101
|
Abstract
Osteoclasts begin as mononuclear cells that fuse to form multinuclear cells able to resorb bone. The mechanisms that regulate all the steps of osteoclast differentiation are not entirely known. MYO10, an unconventional myosin, has previously been shown in mature osteoclasts to play a role in attachment and podosome positioning. We determined that MYO10 is also expressed early during osteoclast differentiation. Loss of MYO10 expression in osteoclast precursors inhibits the ability of mononuclear osteoclasts to fuse into multinuclear osteoclasts. Expression of Nfatc1, Dc-stamp, Ctsk, and β3integrin is reduced in the osteoclasts with reduced MYO10 expression. A slight reduction in the osteoclasts ability to migrate, as well as a reduction in SMAD 1/5/8 phosphorylation are also noted with reduced MYO10 expression. Interestingly we also detected a change in the ability of the osteoclast precursors to form tunneling nanotubes (TNTs), which suggests that MYO10 may regulate the presence of TNTs through its interaction with the cytoskeletal proteins.
Collapse
|
102
|
Victoria GS, Zurzolo C. The spread of prion-like proteins by lysosomes and tunneling nanotubes: Implications for neurodegenerative diseases. J Cell Biol 2017; 216:2633-2644. [PMID: 28724527 PMCID: PMC5584166 DOI: 10.1083/jcb.201701047] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/03/2017] [Accepted: 07/05/2017] [Indexed: 11/22/2022] Open
Abstract
Victoria and Zurzolo discuss current evidence for the emerging role of lysosomal damage and tunneling nanotubes in the intercellular propagation of prion and prion-like proteins in neurodegenerative disease. Progression of pathology in neurodegenerative diseases is hypothesized to be a non–cell-autonomous process that may be mediated by the productive spreading of prion-like protein aggregates from a “donor cell” that is the source of misfolded aggregates to an “acceptor cell” in which misfolding is propagated by conversion of the normal protein. Although the proteins involved in the various diseases are unrelated, common pathways appear to be used for their intercellular propagation and spreading. Here, we summarize recent evidence of the molecular mechanisms relevant for the intercellular trafficking of protein aggregates involved in prion, Alzheimer’s, Huntington’s, and Parkinson’s diseases. We focus in particular on the common roles that lysosomes and tunneling nanotubes play in the formation and spreading of prion-like assemblies.
Collapse
Affiliation(s)
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, Paris, France
| |
Collapse
|
103
|
Nawaz M, Fatima F. Extracellular Vesicles, Tunneling Nanotubes, and Cellular Interplay: Synergies and Missing Links. Front Mol Biosci 2017; 4:50. [PMID: 28770210 PMCID: PMC5513920 DOI: 10.3389/fmolb.2017.00050] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/03/2017] [Indexed: 12/15/2022] Open
Abstract
The process of intercellular communication seems to have been a highly conserved evolutionary process. Higher eukaryotes use several means of intercellular communication to address both the changing physiological demands of the body and to fight against diseases. In recent years, there has been an increasing interest in understanding how cell-derived nanovesicles, known as extracellular vesicles (EVs), can function as normal paracrine mediators of intercellular communication, but can also elicit disease progression and may be used for innovative therapies. Over the last decade, a large body of evidence has accumulated to show that cells use cytoplasmic extensions comprising open-ended channels called tunneling nanotubes (TNTs) to connect cells at a long distance and facilitate the exchange of cytoplasmic material. TNTs are a different means of communication to classical gap junctions or cell fusions; since they are characterized by long distance bridging that transfers cytoplasmic organelles and intracellular vesicles between cells and represent the process of heteroplasmy. The role of EVs in cell communication is relatively well-understood, but how TNTs fit into this process is just emerging. The aim of this review is to describe the relationship between TNTs and EVs, and to discuss the synergies between these two crucial processes in the context of normal cellular cross-talk, physiological roles, modulation of immune responses, development of diseases, and their combinatory effects in tissue repair. At the present time this review appears to be the first summary of the implications of the overlapping roles of TNTs and EVs. We believe that a better appreciation of these parallel processes will improve our understanding on how these nanoscale conduits can be utilized as novel tools for targeted therapies.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Department of Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of São PauloSão Paulo, Brazil.,Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Farah Fatima
- Department of Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of São PauloSão Paulo, Brazil
| |
Collapse
|
104
|
Caicedo A, Aponte PM, Cabrera F, Hidalgo C, Khoury M. Artificial Mitochondria Transfer: Current Challenges, Advances, and Future Applications. Stem Cells Int 2017; 2017:7610414. [PMID: 28751917 PMCID: PMC5511681 DOI: 10.1155/2017/7610414] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/30/2017] [Accepted: 05/15/2017] [Indexed: 12/18/2022] Open
Abstract
The objective of this review is to outline existing artificial mitochondria transfer techniques and to describe the future steps necessary to develop new therapeutic applications in medicine. Inspired by the symbiotic origin of mitochondria and by the cell's capacity to transfer these organelles to damaged neighbors, many researchers have developed procedures to artificially transfer mitochondria from one cell to another. The techniques currently in use today range from simple coincubations of isolated mitochondria and recipient cells to the use of physical approaches to induce integration. These methods mimic natural mitochondria transfer. In order to use mitochondrial transfer in medicine, we must answer key questions about how to replicate aspects of natural transport processes to improve current artificial transfer methods. Another priority is to determine the optimum quantity and cell/tissue source of the mitochondria in order to induce cell reprogramming or tissue repair, in both in vitro and in vivo applications. Additionally, it is important that the field explores how artificial mitochondria transfer techniques can be used to treat different diseases and how to navigate the ethical issues in such procedures. Without a doubt, mitochondria are more than mere cell power plants, as we continue to discover their potential to be used in medicine.
