101
|
Ferguson R, Subramanian V. The cellular uptake of angiogenin, an angiogenic and neurotrophic factor is through multiple pathways and largely dynamin independent. PLoS One 2018; 13:e0193302. [PMID: 29486010 PMCID: PMC5828446 DOI: 10.1371/journal.pone.0193302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/08/2018] [Indexed: 01/25/2023] Open
Abstract
Angiogenin (ANG), a member of the RNase superfamily (also known as RNase 5) has neurotrophic, neuroprotective and angiogenic activities. Recently it has also been shown to be important in stem cell homeostasis. Mutations in ANG are associated with neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) and Fronto-temporal dementia (FTD). ANG is a secreted protein which is taken up by cells and translocated to the nucleus. However, the import pathway/s through which ANG is taken up is/are still largely unclear. We have characterised the uptake of ANG in neuronal, astrocytic and microglial cell lines as well as primary neurons and astrocytes using pharmacological agents as well as dominant negative dynamin and Rab5 to perturb uptake and intracellular trafficking. We find that uptake of ANG is largely clathrin/dynamin independent and microtubule depolymerisation has a marginal effect. Perturbation of membrane ruffling and macropinocytosis significantly inhibited ANG uptake suggesting an uptake mechanism similar to RNase A. Our findings shed light on why mutations which do not overtly affect RNase activity but cause impaired localization are associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Ross Ferguson
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Vasanta Subramanian
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
102
|
Zhou J, Du X, Berciu C, Del Signore SJ, Chen X, Yamagata N, Rodal AA, Nicastro D, Xu B. Cellular Uptake of A Taurine-Modified, Ester Bond-Decorated D-Peptide Derivative via Dynamin-Based Endocytosis and Macropinocytosis. Mol Ther 2018; 26:648-658. [PMID: 29396265 PMCID: PMC5835119 DOI: 10.1016/j.ymthe.2017.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 11/16/2022] Open
Abstract
Most of the peptides used for promoting cellular uptake bear positive charges. In our previous study, we reported an example of taurine (bearing negative charges in physiological conditions) promoting cellular uptake of D-peptides. Taurine, conjugated to a small D-peptide via an ester bond, promotes the cellular uptake of this D-peptide. Particularly, intracellular carboxylesterase (CES) instructs the D-peptide to self-assemble and to form nanofibers, which largely disfavors efflux and further enhances the intracellular accumulation of the D-peptide, as supported by that the addition of CES inhibitors partially impaired cellular uptake of this molecule in mammalian cell lines. Using dynamin 1, 2, and 3 triple knockout (TKO) mouse fibroblasts, we demonstrated that cells took up this molecule via macropinocytosis and dynamin-dependent endocytosis. Imaging of Drosophila larval blood cells derived from endocytic mutants confirmed the involvement of multiple endocytosis pathways. Electron microscopy (EM) indicated that the precursors can form aggregates on the cell surface to facilitate the cellular uptake via macropinocytosis. EM also revealed significantly increased numbers of vesicles in the cytosol. This work provides new insights into the cellular uptake of taurine derivative for intracellular delivery and self-assembly of D-peptides.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Xuewen Du
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Cristina Berciu
- Department of Biology, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Steven J Del Signore
- Department of Biology, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Xiaoyi Chen
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Natsuko Yamagata
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Avital A Rodal
- Department of Biology, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Daniela Nicastro
- Department of Biology, Brandeis University, 415 South St., Waltham, MA 02453, USA; Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA.
| |
Collapse
|
103
|
Takahashi Y, Tsotakos N, Liu Y, Young MM, Serfass J, Tang Z, Abraham T, Wang HG. The Bif-1-Dynamin 2 membrane fission machinery regulates Atg9-containing vesicle generation at the Rab11-positive reservoirs. Oncotarget 2018; 7:20855-68. [PMID: 26980706 PMCID: PMC4991497 DOI: 10.18632/oncotarget.8028] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/15/2016] [Indexed: 01/08/2023] Open
Abstract
Atg9 is a multispanning transmembrane protein that is required for autophagosome formation. During autophagy, vesicles containing Atg9 are generated through an unknown mechanism and delivered to the autophagosome formation sites. We have previously reported that Atg9-containing membranes undergo continuous tubulation and fission during nutrient starvation in a manner dependent on the curvature-inducing protein Bif-1/Sh3glb1. Here, we identify Dynamin 2 (DNM2) as a Bif-1-interacting protein that mediates the fission of Atg9-containing membranes during autophagy. The interaction of Bif-1 and DNM2 is enhanced upon nutrient starvation, and Bif-1 and DNM2 cooperatively induce the generation of Atg9-containing vesicles. Inhibition of the GTPase activity of DNM2 results in the accumulation of Atg9-positive tubular structures that originate from a Rab11-positive reservoir. Although Atg9 seems to be constitutively trafficked to the reservoir regardless of Bif-1 expression, membrane tubulation from the Atg9 reservoir is dependent on Bif-1 and is strongly induced upon nutrient starvation. These findings suggest that the generation of Atg9 vesicles from a Rab11-positive reservoir is tightly controlled by the Bif-1-DNM2 membrane fission machinery in response to cellular demand for autophagy.
Collapse
Affiliation(s)
- Yoshinori Takahashi
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA 17033, USA.,Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Nikolaos Tsotakos
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Ying Liu
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Megan M Young
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Jacob Serfass
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Zhenyuan Tang
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Thomas Abraham
- Department of Neural and Behavioral Science and the Microscopy Imaging Facility, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA 17033, USA.,Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA.,Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
104
|
Hilgemann DW, Dai G, Collins A, Lariccia V, Magi S, Deisl C, Fine M. Lipid signaling to membrane proteins: From second messengers to membrane domains and adapter-free endocytosis. J Gen Physiol 2018; 150:211-224. [PMID: 29326133 PMCID: PMC5806671 DOI: 10.1085/jgp.201711875] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hilgemann et al. explain how lipid signaling to membrane proteins involves a hierarchy of mechanisms from lipid binding to membrane domain coalescence. Lipids influence powerfully the function of ion channels and transporters in two well-documented ways. A few lipids act as bona fide second messengers by binding to specific sites that control channel and transporter gating. Other lipids act nonspecifically by modifying the physical environment of channels and transporters, in particular the protein–membrane interface. In this short review, we first consider lipid signaling from this traditional viewpoint, highlighting innumerable Journal of General Physiology publications that have contributed to our present understanding. We then switch to our own emerging view that much important lipid signaling occurs via the formation of membrane domains that influence the function of channels and transporters within them, promote selected protein–protein interactions, and control the turnover of surface membrane.
Collapse
Affiliation(s)
- Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Gucan Dai
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Anthony Collins
- Saba University School of Medicine, The Bottom, Saba, Dutch Caribbean
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche," Ancona, Italy
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche," Ancona, Italy
| | - Christine Deisl
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael Fine
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
105
|
Persaud A, Cormerais Y, Pouyssegur J, Rotin D. Dynamin inhibitors block activation of mTORC1 by amino acids independently of dynamin. J Cell Sci 2018; 131:jcs.211755. [PMID: 29150487 DOI: 10.1242/jcs.211755] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/08/2017] [Indexed: 02/04/2023] Open
Abstract
mTORC1 plays a crucial role in protein synthesis and cell proliferation and growth. It is activated by growth factors and amino acids, including essential amino acids (EAAs), such as leucine; Leu enters cells via the Leu transporter LAT1-4F2hc (also known as SLC7A5-SLC3A2) and potentially via endocytosis. Here, we investigated the contribution of the different routes of Leu entry into cells to mTORC1 activation using pharmacological inhibitors and cells that lack LAT1 or dynamin-1, -2 and -3. Our results show that LAT1 is the major route of Leu entry into cells and mTORC1 activation (∼70%), whereas dynamin-dependent endocytosis and macropinocytosis contribute minimally to both (5-15%). However, macropinocytosis contributes significantly (∼40%) to activation of mTORC1 by other EAAs. Surprisingly, the dynamin inhibitors dynasore and Dyngo 4A, which minimally inhibited Leu uptake, abolished mTORC1 activation independently of dynamin. Instead, dynasore inhibited RagA binding to Raptor, reduced mTORC1 recruitment to the lysosome, and inhibited Akt activation and TSC2-S939 phosphorylation; this resulted in inhibition of Rheb and mTORC1 activity. Our results suggest that these commonly used inhibitors of dynamin and endocytosis are potent suppressors of mTORC1 activation via off-target effects and not via dynamin inhibition.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Avinash Persaud
- Program in Cell Biology, The Hospital for Sick Children, and Biochemistry Department, University of Toronto, Toronto, Ontario, Canada, M5G 0A4
| | - Yann Cormerais
- Medical Biology Department, Centre Scientifique de Monaco (CSM), 98000 Monaco
| | - Jacques Pouyssegur
- Medical Biology Department, Centre Scientifique de Monaco (CSM), 98000 Monaco.,Université Côte d'Azur, IRCAN, CNRS, Inserm, Centre A Lacassagne, Nice 06189, France
| | - Daniela Rotin
- Program in Cell Biology, The Hospital for Sick Children, and Biochemistry Department, University of Toronto, Toronto, Ontario, Canada, M5G 0A4
| |
Collapse
|
106
|
Pinilla-Macua I, Grassart A, Duvvuri U, Watkins SC, Sorkin A. EGF receptor signaling, phosphorylation, ubiquitylation and endocytosis in tumors in vivo. eLife 2017; 6. [PMID: 29268862 PMCID: PMC5741375 DOI: 10.7554/elife.31993] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022] Open
Abstract
Despite a well-established role for the epidermal growth factor receptor (EGFR) in tumorigenesis, EGFR activities and endocytosis in tumors in vivo have not been studied. We labeled endogenous EGFR with GFP by genome-editing of human oral squamous cell carcinoma cells, which were used to examine EGFR-GFP behavior in mouse tumor xenografts in vivo. Intravital multiphoton imaging, confocal imaging of cryosections and biochemical analysis revealed that localization and trafficking patterns, as well as levels of phosphorylation and ubiquitylation of EGFR in tumors in vivo closely resemble patterns and levels observed in the same cells treated with 20–200 pM EGF in vitro. Consistent with the prediction of low ligand concentrations in tumors, EGFR endocytosis was kinase-dependent and blocked by inhibitors of clathrin-mediated internalization; and EGFR activity was insensitive to Cbl overexpression. Collectively, our data suggest that a small pool of active EGFRs is sufficient to drive tumorigenesis by signaling primarily through the Ras-MAPK pathway.
