101
|
Rybiczka-Tešulov M, Garritsen O, Venø MT, Wieg L, Dijk RV, Rahimi K, Gomes-Duarte A, Wit MD, van de Haar LL, Michels L, van Kronenburg NCH, van der Meer C, Kjems J, Vangoor VR, Pasterkamp RJ. Circular RNAs regulate neuron size and migration of midbrain dopamine neurons during development. Nat Commun 2024; 15:6773. [PMID: 39117691 PMCID: PMC11310423 DOI: 10.1038/s41467-024-51041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Midbrain dopamine (mDA) neurons play an essential role in cognitive and motor behaviours and are linked to different brain disorders. However, the molecular mechanisms underlying their development, and in particular the role of non-coding RNAs (ncRNAs), remain incompletely understood. Here, we establish the transcriptomic landscape and alternative splicing patterns of circular RNAs (circRNAs) at key developmental timepoints in mouse mDA neurons in vivo using fluorescence-activated cell sorting followed by short- and long-read RNA sequencing. In situ hybridisation shows expression of several circRNAs during early mDA neuron development and post-transcriptional silencing unveils roles for different circRNAs in regulating mDA neuron morphology. Finally, in utero electroporation and time-lapse imaging implicate circRmst, a circRNA with widespread morphological effects, in the migration of developing mDA neurons in vivo. Together, these data for the first time suggest a functional role for circRNAs in developing mDA neurons and characterise poorly defined aspects of mDA neuron development.
Collapse
Affiliation(s)
- Mateja Rybiczka-Tešulov
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Oxana Garritsen
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Morten T Venø
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus C, Denmark
- Omiics ApS, Aarhus N, Denmark
| | - Laura Wieg
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Roland van Dijk
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- VectorY Therapeutics, Matrix Innovation Center VI, Amsterdam, The Netherlands
| | - Karim Rahimi
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus C, Denmark
- Department of Genetics, Blavatnik Institute, Harvard Medical School, MA, Boston, USA
| | - Andreia Gomes-Duarte
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- VectorY Therapeutics, Matrix Innovation Center VI, Amsterdam, The Netherlands
| | - Marina de Wit
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lieke L van de Haar
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Lars Michels
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- VectorY Therapeutics, Matrix Innovation Center VI, Amsterdam, The Netherlands
| | - Nicky C H van Kronenburg
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Christiaan van der Meer
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus C, Denmark
| | - Vamshidhar R Vangoor
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
102
|
Mei S, Ma X, Zhou L, Wuyun Q, Cai Z, Yan J, Ding H. Circular RNA in Cardiovascular Diseases: Biogenesis, Function and Application. Biomolecules 2024; 14:952. [PMID: 39199340 PMCID: PMC11352787 DOI: 10.3390/biom14080952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular diseases pose a significant public health challenge globally, necessitating the development of effective treatments to mitigate the risk of cardiovascular diseases. Recently, circular RNAs (circRNAs), a novel class of non-coding RNAs, have been recognized for their role in cardiovascular disease. Aberrant expression of circRNAs is closely linked with changes in various cellular and pathophysiological processes within the cardiovascular system, including metabolism, proliferation, stress response, and cell death. Functionally, circRNAs serve multiple roles, such as acting as a microRNA sponge, providing scaffolds for proteins, and participating in protein translation. Owing to their unique properties, circRNAs may represent a promising biomarker for predicting disease progression and a potential target for cardiovascular drug development. This review comprehensively examines the properties, biogenesis, and potential mechanisms of circRNAs, enhancing understanding of their role in the pathophysiological processes impacting cardiovascular disease. Furthermore, the prospective clinical applications of circRNAs in the diagnosis, prognosis, and treatment of cardiovascular disease are addressed.
Collapse
Affiliation(s)
- Shuai Mei
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Li Zhou
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Qidamugai Wuyun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Ziyang Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiangtao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China
| |
Collapse
|
103
|
Kong X, Wu T, Cai H, Chen Z, Wang Y, He P, Liu P, Li L, Peng S, Xu F, Wang J, Zhang H, Wang L. Construction of ceRNA network mediated by circRNAs screening from microarray and identification of novel biomarkers for myasthenia gravis. Gene 2024; 918:148463. [PMID: 38631652 DOI: 10.1016/j.gene.2024.148463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Recent studies have revealed that circRNA can serve as ceRNA to participate in multiple autoimmune diseases. Our study aims to explore the key circRNA as ceRNA and biomarker for MG. METHODS We used circRNA microarray to explore differentially expressed circRNAs (DECs) from MG and compare with control. Then, we predicted the target miRNA associated with DECs and screened miRNAs by the algorithm of random walk with restart (RWR). Next, we constructed the circRNA-miRNA-mRNA ceRNA regulated network (CMMC) to identify the hub objects. Following, we detected the expression of hub-circRNAs by RT-PCR. We verify has_circ_0004183 (circFRMD4) sponging miR-145-5p regulate cells proliferation using luciferase assay and CCK-8. RESULTS We found that the expression level of circFRMD4 and has_circ_0035381 (circPIGB) were upregulated and has_circ_0089153(circ NUP214) had the lowest expression level in MG. Finally, we proved circFRMD4 sponging miR-145-5p regulate Jurkat cells proliferation. CircFRMD4 take part in the genesis and development of MG via circFRMD4/miR145-5p axis. CONCLUSIONS We found that circFRMD4, circPIGB and circNUP214 can be considered as valuable potential novel biomarkers for AchR + MG. CircFRMD4 participate in the development of AchR + MG via targeting binding with miR-145-5p.
Collapse
Affiliation(s)
- Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Tao Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hanlu Cai
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhimin Chen
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China; Department of Neurology, The Second Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Yu Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ping He
- Department of Neurology, The First Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Peifang Liu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lei Li
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shanshan Peng
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fanfan Xu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
104
|
Li D, Min Z, Guo J, Chen Y, Zhang W. ExpOmics: a comprehensive web platform empowering biologists with robust multi-omics data analysis capabilities. Bioinformatics 2024; 40:btae507. [PMID: 39128019 PMCID: PMC11343375 DOI: 10.1093/bioinformatics/btae507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024] Open
Abstract
MOTIVATION High-throughput technologies yield a broad spectrum of multi-omics datasets, which offer unparalleled insights into complex biological systems. However, effectively analyzing this diverse array of data presents challenges, considering factors such as species diversity, data types, costs, and limitations of the available tools. RESULTS Herein, we present ExpOmics, a comprehensive web platform featuring 7 applications and 4 toolkits, with 28 customizable analysis functions spanning various analyses of differential expression, co-expression, Weighted Gene Co-expression Network Analysis (WGCNA), feature selection, and functional enrichment. ExpOmics allows users to upload and explore multi-omics data without organism restrictions, supporting various expression data, including genes, mRNAs, lncRNAs, miRNAs, circRNAs, piRNAs, and proteins and is compatible with diverse gene nomenclatures and expression values. Moreover, ExpOmics enables users to analyze 22 427 transcriptomic datasets of 196 cancer subtypes sourced from 63 projects of The Cancer Genome Atlas Program (TCGA) to identify cancer biomarkers. The analysis results from ExpOmics are presented in high-quality graphical formats suitable for publication and are available for free download. A case study using ExpOmics identified two potential oncogenes, SERPINE1 and SLC43A1, that may regulate colorectal cancer through distinct biological processes. In summary, ExpOmics can serves as a robust platform for global researchers to explore multi-omics data, gain biological insights, and formulate testable hypotheses. AVAILABILITY AND IMPLEMENTATION ExpOmics is available at http://www.biomedical-web.com/expomics.