Collapse
Affiliation(s)
- Andrés Caicedo
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Pedro M. Aponte
- Mito-Act Research Consortium, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
| | - Francisco Cabrera
- Mito-Act Research Consortium, Quito, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina Veterinaria, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Institute for Regenerative Medicine and Biotherapy (IRMB), INSERM U1183, 2 Montpellier University, Montpellier, France
| | - Carmen Hidalgo
- Mito-Act Research Consortium, Quito, Ecuador
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| | - Maroun Khoury
- Mito-Act Research Consortium, Quito, Ecuador
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Cells for Cells, Santiago, Chile
| |
Collapse
|
105
|
Cell Connections by Tunneling Nanotubes: Effects of Mitochondrial Trafficking on Target Cell Metabolism, Homeostasis, and Response to Therapy. Stem Cells Int 2017; 2017:6917941. [PMID: 28659978 PMCID: PMC5474251 DOI: 10.1155/2017/6917941] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 01/16/2023] Open
Abstract
Intercellular communications play a major role in tissue homeostasis and responses to external cues. Novel structures for this communication have recently been described. These tunneling nanotubes (TNTs) consist of thin-extended membrane protrusions that connect cells together. TNTs allow the cell-to-cell transfer of various cellular components, including proteins, RNAs, viruses, and organelles, such as mitochondria. Mesenchymal stem cells (MSCs) are both naturally present and recruited to many different tissues where their interaction with resident cells via secreted factors has been largely documented. Their immunosuppressive and repairing capacities constitute the basis for many current clinical trials. MSCs recruited to the tumor microenvironment also play an important role in tumor progression and resistance to therapy. MSCs are now the focus of intense scrutiny due to their capacity to form TNTs and transfer mitochondria to target cells, either in normal physiological or in pathological conditions, leading to changes in cell energy metabolism and functions, as described in this review.
Collapse
|
106
|
Chen K, Tsutsumi Y, Yoshitake S, Qiu X, Xu H, Hashiguchi Y, Honda M, Tashiro K, Nakayama K, Hano T, Suzuki N, Hayakawa K, Shimasaki Y, Oshima Y. Alteration of development and gene expression induced by in ovo-nanoinjection of 3-hydroxybenzo[c]phenanthrene into Japanese medaka (Oryzias latipes) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:194-204. [PMID: 27930992 DOI: 10.1016/j.aquatox.2016.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/04/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
Benzo[c]phenanthrene (BcP) is a highly toxic polycyclic aromatic hydrocarbon (PAHs) found throughout the environment. In fish, it is metabolized to 3-hydroxybenzo[c]phenanthrene (3-OHBcP). In the present study, we observed the effects of 1nM 3-OHBcP on the development and gene expression of Japanese medaka (Oryzias latipes) embryos. Embryos were nanoinjected with the chemical after fertilization. Survival, developmental stage, and heart rate of the embryos were observed, and gene expression differences were quantified by messenger RNA sequencing (mRNA-Seq). The exposure to 1nM 3-OHBcP accelerated the development of medaka embryos on the 1st, 4th, and 6th days post fertilization (dpf), and increased heart rates significantly on the 5th dpf. Physical development differences of exposed medaka embryos were consistent with the gene expression profiles of the mRNA-Seq results for the 3rd dpf, which show that the expression of 780 genes differed significantly between the solvent control and 1nM 3-OHBcP exposure groups. The obvious expression changes in the exposure group were found for genes involved in organ formation (eye, muscle, heart), energy supply (ATPase and ATP synthase), and stress-response (heat shock protein genes). The acceleration of development and increased heart rate, which were consistent with the changes in mRNA expression, suggested that 3-OHBcP affects the development of medaka embryos. The observation on the developmental stages and heart beat, in ovo-nanoinjection and mRNA-Seq may be efficient tools to evaluate the effects of chemicals on embryos.
Collapse
Affiliation(s)
- Kun Chen
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yuki Tsutsumi
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Shuhei Yoshitake
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Xuchun Qiu
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Hai Xu
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | | | - Masato Honda
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Kosuke Tashiro
- Laboratory of Molecular Gene Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Takeshi Hano
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, Maruishi 2-17-5, Hatsukaichi-shi, Hiroshima 739-0452, Japan
| | - Nobuo Suzuki
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|
107
|
Delage E, Cervantes DC, Pénard E, Schmitt C, Syan S, Disanza A, Scita G, Zurzolo C. Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite functions of actin regulatory complexes. Sci Rep 2016; 6:39632. [PMID: 28008977 PMCID: PMC5180355 DOI: 10.1038/srep39632] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/25/2016] [Indexed: 11/09/2022] Open
Abstract
Tunneling Nanotubes (TNTs) are actin enriched filopodia-like protrusions that play a pivotal role in long-range intercellular communication. Different pathogens use TNT-like structures as "freeways" to propagate across cells. TNTs are also implicated in cancer and neurodegenerative diseases, making them promising therapeutic targets. Understanding the mechanism of their formation, and their relation with filopodia is of fundamental importance to uncover their physiological function, particularly since filopodia, differently from TNTs, are not able to mediate transfer of cargo between distant cells. Here we studied different regulatory complexes of actin, which play a role in the formation of both these structures. We demonstrate that the filopodia-promoting CDC42/IRSp53/VASP network negatively regulates TNT formation and impairs TNT-mediated intercellular vesicle transfer. Conversely, elevation of Eps8, an actin regulatory protein that inhibits the extension of filopodia in neurons, increases TNT formation. Notably, Eps8-mediated TNT induction requires Eps8 bundling but not its capping activity. Thus, despite their structural similarities, filopodia and TNTs form through distinct molecular mechanisms. Our results further suggest that a switch in the molecular composition in common actin regulatory complexes is critical in driving the formation of either type of membrane protrusion.