Collapse
Affiliation(s)
- Itziar Pinilla-Macua
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Alexandre Grassart
- Department of Molecular Microbial Pathogenesis, Institute Pasteur, Paris, France
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
107
|
Dynamin-2 Stabilizes the HIV-1 Fusion Pore with a Low Oligomeric State. Cell Rep 2017; 18:443-453. [PMID: 28076788 PMCID: PMC5263234 DOI: 10.1016/j.celrep.2016.12.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/14/2016] [Accepted: 12/12/2016] [Indexed: 11/22/2022] Open
Abstract
One of the key research areas surrounding HIV-1 concerns the regulation of the fusion event that occurs between the virus particle and the host cell during entry. Even if it is universally accepted that the large GTPase dynamin-2 is important during HIV-1 entry, its exact role during the first steps of HIV-1 infection is not well characterized. Here, we have utilized a multidisciplinary approach to study the DNM2 role during fusion of HIV-1 in primary resting CD4 T and TZM-bl cells. We have combined advanced light microscopy and functional cell-based assays to experimentally assess the role of dynamin-2 during these processes. Overall, our data suggest that dynamin-2, as a tetramer, might help to establish hemi-fusion and stabilizes the pore during HIV-1 fusion. DNM2 is crucial for HIV-1 fusion in T Cells and reporter cells DNM2 is not necessarily linked with endocytosis DNM2 tetramer stabilizes the HIV-1 fusion pore
Collapse
|
108
|
Lorenz-Guertin JM, Wilcox MR, Zhang M, Larsen MB, Pilli J, Schmidt BF, Bruchez MP, Johnson JW, Waggoner AS, Watkins SC, Jacob TC. A versatile optical tool for studying synaptic GABA A receptor trafficking. J Cell Sci 2017; 130:3933-3945. [PMID: 29025969 DOI: 10.1242/jcs.205286] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/26/2017] [Indexed: 12/26/2022] Open
Abstract
Live-cell imaging methods can provide critical real-time receptor trafficking measurements. Here, we describe an optical tool to study synaptic γ-aminobutyric acid (GABA) type A receptor (GABAAR) dynamics through adaptable fluorescent-tracking capabilities. A fluorogen-activating peptide (FAP) was genetically inserted into a GABAAR γ2 subunit tagged with pH-sensitive green fluorescent protein (γ2pHFAP). The FAP selectively binds and activates Malachite Green (MG) dyes that are otherwise non-fluorescent in solution. γ2pHFAP GABAARs are expressed at the cell surface in transfected cortical neurons, form synaptic clusters and do not perturb neuronal development. Electrophysiological studies show γ2pHFAP GABAARs respond to GABA and exhibit positive modulation upon stimulation with the benzodiazepine diazepam. Imaging studies using γ2pHFAP-transfected neurons and MG dyes show time-dependent receptor accumulation into intracellular vesicles, revealing constitutive endosomal and lysosomal trafficking. Simultaneous analysis of synaptic, surface and lysosomal receptors using the γ2pHFAP-MG dye approach reveals enhanced GABAAR turnover following a bicucculine-induced seizure paradigm, a finding not detected by standard surface receptor measurements. To our knowledge, this is the first application of the FAP-MG dye system in neurons, demonstrating the versatility to study nearly all phases of GABAAR trafficking.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Madeleine R Wilcox
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ming Zhang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mads B Larsen
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jyotsna Pilli
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Brigitte F Schmidt
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Marcel P Bruchez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jon W Johnson
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alan S Waggoner
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Simon C Watkins
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
109
|
Galli V, Sebastian R, Moutel S, Ecard J, Perez F, Roux A. Uncoupling of dynamin polymerization and GTPase activity revealed by the conformation-specific nanobody dynab. eLife 2017; 6:25197. [PMID: 29022874 PMCID: PMC5658065 DOI: 10.7554/elife.25197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 10/11/2017] [Indexed: 01/28/2023] Open
Abstract
Dynamin is a large GTPase that forms a helical collar at the neck of endocytic pits, and catalyzes membrane fission (Schmid and Frolov, 2011; Ferguson and De Camilli, 2012). Dynamin fission reaction is strictly dependent on GTP hydrolysis, but how fission is mediated is still debated (Antonny et al., 2016): GTP energy could be spent in membrane constriction required for fission, or in disassembly of the dynamin polymer to trigger fission. To follow dynamin GTP hydrolysis at endocytic pits, we generated a conformation-specific nanobody called dynab, that binds preferentially to the GTP hydrolytic state of dynamin-1. Dynab allowed us to follow the GTPase activity of dynamin-1 in real-time. We show that in fibroblasts, dynamin GTP hydrolysis occurs as stochastic bursts, which are randomly distributed relatively to the peak of dynamin assembly. Thus, dynamin disassembly is not coupled to GTPase activity, supporting that the GTP energy is primarily spent in constriction.
Collapse
Affiliation(s)
- Valentina Galli
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Rafael Sebastian
- Department of Computer Sciences, Universidad de Valencia, Valencia, Spain
| | - Sandrine Moutel
- Institut Curie, PSL Research University, Paris, France.,Translational Department, Institut Curie, Paris, France
| | - Jason Ecard
- Institut Curie, PSL Research University, Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, Paris, France
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland
| |
Collapse
|
110
|
A highly-sensitive high throughput assay for dynamin's basal GTPase activity. PLoS One 2017; 12:e0185639. [PMID: 28957392 PMCID: PMC5619819 DOI: 10.1371/journal.pone.0185639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/15/2017] [Indexed: 11/19/2022] Open
Abstract
Clathrin-mediated endocytosis is the major pathway by which cells internalize materials from the external environment. Dynamin, a large multidomain GTPase, is a key regulator of clathrin-mediated endocytosis. It assembles at the necks of invaginated clathrin-coated pits and, through GTP hydrolysis, catalyzes scission and release of clathrin-coated vesicles from the plasma membrane. Several small molecule inhibitors of dynamin's GTPase activity, such as Dynasore and Dyngo-4a, are currently available, although their specificity has been brought into question. Previous screens for these inhibitors measured dynamin's stimulated GTPase activity due to lack of sufficient sensitivity, hence the mechanisms by which they inhibit dynamin are uncertain. We report a highly sensitive fluorescence-based assay capable of detecting dynamin's basal GTPase activity under conditions compatible with high throughput screening. Utilizing this optimized assay, we conducted a pilot screen of 8000 compounds and identified several "hits" that inhibit the basal GTPase activity of dynamin-1. Subsequent dose-response curves were used to validate the activity of these compounds. Interestingly, we found neither Dynasore nor Dyngo-4a inhibited dynamin's basal GTPase activity, although both inhibit assembly-stimulated GTPase activity. This assay provides the basis for a more extensive search for more potent and chemically desirable dynamin inhibitors.
Collapse
|
111
|
Loh LN, McCarthy EMC, Narang P, Khan NA, Ward TH. Escherichia coli K1 utilizes host macropinocytic pathways for invasion of brain microvascular endothelial cells. Traffic 2017; 18:733-746. [PMID: 28799243 DOI: 10.1111/tra.12508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 01/06/2023]
Abstract
Eukaryotic cells utilize multiple endocytic pathways for specific uptake of ligands or molecules, and these pathways are commonly hijacked by pathogens to enable host cell invasion. Escherichia coli K1, a pathogenic bacterium that causes neonatal meningitis, invades the endothelium of the blood-brain barrier, but the entry route remains unclear. Here, we demonstrate that the bacteria trigger an actin-mediated uptake route, stimulating fluid phase uptake, membrane ruffling and macropinocytosis. The route of uptake requires intact lipid rafts as shown by cholesterol depletion. Using a variety of perturbants we demonstrate that small Rho GTPases and their downstream effectors have a significant effect on bacterial invasion. Furthermore, clathrin-mediated endocytosis appears to play an indirect role in E. coli K1 uptake. The data suggest that the bacteria effect a complex interplay between the Rho GTPases to increase their chances of uptake by macropinocytosis into human brain microvascular endothelial cells.
Collapse
Affiliation(s)
- Lip Nam Loh
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Elizabeth M C McCarthy
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Priyanka Narang
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Naveed A Khan
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, Selangor, Malaysia
| | - Theresa H Ward
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
112
|
Dynamin 1- and 3-Mediated Endocytosis Is Essential for the Development of a Large Central Synapse In Vivo. J Neurosci 2017; 36:6097-115. [PMID: 27251629 DOI: 10.1523/jneurosci.3804-15.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 04/25/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Dynamin is a large GTPase crucial for endocytosis and sustained neurotransmission, but its role in synapse development in the mammalian brain has received little attention. We addressed this question using the calyx of Held (CH), a large nerve terminal in the auditory brainstem in mice. Tissue-specific ablation of different dynamin isoforms bypasses the early lethality of conventional knock-outs and allows us to examine CH development in a native brain circuit. Individual gene deletion of dynamin 1, a primary dynamin isoform in neurons, as well as dynamin 2 and 3, did not affect CH development. However, combined tissue-specific knock-out of both dynamin 1 and 3 (cDKO) severely impaired CH formation and growth during the first postnatal week, and the phenotypes were exacerbated by further additive conditional knock-out of dynamin 2. The developmental defect of CH in cDKO first became evident on postnatal day 3 (P3), a time point when CH forms and grows abruptly. This is followed by a progressive loss of postsynaptic neurons and increased glial infiltration late in development. However, early CH synaptogenesis before protocalyx formation was not altered in cDKO. Functional maturation of synaptic transmission in the medial nucleus of the trapezoid body in cDKO was impeded during development and accompanied by an increase in the membrane excitability of medial nucleus of the trapezoid body neurons. This study provides compelling genetic evidence that CH formation requires dynamin 1- and 3-mediated endocytosis in vivo, indicating a critical role of dynamin in synaptic development, maturation, and subsequent maintenance in the mammalian brain. SIGNIFICANCE STATEMENT Synaptic development has been increasingly implicated in numerous brain disorders. Dynamin plays a crucial role in clathrin-mediated endocytosis and synaptic transmission at nerve terminals, but its potential role in synaptic development in the native brain circuitry is unclear. Using the calyx of Held, a giant nerve terminal in the mouse brainstem, we evaluated the role of dynamin in this process by using tissue-specific knock-out (KO) of three different dynamin isoforms (dynamin 1, 2, and 3) individually and in combination. Our data demonstrated that dynamin is required for the formation, functional maturation, and subsequent survival of the calyx of Held. This study highlights the important role of dynamin-mediated endocytosis in the development of central synapses in the mammalian brain.
Collapse
|
113
|
González-Jamett AM, Baez-Matus X, Olivares MJ, Hinostroza F, Guerra-Fernández MJ, Vasquez-Navarrete J, Bui MT, Guicheney P, Romero NB, Bevilacqua JA, Bitoun M, Caviedes P, Cárdenas AM. Dynamin-2 mutations linked to Centronuclear Myopathy impair actin-dependent trafficking in muscle cells. Sci Rep 2017; 7:4580. [PMID: 28676641 PMCID: PMC5496902 DOI: 10.1038/s41598-017-04418-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Dynamin-2 is a ubiquitously expressed GTP-ase that mediates membrane remodeling. Recent findings indicate that dynamin-2 also regulates actin dynamics. Mutations in dynamin-2 cause dominant centronuclear myopathy (CNM), a congenital myopathy characterized by progressive weakness and atrophy of skeletal muscles. However, the muscle-specific roles of dynamin-2 affected by these mutations remain elusive. Here we show that, in muscle cells, the GTP-ase activity of dynamin-2 is involved in de novo actin polymerization as well as in actin-mediated trafficking of the glucose transporter GLUT4. Expression of dynamin-2 constructs carrying CNM-linked mutations disrupted the formation of new actin filaments as well as the stimulus-induced translocation of GLUT4 to the plasma membrane. Similarly, mature muscle fibers isolated from heterozygous knock-in mice that harbor the dynamin-2 mutation p.R465W, an animal model of CNM, exhibited altered actin organization, reduced actin polymerization and impaired insulin-induced translocation of GLUT4 to the sarcolemma. Moreover, GLUT4 displayed aberrant perinuclear accumulation in biopsies from CNM patients carrying dynamin-2 mutations, further suggesting trafficking defects. These results suggest that dynamin-2 is a key regulator of actin dynamics and GLUT4 trafficking in muscle cells. Our findings also support a model in which impairment of actin-dependent trafficking contributes to the pathological mechanism in dynamin-2-associated CNM.