Collapse
Affiliation(s)
- Douyue Li
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510182, People’s Republic of China
| | - Zhuochao Min
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jia Guo
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510182, People’s Republic of China
| | - Yubin Chen
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510182, People’s Republic of China
| | - Wenliang Zhang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510182, People’s Republic of China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, People’s Republic of China
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd-Shenzhen, Shenzhen 518026, People’s Republic of China
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, People’s Republic of China
| |
Collapse
|
105
|
Hu Y, Cao H, Sheng J, Sun Y, Zhu Y, Lin Q, Yi N, He S, Peng L, Li L. Functional role of circRNA CHRC through miR-431-5p/KLF15 signaling axis in the progression of heart failure. J Genet Genomics 2024; 51:844-854. [PMID: 38575112 DOI: 10.1016/j.jgg.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Pathological myocardial hypertrophy is a common early clinical manifestation of heart failure, with noncoding RNAs exerting regulatory influence. However, the molecular function of circular RNAs (circRNAs) in the progression from cardiac hypertrophy to heart failure remains unclear. To uncover functional circRNAs and identify the core circRNA signaling pathway in heart failure, we construct a global triple network (microRNA, circRNA, and mRNA) based on the competitive endogenous RNA (ceRNA) theory. We observe that cardiac hypertrophy-related circRNA (circRNA CHRC), within the ceRNA network, is down-regulated in both transverse aortic constriction mice and Ang-II--treated primary mouse cardiomyocytes. Silencing circRNA CHRC increases cross-sectional cell area, atrial natriuretic peptide, and β-myosin heavy chain levels in primary mouse cardiomyocytes. Further screening shows that circRNA CHRC targets the miR-431-5p/KLF15 axis implicated in heart failure progression in vivo and in vitro. Immunoprecipitation with anti-Ago2-RNA confirms the interaction between circRNA CHRC and miR-431-5p, while miR-431-5p mimics reverse Klf15 activation caused by circRNA CHRC overexpression. In summary, circRNA CHRC attenuates cardiac hypertrophy via sponging miR-431-5p to maintain the normal level of Klf15 expression.
Collapse
Affiliation(s)
- Yi Hu
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Shanghai 200120, China
| | - Huaming Cao
- Department of Cardiology, Shanghai Shibei Hospital, Shanghai 200435, China
| | - Jie Sheng
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Shanghai 200120, China
| | - Yizhuo Sun
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuping Zhu
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Shanghai 200120, China
| | - Qin Lin
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Shanghai 200120, China
| | - Na Yi
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Shanghai 200120, China
| | - Siyu He
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Shanghai 200120, China
| | - Luying Peng
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200120, China.
| | - Li Li
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200120, China.
| |
Collapse
|
106
|
Yehui L, Zhihong L, Fang T, Zixuan Z, Mengyuan Z, Zhifang Y, Jiuhong Z. Bibliometric Analysis of Global Research on Circular RNA: Current Status and Future Directions. Mol Biotechnol 2024; 66:2064-2077. [PMID: 37587318 DOI: 10.1007/s12033-023-00830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
Circular RNAs (circRNAs) have gained significant attention in recent years. This bibliometric analysis aimed to provide insights into the current state and future trends of global circRNA research. The scientific output on circRNAs from 2010 to 2022 was retrieved from the Web of Science Core Collection with circRNA-related terms as the subjects. Key bibliometric indicators were calculated and evaluated using CiteSpace. A total of 7385 studies on circRNAs were identified. The output and citation number have increased rapidly after 2015. China, the USA, and Germany were top three publishing countries. Currently, circCDR1as, circHIPK3, circPVT1, circSHPRH, and circZNF609 are the most studied circRNAs; and all are related to cancer. The theme of research have shifted from transcript, exon circularization and miRNA sponge topics to the transcriptome, tumor suppressor, and biomarkers, indicating that research interests have evolved from basic to applied research. CircRNAs will continue to be a highly active research area in the near future. From the current understanding of circRNA characterization and regulatory mechanisms as miRNA sponges in cancer, future directions may examine potential diagnostic and therapeutic roles of circRNAs in cancers or the function and mechanism of circRNAs in other diseases.
Collapse
Affiliation(s)
- Lv Yehui
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Zhihong
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Tong Fang
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Physiology and Biochemistry, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zeng Zixuan
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhang Mengyuan
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yang Zhifang
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Physiology and Biochemistry, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhao Jiuhong
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China.
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
107
|
Shen X, Yan H, Hu M, Zhou H, Wang J, Gao R, Liu Q, Wang X, Liu Y. The potential regulatory role of the non-coding RNAs in regulating the exogenous estrogen-induced feminization in Takifugu rubripes gonad. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107022. [PMID: 39032423 DOI: 10.1016/j.aquatox.2024.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Estrogen plays a pivotal role in the early stage of sex differentiation in teleost. However, the underlying mechanisms of estrogen-induced feminization process are still needed for further clarification. Here, the comparative analysis of whole-transcriptome RNA sequencing was conducted between 17beta-Estradiol induced feminized XY (E-XY) gonads and control gonads (C) in Takifugu rubripes. A total of 57 miRNAs, 65 lncRNAs, and 4 circRNAs were found to be expressed at lower levels in control-XY (C-XY) than that in control-XX (C-XX), and were up-regulated in XY during E2-induced feminization process. The expression levels of 24 miRNAs, and 55 lncRNAs were higher in C-XY than that in C-XX, and were down-regulated in E2-treated XY. Furthermore, a correlation analysis was performed between miRNA-seq and mRNA-seq data. In C-XX/C-XY, 114 differential expression (DE) miRNAs were predicted to target to 904 differential expression genes (DEGs), while in C-XY/E-XY, 226 DEmiRNAs were predicted to target to 2,048 DEGs. In C-XX/C-XY, and C-XY/E-XY, KEGG pathway enrichment analysis showed that those targeted genes were mainly enriched in MAPK signaling, calcium signaling, steroid hormone biosynthesis and ovarian steroidogenesis pathway. Additionally, the competitive endogenous RNA (ceRNA) regulatory network was constructed by 24 miRNAs, 21 lncRNAs, 4 circRNAs and 5 key sex-related genes. These findings suggested that the expression of critical genes in sex differentiation were altered in E2-treated XY T. rubripes may via the lncRNA-miRNA-mRNA regulation network to facilitate the differentiation and maintenance of ovaries. Our results provide a new insight into the comprehensive understanding of the effects of estrogen signaling pathways on sex differentiation in teleost gonads.
