics of The University of Maryland, Baltimore, MD.
| | - Feng Jiang
- Department of Pathology and Division of Biostatistics of The University of Maryland, Baltimore, MD.
,Correspondence to, Department of Pathology, The University of Maryland School of Medicine, 10 South Pine Street, MSTF 7th floor, Baltimore, MD 21201-1192, USA. .
| |
Collapse
|
145
|
Swift SL, Burns JE, Maitland NJ. Altered expression of neurotensin receptors is associated with the differentiation state of prostate cancer. Cancer Res 2010; 70:347-56. [PMID: 20048080 DOI: 10.1158/0008-5472.can-09-1252] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In prostate cancer, traditional treatments such as androgen response manipulation often provide only temporary resolution of disease, with emergence of a more aggressive, androgen-independent tumor following initial therapy. To treat recurrent disease, cell surface proteins that are specifically overexpressed on malignant cells may be useful for generating targeted therapeutics. Recent evidence suggests that neurotensin receptors (NTR) are recruited in advanced prostate cancer as an alternative growth pathway in the absence of androgens. In this study, we assessed the potential use of these receptors as targets by analyzing NTR expression patterns in human prostate cell lines and primary prostate tumor cell cultures derived from patient samples. In primary tumor cell cultures, NTR1 was upregulated in cells with a basal phenotype (cytokeratin 1/5/10/14+), whereas NTR2 and NTR3 were upregulated in cells with luminal phenotype (cytokeratin 18+). Similar patterns of NTR expression occurred in benign prostate tissue sections, implicating differentiation state as a basis for the differences observed in tumor cell lines. Our findings support the use of NTRs as tools for therapeutic targeting in prostate cancers composed of both poorly differentiated and/or well-differentiated cells.
Collapse
Affiliation(s)
- Stephanie L Swift
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, United Kingdom
| | | | | |
Collapse
|
146
|
Abstract
Although both prostate epithelial stem cells and prostate cancer stem cells are implicated in the differentiation of the normal prostate gland and carcinogenesis of prostate cancer, there has, until recently, been little information regarding their biology. This review summarizes the recent advancements in cell biological research including various in vitro culture systems that have offered the characterization and isolation of prostate epithelial stem cells and prostate cancer stem cells. In addition, the stromal niche or microenvironment of stem cells plays an essential role in proliferation and differentiation of normal stem cells. Stroma surrounding cancer cells, which also provide another unique niche, may involve the initiation and development of cancer stem cells. Investigation of stem cells and their microenvironments in the prostate should lead to the elucidation of biological features and the development of novel treatments for prostate cancer.
Collapse
Affiliation(s)
- Jun Miki
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
147
|
Chopra DP, Dombkowski AA, Stemmer PM, Parker GC. Intestinal epithelial cells in vitro. Stem Cells Dev 2010; 19:131-42. [PMID: 19580443 PMCID: PMC3136723 DOI: 10.1089/scd.2009.0109] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/06/2009] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the biology of stem cells has resulted in significant interest in the development of normal epithelial cell lines from the intestinal mucosa, both to exploit the therapeutic potential of stem cells in tissue regeneration and to develop treatment models of degenerative disorders of the digestive tract. However, the difficulty of propagating cell lines of normal intestinal epithelium has impeded research into the molecular mechanisms underlying differentiation of stem/progenitor cells into the various intestinal lineages. Several short-term organ/organoid and epithelial cell culture models have been described. There is a dearth of long-term epithelial and/or stem cell cultures of intestine. With an expanding role of stem cells in the treatment of degenerative disorders, there is a critical need for additional efforts to develop in vitro models of stem/progenitor epithelial cells of intestine. The objective of this review is to recapitulate the current status of technologies and knowledge for in vitro propagation of intestinal epithelial cells, markers of the intestinal stem cells, and gene and protein expression profiles of the intestinal cellular differentiation.