Collapse
Affiliation(s)
- Arlek M González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso. Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile. .,Programa de Farmacología Molecular y Clinica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Ximena Baez-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso. Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - María José Olivares
- Centro Interdisciplinario de Neurociencia de Valparaíso. Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Fernando Hinostroza
- Centro Interdisciplinario de Neurociencia de Valparaíso. Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Doctorado en Ciencias, mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Maria José Guerra-Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso. Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jacqueline Vasquez-Navarrete
- Centro Interdisciplinario de Neurociencia de Valparaíso. Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Mai Thao Bui
- Université Sorbonne, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France.,Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, GH Pitié-Salpêtrière, Paris, France
| | - Pascale Guicheney
- INSERM, UMR_S1166, Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Norma Beatriz Romero
- Université Sorbonne, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France.,Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, GH Pitié-Salpêtrière, Paris, France
| | - Jorge A Bevilacqua
- Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Marc Bitoun
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Paris, France
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clinica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso. Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
114
|
Lasič E, Stenovec M, Kreft M, Robinson PJ, Zorec R. Dynamin regulates the fusion pore of endo- and exocytotic vesicles as revealed by membrane capacitance measurements. Biochim Biophys Acta Gen Subj 2017; 1861:2293-2303. [PMID: 28669852 DOI: 10.1016/j.bbagen.2017.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/24/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dynamin is a multidomain GTPase exhibiting mechanochemical and catalytic properties involved in vesicle scission from the plasmalemma during endocytosis. New evidence indicates that dynamin is also involved in exocytotic release of catecholamines, suggesting the existence of a dynamin-regulated structure that couples endo- to exocytosis. METHODS Thus we here employed high-resolution cell-attached capacitance measurements and super-resolution structured illumination microscopy to directly examine single vesicle interactions with the plasmalemma in cultured rat astrocytes treated with distinct pharmacological modulators of dynamin activity. Fluorescent dextrans and the lipophilic plasmalemmal marker DiD were utilized to monitor uptake and distribution of vesicles in the peri-plasmalemmal space and in the cell cytosol. RESULTS Dynamin inhibition with Dynole™-34-2 and Dyngo™-4a prevented vesicle internalization into the cytosol and decreased fusion pore conductance of vesicles that remained attached to the plasmalemma via a narrow fusion pore that lapsed into a state of repetitive opening and closing - flickering. In contrast, the dynamin activator Ryngo™-1-23 promoted vesicle internalization and favored fusion pore closure by prolonging closed and shortening open fusion pore dwell times. Immunocytochemical staining revealed dextran uptake into dynamin-positive vesicles and increased dextran uptake into Syt4- and VAMP2-positive vesicles after dynamin inhibition, indicating prolonged retention of these vesicles at the plasmalemma. CONCLUSIONS Our results have provided direct evidence for a role of dynamin in regulation of fusion pore geometry and kinetics of endo- and exocytotic vesicles, indicating that both share a common dynamin-regulated structural intermediate, the fusion pore.
Collapse
Affiliation(s)
- Eva Lasič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia; University of Ljubljana, Biotechnical Faculty, Department of Biology, CPAE, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Phillip J Robinson
- Children's Medical Research Institute, The University of Sydney, Australia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
| |
Collapse
|
115
|
Ho LWC, Yung WY, Sy KHS, Li HY, Choi CKK, Leung KCF, Lee TWY, Choi CHJ. Effect of Alkylation on the Cellular Uptake of Polyethylene Glycol-Coated Gold Nanoparticles. ACS NANO 2017; 11:6085-6101. [PMID: 28562003 DOI: 10.1021/acsnano.7b02044] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Alkyl groups (CnH2n+1) are prevalent in engineered bionanomaterials used for many intracellular applications, yet how alkyl groups dictate the interactions between nanoparticles and mammalian cells remains incomprehensively investigated. In this work, we report the effect of alkylation on the cellular uptake of densely polyethylene glycol-coated nanoparticles, which are characterized by their limited entry into mammalian cells. Specifically, we prepare densely PEGylated gold nanoparticles that bear alkyl chains of varying carbon chain lengths (n) and loading densities (termed "alkyl-PEG-AuNPs"), followed by investigating their uptake by Kera-308 keratinocytes. Strikingly, provided a modest alkyl mass percentage of 0.2% (2 orders of magnitude lower than that of conventional lipid-based NPs) in their PEG shells, dodecyl-PEG-AuNPs (n = 12) and octadecyl-PEG-AuNPs (n = 18) can enter Kera-308 cells 30-fold more than methoxy-PEG-AuNPs (no alkyl groups) and hexyl-PEG-AuNPs (n = 6) after 24 h of incubation. Such strong dependence on n is valid for all serum concentrations considered (even under serum-free conditions), although enhanced serum levels can trigger the agglomeration of alkyl-PEG-AuNPs (without permanent aggregation of the AuNP cores) and can attenuate their cellular uptake. Additionally, alkyl-PEG-AuNPs can rapidly enter Kera-308 cells via the filipodia-mediated pathway, engaging the tips of membrane protrusions and accumulating within interdigital folds. Most alkyl-PEG-AuNPs adopt the "endo-lysosomal" route of trafficking, but ∼15% of them accumulate in the cytosol. Regardless of intracellular location, alkyl-PEG-AuNPs predominantly appear as individual entities after 24 h of incubation. Our work offers insights into the incorporation of alkyl groups for designing bionanomaterials for cellular uptake and cytosolic accumulation with intracellular stability.
Collapse
Affiliation(s)
- Lok Wai Cola Ho
- Department of Electronic Engineering (Biomedical Engineering), §School of Pharmacy,⊥Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, and ‡Department of Chemistry, Hong Kong Baptist University , Kowloon, Hong Kong, China
| | - Wing-Yin Yung
- Department of Electronic Engineering (Biomedical Engineering), §School of Pharmacy,⊥Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, and ‡Department of Chemistry, Hong Kong Baptist University , Kowloon, Hong Kong, China
| | - Kwun Hei Samuel Sy
- Department of Electronic Engineering (Biomedical Engineering), §School of Pharmacy,⊥Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, and ‡Department of Chemistry, Hong Kong Baptist University , Kowloon, Hong Kong, China
| | - Ho Yin Li
- Department of Electronic Engineering (Biomedical Engineering), §School of Pharmacy,⊥Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, and ‡Department of Chemistry, Hong Kong Baptist University , Kowloon, Hong Kong, China
| | - Chun Kit K Choi
- Department of Electronic Engineering (Biomedical Engineering), §School of Pharmacy,⊥Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, and ‡Department of Chemistry, Hong Kong Baptist University , Kowloon, Hong Kong, China
| | - Ken Cham-Fai Leung
- Department of Electronic Engineering (Biomedical Engineering), §School of Pharmacy,⊥Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, and ‡Department of Chemistry, Hong Kong Baptist University , Kowloon, Hong Kong, China
| | - Thomas W Y Lee
- Department of Electronic Engineering (Biomedical Engineering), §School of Pharmacy,⊥Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, and ‡Department of Chemistry, Hong Kong Baptist University , Kowloon, Hong Kong, China
| | - Chung Hang Jonathan Choi
- Department of Electronic Engineering (Biomedical Engineering), §School of Pharmacy,⊥Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, and ‡Department of Chemistry, Hong Kong Baptist University , Kowloon, Hong Kong, China
| |
Collapse
|
116
|
Wenzel ED, Bachis A, Avdoshina V, Taraballi F, Tasciotti E, Mocchetti I. Endocytic Trafficking of HIV gp120 is Mediated by Dynamin and Plays a Role in gp120 Neurotoxicity. J Neuroimmune Pharmacol 2017; 12:492-503. [PMID: 28349243 DOI: 10.1007/s11481-017-9739-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/13/2017] [Indexed: 12/13/2022]
Abstract
Neurons that endocytose the human immunodeficiency virus-1 (HIV) protein gp120 exhibit neurite retraction and activation of caspase-3, suggesting that the endocytic process may be crucial for gp120-mediated neuronal injury. The goal of this study is to demonstrate that internalization and accumulation of gp120 play a role in its neurotoxic effects. In mammalian cells, endocytosis is primarily a dynamin-dependent process. To establish whether gp120 is endocytosed in a dynamin-dependent manner, we used fibroblasts in which deletion of dynamins was induced by tamoxifen. We observed a robust reduction of intracellular gp120 immunoreactivity in tamoxifen-treated cells. To examine whether endocytosis of gp120 is crucial for its neurotoxic effect, we blocked gp120 internalization into primary rat cortical neurons by dynasore, an inhibitor of the dynamin GTP-ase activity. We found that dynasore blocks both gp120 internalization and neurotoxicity. We then utilized gp120-loaded mesoporous silica nanoparticles to deliver gp120 intracellularly. We established that once internalized, gp120 is neurotoxic regardless of chemokine receptor activation. Our data suggest that dynamin-dependent endocytosis of gp120 is critical for its neurotoxicity.
Collapse
Affiliation(s)
- Erin D Wenzel
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, EP09 New Research Building, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA.,Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Alessia Bachis
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, EP09 New Research Building, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Valeria Avdoshina
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, EP09 New Research Building, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Francesca Taraballi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA.,Department of Orthopedics, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Italo Mocchetti
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, EP09 New Research Building, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA.
| |
Collapse
|
117
|
Basagiannis D, Zografou S, Galanopoulou K, Christoforidis S. Dynasore impairs VEGFR2 signalling in an endocytosis-independent manner. Sci Rep 2017; 7:45035. [PMID: 28327657 PMCID: PMC5361198 DOI: 10.1038/srep45035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/17/2017] [Indexed: 12/17/2022] Open
Abstract
VEGFR2 is a critical angiogenic receptor playing a key role in vascular homeostasis. Upon activation by VEGF, VEGFR2 becomes endocytosed. Internalisation of VEGFR2 is facilitated, in part, through clathrin mediated endocytosis (CME), the role of which in VEGFR2 function is debated. Here, we confirm the contribution of CME in VEGFR2 uptake. However, curiously, we find that different approaches of inhibition of CME exert contradictory effects on VEGF signalling; knockdown of clathrin, or of dynamin, or overexpression of dynamin K44A, do not affect VEGF-induced phosphorylation of ERK1/2, while dynasore causes strong inhibition. We resolve this discrepancy by showing that although dynasore inhibits CME of VEGFR2, its inhibitory action in ERK1/2 phosphorylation is not related to attenuation of VEGFR2 endocytosis; it is rather due to an off-target effect of the drug. Dynasore inhibits VEGF-induced calcium release, a signalling event that lies upstream of ERK1/2, which implies that this effect could be responsible, at least in part, for the inhibitory action of the drug on VEGF-to-ERK1/2 signalling. These results raise caution that although dynasore is specific in inhibiting clathrin- and dynamin-mediated endocytosis, it may also exert off-target effects on signalling molecules, hence influencing the interpretation of the role of endocytosis in signalling.
Collapse
Affiliation(s)
- Dimitris Basagiannis
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, 45110 Ioannina, Greece.,Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Sofia Zografou
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, 45110 Ioannina, Greece
| | - Katerina Galanopoulou
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, 45110 Ioannina, Greece.,Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Savvas Christoforidis
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, 45110 Ioannina, Greece.,Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
118
|
Eppler FJ, Quast T, Kolanus W. Dynamin2 controls Rap1 activation and integrin clustering in human T lymphocyte adhesion. PLoS One 2017; 12:e0172443. [PMID: 28273099 PMCID: PMC5342215 DOI: 10.1371/journal.pone.0172443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/23/2017] [Indexed: 11/19/2022] Open
Abstract
Leukocyte trafficking is crucial to facilitate efficient immune responses. Here, we report that the large GTPase dynamin2, which is generally considered to have a key role in endocytosis and membrane remodeling, is an essential regulator of integrin-dependent human T lymphocyte adhesion and migration. Chemical inhibition or knockdown of dynamin2 expression significantly reduced integrin-dependent T cell adhesion in vitro. This phenotype was not observed when T cells were treated with various chemical inhibitors which abrogate endocytosis or actin polymerization. We furthermore detected dynamin2 in signaling complexes and propose that it controls T cell adhesion via FAK/Pyk2- and RapGEF1-mediated Rap1 activation. In addition, the dynamin2 inhibitor-induced reduction of lymphocyte adhesion can be rescued by Rap1a overexpression. We demonstrate that the dynamin2 effect on T cell adhesion does not involve integrin affinity regulation but instead relies on its ability to modulate integrin valency. Taken together, we suggest a previously unidentified role of dynamin2 in the regulation of integrin-mediated lymphocyte adhesion via a Rap1 signaling pathway.