Collapse
Affiliation(s)
- Xufang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Hongwei Yan
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, Liaoning 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China.
| | - Mingtao Hu
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, Liaoning 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China
| | - Huiting Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China
| | - Jia Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China
| | - Rui Gao
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China
| | - Qi Liu
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China; College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China
| | - Ying Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, Liaoning 116023, China
| |
Collapse
|
108
|
Du W, Li Y, Wang X, Xie S, Ci H, Zhou J, Zhu N, Chen Z, Zheng Y, Jia H. Circular RNA circESYT2 serves as a microRNA-665 sponge to promote the progression of hepatocellular carcinoma through ENO2. Cancer Sci 2024; 115:2659-2672. [PMID: 38710213 PMCID: PMC11309938 DOI: 10.1111/cas.16207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Circular RNAs (circRNAs) have emerged as crucial regulators in tumor progression, yet their specific role in hepatocellular carcinoma (HCC) remains largely uncharacterized. In this study, we utilized high-transcriptome sequencing to identify the upregulation of circESYT2 (hsa_circ_002142) in HCC tissues. Functional experiments carried out in vivo and in vitro revealed that circESYT2 played a significant role in maintaining the growth and metastatic behaviors of HCC. Through integrative analysis, we identified enolase 2 (ENO2) as a potential target regulated by circESYT2 through the competitive endogenous RNA sponge mechanism. Additional gain- or loss-of-function experiments indicated that overexpression of circESYT2 led to a tumor-promoting effect, which could be reversed by transfection of microRNA-665 (miR-665) mimic or ENO2 knockdown in HCC cells. Furthermore, the direct interaction between miR-665 and circESYT2 and between miR-665 and ENO2 was confirmed using RNA immunoprecipitation, FISH, RNA pull-down, and dual-luciferase reporter assays, highlighting the involvement of the circESYT2/miR-665/ENO2 axis in promoting HCC progression. These findings shed light on the molecular characteristics of circESYT2 in HCC tissues and suggest its potential as a biomarker or therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Wei Du
- Hepatobiliary Surgery, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Ying Li
- Hepatobiliary Surgery, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Xufeng Wang
- Hepatobiliary Surgery, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Sunzhe Xie
- Hepatobiliary Surgery, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Hongfei Ci
- Hepatobiliary Surgery, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Jiaming Zhou
- Hepatobiliary Surgery, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Ningqi Zhu
- Hepatobiliary Surgery, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Zule Chen
- Hepatobiliary Surgery, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Yan Zheng
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic DiseaseShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huliang Jia
- Hepatobiliary Surgery, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
- Cancer Metastasis InstituteFudan UniversityShanghaiChina
| |
Collapse
|
109
|
Ding P, Wu H, Wu J, Li T, He J, Ju Y, Liu Y, Li F, Deng H, Gu R, Zhang L, Guo H, Tian Y, Yang P, Meng N, Li X, Guo Z, Meng L, Zhao Q. N6-methyladenosine modified circPAK2 promotes lymph node metastasis via targeting IGF2BPs/VEGFA signaling in gastric cancer. Oncogene 2024; 43:2548-2563. [PMID: 39014193 DOI: 10.1038/s41388-024-03099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
Circular RNAs (circRNAs) have emerged as key regulators of cancer occurrence and progression, as well as promising biomarkers for cancer diagnosis and prognosis. However, the potential mechanisms of circRNAs implicated in lymph node (LN) metastasis of gastric cancer remain unclear. Herein, we identify a novel N6-methyladenosine (m6A) modified circRNA, circPAK2, which is significantly upregulated in gastric cancer tissues and metastatic LN tissues. Functionally, circPAK2 enhances the migration, invasion, lymphangiogenesis, angiogenesis, epithelial-mesenchymal transition (EMT), and metastasis of gastric cancer in vitro and in vivo. Mechanistically, circPAK2 is exported by YTH domain-containing protein 1 (YTHDC1) from the nucleus to the cytoplasm in an m6A methylation-dependent manner. Moreover, increased cytoplasmic circPAK2 interacts with Insulin-Like Growth Factor 2 mRNA-Binding Proteins (IGF2BPs) and forms a circPAK2/IGF2BPs/VEGFA complex to stabilize VEGFA mRNA, which contributes to gastric cancer vasculature formation and aggressiveness. Clinically, high circPAK2 expression is positively associated with LN metastasis and poor prognosis in gastric cancer. This study highlights m6A-modified circPAK2 as a key regulator of LN metastasis of gastric cancer, thus supporting circPAK2 as a promising therapeutic target and prognostic biomarker for gastric cancer.
Collapse
Affiliation(s)
- Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Tongkun Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Jinchen He
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Yingchao Ju
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Animal Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yueping Liu
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fang Li
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huiyan Deng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Renjun Gu
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Honghai Guo
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Yuan Tian
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Peigang Yang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Ning Meng
- Department of General Surgery, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China
| | - Xiaolong Li
- Department of General Surgery, Baoding Central Hospital, Baoding, Hebei, China
| | - Zhenjiang Guo
- General Surgery Department, Hengshui People's Hospital, Hengshui, Hebei, China
| | - Lingjiao Meng
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China.
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China.
| |
Collapse
|
110
|
Aquino-Jarquin G. CircRNA knockdown based on antisense strategies. Drug Discov Today 2024; 29:104066. [PMID: 38908546 DOI: 10.1016/j.drudis.2024.104066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Circular RNAs (circRNAs) are a type of noncoding RNA that are formed by back-splicing from eukaryotic protein-coding genes. The most frequently reported and well-characterized function of circRNAs is their ability to act as molecular decoys, most often as miRNA and protein sponges. However, the functions of most circRNAs still need to be better understood. To more fully understand the biological relevance of validated circRNAs, knockdown functional analyses can be performed using antisense oligonucleotides, RNA interference (RNAi) experiments (e.g., targeting back-splicing junction sites), the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas)-9 system (e.g., generating circRNA-specific knockouts), and CRISPR-Cas13 technology to effectively target circRNAs without affecting host genes. In this review, I summarize the feasibility and effectiveness of circRNA knockdown through antisense strategies for investigating the biological roles of circRNAs in cultured cells and animal models.