Collapse
Affiliation(s)
- Elise Delage
- Unité Trafic Membranaire et Pathogenèse, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Diégo Cordero Cervantes
- Unité Trafic Membranaire et Pathogenèse, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Esthel Pénard
- Unité Trafic Membranaire et Pathogenèse, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Christine Schmitt
- Ultrapole, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Sylvie Syan
- Unité Trafic Membranaire et Pathogenèse, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Andrea Disanza
- FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Giorgio Scita
- FIRC Institute of Molecular Oncology, 20139 Milan, Italy.,Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Chiara Zurzolo
- Unité Trafic Membranaire et Pathogenèse, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| |
Collapse
|
108
|
Tardivel M, Bégard S, Bousset L, Dujardin S, Coens A, Melki R, Buée L, Colin M. Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies. Acta Neuropathol Commun 2016; 4:117. [PMID: 27809932 PMCID: PMC5096005 DOI: 10.1186/s40478-016-0386-4] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/20/2016] [Indexed: 11/24/2022] Open
Abstract
A given cell makes exchanges with its neighbors through a variety of means ranging from diffusible factors to vesicles. Cells use also tunneling nanotubes (TNTs), filamentous-actin-containing membranous structures that bridge and connect cells. First described in immune cells, TNTs facilitate HIV-1 transfer and are found in various cell types, including neurons. We show that the microtubule-associated protein Tau, a key player in Alzheimer’s disease, is a bona fide constituent of TNTs. This is important because Tau appears beside filamentous actin and myosin 10 as a specific marker of these fine protrusions of membranes and cytosol that are difficult to visualize. Furthermore, we observed that exogenous Tau species increase the number of TNTs established between primary neurons, thereby facilitating the intercellular transfer of Tau fibrils. In conclusion, Tau may contribute to the formation and function of the highly dynamic TNTs that may be involved in the prion-like propagation of Tau assemblies.
Collapse
|
109
|
Abstract
The past decade has seen an explosion of research directed toward better understanding of the mechanisms of mesenchymal stem/stromal cell (MSC) function during rescue and repair of injured organs and tissues. In addition to delineating cell–cell signaling and molecular controls for MSC differentiation, the field has made particular progress in defining several other mechanisms through which administered MSCs can promote tissue rescue/repair. These include: 1) paracrine activity that involves secretion of proteins/peptides and hormones; 2) transfer of mitochondria by way of tunneling nanotubes or microvesicles; and 3) transfer of exosomes or microvesicles containing RNA and other molecules. Improved understanding of MSC function holds great promise for the application of cell therapy and also for the development of powerful cell-derived therapeutics for regenerative medicine. Focusing on these three mechanisms, we discuss MSC-mediated effects on immune cell responses, cell survival, and fibrosis and review recent progress with MSC-based or MSC-derived therapeutics.
Collapse
Affiliation(s)
- Jeffrey L Spees
- University of Vermont, Burlington, VT, USA. .,Department of Medicine, Stem Cell Core, University of Vermont, 208 South Park Drive, Ste 2, Colchester, VT, 05446, USA.
| | - Ryang Hwa Lee
- Institute for Regenerative Medicine, Texas A & M University College of Medicine, 206 Olsen Blvd., Room 228, MS1114, College Station, TX, 77845, USA
| | - Carl A Gregory
- Institute for Regenerative Medicine, Texas A & M University College of Medicine, 206 Olsen Blvd., Room 228, MS1114, College Station, TX, 77845, USA.
| |
Collapse
|
110
|
Doktor TK, Hua Y, Andersen HS, Brøner S, Liu YH, Wieckowska A, Dembic M, Bruun GH, Krainer AR, Andresen BS. RNA-sequencing of a mouse-model of spinal muscular atrophy reveals tissue-wide changes in splicing of U12-dependent introns. Nucleic Acids Res 2016; 45:395-416. [PMID: 27557711 PMCID: PMC5224493 DOI: 10.1093/nar/gkw731] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/21/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by insufficient levels of the Survival of Motor Neuron (SMN) protein. SMN is expressed ubiquitously and functions in RNA processing pathways that include trafficking of mRNA and assembly of snRNP complexes. Importantly, SMA severity is correlated with decreased snRNP assembly activity. In particular, the minor spliceosomal snRNPs are affected, and some U12-dependent introns have been reported to be aberrantly spliced in patient cells and animal models. SMA is characterized by loss of motor neurons, but the underlying mechanism is largely unknown. It is likely that aberrant splicing of genes expressed in motor neurons is involved in SMA pathogenesis, but increasing evidence indicates that pathologies also exist in other tissues. We present here a comprehensive RNA-seq study that covers multiple tissues in an SMA mouse model. We show elevated U12-intron retention in all examined tissues from SMA mice, and that U12-dependent intron retention is induced upon siRNA knock-down of SMN in HeLa cells. Furthermore, we show that retention of U12-dependent introns is mitigated by ASO treatment of SMA mice and that many transcriptional changes are reversed. Finally, we report on missplicing of several Ca2+ channel genes that may explain disrupted Ca2+ homeostasis in SMA and activation of Cdk5.
Collapse
Affiliation(s)
- Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Yimin Hua
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Henriette Skovgaard Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Sabrina Brøner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Ying Hsiu Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Anna Wieckowska
- Department of Gamete and Embryo Biology, Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-243 Olsztyn, Poland
| | - Maja Dembic
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Gitte Hoffmann Bruun
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brage Storstein Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark .,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
111
|
Abounit S, Bousset L, Loria F, Zhu S, de Chaumont F, Pieri L, Olivo-Marin JC, Melki R, Zurzolo C. Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes. EMBO J 2016; 35:2120-2138. [PMID: 27550960 DOI: 10.15252/embj.201593411] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/22/2016] [Indexed: 12/25/2022] Open
Abstract
Synucleinopathies such as Parkinson's disease are characterized by the pathological deposition of misfolded α-synuclein aggregates into inclusions throughout the central and peripheral nervous system. Mounting evidence suggests that intercellular propagation of α-synuclein aggregates may contribute to the neuropathology; however, the mechanism by which spread occurs is not fully understood. By using quantitative fluorescence microscopy with co-cultured neurons, here we show that α-synuclein fibrils efficiently transfer from donor to acceptor cells through tunneling nanotubes (TNTs) inside lysosomal vesicles. Following transfer through TNTs, α-synuclein fibrils are able to seed soluble α-synuclein aggregation in the cytosol of acceptor cells. We propose that donor cells overloaded with α-synuclein aggregates in lysosomes dispose of this material by hijacking TNT-mediated intercellular trafficking. Our findings thus reveal a possible novel role of TNTs and lysosomes in the progression of synucleinopathies.