Collapse
Affiliation(s)
- Felix J. Eppler
- Division of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Thomas Quast
- Division of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Waldemar Kolanus
- Division of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
119
|
Synaptic Vesicle Endocytosis Occurs on Multiple Timescales and Is Mediated by Formin-Dependent Actin Assembly. Neuron 2017; 93:854-866.e4. [DOI: 10.1016/j.neuron.2017.02.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/12/2016] [Accepted: 01/23/2017] [Indexed: 11/21/2022]
|
120
|
Sasso L, Hosamuddin H, Emanueli C. Extracellular vesicles at the cross-line between basic science and clinical needs. Microcirculation 2017; 24. [DOI: 10.1111/micc.12333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Luana Sasso
- Bristol Heart Institute; School of Clinical Sciences; University of Bristol; Bristol UK
| | - Huma Hosamuddin
- School of Medicine; St. George University of London; Tooting London UK
| | - Costanza Emanueli
- Bristol Heart Institute; School of Clinical Sciences; University of Bristol; Bristol UK
- National Health and Lung Institute; Hammersmith campus; Imperial College London; UK
| |
Collapse
|
121
|
Jiang J, Kao CY, Papoutsakis ET. How do megakaryocytic microparticles target and deliver cargo to alter the fate of hematopoietic stem cells? J Control Release 2016; 247:1-18. [PMID: 28024915 DOI: 10.1016/j.jconrel.2016.12.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022]
Abstract
Megakaryocytic microparticles (MkMPs), the most abundant MPs in circulation, can induce the differentiation of hematopoietic stem and progenitor cells (HSPCs) into functional megakaryocytes. This MkMP capability could be explored for applications in transfusion medicine but also for delivery of nucleic acids and other molecules to HSPCs for targeted molecular therapy. Understanding how MkMPs target, deliver cargo and alter the fate of HSPCs is important for exploring such applications. We show that MkMPs, which are distinct from Mk exosomes (MkExos), target HSPCs with high specificity since they have no effect on other ontologically or physiologically related cells, namely mesenchymal stem cells, endothelial cells or granulocytes. The outcome is also specific: only cells of the megakaryocytic lineage are generated. Observation of intact fluorescently-tagged MkMPs inside HSPCs demonstrates endocytosis as one mechanism of cargo delivery. Fluorescent labeling and scanning electron microscopy (SEM) imaging show that direct fusion of MkMPs into HSPCs is also engaged in cargo delivery. SEM imaging detailed the membrane-fusion process in four stages leading to full adsorption of MkMPs into HSPCs. Furthermore, macropinocytosis and lipid raft-mediated were shown here as mechanisms of MkMP uptake by HSPC. In contrast, the ontologically related platelet-derived MPs (PMPs) cannot be taken up by HSPCs although they bind to and induce HSPC aggregation. We show that platelet-like thrombin activation is apparently responsible for the different biological effects of MkMPs versus PMPs on HSPCs. We show that HSPC uropods are the preferential site for MkMP binding, and that CD54 (ICAM-1), CD11b, CD18 and CD43, localized on HSPC uropods, are involved in MkMP binding to HSPCs. Finally, we show that MkMP RNA is largely responsible for HSPC programming into Mk differentiation.
Collapse
Affiliation(s)
- Jinlin Jiang
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States; Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Chen-Yuan Kao
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States; Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States; Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States.
| |
Collapse
|
122
|
Windheim M. Interleukin-1-induced gene expression requires the membrane-raft-dependent internalization of the interleukin-1 receptor. Cell Signal 2016; 28:1520-9. [PMID: 27327966 DOI: 10.1016/j.cellsig.2016.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Mark Windheim
- Institute of Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|
123
|
Antonny B, Burd C, De Camilli P, Chen E, Daumke O, Faelber K, Ford M, Frolov VA, Frost A, Hinshaw JE, Kirchhausen T, Kozlov MM, Lenz M, Low HH, McMahon H, Merrifield C, Pollard TD, Robinson PJ, Roux A, Schmid S. Membrane fission by dynamin: what we know and what we need to know. EMBO J 2016; 35:2270-2284. [PMID: 27670760 PMCID: PMC5090216 DOI: 10.15252/embj.201694613] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/25/2016] [Indexed: 12/04/2022] Open
Abstract
The large GTPase dynamin is the first protein shown to catalyze membrane fission. Dynamin and its related proteins are essential to many cell functions, from endocytosis to organelle division and fusion, and it plays a critical role in many physiological functions such as synaptic transmission and muscle contraction. Research of the past three decades has focused on understanding how dynamin works. In this review, we present the basis for an emerging consensus on how dynamin functions. Three properties of dynamin are strongly supported by experimental data: first, dynamin oligomerizes into a helical polymer; second, dynamin oligomer constricts in the presence of GTP; and third, dynamin catalyzes membrane fission upon GTP hydrolysis. We present the two current models for fission, essentially diverging in how GTP energy is spent. We further discuss how future research might solve the remaining open questions presently under discussion.
Collapse
Affiliation(s)
- Bruno Antonny
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis, Valbonne, France
| | - Christopher Burd
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Pietro De Camilli
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth Chen
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Oliver Daumke
- Department of Crystallography, Max-Delbrück Centrum für Molekulare Medizin, Berlin, Germany
| | - Katja Faelber
- Department of Crystallography, Max-Delbrück Centrum für Molekulare Medizin, Berlin, Germany
| | - Marijn Ford
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vadim A Frolov
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Jenny E Hinshaw
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Tom Kirchhausen
- Departments of Cell Biology and Pediatrics, Harvard Medical School, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Martin Lenz
- LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Harry H Low
- Department of Life Sciences, Imperial College, London, UK
| | | | | | - Thomas D Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Aurélien Roux
- Department of Biochemistry and Swiss NCCR Chemical Biology, University of Geneva, Geneva 4, Switzerland
| | - Sandra Schmid
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
124
|
Regulation of intracellular heme trafficking revealed by subcellular reporters. Proc Natl Acad Sci U S A 2016; 113:E5144-52. [PMID: 27528661 DOI: 10.1073/pnas.1609865113] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Heme is an essential prosthetic group in proteins that reside in virtually every subcellular compartment performing diverse biological functions. Irrespective of whether heme is synthesized in the mitochondria or imported from the environment, this hydrophobic and potentially toxic metalloporphyrin has to be trafficked across membrane barriers, a concept heretofore poorly understood. Here we show, using subcellular-targeted, genetically encoded hemoprotein peroxidase reporters, that both extracellular and endogenous heme contribute to cellular labile heme and that extracellular heme can be transported and used in toto by hemoproteins in all six subcellular compartments examined. The reporters are robust, show large signal-to-background ratio, and provide sufficient range to detect changes in intracellular labile heme. Restoration of reporter activity by heme is organelle-specific, with the Golgi and endoplasmic reticulum being important sites for both exogenous and endogenous heme trafficking. Expression of peroxidase reporters in Caenorhabditis elegans shows that environmental heme influences labile heme in a tissue-dependent manner; reporter activity in the intestine shows a linear increase compared with muscle or hypodermis, with the lowest heme threshold in neurons. Our results demonstrate that the trafficking pathways for exogenous and endogenous heme are distinct, with intrinsic preference for specific subcellular compartments. We anticipate our results will serve as a heuristic paradigm for more sophisticated studies on heme trafficking in cellular and whole-animal models.
Collapse
|
125
|
Elkin SR, Oswald NW, Reed DK, Mettlen M, MacMillan JB, Schmid SL. Ikarugamycin: A Natural Product Inhibitor of Clathrin-Mediated Endocytosis. Traffic 2016; 17:1139-49. [PMID: 27392092 DOI: 10.1111/tra.12425] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 12/14/2022]
Abstract
Ikarugamycin (IKA) is a previously discovered antibiotic, which has been shown to inhibit the uptake of oxidized low-density lipoproteins in macrophages. Furthermore, several groups have previously used IKA to inhibit clathrin-mediated endocytosis (CME) in plant cell lines. However, detailed characterization of IKA has yet to be performed. Consequently, we performed biochemistry and microscopy experiments to further characterize the effects of IKA on CME. We show that IKA has an IC50 of 2.7 μm in H1299 cells and acutely inhibits CME, but not other endocytic pathways, in a panel of cell lines. Although long-term incubation with IKA has cytotoxic effects, the short-term inhibitory effects on CME are reversible. Thus, IKA can be a useful tool for probing routes of endocytic trafficking.
Collapse
Affiliation(s)
- Sarah R Elkin
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nathaniel W Oswald
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Dana K Reed
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Marcel Mettlen
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - John B MacMillan
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sandra L Schmid
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
126
|
Trexler AJ, Sochacki KA, Taraska JW. Imaging the recruitment and loss of proteins and lipids at single sites of calcium-triggered exocytosis. Mol Biol Cell 2016; 27:2423-34. [PMID: 27307587 PMCID: PMC4966983 DOI: 10.1091/mbc.e16-01-0057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/09/2016] [Indexed: 12/13/2022] Open
Abstract
Imaging of exocytic and endocytic proteins shows which are present at exocytic sites before, during, and after exocytosis in living cells. Rab proteins and SNARE modulators are lost, and dynamin, PIP2, and BAR-domain proteins are rapidly and transiently recruited, where they may modulate the nascent fusion pore. How and when the dozens of molecules that control exocytosis assemble in living cells to regulate the fusion of a vesicle with the plasma membrane is unknown. Here we image with two-color total internal reflection fluorescence microscopy the local changes of 27 proteins at single dense-core vesicles undergoing calcium-triggered fusion. We identify two broad dynamic behaviors of exocytic molecules. First, proteins enriched at exocytic sites are associated with DCVs long before exocytosis, and near the time of membrane fusion, they diffuse away. These proteins include Rab3 and Rab27, rabphilin3a, munc18a, tomosyn, and CAPS. Second, we observe a group of classical endocytic proteins and lipids, including dynamins, amphiphysin, syndapin, endophilin, and PIP2, which are rapidly and transiently recruited to the exocytic site near the time of membrane fusion. Dynamin mutants unable to bind amphiphysin were not recruited, indicating that amphiphysin is involved in localizing dynamin to the fusion site. Expression of mutant dynamins and knockdown of endogenous dynamin altered the rate of cargo release from single vesicles. Our data reveal the dynamics of many key proteins involved in exocytosis and identify a rapidly recruited dynamin/PIP2/BAR assembly that regulates the exocytic fusion pore of dense-core vesicles in cultured endocrine beta cells.