Collapse
Affiliation(s)
- Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section. Genomics, Genetics, and Bioinformatics Research Laboratory. 'Federico Gómez' Children's Hospital of Mexico. Dr. Márquez 162, Doctores, Cuauhtémoc, CP 06720, CDMX, Mexico.
| |
Collapse
|
111
|
Azzam M, Fahim S, ElMonier A, Maurice N. Functional analysis of a panel of molecular markers for diagnosis of systemic lupus erythematosus in rats. Biosci Rep 2024; 44:BSR20240318. [PMID: 38967046 PMCID: PMC11263041 DOI: 10.1042/bsr20240318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a diverse autoimmune disease that arises from a combination of complex genetic factors and environmental influences. While circRNAs and miRNAs have recently been identified as promising biomarkers for disease diagnosis, their specific expression patterns, and clinical implications in SLE are not yet fully understood. AIM OF THE WORK The aim of the present study was to determine the role of a panel of noncoding-RNAs specifically circRNAs (circ-TubD1, circ-CDC27, and circ-Med14), along with miRNA (rno-miR-146a-5p) and mRNA (TRAF6), as novel minimally invasive diagnostic biomarkers for experimentally induced SLE. Additionally, the study involved an insilico bioinformatics analysis to explore potential pathways involved in the pathogenesis of SLE, aiming to enhance our understanding of the disease, enable early diagnosis, and facilitate improved treatment strategies. MATERIALS AND METHODS SLE was induced in rats using single IP injection of incomplete Freund's adjuvant (IFA). The Induction was confirmed by assessing the ANA and anti-ds DNA levels using ELSA technique. qPCR analysis was conducted to assess the expression of selected RNAs in sera collected from a group of 10 rats with induced SLE and a control group of 10 rats. In addition, bioinformatics and functional analysis were used to construct a circRNA-miRNA-mRNA network and to determine the potential function of these differentially expressed circRNAs. RESULTS SLE rats demonstrated significantly higher expression levels of circ-CDC27, circ-Med14, and rno-miR-146a-5p as well as TRAF6, with lower expression level of circ-TubD1 in sera of SLE rats relative to controls. ROC curve analysis indicated that all the selected non-coding RNAs could serve as potential early diagnostic markers for SLE. In addition, the expression level of circ-TubD1 was negatively correlated with rno-miR-146a-5p, however, rno-miR-146a-5p was positively correlated with TRAF6. Bioinformatic analysis revealed the incorporation of the circRNAs targeted genes in various immune system and neurodegeneration pathways. CONCLUSIONS Therefore, circRNAs; circ-TubD1, circ-CDC27, and circ-Med14, in addition to the miRNA (rno-miR-146a-5p) and mRNA (TRAF6) may be involved in the development of SLE and may have promising roles for future diagnosis and targeted therapy.
Collapse
Affiliation(s)
- May A. Azzam
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Sally A. Fahim
- Department of Biochemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, 12577, Giza, Egypt
| | - Asmaa A. ElMonier
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Nadine W. Maurice
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| |
Collapse
|
112
|
Youness RA, Hassan HA, Abaza T, Hady AA, El Magdoub HM, Ali M, Vogel J, Thiersch M, Gassmann M, Hamdy NM, Aboouf MA. A Comprehensive Insight and In Silico Analysis of CircRNAs in Hepatocellular Carcinoma: A Step toward ncRNA-Based Precision Medicine. Cells 2024; 13:1245. [PMID: 39120276 PMCID: PMC11312109 DOI: 10.3390/cells13151245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Circular RNAs (circRNAs) are cardinal players in numerous physiological and pathological processes. CircRNAs play dual roles as tumor suppressors and oncogenes in different oncological contexts, including hepatocellular carcinoma (HCC). Their roles significantly impact the disease at all stages, including initiation, development, progression, invasion, and metastasis, in addition to the response to treatment. In this review, we discuss the biogenesis and regulatory functional roles of circRNAs, as well as circRNA-protein-mRNA ternary complex formation, elucidating the intricate pathways tuned by circRNAs to modulate gene expression and cellular processes through a comprehensive literature search, in silico search, and bioinformatics analysis. With a particular focus on the interplay between circRNAs, epigenetics, and HCC pathology, the article sets the stage for further exploration of circRNAs as novel investigational theranostic agents in the dynamic realm of HCC.
Collapse
Affiliation(s)
- Rana A. Youness
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (R.A.Y.); (H.A.H.); (T.A.)
| | - Hossam A. Hassan
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (R.A.Y.); (H.A.H.); (T.A.)
| | - Tasneem Abaza
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (R.A.Y.); (H.A.H.); (T.A.)
- Biotechnology Program, Institute of Basic and Applied Sciences (BAS), Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City 21934, Egypt
| | - Ahmed A. Hady
- Clinical Oncology Department, Faculty of Medicine, Mansoura University, Mansoura 35511, Egypt;
| | - Hekmat M. El Magdoub
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo 19648, Egypt;
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA;
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Johannes Vogel
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
| | - Markus Thiersch
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
| | - Max Gassmann
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Mostafa A. Aboouf
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| |
Collapse
|
113
|
Farazi MM, Jafarinejad-Farsangi S, Miri Karam Z, Gholizadeh M, Hadadi M, Yari A. Circular RNAs: Epigenetic regulators of PTEN expression and function in cancer. Gene 2024; 916:148442. [PMID: 38582262 DOI: 10.1016/j.gene.2024.148442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Epigenetic regulation of gene expression, without altering the DNA sequence, is involved in many normal cellular growth and division events, as well as diseases such as cancer. Epigenetics is no longer limited to DNA methylation, and histone modification, but regulatory non-coding RNAs (ncRNAs) also play an important role in epigenetics. Circular RNAs (circRNAs), single-stranded RNAs without 3' and 5' ends, have recently emerged as a class of ncRNAs that regulate gene expression. CircRNAs regulate phosphatase and tensin homolog (PTEN) expression at various levels of transcription, post-transcription, translation, and post-translation under their own regulation. Given the importance of PTEN as a tumor suppressor in cancer that inhibits one of the most important cancer pathways PI3K/AKT involved in tumor cell proliferation and survival, significant studies have been conducted on the regulatory role of circRNAs in relation to PTEN. These studies will be reviewed in this paper to better understand the function of this protein in cancer and explore new therapeutic approaches.