Collapse
Affiliation(s)
- Saïda Abounit
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris Cedex 15, France
| | - Luc Bousset
- Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | - Frida Loria
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris Cedex 15, France
| | - Seng Zhu
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris Cedex 15, France
| | - Fabrice de Chaumont
- Laboratoire d'Analyse d'Images Quantitative, Institut Pasteur, Paris Cedex 15, France
| | - Laura Pieri
- Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | | | - Ronald Melki
- Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | - Chiara Zurzolo
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris Cedex 15, France
| |
Collapse
|
112
|
Tunneling nanotubes mediate the transfer of stem cell marker CD133 between hematopoietic progenitor cells. Exp Hematol 2016; 44:1092-1112.e2. [PMID: 27473566 DOI: 10.1016/j.exphem.2016.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 12/24/2022]
Abstract
Deciphering all mechanisms of intercellular communication used by hematopoietic progenitors is important, not only for basic stem cell research, but also in view of their therapeutic relevance. Here, we investigated whether these cells can produce the thin F-actin-based plasma membrane protrusions referred to as tunneling nanotubes (TNTs), which are known to bridge cells over long distances without contact with the substratum and transfer cargo molecules along them in various biological processes. We found that human primary CD34+ hematopoietic progenitors and leukemic KG1a cells develop such structures upon culture on primary mesenchymal stromal cells or specific extracellular-matrix-based substrata. Time-lapse video microscopy revealed that cell dislodgement is the primary mechanism responsible for TNT biogenesis. Surprisingly, we found that, among various cluster of differentiation (CD) markers, only the stem cell antigen CD133 is transferred between cells. It is selectively and directionally transported along the surface of TNTs in small clusters, such as cytoplasmic phospho-myosin light chain 2, suggesting that the latter actin motor protein might be implicated in this process. Our data provide new insights into the biology of hematopoietic progenitors that can contribute to our understanding of all facets of intercellular communication in the bone marrow microenvironment under healthy or cancerous conditions.
Collapse
|
113
|
Porcine Reproductive and Respiratory Syndrome Virus Utilizes Nanotubes for Intercellular Spread. J Virol 2016; 90:5163-5175. [PMID: 26984724 DOI: 10.1128/jvi.00036-16] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/09/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Intercellular nanotube connections have been identified as an alternative pathway for cellular spreading of certain viruses. In cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), nanotubes were observed connecting two distant cells with contiguous membranes, with the core infectious viral machinery (viral RNA, certain replicases, and certain structural proteins) present in/on the intercellular nanotubes. Live-cell movies tracked the intercellular transport of a recombinant PRRSV that expressed green fluorescent protein (GFP)-tagged nsp2. In MARC-145 cells expressing PRRSV receptors, GFP-nsp2 moved from one cell to another through nanotubes in the presence of virus-neutralizing antibodies. Intercellular transport of viral proteins did not require the PRRSV receptor as it was observed in receptor-negative HEK-293T cells after transfection with an infectious clone of GFP-PRRSV. In addition, GFP-nsp2 was detected in HEK-293T cells cocultured with recombinant PRRSV-infected MARC-145 cells. The intercellular nanotubes contained filamentous actin (F-actin) with myosin-associated motor proteins. The F-actin and myosin IIA were identified as coprecipitates with PRRSV nsp1β, nsp2, nsp2TF, nsp4, nsp7-nsp8, GP5, and N proteins. Drugs inhibiting actin polymerization or myosin IIA activation prevented nanotube formation and viral clusters in virus-infected cells. These data lead us to propose that PRRSV utilizes the host cell cytoskeletal machinery inside nanotubes for efficient cell-to-cell spread. This form of virus transport represents an alternative pathway for virus spread, which is resistant to the host humoral immune response. IMPORTANCE Extracellular virus particles transmit infection between organisms, but within infected hosts intercellular infection can be spread by additional mechanisms. In this study, we describe an alternative pathway for intercellular transmission of PRRSV in which the virus uses nanotube connections to transport infectious viral RNA, certain replicases, and certain structural proteins to neighboring cells. This process involves interaction of viral proteins with cytoskeletal proteins that form the nanotube connections. Intercellular viral spread through nanotubes allows the virus to escape the neutralizing antibody response and may contribute to the pathogenesis of viral infections. The development of strategies that interfere with this process could be critical in preventing the spread of viral infection.
Collapse
|
114
|
Martin-Urdiroz M, Deeks MJ, Horton CG, Dawe HR, Jourdain I. The Exocyst Complex in Health and Disease. Front Cell Dev Biol 2016; 4:24. [PMID: 27148529 PMCID: PMC4828438 DOI: 10.3389/fcell.2016.00024] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/11/2016] [Indexed: 01/23/2023] Open
Abstract
Exocytosis involves the fusion of intracellular secretory vesicles with the plasma membrane, thereby delivering integral membrane proteins to the cell surface and releasing material into the extracellular space. Importantly, exocytosis also provides a source of lipid moieties for membrane extension. The tethering of the secretory vesicle before docking and fusion with the plasma membrane is mediated by the exocyst complex, an evolutionary conserved octameric complex of proteins. Recent findings indicate that the exocyst complex also takes part in other intra-cellular processes besides secretion. These various functions seem to converge toward defining a direction of membrane growth in a range of systems from fungi to plants and from neurons to cilia. In this review we summarize the current knowledge of exocyst function in cell polarity, signaling and cell-cell communication and discuss implications for plant and animal health and disease.