Collapse
Affiliation(s)
- Adam J Trexler
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kem A Sochacki
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
127
|
Nakajo A, Yoshimura SI, Togawa H, Kunii M, Iwano T, Izumi A, Noguchi Y, Watanabe A, Goto A, Sato T, Harada A. EHBP1L1 coordinates Rab8 and Bin1 to regulate apical-directed transport in polarized epithelial cells. J Cell Biol 2016; 212:297-306. [PMID: 26833786 PMCID: PMC4739609 DOI: 10.1083/jcb.201508086] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The highly conserved Rab guanosine triphosphatase (GTPase) Rab8 plays a role in exocytosis toward the polarized plasma membrane in eukaryotic cells. In murine Rab8-deficient small intestine cells, apical proteins are missorted into lysosomes. In this study, we identified a novel Rab8-interacting protein complex containing an EH domain-binding protein 1-like 1 (EHBP1L1), Bin1/amphiphysin II, and dynamin. Biochemical analyses showed that EHBP1L1 directly bound to GTP-loaded Rab8 and Bin1. The spatial dependency of these complexes at the endocytic recycling compartment (ERC) was demonstrated through overexpression and knockdown experiments. EHBP1L1- or Bin1-depleted or dynamin-inhibited small intestine organoids significantly accumulated apical membrane proteins but not basolateral membrane proteins in lysosomes. Furthermore, in EHBP1L1-deficient mice, small intestine cells displayed truncated and sparse microvilli, suggesting that EHBP1L1 maintains the apical plasma membrane by regulating apical transport. In summary, our data demonstrate that EHBP1L1 links Rab8 and the Bin1-dynamin complex, which generates membrane curvature and excises the vesicle at the ERC for apical transport.
Collapse
Affiliation(s)
- Atsuhiro Nakajo
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Shin-ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hiroko Togawa
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masataka Kunii
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tomohiko Iwano
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Ayaka Izumi
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yuria Noguchi
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Ayako Watanabe
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Ayako Goto
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
128
|
Dejonghe W, Kuenen S, Mylle E, Vasileva M, Keech O, Viotti C, Swerts J, Fendrych M, Ortiz-Morea FA, Mishev K, Delang S, Scholl S, Zarza X, Heilmann M, Kourelis J, Kasprowicz J, Nguyen LSL, Drozdzecki A, Van Houtte I, Szatmári AM, Majda M, Baisa G, Bednarek SY, Robert S, Audenaert D, Testerink C, Munnik T, Van Damme D, Heilmann I, Schumacher K, Winne J, Friml J, Verstreken P, Russinova E. Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nat Commun 2016; 7:11710. [PMID: 27271794 PMCID: PMC4899852 DOI: 10.1038/ncomms11710] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 04/21/2016] [Indexed: 11/27/2022] Open
Abstract
ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane. Plant cells maintain strict proton gradients over different membranes. Here, Dejonghe et al. show that several protonophores, including the known tyrosine kinase inhibitor TyrphostinA23, inhibit clathrin-mediated endocytosis by disturbing these gradients and causing cytoplasmic acidification.
Collapse
Affiliation(s)
- Wim Dejonghe
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Sabine Kuenen
- VIB Center for the Biology of Disease, Laboratory of Neuronal Communication, 3000 Leuven, Belgium.,Department for Human Genetics, and Leuven Institute for Neurodegenerative Diseases, KU Leuven, 3000 Leuven, Belgium
| | - Evelien Mylle
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Mina Vasileva
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden
| | - Corrado Viotti
- Department of Plant Physiology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Jef Swerts
- VIB Center for the Biology of Disease, Laboratory of Neuronal Communication, 3000 Leuven, Belgium.,Department for Human Genetics, and Leuven Institute for Neurodegenerative Diseases, KU Leuven, 3000 Leuven, Belgium
| | - Matyáš Fendrych
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Fausto Andres Ortiz-Morea
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Kiril Mishev
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Simon Delang
- Developmental Biology of Plants, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefan Scholl
- Developmental Biology of Plants, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Xavier Zarza
- Department of Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University, 06120 Halle, Germany
| | - Jiorgos Kourelis
- Department of Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Jaroslaw Kasprowicz
- VIB Center for the Biology of Disease, Laboratory of Neuronal Communication, 3000 Leuven, Belgium.,Department for Human Genetics, and Leuven Institute for Neurodegenerative Diseases, KU Leuven, 3000 Leuven, Belgium
| | | | | | - Isabelle Van Houtte
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Anna-Mária Szatmári
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Mateusz Majda
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Gary Baisa
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | - Stéphanie Robert
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | | | - Christa Testerink
- Department of Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Teun Munnik
- Department of Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Daniël Van Damme
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University, 06120 Halle, Germany
| | - Karin Schumacher
- Developmental Biology of Plants, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Johan Winne
- Laboratory for Organic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Gent, Belgium
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Patrik Verstreken
- VIB Center for the Biology of Disease, Laboratory of Neuronal Communication, 3000 Leuven, Belgium.,Department for Human Genetics, and Leuven Institute for Neurodegenerative Diseases, KU Leuven, 3000 Leuven, Belgium
| | - Eugenia Russinova
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| |
Collapse
|
129
|
Preta G, Jankunec M, Heinrich F, Griffin S, Sheldon IM, Valincius G. Tethered bilayer membranes as a complementary tool for functional and structural studies: The pyolysin case. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2070-2080. [PMID: 27211243 DOI: 10.1016/j.bbamem.2016.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/27/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
Abstract
We demonstrate the use of tethered bilayer lipid membranes (tBLMs) as an experimental platform for functional and structural studies of membrane associated proteins by electrochemical techniques. The reconstitution of the cholesterol-dependent cytolysin (CDC) pyolysin (PLO) from Trueperella pyogenes into tBLMs was followed in real-time by electrochemical impedance spectroscopy (EIS). Changes of the EIS parameters of the tBLMs upon exposure to PLO solutions were consistent with the dielectric barrier damage occurring through the formation of water-filled pores in membranes. Parallel experiments involving a mutant version of PLO, which is able to bind to the membranes but does not form oligomer pores, strengthen the reliability of this methodology, since no change in the electrochemical impedance was observed. Complementary atomic force microscopy (AFM) and neutron reflectometry (NR) measurements revealed structural details of the membrane bound PLO, consistent with the structural transformations of the membrane bound toxins found for other cholesterol dependent cytolysins. In this work, using the tBLMs platform we also observed a protective effect of the dynamin inhibitor Dynasore against pyolysin as well as pneumolysin. An effect of Dynasore in tBLMs, which was earlier observed in experiments with live cells, confirms the biological relevance of the tBLMs models, as well as demonstrates the potential of the electrochemical impedance spectroscopy to quantify membrane damage by the pore forming toxins. In conclusion, tBLMs are a reliable and complementary method to explore the activity of CDCs in eukaryotic cells and to develop strategies to limit the toxic effects of CDCs.
Collapse
Affiliation(s)
- Giulio Preta
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Marija Jankunec
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Frank Heinrich
- NIST Center for Neutron Research, Gaithersburg, MD 20899, USA
| | - Sholeem Griffin
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, United Kingdom
| | - Iain Martin Sheldon
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, United Kingdom
| | - Gintaras Valincius
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
130
|
Tissue-specific dynamin-1 deletion at the calyx of Held decreases short-term depression through a mechanism distinct from vesicle resupply. Proc Natl Acad Sci U S A 2016; 113:E3150-8. [PMID: 27185948 DOI: 10.1073/pnas.1520937113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dynamin is a large GTPase with a crucial role in synaptic vesicle regeneration. Acute dynamin inhibition impairs neurotransmitter release, in agreement with the protein's established role in vesicle resupply. Here, using tissue-specific dynamin-1 knockout [conditional knockout (cKO)] mice at a fast central synapse that releases neurotransmitter at high rates, we report that dynamin-1 deletion unexpectedly leads to enhanced steady-state neurotransmission and consequently less synaptic depression during brief periods of high-frequency stimulation. These changes are also accompanied by increased transmission failures. Interestingly, synaptic vesicle resupply and several other synaptic properties remain intact, including basal neurotransmission, presynaptic Ca(2+) influx, initial release probability, and postsynaptic receptor saturation and desensitization. However, acute application of Latrunculin B, a reagent known to induce actin depolymerization and impair bulk and ultrafast endocytosis, has a stronger effect on steady-state depression in cKO than in control and brings the depression down to a control level. The slow phase of presynaptic capacitance decay following strong stimulation is impaired in cKO; the rapid capacitance changes immediately after strong depolarization are also different between control and cKO and sensitive to Latrunculin B. These data raise the possibility that, in addition to its established function in regenerating synaptic vesicles, the endocytosis protein dynamin-1 may have an impact on short-term synaptic depression. This role comes into play primarily during brief high-frequency stimulation.
Collapse
|
131
|
Hernáez B, Guerra M, Salas ML, Andrés G. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes. PLoS Pathog 2016; 12:e1005595. [PMID: 27110717 PMCID: PMC4844166 DOI: 10.1371/journal.ppat.1005595] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 04/02/2016] [Indexed: 12/28/2022] Open
Abstract
African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs. Virus entry is a crucial initial event for productive infection, being therefore a potential target for antiviral strategies. African swine fever virus (ASFV) is the causative agent of a frequently fatal swine disease for which there is no vaccine. ASFV belongs to the superfamily of nucleocytoplasmic large DNA viruses (NCLDV), which are among the most complex viruses known. ASFV genome locates at a core structure that is wrapped by two lipid membranes separated by an icosahedral protein capsid. Here we have dissected the internalization process of ASFV into host macrophages. Our results indicate that ASFV uses two alternative endocytic mechanisms, clathrin-mediated endocytosis and macropinocytosis, an ongoing process in macrophages. Once internalized, ASFV particles move to multivesicular endosomes, where they undergo a disassembly process leading to the loss of the two outermost layers. This exposes the inner viral envelope, which fuses to the limiting endosome membrane to deliver the viral core into the cytosol. ASFV penetration depends on acidic pH and on the inner envelope viral protein pE248R. Our findings point to an internalization model that could also explain the uncoating of other icosahedral enveloped NCLDVs. Also, they provide new cellular and viral targets for the development of antiviral strategies against ASFV.
Collapse
Affiliation(s)
- Bruno Hernáez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Milagros Guerra
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - María L. Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Germán Andrés
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
132
|
Paarmann P, Dörpholz G, Fiebig J, Amsalem AR, Ehrlich M, Henis YI, Müller T, Knaus P. Dynamin-dependent endocytosis of Bone Morphogenetic Protein2 (BMP2) and its receptors is dispensable for the initiation of Smad signaling. Int J Biochem Cell Biol 2016; 76:51-63. [PMID: 27113717 DOI: 10.1016/j.biocel.2016.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/18/2016] [Accepted: 04/21/2016] [Indexed: 01/07/2023]
Abstract
Bone Morphogenetic Protein (BMP) signal transduction via the canonical Smad158 pathway has previously been linked to dynamin-dependent endocytosis, since the application of chemical inhibitors of clathrin or dynamin in functional cell culture based assays negatively affects initiation and propagation of the Smad response. More recent studies, however, demonstrated efficient Smad signaling by non-internalizable BMP2. The role of endocytosis in BMP signal transduction thus remained controversial. In our study we aimed to refine cell biological assays and to apply novel tools, including a new site-directed fluorescently labeled BMP2 ligand, to revisit key steps in BMP Smad signaling. We found that dynamin2 function was required for BMP2 uptake but was dispensable for C-terminal phosphorylation, nuclear translocation and transcriptional activity of BMP-dependent Smads. Furthermore, we demonstrated a role of dynamin2 in the regulation of steady-state and surface BMP receptor levels, as well as an impact on Smad1 protein level. Thus, dynamin2 allows for modulation of basal and ligand-dependent Smad signaling capacity. High levels of functional dynamin2 enhanced the myogenic differentiation of precursor cells. From our study we conclude that dynamin-dependent endocytosis serves as a regulatory mechanism to fine-tune Smad signaling, but it is not a prerequisite for signal initiation and propagation. Our findings contribute to the understanding of fundamental mechanisms of BMP signaling and thus provide important information for future consideration in the context of therapeutic applications of BMPs.