Collapse
Affiliation(s)
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zahra Miri Karam
- Department of Medical Genetics, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Endocrinology & Metabolism Research Center, Institute of Basic & Clinical Physiology Sciences, Kerman University of Medical Sciences Kerman, Iran
| | - Maryam Gholizadeh
- Institute of Bioinformatics, University of Medicine Greifswald, Greifwald, Germany
| | - Maryam Hadadi
- Cardiovascular Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abolfazl Yari
- Endocrinology & Metabolism Research Center, Institute of Basic & Clinical Physiology Sciences, Kerman University of Medical Sciences Kerman, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
114
|
Agrawal A, Vindal V. Competing endogenous RNAs in head and neck squamous cell carcinoma: a review. Brief Funct Genomics 2024; 23:335-348. [PMID: 37941447 DOI: 10.1093/bfgp/elad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Our understanding of RNA biology has evolved with recent advances in research from it being a non-functional product to molecules of the genome with specific regulatory functions. Competitive endogenous RNA (ceRNA), which has gained prominence over time as an essential part of post-transcriptional regulatory mechanism, is one such example. The ceRNA biology hypothesis states that coding RNA and non-coding RNA co-regulate each other using microRNA (miRNA) response elements. The ceRNA components include long non-coding RNAs, pseudogene and circular RNAs that exert their effect by interacting with miRNA and regulate the expression level of its target genes. Emerging evidence has revealed that the dysregulation of the ceRNA network is attributed to the pathogenesis of various cancers, including the head and neck squamous cell carcinoma (HNSCC). This is the most prevalent cancer developed from the mucosal epithelium in the lip, oral cavity, larynx and pharynx. Although many efforts have been made to comprehend the cause and subsequent treatment of HNSCC, the morbidity and mortality rate remains high. Hence, there is an urgent need to understand the holistic progression of HNSCC, mediated by ceRNA, that can have immense relevance in identifying novel biomarkers with a defined therapeutic intervention. In this review, we have made an effort to highlight the ceRNA biology hypothesis with a focus on its involvement in the progression of HNSCC. For the identification of such ceRNAs, we have additionally highlighted a number of databases and tools.
Collapse
Affiliation(s)
- Avantika Agrawal
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Vaibhav Vindal
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
115
|
Chaudhary U, Banerjee S. Decoding the Non-coding: Tools and Databases Unveiling the Hidden World of "Junk" RNAs for Innovative Therapeutic Exploration. ACS Pharmacol Transl Sci 2024; 7:1901-1915. [PMID: 39022352 PMCID: PMC11249652 DOI: 10.1021/acsptsci.3c00388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024]
Abstract
Non-coding RNAs are pivotal regulators of gene and protein expression, exerting crucial influences on diverse biological processes. Their dysregulation is frequently implicated in the onset and progression of diseases, notably cancer. A profound comprehension of the intricate mechanisms governing ncRNAs is imperative for devising innovative therapeutic interventions against these debilitating conditions. Significantly, nearly 80% of our genome comprises ncRNAs, underscoring their centrality in cellular processes. The elucidation of ncRNA functions is pivotal for grasping the complexities of gene regulation and its implications for human health. Modern genome sequencing techniques yield vast datasets, stored in specialized databases. To harness this wealth of information and to understand the crosstalk of non-coding RNAs, knowledge of available databases is required, and many new sophisticated computational tools have emerged. These tools play a pivotal role in the identification, prediction, and annotation of ncRNAs, thereby facilitating their experimental validation. This Review succinctly outlines the current understanding of ncRNAs, emphasizing their involvement in disease development. It also highlights the databases and tools instrumental in classifying, annotating, and evaluating ncRNAs. By extracting meaningful biological insights from seemingly "junk" data, these tools empower scientists to unravel the intricate roles of ncRNAs in shaping human health.
Collapse
Affiliation(s)
- Uma Chaudhary
- Department of Biotechnology,
School of Biosciences and Technology, Vellore
Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Satarupa Banerjee
- Department of Biotechnology,
School of Biosciences and Technology, Vellore
Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| |
Collapse
|
116
|
Ji Y, Ni C, Shen Y, Xu Z, Tang L, Yu F, Zhu L, Lu H, Zhang C, Yang S, Wang X. ESRP1-mediated biogenesis of circPTPN12 inhibits hepatocellular carcinoma progression by PDLIM2/ NF-κB pathway. Mol Cancer 2024; 23:143. [PMID: 38992675 PMCID: PMC11238376 DOI: 10.1186/s12943-024-02056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/29/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Emerging evidence indicates the pivotal involvement of circular RNAs (circRNAs) in cancer initiation and progression. Understanding the functions and underlying mechanisms of circRNAs in tumor development holds promise for uncovering novel diagnostic indicators and therapeutic targets. In this study, our focus was to elucidate the function and regulatory mechanism of hsa-circ-0003764 in hepatocellular carcinoma (HCC). METHODS A newly discovered hsa-circ-0003764 (circPTPN12) was identified from the circbase database. QRT-PCR analysis was utilized to assess the expression levels of hsa-circ-0003764 in both HCC tissues and cells. We conducted in vitro and in vivo experiments to examine the impact of circPTPN12 on the proliferation and apoptosis of HCC cells. Additionally, RNA-sequencing, RNA immunoprecipitation, biotin-coupled probe pull-down assays, and FISH were employed to confirm and establish the relationship between hsa-circ-0003764, PDLIM2, OTUD6B, P65, and ESRP1. RESULTS In HCC, the downregulation of circPTPN12 was associated with an unfavorable prognosis. CircPTPN12 exhibited suppressive effects on the proliferation of HCC cells both in vitro and in vivo. Mechanistically, RNA sequencing assays unveiled the NF-κB signaling pathway as a targeted pathway of circPTPN12. Functionally, circPTPN12 was found to interact with the PDZ domain of PDLIM2, facilitating the ubiquitination of P65. Furthermore, circPTPN12 bolstered the assembly of the PDLIM2/OTUD6B complex by promoting the deubiquitination of PDLIM2. ESRP1 was identified to bind to pre-PTPN12, thereby fostering the generation of circPTPN12. CONCLUSIONS Collectively, our findings indicate the involvement of circPTPN12 in modulating PDLIM2 function, influencing HCC progression. The identified ESRP1/circPTPN12/PDLIM2/NF-κB axis shows promise as a novel therapeutic target in the context of HCC.