Collapse
Affiliation(s)
- Dharam P. Chopra
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Alan A. Dombkowski
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Graham C. Parker
- Carman and Ann Adams Department of Pediatrics, Wayne State University, Detroit, Michigan
| |
Collapse
|
148
|
Guzmán-Ramírez N, Völler M, Wetterwald A, Germann M, Cross NA, Rentsch CA, Schalken J, Thalmann GN, Cecchini MG. In vitro propagation and characterization of neoplastic stem/progenitor-like cells from human prostate cancer tissue. Prostate 2009; 69:1683-93. [PMID: 19644960 DOI: 10.1002/pros.21018] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND According to the cancer stem cell hypothesis, tumor growth is sustained by a subpopulation of cancer stem/progenitor-like cells. Self-renewal and high clonogenic potential are characteristics shared by normal stem and neoplastic stem/progenitor-like cells. We investigated whether human prostate cancer specimens contain cells with these properties. METHODS Self-renewal and clonogenic potential were assessed by serial passaging of spheres and colony formation, respectively. Gene expression was analyzed by real time PCR. Protein expression was detected by immunocytochemistry. The neoplastic nature of the cells was verified by detection of the TMPRSS2/ERG gene fusion expression. RESULTS The epithelial fraction isolated from surgical specimens generated colonies in 68% (19/28) of the patients. Laminin adhesion selected for cells with high clonogenic potential. The epithelial fraction from 85% (42/49) of the patients generated primary prostaspheres. Serial passaging of prostaspheres demonstrated their self-renewal capacity, which is also supported by their expression of the stem cell markers Oct-4, Nanog, Bmi-1, and Jagged-1 mRNA. Cells derived from prostaspheres were more clonogenic than the parental epithelial fraction. The pattern of mRNA expression in prostaspheres resembled that of the basal compartment of the prostate (CK5(+)/CK14(+)/CK19(high)/CK18(-/low)/c-met(+)/AR(-/low)/PSA(-/low)), but also included stem cell markers (CD49b(+)/CD49f(+)/CD44(+)/DeltaNp63(+)/Nestin(+)/CD133(+)). The distribution of marker expression in prostaspheres suggests their heterogeneous cell composition. Prostaspheres expressed significantly higher PSCA mRNA levels than the epithelial fraction. CONCLUSION Human prostate cancer specimens contain neoplastic cells with self-renewal and clonogenic potential, which can be enriched and perpetuated in prostaspheres. Prostaspheres should prove valuable for the identification of prostate cancer stem/progenitor-like cells.
Collapse
|
149
|
Adhesion within the stem cell niches. Curr Opin Cell Biol 2009; 21:623-9. [DOI: 10.1016/j.ceb.2009.05.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 05/13/2009] [Indexed: 12/15/2022]
|
150
|
Pascal LE, Vêncio RZN, Goo YA, Page LS, Shadle CP, Liu AY. Temporal expression profiling of the effects of secreted factors from prostate stromal cells on embryonal carcinoma stem cells. Prostate 2009; 69:1353-65. [PMID: 19455603 DOI: 10.1002/pros.20982] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND There is a growing body of evidence indicating that epigenetic influences originating from stromal cells in the immediate microenvironment may play a role in carcinogenesis. Determining the molecular mechanisms involved in stromal-stem cell interaction could provide critical insight into prostate development and disease progression, particularly with regard to their relationship to and influence on the putative cancer stem cell. METHODS Prostate and bladder stromal cells prepared from tissue specimens were co-cultured with the pluripotent embryonal carcinoma cell line NCCIT. Transcriptome analysis was used to characterize NCCIT cell response to prostate or bladder signaling. RESULTS A systems approach demonstrated that prostate stromal cells were capable of inducing gene expression changes in NCCIT through secreted factors. Induction led to a loss of embryonic stem cell markers, with concurrent up-regulation of many genes characteristic of stromal mesenchyme cells as well as some of epithelial and cancer stem cells. Bladder stromal signaling produced gene expression changes different from those of prostate signaling. CONCLUSIONS This study indicates that paracrine stromal cell signaling can affect cancer stem cell response in an organ-specific manner and may provide insight for future development of treatment strategies such as differentiation therapy.
Collapse
Affiliation(s)
- Laura E Pascal
- Department of Urology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|