Collapse
Affiliation(s)
- Pia Paarmann
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Gina Dörpholz
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Juliane Fiebig
- Department for Molecular Plant Physiology and Biophysics, Biozentrum Universität Würzburg, Julius-von-Sachs Institute, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Ayelet R Amsalem
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Thomas Müller
- Department for Molecular Plant Physiology and Biophysics, Biozentrum Universität Würzburg, Julius-von-Sachs Institute, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany.
| |
Collapse
|
133
|
Fast, Temperature-Sensitive and Clathrin-Independent Endocytosis at Central Synapses. Neuron 2016; 90:492-8. [PMID: 27146271 DOI: 10.1016/j.neuron.2016.03.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/29/2016] [Accepted: 03/15/2016] [Indexed: 11/24/2022]
Abstract
The fusion of neurotransmitter-filled vesicles during synaptic transmission is balanced by endocytotic membrane retrieval. Despite extensive research, the speed and mechanisms of synaptic vesicle endocytosis have remained controversial. Here, we establish low-noise time-resolved membrane capacitance measurements that allow monitoring changes in surface membrane area elicited by single action potentials and stronger stimuli with high-temporal resolution at physiological temperature in individual bona-fide mature central synapses. We show that single action potentials trigger very rapid endocytosis, retrieving presynaptic membrane with a time constant of 470 ms. This fast endocytosis is independent of clathrin but mediated by dynamin and actin. In contrast, stronger stimuli evoke a slower mode of endocytosis that is clathrin, dynamin, and actin dependent. Furthermore, the speed of endocytosis is highly temperature dependent with a Q10 of ∼3.5. These results demonstrate that distinct molecular modes of endocytosis with markedly different kinetics operate at central synapses.
Collapse
|
134
|
Johnson TA, Pfeffer SR. Ezetimibe-sensitive cholesterol uptake by NPC1L1 protein does not require endocytosis. Mol Biol Cell 2016; 27:1845-52. [PMID: 27075173 PMCID: PMC4884074 DOI: 10.1091/mbc.e16-03-0154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/05/2016] [Indexed: 01/31/2023] Open
Abstract
Human NPC1L1 protein mediates cholesterol absorption in the intestine and liver and is the target of the drug ezetimibe, which is used to treat hypercholesterolemia. Previous studies concluded that NPC1L1-GFP protein trafficking is regulated by cholesterol binding and that ezetimibe blocks NPC1L1-GFP function by inhibiting its endocytosis. We used cell surface biotinylation to monitor NPC1L1-GFP endocytosis and show that ezetimibe does not alter the rate of NPC1L1-GFP endocytosis in cultured rat hepatocytes grown under normal growth conditions. As expected, NPC1L1-GFP endocytosis depends in part on C-terminal, cytoplasmically oriented sequences, but endocytosis does not require cholesterol binding to NPC1L1's N-terminal domain. In addition, two small- molecule inhibitors of general (and NPC1L1-GFP) endocytosis failed to inhibit the ezetimibe-sensitive uptake of [(3)H]cholesterol from taurocholate micelles. These experiments demonstrate that cholesterol uptake by NPC1L1 does not require endocytosis; moreover, ezetimibe interferes with NPC1L1's cholesterol adsorption activity without blocking NPC1L1 internalization in RH7777 cells.
Collapse
Affiliation(s)
- Tory A Johnson
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307
| |
Collapse
|
135
|
Arranz AM, Delbroek L, Van Kolen K, Guimarães MR, Mandemakers W, Daneels G, Matta S, Calafate S, Shaban H, Baatsen P, De Bock PJ, Gevaert K, Vanden Berghe P, Verstreken P, De Strooper B, Moechars D. LRRK2 functions in synaptic vesicle endocytosis through a kinase-dependent mechanism. J Cell Sci 2016; 128:541–52. [PMID: 25501810 DOI: 10.1242/jcs.158196] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with Parkinson’s disease, but the precise physiological function of the protein remains ill-defined. Recently, our group proposed a model in which LRRK2 kinase activity is part of an EndoA phosphorylation cycle that facilitates efficient vesicle formation at synapses in the Drosophila melanogaster neuromuscular junctions.Flies harbor only one Lrrk gene, which might encompass the functions of both mammalian LRRK1 and LRRK2. We therefore studied the role of LRRK2 in mammalian synaptic function and provide evidence that knockout or pharmacological inhibition of LRRK2 results in defects in synaptic vesicle endocytosis, altered synaptic morphology and impairments in neurotransmission. In addition, our data indicate that mammalian endophilin A1 (EndoA1,also known as SH3GL2) is phosphorylated by LRRK2 in vitro at T73 and S75, two residues in the BAR domain. Hence, our results indicate that LRRK2 kinase activity has an important role in the regulation of clathrin-mediated endocytosis of synaptic vesicles and subsequent neurotransmission at the synapse.
Collapse
|
136
|
Hetzenecker S, Helenius A, Krzyzaniak MA. HCMV Induces Macropinocytosis for Host Cell Entry in Fibroblasts. Traffic 2016; 17:351-68. [PMID: 26650385 DOI: 10.1111/tra.12355] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 12/14/2022]
Abstract
Human cytomegalovirus (HCMV) is an important and widespread pathogen in the human population. While infection by this β-herpesvirus in endothelial, epithelial and dendritic cells depends on endocytosis, its entry into fibroblasts is thought to occur by direct fusion of the viral envelope with the plasma membrane. To characterize individual steps during entry in primary human fibroblasts, we employed quantitative assays as well as electron, fluorescence and live cell microscopy in combination with a variety of inhibitory compounds. Our results showed that while infectious entry was pH- and clathrin-independent, it required multiple, endocytosis-related factors and processes. The virions were found to undergo rapid internalization into large vacuoles containing internalized fluid and endosome markers. The characteristics of the internalization process fulfilled major criteria for macropinocytosis. Moreover, we found that soon after addition to fibroblasts the virus rapidly triggered the formation of circular dorsal ruffles in the host cell followed by the generation of large macropinocytic vacuoles. This distinctive form of macropinocytosis has been observed especially in primary cells but has not previously been reported in response to virus stimulation.
Collapse
Affiliation(s)
| | - Ari Helenius
- Institute of Biochemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Magdalena Anna Krzyzaniak
- Institute of Biochemistry, ETH Zurich, Zurich 8093, Switzerland.,Department of Biomedicine, University of Basel, Basel 40001, Switzerland
| |
Collapse
|
137
|
Edwards BS, Dang AK, Murtazina DA, Dozier MG, Whitesell JD, Khan SA, Cherrington BD, Amberg GC, Clay CM, Navratil AM. Dynamin Is Required for GnRH Signaling to L-Type Calcium Channels and Activation of ERK. Endocrinology 2016; 157:831-43. [PMID: 26696122 PMCID: PMC4733113 DOI: 10.1210/en.2015-1575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have shown that GnRH-mediated engagement of the cytoskeleton induces cell movement and is necessary for ERK activation. It also has previously been established that a dominant negative form of the mechano-GTPase dynamin (K44A) attenuates GnRH activation of ERK. At present, it is not clear at what level these cellular events might be linked. To explore this, we used live cell imaging in the gonadotrope-derived αT3-1 cell line to determine that dynamin-green fluorescent protein accumulated in GnRH-induced lamellipodia and plasma membrane protrusions. Coincident with translocation of dynamin-green fluorescent protein to the plasma membrane, we demonstrated that dynamin colocalizes with the actin cytoskeleton and the actin binding protein, cortactin at the leading edge of the plasma membrane. We next wanted to assess the physiological significance of these findings by inhibiting dynamin GTPase activity using dynasore. We find that dynasore suppresses activation of ERK, but not c-Jun N-terminal kinase, after exposure to GnRH agonist. Furthermore, exposure of αT3-1 cells to dynasore inhibited GnRH-induced cyto-architectural rearrangements. Recently it has been discovered that GnRH induced Ca(2+) influx via the L-type Ca(2+) channels requires an intact cytoskeleton to mediate ERK phosphorylation. Interestingly, not only does dynasore attenuate GnRH-mediated actin reorganization, it also suppresses Ca(2+) influx through L-type Ca(2+) channels visualized in living cells using total internal reflection fluorescence microscopy. Collectively, our data suggest that GnRH-induced membrane remodeling events are mediated in part by the association of dynamin and cortactin engaging the actin cytoskeleton, which then regulates Ca(2+) influx via L-type channels to facilitate ERK phosphorylation.
Collapse
Affiliation(s)
- Brian S Edwards
- Department of Zoology and Physiology (B.S.E., M.G.D., S.A.K., B.D.C., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; Department of Biomedical Sciences (A.K.D., D.A.M., G.C.A., C.M.C.), Colorado State University, Fort Collins, Colorado 80523; and Department of Research and Development (J.D.W.), Allen Institute for Brain Science, Seattle, Washington 98103
| | - An K Dang
- Department of Zoology and Physiology (B.S.E., M.G.D., S.A.K., B.D.C., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; Department of Biomedical Sciences (A.K.D., D.A.M., G.C.A., C.M.C.), Colorado State University, Fort Collins, Colorado 80523; and Department of Research and Development (J.D.W.), Allen Institute for Brain Science, Seattle, Washington 98103
| | - Dilyara A Murtazina
- Department of Zoology and Physiology (B.S.E., M.G.D., S.A.K., B.D.C., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; Department of Biomedical Sciences (A.K.D., D.A.M., G.C.A., C.M.C.), Colorado State University, Fort Collins, Colorado 80523; and Department of Research and Development (J.D.W.), Allen Institute for Brain Science, Seattle, Washington 98103
| | - Melissa G Dozier
- Department of Zoology and Physiology (B.S.E., M.G.D., S.A.K., B.D.C., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; Department of Biomedical Sciences (A.K.D., D.A.M., G.C.A., C.M.C.), Colorado State University, Fort Collins, Colorado 80523; and Department of Research and Development (J.D.W.), Allen Institute for Brain Science, Seattle, Washington 98103
| | - Jennifer D Whitesell
- Department of Zoology and Physiology (B.S.E., M.G.D., S.A.K., B.D.C., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; Department of Biomedical Sciences (A.K.D., D.A.M., G.C.A., C.M.C.), Colorado State University, Fort Collins, Colorado 80523; and Department of Research and Development (J.D.W.), Allen Institute for Brain Science, Seattle, Washington 98103
| | - Shaihla A Khan
- Department of Zoology and Physiology (B.S.E., M.G.D., S.A.K., B.D.C., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; Department of Biomedical Sciences (A.K.D., D.A.M., G.C.A., C.M.C.), Colorado State University, Fort Collins, Colorado 80523; and Department of Research and Development (J.D.W.), Allen Institute for Brain Science, Seattle, Washington 98103
| | - Brian D Cherrington
- Department of Zoology and Physiology (B.S.E., M.G.D., S.A.K., B.D.C., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; Department of Biomedical Sciences (A.K.D., D.A.M., G.C.A., C.M.C.), Colorado State University, Fort Collins, Colorado 80523; and Department of Research and Development (J.D.W.), Allen Institute for Brain Science, Seattle, Washington 98103
| | - Gregory C Amberg
- Department of Zoology and Physiology (B.S.E., M.G.D., S.A.K., B.D.C., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; Department of Biomedical Sciences (A.K.D., D.A.M., G.C.A., C.M.C.), Colorado State University, Fort Collins, Colorado 80523; and Department of Research and Development (J.D.W.), Allen Institute for Brain Science, Seattle, Washington 98103
| | - Colin M Clay
- Department of Zoology and Physiology (B.S.E., M.G.D., S.A.K., B.D.C., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; Department of Biomedical Sciences (A.K.D., D.A.M., G.C.A., C.M.C.), Colorado State University, Fort Collins, Colorado 80523; and Department of Research and Development (J.D.W.), Allen Institute for Brain Science, Seattle, Washington 98103
| | - Amy M Navratil
- Department of Zoology and Physiology (B.S.E., M.G.D., S.A.K., B.D.C., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; Department of Biomedical Sciences (A.K.D., D.A.M., G.C.A., C.M.C.), Colorado State University, Fort Collins, Colorado 80523; and Department of Research and Development (J.D.W.), Allen Institute for Brain Science, Seattle, Washington 98103
| |
Collapse
|
138
|
Wang C, Wang Y, Hu M, Chai Z, Wu Q, Huang R, Han W, Zhang CX, Zhou Z. Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis. EMBO Rep 2015; 17:47-63. [PMID: 26589353 DOI: 10.15252/embr.201540689] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/21/2015] [Indexed: 11/09/2022] Open
Abstract
Precise and efficient endocytosis is essential for vesicle recycling during a sustained neurotransmission. The regulation of endocytosis has been extensively studied, but inhibitors have rarely been found. Here, we show that synaptotagmin-11 (Syt11), a non-Ca(2+)-binding Syt implicated in schizophrenia and Parkinson's disease, inhibits clathrin-mediated endocytosis (CME) and bulk endocytosis in dorsal root ganglion neurons. The frequency of both types of endocytic event increases in Syt11 knockdown neurons, while the sizes of endocytosed vesicles and the kinetics of individual bulk endocytotic events remain unaffected. Specifically, clathrin-coated pits and bulk endocytosis-like structures increase on the plasma membrane in Syt11-knockdown neurons. Structural-functional analysis reveals distinct domain requirements for Syt11 function in CME and bulk endocytosis. Importantly, Syt11 also inhibits endocytosis in hippocampal neurons, implying a general role of Syt11 in neurons. Taken together, we propose that Syt11 functions to ensure precision in vesicle retrieval, mainly by limiting the sites of membrane invagination at the early stage of endocytosis.