Collapse
Affiliation(s)
| | - Michael J Deeks
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Connor G Horton
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Helen R Dawe
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Isabelle Jourdain
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| |
Collapse
|
115
|
Zaccard CR, Rinaldo CR, Mailliard RB. Linked in: immunologic membrane nanotube networks. J Leukoc Biol 2016; 100:81-94. [PMID: 26931578 DOI: 10.1189/jlb.4vmr0915-395r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/01/2016] [Indexed: 01/01/2023] Open
Abstract
Membrane nanotubes, also termed tunneling nanotubes, are F-actin-based structures that can form direct cytoplasmic connections and support rapid communication between distant cells. These nanoscale conduits have been observed in diverse cell types, including immune, neuronal, stromal, cancer, and stem cells. Until recently, little was known about the mechanisms involved in membrane nanotube development in myeloid origin APCs or how membrane nanotube networks support their ability to bridge innate and adaptive immunity. New research has provided insight into the modes of induction and regulation of the immune process of "reticulation" or the development of multicellular membrane nanotube networks in dendritic cells. Preprogramming by acute type 1 inflammatory mediators at their immature stage licenses mature type 1-polarized dendritic cells to reticulate upon subsequent interaction with CD40 ligand-expressing CD4(+) Th cells. Dendritic cell reticulation can support direct antigen transfer for amplification of specific T cell responses and can be positively or negatively regulated by signals from distinct Th cell subsets. Membrane nanotubes not only enhance the ability of immature dendritic cells to sense pathogens and rapidly mobilize nearby antigen-presenting cells in the peripheral tissues but also likely support communication of pathogen-related information from mature migratory dendritic cells to resident dendritic cells in lymph nodes. Therefore, the reticulation process facilitates a coordinated multicellular response for the efficient initiation of cell-mediated adaptive immune responses. Herein, we discuss studies focused on the molecular mechanisms of membrane nanotube formation, structure, and function in the context of immunity and how pathogens, such as HIV-1, may use dendritic cell reticulation to circumvent host defenses.
Collapse
Affiliation(s)
- C R Zaccard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pennsylvania, USA and
| | - C R Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pennsylvania, USA and Department of Pathology, University of Pittsburgh, Pennsylvania, USA
| | - R B Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pennsylvania, USA and
| |
Collapse
|
116
|
Hashimoto M, Bhuyan F, Hiyoshi M, Noyori O, Nasser H, Miyazaki M, Saito T, Kondoh Y, Osada H, Kimura S, Hase K, Ohno H, Suzu S. Potential Role of the Formation of Tunneling Nanotubes in HIV-1 Spread in Macrophages. THE JOURNAL OF IMMUNOLOGY 2016; 196:1832-41. [PMID: 26773158 DOI: 10.4049/jimmunol.1500845] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 12/11/2015] [Indexed: 12/13/2022]
Abstract
Tunneling nanotubes (TNTs), the long membrane extensions connecting distant cells, have emerged as a novel form of cell-to-cell communication. However, it is not fully understood how and to what extent TNTs contribute to intercellular spread of pathogens including HIV-1. In this study, we show that HIV-1 promotes TNT formation per se via its protein Nef and a cellular protein M-Sec, which appears to mediate approximately half of viral spread among monocyte-derived macrophages (MDMs). A small compound that inhibits M-Sec-induced TNT formation reduced HIV-1 production by almost half in MDMs. Such inhibition was not observed with Nef-deficient mutant HIV-1 that fails to promote TNT formation and replicates less efficiently than the wild-type HIV-1 in MDMs. The TNT inhibitor-sensitive/Nef-promoting viral production was also observed in a T cell line ectopically expressing M-Sec, but not in another M-Sec(-) T cell line. Our results suggest the importance of TNTs in HIV-1 spread among MDMs and might answer the long-standing question how Nef promotes HIV-1 production in a cell type-specific manner.
Collapse
Affiliation(s)
- Michihiro Hashimoto
- Center for AIDS Research, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan
| | - Farzana Bhuyan
- Center for AIDS Research, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan
| | - Masateru Hiyoshi
- Center for AIDS Research, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan
| | - Osamu Noyori
- Center for AIDS Research, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan
| | - Hesham Nasser
- Center for AIDS Research, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan
| | - Mitsue Miyazaki
- Center for AIDS Research, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan
| | - Tamio Saito
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; and
| | - Yasumitsu Kondoh
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; and
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; and
| | - Shunsuke Kimura
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Koji Hase
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Shinya Suzu
- Center for AIDS Research, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan;
| |
Collapse
|
117
|
Martin CL, Singh SM. Identification, modeling, and characterization studies of Tetrahymena thermophila myosin FERM domains suggests a conserved core fold but functional differences. Cytoskeleton (Hoboken) 2015; 72:585-96. [PMID: 26492945 DOI: 10.1002/cm.21261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 11/05/2022]
Abstract
Myosins (MYO) define a superfamily of motor proteins which facilitate movement along cytoskeletal actin filaments in an ATP-dependent manner. To date, over 30 classes of myosin have been defined that vary in their roles and distribution across different taxa. The multidomain tail of myosin is responsible for the observed functional differences in different myosin classes facilitating differential binding to different cargos. One domain found in this region, the FERM domain, is found in several diverse proteins and is involved in many biological functions ranging from cell adhesion and actin-driven cytoskeleton assembly to cell signaling. Recently, new classes of unconventional myosin have been identified in Tetrahymena thermophila. In this study, we have identified, modeled, and characterized eight FERM domains from the unconventional T. thermophila myosins as their complete functional MyTH4-FERM cassettes. Our results reveal notable sequence, structural, and electrostatic differences between T. thermophila and other characterized FERM domains. Specifically, T. thermophila FERM domains contain helical inserts or extensions, which contribute to significant differences in surface electrostatic profiles of T. thermophila myosin FERMs when compared to the conventional FERM domains. Analyses of the modeled domains reveal differences in key functional residues as well as phosphoinositide-binding signatures and affinities. The work presented here broadens the scope of our understanding of myosin classes and their inherent functions, and provides a platform for experimentalists to design rational experimental studies to test the functional roles for T. thermophila myosins.