Collapse
Affiliation(s)
- Yang Ji
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
- Medical College, Yangzhou University, Yangzhou, China
| | - Chuangye Ni
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Yanjun Shen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Zhenggang Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Lei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Fei Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
- Department of General Surgery, Jinhu People's Hospital, Huaian City, China
| | - Lingbang Zhu
- Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hao Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
| | - Chuanyong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
| | - Shikun Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
| |
Collapse
|
117
|
Tang JY, Yang L, Wu QJ, Yang Y, Su YY, Chen YR, Mu J. Circ-IP6K2 suppresses tumor progression by modulating the miR-1292-5p/CAMK2N1 signal in clear cell renal cell carcinoma. Funct Integr Genomics 2024; 24:122. [PMID: 38980439 DOI: 10.1007/s10142-024-01398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Renal cell carcinoma (RCC) is a malignant tumor originating from the epithelial cells of the renal tubules. The clear cell RCC subtype is closely linked to a poor prognosis due to its rapid progression. Circular RNA (circRNA) is a novel class of regulatory RNA molecules that play a role in the development of ccRCC, although their functions have not been fully elucidated. In this study, we identified a significant downregulation of circ-IP6K2 in ccRCC tissues based on data from the GSE100186 dataset. The decreased expression of circ-IP6K2 correlated with the progression of TNM stage and histological grade, and was also associated with decreased overall survival rates in ccRCC patients. Moreover, our findings revealed that circ-IP6K2 expression suppressed proliferation, migration, and invasion capabilities in vitro, and inhibited xenograft growth in vivo. Mechanistically, circ-IP6K2 acted as a sponge for miR-1292-5p in ccRCC cells, which in turn targeted the 3'UTR of CAMK2N1, leading to a decrease in its expression. CAMK2N1 was identified as a tumor suppressor that negatively regulated the β-catenin/c-Myc oncogenic signaling pathway. Additionally, we confirmed a positive correlation between the expression of circ-IP6K2 and CAMK2N1 in ccRCC. Circ-IP6K2 functions to impede the progression of ccRCC by modulating the miR-1292-5p/CAMK2N1 axis. These findings shed new light on the molecular mechanisms driving ccRCC progression and suggest potential therapeutic targets for the treatment of ccRCC.
Collapse
Affiliation(s)
- Jian-Ying Tang
- Department of Nephrology, University-Town Hospital of Chongqing Medical University, No 55 road of University-Town, Shapingba District, Chongqing, 401331, P.R. China
| | - Lu Yang
- Department of Nephrology, University-Town Hospital of Chongqing Medical University, No 55 road of University-Town, Shapingba District, Chongqing, 401331, P.R. China
| | - Qing-Jian Wu
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Ying Yang
- Department of Nephrology, University-Town Hospital of Chongqing Medical University, No 55 road of University-Town, Shapingba District, Chongqing, 401331, P.R. China
| | - Yuan-Yuan Su
- Department of Nephrology, University-Town Hospital of Chongqing Medical University, No 55 road of University-Town, Shapingba District, Chongqing, 401331, P.R. China
| | - Yi-Rong Chen
- Department of Nephrology, University-Town Hospital of Chongqing Medical University, No 55 road of University-Town, Shapingba District, Chongqing, 401331, P.R. China
| | - Jiao Mu
- Department of Nephrology, University-Town Hospital of Chongqing Medical University, No 55 road of University-Town, Shapingba District, Chongqing, 401331, P.R. China.
| |
Collapse
|
118
|
Pathmendra P, Park Y, Enguita FJ, Byrne JA. Verification of nucleotide sequence reagent identities in original publications in high impact factor cancer research journals. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5049-5066. [PMID: 38194106 PMCID: PMC11166861 DOI: 10.1007/s00210-023-02846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 01/10/2024]
Abstract
Human gene research studies that describe wrongly identified nucleotide sequence reagents have been mostly identified in journals of low to moderate impact factor, where unreliable findings could be considered to have limited influence on future research. This study examined whether papers describing wrongly identified nucleotide sequences are also published in high-impact-factor cancer research journals. We manually verified nucleotide sequence identities in original Molecular Cancer articles published in 2014, 2016, 2018, and 2020, including nucleotide sequence reagents that were claimed to target circRNAs. Using keywords identified in some 2018 and 2020 Molecular Cancer papers, we also verified nucleotide sequence identities in 2020 Oncogene papers that studied miRNA(s) and/or circRNA(s). Overall, 3.8% (251/6647) and 4.0% (47/1165) nucleotide sequences that were verified in Molecular Cancer and Oncogene papers, respectively, were found to be wrongly identified. Wrongly identified nucleotide sequences were distributed across 18% (91/500) original Molecular Cancer papers, including 38% (31/82) Molecular Cancer papers from 2020, and 40% (21/52) selected Oncogene papers from 2020. Original papers with wrongly identified nucleotide sequences were therefore unexpectedly frequent in two high-impact-factor cancer research journals, highlighting the risks of employing journal impact factors or citations as proxies for research quality.
Collapse
Affiliation(s)
- Pranujan Pathmendra
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Yasunori Park
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Jennifer A Byrne
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.
- NSW Health Statewide Biobank, NSW Health Pathology, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
119
|
Xian G, Huang R, Xu M, Zhao H, Xu X, Chen Y, Ren H, Xu D, Zeng Q. Noncoding RNA regulates the expression of Krm1 and Dkk2 to synergistically affect aortic valve lesions. Exp Mol Med 2024; 56:1560-1573. [PMID: 38945954 PMCID: PMC11297286 DOI: 10.1038/s12276-024-01256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 07/02/2024] Open
Abstract
Calcific aortic valve disease (CAVD) is becoming an increasingly important global medical problem, but effective pharmacological treatments are lacking. Noncoding RNAs play a pivotal role in the progression of cardiovascular diseases, but their relationship with CAVD remains unclear. Sequencing data revealed differential expression of many noncoding RNAs in normal and calcified aortic valves, with significant differences in circHIPK3 and miR-182-5p expression. Overexpression of circHIPK3 ameliorated aortic valve lesions in a CAVD mouse model. In vitro experiments demonstrated that circHIPK3 inhibits the osteogenic response of aortic valve interstitial cells. Mechanistically, DEAD-box helicase 5 (DDX5) recruits methyltransferase 3 (METTL3) to promote the N6-methyladenosine (m6A) modification of circHIPK3. Furthermore, m6A-modified circHIPK3 increases the stability of Kremen1 (Krm1) mRNA, and Krm1 is a negative regulator of the Wnt/β-catenin pathway. Additionally, miR-182-5p suppresses the expression of Dickkopf2 (Dkk2), the ligand of Krm1, and attenuates the Krm1-mediated inhibition of Wnt signaling. Activation of the Wnt signaling pathway significantly contributes to the promotion of aortic valve calcification. Our study describes the role of the Krm1-Dkk2 axis in inhibiting Wnt signaling in aortic valves and suggests that noncoding RNAs are upstream regulators of this process.