Collapse
Affiliation(s)
- Changhe Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China College of Life Sciences, Forestry and Agriculture, Qiqihar University, Qiqihar, China
| | - Yeshi Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Meiqin Hu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zuying Chai
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Qihui Wu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Rong Huang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore City, Singapore Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Claire Xi Zhang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and PKU-IDG/McGovern Institute for Brain Research and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
139
|
Ubiquitin-Synaptobrevin Fusion Protein Causes Degeneration of Presynaptic Motor Terminals in Mice. J Neurosci 2015; 35:11514-31. [PMID: 26290230 DOI: 10.1523/jneurosci.5288-14.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Protein aggregates containing ubiquitin (Ub) are commonly observed in neurodegenerative disorders, implicating the involvement of the ubiquitin proteasome system (UPS) in their pathogenesis. Here, we aimed to generate a mouse model for monitoring UPS function using a green fluorescent protein (GFP)-based substrate that carries a "noncleavable" N-terminal ubiquitin moiety (Ub(G76V)). We engineered transgenic mice expressing a fusion protein, consisting of the following: (1) Ub(G76V), GFP, and a synaptic vesicle protein synaptobrevin-2 (Ub(G76V)-GFP-Syb2); (2) GFP-Syb2; or (3) Ub(G76V)-GFP-Syntaxin1, all under the control of a neuron-specific Thy-1 promoter. As expected, Ub(G76V)-GFP-Syb2, GFP-Syb2, and Ub(G76V)-GFP-Sytaxin1 were highly expressed in neurons, such as motoneurons and motor nerve terminals of the neuromuscular junction (NMJ). Surprisingly, Ub(G76V)-GFP-Syb2 mice developed progressive adult-onset degeneration of motor nerve terminals, whereas GFP-Syb2 and Ub(G76V)-GFP-Syntaxin1 mice were normal. The degeneration of nerve terminals in Ub(G76V)-GFP-Syb2 mice was preceded by a progressive impairment of synaptic transmission at the NMJs. Biochemical analyses demonstrated that Ub(G76V)-GFP-Syb2 interacted with SNAP-25 and Syntaxin1, the SNARE partners of synaptobrevin. Ultrastructural analyses revealed a marked reduction in synaptic vesicle density, accompanying an accumulation of tubulovesicular structures at presynaptic nerve terminals. These morphological defects were largely restricted to motor nerve terminals, as the ultrastructure of motoneuron somata appeared to be normal at the stages when synaptic nerve terminals degenerated. Furthermore, synaptic vesicle endocytosis and membrane trafficking were impaired in Ub(G76V)-GFP-Syb2 mice. These findings indicate that Ub(G76V)-GFP-Syb2 may compete with endogenous synaptobrevin, acting as a gain-of-function mutation that impedes SNARE function, resulting in the depletion of synaptic vesicles and degeneration of the nerve terminals. SIGNIFICANCE STATEMENT Degeneration of motor nerve terminals occurs in amyotrophic lateral sclerosis (ALS) patients as well as in mouse models of ALS, leading to progressive paralysis. What causes a motor nerve terminal to degenerate remains unknown. Here we report on transgenic mice expressing a ubiquitinated synaptic vesicle protein (Ub(G76V)-GFP-Syb2) that develop progressive degeneration of motor nerve terminals. These mice may serve as a model for further elucidating the underlying cellular and molecular mechanisms of presynaptic nerve terminal degeneration.
Collapse
|
140
|
Fan F, Ji C, Wu Y, Ferguson SM, Tamarina N, Philipson LH, Lou X. Dynamin 2 regulates biphasic insulin secretion and plasma glucose homeostasis. J Clin Invest 2015; 125:4026-41. [PMID: 26413867 DOI: 10.1172/jci80652] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/20/2015] [Indexed: 12/18/2022] Open
Abstract
Alterations in insulin granule exocytosis and endocytosis are paramount to pancreatic β cell dysfunction in diabetes mellitus. Here, using temporally controlled gene ablation specifically in β cells in mice, we identified an essential role of dynamin 2 GTPase in preserving normal biphasic insulin secretion and blood glucose homeostasis. Dynamin 2 deletion in β cells caused glucose intolerance and substantial reduction of the second phase of glucose-stimulated insulin secretion (GSIS); however, mutant β cells still maintained abundant insulin granules, with no signs of cell surface expansion. Compared with control β cells, real-time capacitance measurements demonstrated that exocytosis-endocytosis coupling was less efficient but not abolished; clathrin-mediated endocytosis (CME) was severely impaired at the step of membrane fission, which resulted in accumulation of clathrin-coated endocytic intermediates on the plasma membrane. Moreover, dynamin 2 ablation in β cells led to striking reorganization and enhancement of actin filaments, and insulin granule recruitment and mobilization were impaired at the later stage of GSIS. Together, our results demonstrate that dynamin 2 regulates insulin secretory capacity and dynamics in vivo through a mechanism depending on CME and F-actin remodeling. Moreover, this study indicates a potential pathophysiological link between endocytosis and diabetes mellitus.
Collapse
|
141
|
Rewatkar PV, Parton RG, Parekh HS, Parat MO. Are caveolae a cellular entry route for non-viral therapeutic delivery systems? Adv Drug Deliv Rev 2015; 91:92-108. [PMID: 25579057 DOI: 10.1016/j.addr.2015.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/23/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022]
Abstract
The development of novel therapies increasingly relies on sophisticated delivery systems that allow the drug or gene expression-modifying agent of interest entry into cells. These systems can promote cellular targeting and/or entry, and they vary in size, charge, and functional group chemistry. Their optimization requires an in depth knowledge of the cellular routes of entry in normal and pathological states. Caveolae are plasma membrane invaginations that have the potential to undergo endocytosis. We critically review the literature exploring whether drug or nucleic acid delivery systems exploit and/or promote cellular entry via caveolae. A vast majority of studies employ pharmacological tools, co-localization experiments and very few make use of molecular tools. We provide clarification on how results of such studies should be interpreted and make suggestions for future studies.
Collapse
Affiliation(s)
- Prarthana V Rewatkar
- The University of Queensland, School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, QLD 4072 Australia.
| | - Harendra S Parekh
- The University of Queensland, School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| | - Marie-Odile Parat
- The University of Queensland, School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
142
|
Zhou J, Du X, Li J, Yamagata N, Xu B. Taurine Boosts Cellular Uptake of Small D-Peptides for Enzyme-Instructed Intracellular Molecular Self-Assembly. J Am Chem Soc 2015; 137:10040-3. [PMID: 26235707 PMCID: PMC4544318 DOI: 10.1021/jacs.5b06181] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Indexed: 02/08/2023]
Abstract
Due to their biostability, D-peptides are emerging as an important molecular platform for biomedical applications. Being proteolytically resistant, D-peptides lack interactions with endogenous transporters and hardly enter cells. Here we show that taurine, a natural amino acid, drastically boosts the cellular uptake of small D-peptides in mammalian cells by >10-fold, from 118 μM (without conjugating taurine) to >1.6 mM (after conjugating taurine). The uptake of a large amount of the ester conjugate of taurine and D-peptide allows intracellular esterase to trigger intracellular self-assembly of the D-peptide derivative, further enhancing their cellular accumulation. The study on the mechanism of the uptake reveals that the conjugates enter cells via both dynamin-dependent endocytosis and macropinocytosis, but likely not relying on taurine transporters. Differing fundamentally from the positively charged cell-penetrating peptides, the biocompatibility, stability, and simplicity of the enzyme-cleavable taurine motif promise new ways to promote the uptake of bioactive molecules for countering the action of efflux pump and contributing to intracellular molecular self-assembly.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jie Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Natsuko Yamagata
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
143
|
Stepanenko AA, Dmitrenko VV. Pitfalls of the MTT assay: Direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene 2015; 574:193-203. [PMID: 26260013 DOI: 10.1016/j.gene.2015.08.009] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/30/2015] [Accepted: 08/05/2015] [Indexed: 12/18/2022]
Abstract
The MTT assay (to a less degree MTS, XTT or WST) is a widely exploited approach for measuring cell viability/drug cytotoxicity. MTT reduction occurs throughout a cell and can be significantly affected by a number of factors, including metabolic and energy perturbations, changes in the activity of oxidoreductases, endo-/exocytosis and intracellular trafficking. Over/underestimation of cell viability by the MTT assay may be due to both adaptive metabolic and mitochondrial reprogramming of cells subjected to drug treatment-mediated stress and inhibitor off-target effects. Previously, imatinib, rottlerin, ursolic acid, verapamil, resveratrol, genistein nanoparticles and some polypeptides were shown to interfere with MTT reduction rate resulting in inconsistent results between the MTT assay and alternative assays. Here, to test the under/overestimation of viability by the MTT assay, we compared results derived from the MTT assay with the trypan blue exclusion assay after treatment of glioblastoma U251, T98G and C6 cells with three widely used inhibitors with the known direct and side effects on energy and metabolic homeostasis - temozolomide (TMZ), a DNA-methylating agent, temsirolimus (TEM), an inhibitor of mTOR kinase, and U0126, an inhibitor of MEK1/2 kinases. Inhibitors were applied shortly as in IC50 evaluating studies or long as in studies focusing on drug resistance acquisition. We showed that over/underestimation of cell viability by the MTT assay and its significance depends on a cell line, a time point of viability measurement and other experimental parameters. Furthermore, we provided a comprehensive survey of factors that should be accounted in the MTT assay. To avoid result misinterpretation, supplementation of the tetrazolium salt-based assays with other non-metabolic assays is recommended.