Collapse
Affiliation(s)
- Che L Martin
- Biology Department, the Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York, 10016
| | - Shaneen M Singh
- Biology Department, the Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York, 10016.,Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Ave. Brooklyn, New York, 11210, USA
| |
Collapse
|
118
|
Novel microscopy-based screening method reveals regulators of contact-dependent intercellular transfer. Sci Rep 2015; 5:12879. [PMID: 26271723 PMCID: PMC4536488 DOI: 10.1038/srep12879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/10/2015] [Indexed: 12/23/2022] Open
Abstract
Contact-dependent intercellular transfer (codeIT) of cellular constituents can have functional consequences for recipient cells, such as enhanced survival and drug resistance. Pathogenic viruses, prions and bacteria can also utilize this mechanism to spread to adjacent cells and potentially evade immune detection. However, little is known about the molecular mechanism underlying this intercellular transfer process. Here, we present a novel microscopy-based screening method to identify regulators and cargo of codeIT. Single donor cells, carrying fluorescently labelled endocytic organelles or proteins, are co-cultured with excess acceptor cells. CodeIT is quantified by confocal microscopy and image analysis in 3D, preserving spatial information. An siRNA-based screening using this method revealed the involvement of several myosins and small GTPases as codeIT regulators. Our data indicates that cellular protrusions and tubular recycling endosomes are important for codeIT. We automated image acquisition and analysis to facilitate large-scale chemical and genetic screening efforts to identify key regulators of codeIT.
Collapse
|
119
|
Burtey A, Wagner M, Hodneland E, Skaftnesmo KO, Schoelermann J, Mondragon IR, Espedal H, Golebiewska A, Niclou SP, Bjerkvig R, Kögel T, Gerdes H. Intercellular transfer of transferrin receptor by a contact‐, Rab8‐dependent mechanism involving tunneling nanotubes. FASEB J 2015. [DOI: 10.1096/fj.14-268615] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Anne Burtey
- Department of BiomedicineUniversity of BergenBergenNorway
| | - Marek Wagner
- Department of BiomedicineUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| | - Erlend Hodneland
- Department of Clinical MedicineHaukeland University HospitalBergenNorway
| | | | - Julia Schoelermann
- Department of BiomedicineUniversity of BergenBergenNorway
- Biomaterials, Department of Clinical DentistryUniversity of BergenBergenNorway
| | | | - Heidi Espedal
- Department of BiomedicineUniversity of BergenBergenNorway
| | - Anna Golebiewska
- NorLux Neuro‐Oncology LaboratoryDepartment of OncologyLuxembourg Institute of Health (LIH)LuxembourgLuxembourg
| | - Simone P. Niclou
- K. G. Jebsen Brain Tumour Research CenterUniversity of BergenBergenNorway
- NorLux Neuro‐Oncology LaboratoryDepartment of OncologyLuxembourg Institute of Health (LIH)LuxembourgLuxembourg
| | - Rolf Bjerkvig
- Department of BiomedicineUniversity of BergenBergenNorway
- K. G. Jebsen Brain Tumour Research CenterUniversity of BergenBergenNorway
- NorLux Neuro‐Oncology LaboratoryDepartment of OncologyLuxembourg Institute of Health (LIH)LuxembourgLuxembourg
| | - Tanja Kögel
- Department of BiomedicineUniversity of BergenBergenNorway
| | | |
Collapse
|
120
|
Sisakhtnezhad S, Khosravi L. Emerging physiological and pathological implications of tunneling nanotubes formation between cells. Eur J Cell Biol 2015; 94:429-43. [PMID: 26164368 DOI: 10.1016/j.ejcb.2015.06.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022] Open
Abstract
Cell-to-cell communication is a critical requirement to coordinate behaviors of the cells in a community and thereby achieve tissue homeostasis and conservation of the multicellular organisms. Tunneling nanotubes (TNTs), as a cell-to-cell communication over long distance, allow for bi- or uni-directional transfer of cellular components between cells. Identification of inducing agents and the cell and molecular mechanism underling the formation of TNTs and their structural and functional features may lead to finding new important roles for these intercellular bridges in vivo and in vitro. During the last decade, research has shown TNTs have different structural and functional properties, varying between and within cell systems. In this review, we will focus on TNTs and their cell and molecular mechanism of formation. Moreover, the latest findings into their functional roles in physiological and pathological processes, such as signal transduction, micro and nano-particles delivery, immune responses, embryogenesis, cellular reprogramming, apoptosis, cancer, and neurodegenerative diseases initiation and progression and pathogens transfer, will be discussed.
Collapse
Affiliation(s)
| | - Leila Khosravi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
121
|
Schoelermann J, Burtey A, Allouni ZE, Gerdes HH, Cimpan MR. Contact-dependent transfer of TiO₂ nanoparticles between mammalian cells. Nanotoxicology 2015; 10:204-15. [PMID: 26037905 DOI: 10.3109/17435390.2015.1048322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cellular organelles have been shown to shuttle between cells in co-culture. We hereby show that titanium dioxide (TiO2) nanoparticles (NPs) can be transferred in such a manner, between cells in direct contact, along with endosomes and lysosomes. A co-culture system was employed for this purpose and the NP transfer was observed in mammalian cells including normal rat kidney (NRK) and HeLa cells. We found that the small GTPase Arf6 facilitates the intercellular transfer of smaller NPs and agglomerates. Spherical, anatase nano-TiO2 with sizes of 5 (Ti5) and 40 nm (Ti40) were used in this study. Humans are increasingly exposed to TiO2 NPs from external sources such as constituents of foods, cosmetics, and pharmaceuticals, or from internal sources represented by Ti-based implants, which release NPs upon abrasion. Exposure to 5 mg/l of Ti5 and Ti40 for 24 h did not affect cellular viability but modified their ability to communicate with surrounding cells. Altogether, our results have important implications for the design of nanomedicines, drug delivery and toxicity.