Collapse
Affiliation(s)
- Gaopeng Xian
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Rong Huang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Minhui Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hengli Zhao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Xingbo Xu
- Department of Cardiology, University Medical Center of Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Hao Ren
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
120
|
Zhao H, Xiong Y, Zhou Z, Xu Q, Zi Y, Zheng X, Chen S, Xiao X, Gong L, Xu H, Liu L, Lu H, Cui Y, Shao S, Zhang J, Ma J, Zhou Q, Ma D, Li X. A hidden proteome encoded by circRNAs in human placentas: Implications for uncovering preeclampsia pathogenesis. Clin Transl Med 2024; 14:e1759. [PMID: 38997803 PMCID: PMC11245404 DOI: 10.1002/ctm2.1759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND CircRNA-encoded proteins (CEPs) are emerging as new players in health and disease, and function as baits for the common partners of their cognate linear-spliced RNA encoded proteins (LEPs). However, their prevalence across human tissues and biological roles remain largely unexplored. The placenta is an ideal model for identifying CEPs due to its considerable protein diversity that is required to sustain fetal development during pregnancy. The aim of this study was to evaluate circRNA translation in the human placenta, and the potential roles of the CEPs in placental development and dysfunction. METHODS Multiomics approaches, including RNA sequencing, ribosome profiling, and LC-MS/MS analysis, were utilised to identify novel translational events of circRNAs in human placentas. Bioinformatics methods and the protein bait hypothesis were employed to evaluate the roles of these newly discovered CEPs in placentation and associated disorders. The pathogenic role of a recently identified CEP circPRKCB119aa in preeclampsia was investigated through qRT-PCR, Western blotting, immunofluorescence imaging and phenotypic analyses. RESULTS We found that 528 placental circRNAs bound to ribosomes with active translational elongation, and 139 were translated to proteins. The CEPs showed considerable structural homology with their cognate LEPs, but are more stable, hydrophobic and have a lower molecular-weight than the latter, all of which are conducive to their function as baits. On this basis, CEPs are deduced to be closely involved in placental function. Furthermore, we focused on a novel CEP circPRKCB119aa, and illuminated its pathogenic role in preeclampsia; it enhanced trophoblast autophagy by acting as a bait to inhibit phosphorylation of the cognate linear isoform PKCβ. CONCLUSIONS We discovered a hidden circRNA-encoded proteome in the human placenta, which offers new insights into the mechanisms underlying placental development, as well as placental disorders such as preeclampsia. Key points A hidden circRNA-encoded proteome in the human placenta was extensively identified and systematically characterised. The circRNA-encoded proteins (CEPs) are potentially related to placental development and associated disorders. A novel conserved CEP circPRKCB119aa enhanced trophoblast autophagy by inhibiting phosphorylation of its cognate linear-spliced isoform protein kinase C (PKC) β in preeclampsia.
Collapse
Affiliation(s)
- Huanqiang Zhao
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Yu Xiong
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Zixiang Zhou
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qixin Xu
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Yang Zi
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Xiujie Zheng
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Shiguo Chen
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Xirong Xiao
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lili Gong
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huangfang Xu
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lidong Liu
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huiqing Lu
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yutong Cui
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Shuyi Shao
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiongjie Zhou
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaotian Li
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
121
|
Zhao Y, Xiang J, Shi X, Jia P, Zhang Y, Li M. MDDOmics: multi-omics resource of major depressive disorder. Database (Oxford) 2024; 2024:baae042. [PMID: 38917209 PMCID: PMC11197964 DOI: 10.1093/database/baae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/02/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Major depressive disorder (MDD) is a pressing global health issue. Its pathogenesis remains elusive, but numerous studies have revealed its intricate associations with various biological factors. Consequently, there is an urgent need for a comprehensive multi-omics resource to help researchers in conducting multi-omics data analysis for MDD. To address this issue, we constructed the MDDOmics database (Major Depressive Disorder Omics, (https://www.csuligroup.com/MDDOmics/), which integrates an extensive collection of published multi-omics data related to MDD. The database contains 41 222 entries of MDD research results and several original datasets, including Single Nucleotide Polymorphisms, genes, non-coding RNAs, DNA methylations, metabolites and proteins, and offers various interfaces for searching and visualization. We also provide extensive downstream analyses of the collected MDD data, including differential analysis, enrichment analysis and disease-gene prediction. Moreover, the database also incorporates multi-omics data for bipolar disorder, schizophrenia and anxiety disorder, due to the challenge in differentiating MDD from similar psychiatric disorders. In conclusion, by leveraging the rich content and online interfaces from MDDOmics, researchers can conduct more comprehensive analyses of MDD and its similar disorders from various perspectives, thereby gaining a deeper understanding of potential MDD biomarkers and intricate disease pathogenesis. Database URL: https://www.csuligroup.com/MDDOmics/.
Collapse
Affiliation(s)
- Yichao Zhao
- School of Computer Science and Engineering, Central South University, No.932 South Lushan Road, Changsha 410083, China
| | - Ju Xiang
- School of Computer and Communication Engineering, Changsha University of Science and Technology, No.45 Chiling Road, Changsha 410114, China
| | - Xingyuan Shi
- School of Computer Science and Engineering, Central South University, No.932 South Lushan Road, Changsha 410083, China
| | - Pengzhen Jia
- School of Computer Science and Engineering, Central South University, No.932 South Lushan Road, Changsha 410083, China
| | - Yan Zhang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, No.139 Renmin Road Central, Changsha 410011, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, No.932 South Lushan Road, Changsha 410083, China
| |
Collapse
|
122
|
Hwang H, Jeon H, Yeo N, Baek D. Big data and deep learning for RNA biology. Exp Mol Med 2024; 56:1293-1321. [PMID: 38871816 PMCID: PMC11263376 DOI: 10.1038/s12276-024-01243-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 06/15/2024] Open
Abstract
The exponential growth of big data in RNA biology (RB) has led to the development of deep learning (DL) models that have driven crucial discoveries. As constantly evidenced by DL studies in other fields, the successful implementation of DL in RB depends heavily on the effective utilization of large-scale datasets from public databases. In achieving this goal, data encoding methods, learning algorithms, and techniques that align well with biological domain knowledge have played pivotal roles. In this review, we provide guiding principles for applying these DL concepts to various problems in RB by demonstrating successful examples and associated methodologies. We also discuss the remaining challenges in developing DL models for RB and suggest strategies to overcome these challenges. Overall, this review aims to illuminate the compelling potential of DL for RB and ways to apply this powerful technology to investigate the intriguing biology of RNA more effectively.