Collapse
Affiliation(s)
- A A Stepanenko
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo str. 150, Kyiv 03680, Ukraine.
| | - V V Dmitrenko
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo str. 150, Kyiv 03680, Ukraine
| |
Collapse
|
144
|
Jackson J, Papadopulos A, Meunier FA, McCluskey A, Robinson PJ, Keating DJ. Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release. Mol Psychiatry 2015; 20:810-9. [PMID: 25939402 DOI: 10.1038/mp.2015.56] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/14/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022]
Abstract
Hormones and neurotransmitters are stored in specialised vesicles and released from excitable cells through exocytosis. During vesicle fusion with the plasma membrane, a transient fusion pore is created that enables transmitter release. The protein dynamin is known to regulate fusion pore expansion (FPE). The mechanism is unknown, but requires its oligomerisation-stimulated GTPase activity. We used a palette of small molecule dynamin modulators to reveal bi-directional regulation of FPE by dynamin and vesicle release in chromaffin cells. The dynamin inhibitors Dynole 34-2 and Dyngo 4a and the dynamin activator Ryngo 1-23 reduced or increased catecholamine released from single vesicles, respectively. Total internal reflection fluorescence (TIRF) microscopy demonstrated that dynamin stimulation with Ryngo 1-23 reduced the number of neuropeptide Y (NPY) kiss-and-run events, but not full fusion events, and slowed full fusion release kinetics. Amperometric stand-alone foot signals, representing transient kiss-and-run events, were less frequent but were of longer duration, similarly to full amperometric spikes and pre-spike foot signals. These effects are not due to alterations in vesicle size. Ryngo 1-23 action was blocked by inhibitors of actin polymerisation or myosin II. Therefore, we demonstrate using a novel pharmacological approach that dynamin not only controls FPE during exocytosis, but is a bi-directional modulator of the fusion pore that increases or decreases the amount released from a vesicle during exocytosis if it is activated or inhibited, respectively. As such, dynamin has the ability to exquisitely fine-tune transmitter release.
Collapse
Affiliation(s)
- J Jackson
- Discipline of Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - A Papadopulos
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - F A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - A McCluskey
- Centre for Chemical Biology and Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | - P J Robinson
- Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - D J Keating
- 1] Discipline of Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, Australia [2] South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| |
Collapse
|
145
|
Abstract
Membrane trafficking of AMPA receptors (AMPARs) is critical for neuronal function and plasticity. Although rapid forms of AMPAR internalization during long-term depression (LTD) require clathrin and dynamin, the mechanisms governing constitutive AMPAR turnover and internalization of AMPARs during slow homeostatic forms of synaptic plasticity remain unexplored. Here, we show that, in contrast to LTD, constitutive AMPAR internalization and homeostatic AMPAR downscaling in rat neurons do not require dynamin or clathrin function. Instead, constitutive AMPAR trafficking is blocked by a Rac1 inhibitor and is regulated by a dynamic nonstructural pool of F-actin. Our findings reveal a novel role for neuronal clathrin-independent endocytosis controlled by actin dynamics and suggest that the interplay between different modes of receptor endocytosis provides for segregation between distinct modes of neuronal plasticity.
Collapse
|
146
|
Linares-Clemente P, Rozas JL, Mircheski J, García-Junco-Clemente P, Martínez-López JA, Nieto-González JL, Vázquez ME, Pintado CO, Fernández-Chacón R. Different dynamin blockers interfere with distinct phases of synaptic endocytosis during stimulation in motoneurones. J Physiol 2015; 593:2867-88. [PMID: 25981717 DOI: 10.1113/jp270112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 04/29/2015] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS Neurotransmitter release requires a tight coupling between synaptic vesicle exocytosis and endocytosis with dynamin being a key protein in that process. We used imaging techniques to examine the time course of endocytosis at mouse motor nerve terminals expressing synaptopHluorin, a genetically encoded reporter of the synaptic vesicle cycle. We separated two sequential phases of endocytosis taking place during the stimulation train: early and late endocytosis. Freshly released synaptic vesicle proteins are preferentially retrieved during the early phase, which is very sensitive to dynasore, an inhibitor of dynamin GTPase activity. Synaptic vesicle proteins pre-existing at the plasma membrane before the stimulation are preferentially retrieved during the late phase, which is very sensitive to myristyl trimethyl ammonium bromide (MitMAB), an inhibitor of the dynamin-phospholipid interaction. ABSTRACT Synaptic endocytosis is essential at nerve terminals to maintain neurotransmitter release by exocytosis. Here, at the neuromuscular junction of synaptopHluorin (spH) transgenic mice, we have used imaging to study exo- and endocytosis occurring simultaneously during nerve stimulation. We observed two endocytosis components, which occur sequentially during stimulation. The early component of endocytosis apparently internalizes spH molecules freshly exocytosed. This component was sensitive to dynasore, a blocker of dynamin 1 GTPase activity. In contrast, this early component was resistant to myristyl trimethyl ammonium bromide (MiTMAB), a competitive agent that blocks dynamin binding to phospholipid membranes. The late component of endocytosis is likely to internalize spH molecules that pre-exist at the plasma membrane before stimulation starts. This component was blocked by MiTMAB, perhaps by impairing the binding of dynamin or other key endocytic proteins to phospholipid membranes. Our study suggests the co-existence of two sequential synaptic endocytosis steps taking place during stimulation that are susceptible to pharmacological dissection: an initial step, preferentially sensitive to dynasore, that internalizes vesicular components immediately after they are released, and a MiTMAB-sensitive step that internalizes vesicular components pre-existing at the plasma membrane surface. In addition, we report that post-stimulus endocytosis also has several components with different sensitivities to dynasore and MiTMAB.
Collapse
Affiliation(s)
- Pedro Linares-Clemente
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED, Seville, Spain
| | - José L Rozas
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED, Seville, Spain
| | - Josif Mircheski
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED, Seville, Spain
| | - Pablo García-Junco-Clemente
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED, Seville, Spain
| | - José A Martínez-López
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED, Seville, Spain
| | | | - M Eugenio Vázquez
- Departamento Química Orgánica y Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - C Oscar Pintado
- Centro Producción y Experimentación Animal, Universidad de Sevilla, Seville, Spain
| | - Rafael Fernández-Chacón
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED, Seville, Spain
| |
Collapse
|
147
|
SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation. PLoS One 2015; 10:e0126576. [PMID: 25965346 PMCID: PMC4428707 DOI: 10.1371/journal.pone.0126576] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 04/06/2015] [Indexed: 11/19/2022] Open
Abstract
The surfactant protein (SP-A) receptor SP-R210 has been shown to increase phagocytosis of SP-A-bound pathogens and to modulate cytokine secretion by immune cells. SP-A plays an important role in pulmonary immunity by enhancing opsonization and clearance of pathogens and by modulating macrophage inflammatory responses. Alternative splicing of the Myo18A gene results in two isoforms: SP-R210S and SP-R210L, with the latter predominantly expressed in alveolar macrophages. In this study we show that SP-A is required for optimal expression of SP-R210L on alveolar macrophages. Interestingly, pre-treatment with SP-A prepared by different methods either enhances or suppresses responsiveness to LPS, possibly due to differential co-isolation of SP-B or other proteins. We also report that dominant negative disruption of SP-R210L augments expression of receptors including SR-A, CD14, and CD36, and enhances macrophages' inflammatory response to TLR stimulation. Finally, because SP-A is known to modulate CD14, we used a variety of techniques to investigate how SP-R210 mediates the effect of SP-A on CD14. These studies revealed a novel physical association between SP-R210S, CD14, and SR-A leading to an enhanced response to LPS, and found that SP-R210L and SP-R210S regulate internalization of CD14 via distinct macropinocytosis-like mechanisms. Together, our findings support a model in which SP-R210 isoforms differentially regulate trafficking, expression, and activation of innate immune receptors on macrophages.
Collapse
|
148
|
Ockenga W, Tikkanen R. Revisiting the endocytosis of the m2 muscarinic acetylcholine receptor. MEMBRANES 2015; 5:197-213. [PMID: 25985102 PMCID: PMC4496640 DOI: 10.3390/membranes5020197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/05/2015] [Indexed: 11/16/2022]
Abstract
The agonist-induced endocytosis of the muscarinic acetylcholine receptor M2 is different from that of the other members of the muscarinic receptor family. The uptake of the M2 receptor involves the adapter proteins of the β-arrestin family and the small GTPase ADP-ribosylation factor 6. However, it has remained inconclusive if M2 endocytosis is dependent on clathrin or the large GTPase dynamin. We here show by means of knocking down the clathrin heavy chain that M2 uptake upon agonist stimulation requires clathrin. The expression of various dominant-negative dynamin-2 mutants and the use of chemical inhibitors of dynamin function revealed that dynamin expression and membrane localization as such appear to be necessary for M2 endocytosis, whereas dynamin GTPase activity is not required for this process. Based on the data from the present and from previous studies, we propose that M2 endocytosis takes place by means of an atypical clathrin-mediated pathway that may involve a specific subset of clathrin-coated pits/vesicles.
Collapse
Affiliation(s)
- Wymke Ockenga
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany.
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany.
| |
Collapse
|
149
|
Abstract
Microglia are the resident immune cells in the CNS and play diverse roles in the maintenance of CNS homeostasis. Recent studies have shown that microglia continually survey the CNS microenvironment and scavenge cell debris and aberrant proteins by phagocytosis and pinocytosis, and that reactive microglia are capable to present antigens to T cells and initiate immune responses. However, how microglia process the endocytosed contents and evoke an immune response remain unclear. Here we report that a size-dependent selective transport of small soluble contents from the pinosomal lumen into lysosomes is critical for the antigen processing in microglia. Using fluorescent probes and water-soluble magnetic nanobeads of defined sizes, we showed in cultured rodent microglia, and in a cell-free reconstructed system that pinocytosed proteins become degraded immediately following pinocytosis and the resulting peptides are selectively delivered to major histocompatibility complex class II (MHC-II) containing lysosomes, whereas undegraded proteins are retained in the pinosomal lumen. This early size-based sorting of pinosomal contents relied on the formation of transient tunnel between pinosomes and lysosomes in a Rab7- and dynamin II-dependent manner, which allowed the small contents to pass through but restricted large ones. Inhibition of the size-based sorting markedly reduced proliferation and cytokine release of cocultured CD4(+) T cells, indicating that the size-based sorting is required for efficient antigen presentation by microglial cells. Together, these findings reveal a novel early sorting mechanism for pinosomal luminal contents in microglial cells, which may explain how microglia efficiently process protein antigens and evoke an immune response.
Collapse
|
150
|
Preta G, Cronin JG, Sheldon IM. Dynasore - not just a dynamin inhibitor. Cell Commun Signal 2015; 13:24. [PMID: 25889964 PMCID: PMC4396812 DOI: 10.1186/s12964-015-0102-1] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/26/2015] [Indexed: 12/23/2022] Open
Abstract
Dynamin is a GTPase protein that is essential for membrane fission during clathrin-mediated endocytosis in eukaryotic cells. Dynasore is a GTPase inhibitor that rapidly and reversibly inhibits dynamin activity, which prevents endocytosis. However, comparison between cells treated with dynasore and RNA interference of genes encoding dynamin, reveals evidence that dynasore reduces labile cholesterol in the plasma membrane, and disrupts lipid raft organization, in a dynamin-independent manner. To explore the role of dynamin it is important to use multiple dynamin inhibitors, alongside the use of dynamin mutants and RNA interference targeting genes encoding dynamin. On the other hand, dynasore provides an interesting tool to explore the regulation of cholesterol in plasma membranes.
Collapse
Affiliation(s)
- Giulio Preta
- Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK.
| | - James G Cronin
- Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK.
| | - I Martin Sheldon
- Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|