Collapse
Affiliation(s)
- Julia Schoelermann
- a Department of Biomedicine, Faculty of Medicine and Dentistry , University of Bergen , Bergen , Norway and
| | - Anne Burtey
- a Department of Biomedicine, Faculty of Medicine and Dentistry , University of Bergen , Bergen , Norway and
| | - Zouhir Ekeland Allouni
- b Division of Biomaterials, Department of Clinical Dentistry, Faculty of Medicine and Dentistry , University of Bergen , Bergen , Norway
| | - Hans-Hermann Gerdes
- a Department of Biomedicine, Faculty of Medicine and Dentistry , University of Bergen , Bergen , Norway and
| | - Mihaela Roxana Cimpan
- b Division of Biomaterials, Department of Clinical Dentistry, Faculty of Medicine and Dentistry , University of Bergen , Bergen , Norway
| |
Collapse
|
122
|
Abounit S, Delage E, Zurzolo C. Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking. ACTA ACUST UNITED AC 2015; 67:12.10.1-12.10.21. [PMID: 26061240 DOI: 10.1002/0471143030.cb1210s67] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tunneling nanotubes (TNTs) are thin membranous channels providing direct cytoplasmic connection between remote cells. They are commonly observed in different cell cultures and increasing evidence supports their role in intercellular communication and pathogen transfer. However, the study of TNTs presents several pitfalls (e.g., difficulty in preserving such delicate structures, possible confusion with other protrusions, structural and functional heterogeneity, etc.) and therefore requires thoroughly designed approaches. The methods described in this unit represent a guideline for the characterization of TNTs (or TNT-like structures) in cell culture. Specifically, optimized protocols to (1) identify TNTs and the cytoskeletal elements present inside them; (2) evaluate TNT frequency in cell culture; (3) unambiguously distinguish them from other cellular connections or protrusions; and (4) monitor their formation in living cells are provided. Finally, this unit describes how to assess TNT-mediated cell-to-cell transfer of cellular components, which is a fundamental criterion for identifying functional TNTs.
Collapse
Affiliation(s)
- Saïda Abounit
- Unité de Traffic Membranaire et Pathogenèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France.,These authors contributed equally to this work
| | - Elise Delage
- Unité de Traffic Membranaire et Pathogenèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France.,These authors contributed equally to this work
| | - Chiara Zurzolo
- Unité de Traffic Membranaire et Pathogenèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France.,Corresponding author
| |
Collapse
|
123
|
Kohno T, Ninomiya T, Kikuchi S, Konno T, Kojima T. Staurosporine induces formation of two types of extra-long cell protrusions: actin-based filaments and microtubule-based shafts. Mol Pharmacol 2015; 87:815-24. [PMID: 25680752 DOI: 10.1124/mol.114.096982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Staurosporine (STS) has been known as a classic protein kinase C inhibitor and is a broad-spectrum inhibitor targeting over 250 protein kinases. In this study, we observed that STS treatment induced drastic morphologic changes, such as elongation of a very large number of nonbranched, actin-based long cell protrusions that reached up to 30 µm in an hour without caspase activation or PARP cleavage in fibroblasts and epithelial cells. These cell protrusions were elongated not only from the free cell edge but also from the cell-cell junctions. The elongation of STS-dependent protrusions was required for ATP hydrolysis and was dependent on myosin-X and fascin but independent of Cdc42 and VASP. Interestingly, in the presence of an actin polymerization inhibitor, namely, cytochalasin D, latrunculin A, or jasplakinolide, STS treatment induced excess tubulin polymerization, which resulted in the formation of many extra-long microtubule (MT)-based protrusions toward the outside of the cell. The unique MT-based protrusions were thick and linear compared with the STS-induced filaments or stationary filopodia. These protrusions, which were composed of microtubules, have been scarcely observed in cultured non-neuronal cells. Taken together, our findings revealed that STS-sensitive kinases are essential for the maintenance of normal cell morphology, and a common unidentified molecular mechanism is involved in the formation of the following two different types of protrusions: actin-based filaments and MT-based shafts.
Collapse
Affiliation(s)
- Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| | - Takafumi Ninomiya
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| | - Shin Kikuchi
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine (T.Koh., T.Kon., T.Koj.), and Department of Anatomy, Sapporo Medical University, Sapporo, Japan (T.N., S.K.)
| |
Collapse
|
124
|
Dopamine transporter is enriched in filopodia and induces filopodia formation. Mol Cell Neurosci 2015; 68:120-30. [PMID: 25936602 DOI: 10.1016/j.mcn.2015.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/03/2015] [Accepted: 04/21/2015] [Indexed: 11/24/2022] Open
Abstract
Dopamine transporter (DAT, SLC6A3) controls dopamine (DA) neurotransmission by mediating re-uptake of extracellular DA into DA neurons. DA uptake depends on the amount of DAT at the cell surface, and is therefore regulated by DAT subcellular distribution. Hence we used spinning disk confocal microscopy to demonstrate DAT localization in membrane protrusions that contained filamentous actin and myosin X (MyoX), a molecular motor located in filopodia tips, thus confirming that these protrusions are filopodia. DAT was enriched in filopodia. In contrast, R60A and W63A DAT mutants with disrupted outward-facing conformation were not accumulated in filopodia, suggesting that this conformation is necessary for DAT filopodia targeting. Three independent approaches of filopodia counting showed that DAT expression leads to an increase in the number of filopodia per cell, indicating that DAT can induce filopodia formation. Depletion of MyoX by RNA interference resulted in a significant loss of filopodia but did not completely eliminate filopodia, implying that DAT-enriched filopodia can be formed without MyoX. In cultured postnatal DA neurons MyoX was mainly localized to growth cones that displayed highly dynamic DAT-containing filopodia. We hypothesize that the concave shape of the DAT molecule functions as the targeting determinant for DAT accumulation in outward-curved membrane domains, and may also allow high local concentrations of DAT to induce an outward membrane bending. Such targeting and membrane remodeling capacities may be part of the mechanism responsible for DAT enrichment in the filopodia and its targeting to the axonal processes of DA neurons.
Collapse
|
125
|
Zhu S, Victoria GS, Marzo L, Ghosh R, Zurzolo C. Prion aggregates transfer through tunneling nanotubes in endocytic vesicles. Prion 2015; 9:125-35. [PMID: 25996400 PMCID: PMC4601206 DOI: 10.1080/19336896.2015.1025189] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/07/2015] [Accepted: 02/26/2015] [Indexed: 01/31/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases caused by the misfolding of the cellular prion protein to an infectious form PrP(Sc). The intercellular transfer of PrP(Sc) is a question of immediate interest as the cell-to-cell movement of the infectious particle causes the inexorable propagation of disease. We have previously identified tunneling nanotubes (TNTs) as one mechanism by which PrP(Sc) can move between cells. Here we investigate further the details of this mechanism and show that PrP(Sc) travels within TNTs in endolysosomal vesicles. Additionally we show that prion infection of CAD cells increases both the number of TNTs and intercellular transfer of membranous vesicles, thereby possibly playing an active role in its own intercellular transfer via TNTs.
Collapse
Key Words
- Ab, antibody
- CFP, cyan fluorescent protein
- ER, endoplasmic reticulum
- ERC, endocytic recycling compartment
- GFP, green fluorescent protein
- PM, plasma membrane
- PrPC, cellular prion protein
- PrPSc, scrapie prion protein
- RFP, red fluorescent protein
- TNTs, tunneling nanotubes
- TSEs, transmissible spongiform encephalopathies
- endosomes
- neuronal cells
- prion
- transfer
- tunneling nanotubes
Collapse
Affiliation(s)
- Seng Zhu
- Unité Trafic Membranaire et Pathogenese, Institut Pasteur, Paris CEDEX 15, France
| | | | - Ludovica Marzo
- Unité Trafic Membranaire et Pathogenese, Institut Pasteur, Paris CEDEX 15, France
| | - Rupam Ghosh
- Unité Trafic Membranaire et Pathogenese, Institut Pasteur, Paris CEDEX 15, France
| | - Chiara Zurzolo
- Unité Trafic Membranaire et Pathogenese, Institut Pasteur, Paris CEDEX 15, France
| |
Collapse
|
126
|
Information handling by the brain: proposal of a new "paradigm" involving the roamer type of volume transmission and the tunneling nanotube type of wiring transmission. J Neural Transm (Vienna) 2014; 121:1431-49. [PMID: 24866694 DOI: 10.1007/s00702-014-1240-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022]
Abstract
The current view on the organization of the central nervous system (CNS) is basically anchored to the paradigm describing the brain as formed by networks of neurons interconnected by synapses. Synaptic contacts are a fundamental characteristic for describing CNS operations, but increasing evidence accumulated in the last 30 years pointed to a refinement of this view. A possible overcoming of the classical "neuroscience paradigm" will be here outlined, based on the following hypotheses: (1) the basic morpho-functional unit in the brain is a compartment of tissue (functional module) where different resident cells (not only neurons) work as an integrated unit; (2) in these complex networks, a spectrum of intercellular communication processes is exploited, that can be classified according to a dichotomous criterion: wiring transmission (occurring through physically delimited channels) and volume transmission (exploiting diffusion in the extracellular space); (3) the connections between cells can themselves be described as a network, leading to an information processing occurring at different levels from cell network down to molecular level; (4) recent evidence of the existence of specialized structures (microvesicles and tunneling nanotubes) for intercellular exchange of materials, could allow a further type of polymorphism of the CNS networks based on at least transient changes in cell phenotype. When compared to the classical paradigm, the proposed scheme of cellular organization could allow a strong increase of the degrees of freedom available to the whole system and then of its plasticity. Furthermore, long range coordination and correlation can be more easily accommodated within this framework.
Collapse
|
127
|
Austefjord MW, Gerdes HH, Wang X. Tunneling nanotubes: Diversity in morphology and structure. Commun Integr Biol 2014; 7:e27934. [PMID: 24778759 PMCID: PMC3995728 DOI: 10.4161/cib.27934] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 02/06/2023] Open
Abstract
Tunneling nanotubes (TNTs) are recently discovered thin membranous tubes that interconnect cells. During the last decade, research has shown TNTs to be diverse in morphology and composition, varying between and within cell systems. In addition, the discovery of TNT-like extracellular protrusions, as well as observations of TNTs in vivo, has further enriched our knowledge on the diversity of TNT-like structures. Considering the complex molecular mechanisms underlying the formation of TNTs, as well as their different functions in intercellular communication, it is important to decipher how heterogeneity of TNTs is established, and to address what roles the compositional elements have in the execution of various functions. Here, we review the current knowledge on the morphological and structural diversity of TNTs, and address the relation between the formation, the structure, and the function of TNTs.
Collapse
Affiliation(s)
| | | | - Xiang Wang
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
128
|
Delage E, Zurzolo C. Exploring the role of lipids in intercellular conduits: breakthroughs in the pipeline. FRONTIERS IN PLANT SCIENCE 2013; 4:504. [PMID: 24368909 PMCID: PMC3857720 DOI: 10.3389/fpls.2013.00504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/25/2013] [Indexed: 05/08/2023]
Abstract
It has been known for more than a century that most of the plant cells are connected to their neighbors through membranous pores perforating the cell wall, namely plasmodesmata (PDs). The recent discovery of tunneling nanotubes (TNTs), thin membrane bridges established between distant mammalian cells, suggests that intercellular communication mediated through cytoplasmic continuity could be a conserved feature of eukaryotic organisms. Although TNTs differ from PDs in their formation and architecture, both are characterized by a continuity of the plasma membrane between two cells, delimiting a nanotubular channel supported by actin-based cytoskeleton. Due to this unusual membrane organization, lipids are likely to play critical roles in the formation and stability of intercellular conduits like TNTs and PDs, but also in regulating the transfer through these structures. While it is crucial for a better understanding of those fascinating communication highways, the study of TNT lipid composition and dynamics turned out to be extremely challenging. The present review aims to give an overview of the recent findings in this context. We will also discuss some of the promising imaging approaches, which might be the key for future breakthroughs in the field and could also benefit the research on PDs.
Collapse
Affiliation(s)
- Elise Delage
- *Correspondence: Elise Delage and Chiara Zurzolo, Unité de Trafic Membranaire et Pathogenèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, 25, Rue du Docteur Roux, 75724 Paris Cedex 15, France e-mail: ;
| | - Chiara Zurzolo
- *Correspondence: Elise Delage and Chiara Zurzolo, Unité de Trafic Membranaire et Pathogenèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, 25, Rue du Docteur Roux, 75724 Paris Cedex 15, France e-mail: ;
| |
Collapse
|