Collapse
Affiliation(s)
- Hyeonseo Hwang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyeonseong Jeon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- Genome4me Inc., Seoul, Republic of Korea
| | - Nagyeong Yeo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
- Genome4me Inc., Seoul, Republic of Korea.
| |
Collapse
|
123
|
Sun H, Xie Y, Wu X, Hu W, Chen X, Wu K, Wang H, Zhao S, Shi Q, Wang X, Cui B, Wu W, Fan R, Rao J, Wang R, Wang Y, Zhong Y, Yu H, Zhou BS, Shen S, Liu Y. circRNAs as prognostic markers in pediatric acute myeloid leukemia. Cancer Lett 2024; 591:216880. [PMID: 38621457 DOI: 10.1016/j.canlet.2024.216880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Circular RNAs (circRNAs) arise from precursor mRNA processing through back-splicing and have been increasingly recognized for their functions in various cancers including acute myeloid leukemia (AML). However, the prognostic implications of circRNA in AML remain unclear. We conducted a comprehensive genome-wide analysis of circRNAs using RNA-seq data in pediatric AML. We revealed a group of circRNAs associated with inferior outcomes, exerting effects on cancer-related pathways. Several of these circRNAs were transcribed directly from genes with established functions in AML, such as circRUNX1, circWHSC1, and circFLT3. Further investigations indicated the increased number of circRNAs and linear RNAs splicing were significantly correlated with inferior clinical outcomes, highlighting the pivotal role of splicing dysregulation. Subsequent analysis identified a group of upregulated RNA binding proteins in AMLs associated with high number of circRNAs, with TROVE2 being a prominent candidate, suggesting their involvement in circRNA associated prognosis. Through the integration of drug sensitivity data, we pinpointed 25 drugs that could target high-risk AMLs characterized by aberrant circRNA transcription. These findings underscore prognostic significance of circRNAs in pediatric AML and offer an alternative perspective for treating high-risk cases in this malignancy.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Xie
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenting Hu
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxiao Chen
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kefei Wu
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Han Wang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhao
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaoqiao Shi
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Wang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Cui
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyan Wu
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rongrong Fan
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianan Rao
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ronghua Wang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhong
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Yu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binbing S Zhou
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yu Liu
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou, China.
| |
Collapse
|
124
|
Li S, Wang J, Ren G. CircRNA: An emerging star in plant research: A review. Int J Biol Macromol 2024; 272:132800. [PMID: 38825271 DOI: 10.1016/j.ijbiomac.2024.132800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
CircRNAs are a class of covalently closed non-coding RNA formed by linking the 5' terminus and the 3' terminus after reverse splicing. CircRNAs are widely found in eukaryotes, and they are highly conserved, with spatio-temporal expression specificity and stability. CircRNAs can act as miRNA sponges to regulate the expression of downstream target genes, regulating the transcription of parental genes and some can even be translated into peptides or proteins. Research on circRNAs in plants is still in its infancy compared to that in animals. With the deepening of research, the results of a variety of plant circRNAs suggest that they play an important role in growth and development, and tolerance towards abiotic stresses such as salt, drought, low temperature, high temperature and other adverse environments. In this review paper, we elaborated the molecular characteristics, mechanism of action, function and bioinformatics databases of plant circRNAs, combined with the progress of circRNA research in animals, discussed the potential mechanism of action of plant circRNAs, and proposed the unsolved problems and prospects for future application of plant circRNAs.
Collapse
Affiliation(s)
- Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jingyi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guocheng Ren
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; Dongying Institute, Shandong Normal University, Dongying 257000, China.
| |
Collapse
|
125
|
Liu Y, Wang L, Lei D, Tan X, Jin W, Hou M, Hu K, Yan Y, Wang H, Xiang C, Lai Y. Circ_0000006 and circ_0000160 regulate hsa-let-7e-5p/UBQLN4 axis in aortic dissection progression. PLoS One 2024; 19:e0304668. [PMID: 38820386 PMCID: PMC11142605 DOI: 10.1371/journal.pone.0304668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/15/2024] [Indexed: 06/02/2024] Open
Abstract
Aortic aneurysms (AA) and aorta dissection (AD) are life-threatening conditions with a rising incidence and high mortality rate. Recent research has linked non-coding RNAs to the regulation of AA and AD progression. In this study, we performed circRNA sequencing, microRNA (miRNA) sequencing, and messenger RNA (mRNA) sequencing on plasma samples from AA and AD patients to identify the key circRNA-miRNA-mRNA axis involved in the transition from AA to AD. Our results showed elevated levels of circ_0000006 and circ_0000160, along with decreased levels of hsa-let-7e-5p in AD samples compared to AA samples. Predictive analysis suggested that circ_0000006 and circ_0000160 potentially target hsa-let-7e-5p, which in turn may bind to the mRNA of Ubiquilin 4 (UBQLN4). In an AD cell model using vascular smooth muscle cells (VSMCs), silencing circ_0000006 and circ_0000160 attenuated the effects of platelet-derived growth factor (PDGF)-induced phenotypic changes, proliferation, and migration. This effect was partially reversed by inhibiting hsa-let-7e-5p. Furthermore, we found that overexpression of UBQLN4 counteracted the effects of hsa-let-7e-5p, suggesting UBQLN4 as a downstream mediator of hsa-let-7e-5p. In an animal model of AD, knockdown of circ_0000006 and circ_0000160 also showed protective effects against aortic septation. Overall, our findings indicate that the upregulation of circ_0000006 and circ_0000160 contributes to the progression from AA to AD by influencing abnormal phenotypic changes, migration, and proliferation of VSMCs. The Hsa-let-7e-5p/UBQLN4 axis may play a critical role in AD development. Targeting circ_0000006 and circ_0000160 could be a potential therapeutic strategy for preventing the progression of AD.
Collapse
Affiliation(s)
- Yong Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Liang Wang
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dongyun Lei
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Xiong Tan
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Weitao Jin
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ming Hou
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Kai Hu
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yu Yan
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hao Wang
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chaohu Xiang
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yinglong Lai
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
126
|
Dong FL, Xu ZZ, Wang YQ, Li T, Wang X, Li J. Exosome-derived circUPF2 enhances resistance to targeted therapy by redeploying ferroptosis sensitivity in hepatocellular carcinoma. J Nanobiotechnology 2024; 22:298. [PMID: 38811968 PMCID: PMC11137910 DOI: 10.1186/s12951-024-02582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Advanced hepatocellular carcinoma (HCC) can be treated with sorafenib, which is the primary choice for targeted therapy. Nevertheless, the effectiveness of sorafenib is greatly restricted due to resistance. Research has shown that exosomes and circular RNAs play a vital role in the cancer's malignant advancement. However, the significance of exosomal circular RNAs in the development of resistance to sorafenib in HCC remains uncertain. METHODS Ultracentrifugation was utilized to isolate exosomes (Exo-SR) from the sorafenib-resistant HCC cells' culture medium. Transcriptome sequencing and differential expression gene analysis were used to identify the targets of Exo-SR action in HCC cells. To identify the targets of Exo-SR action in HCC cells, transcriptome sequencing and analysis of differential expression genes were employed. To evaluate the impact of exosomal circUPF2 on resistance to sorafenib in HCC, experiments involving gain-of-function and loss-of-function were conducted. RNA pull-down assays and mass spectrometry analysis were performed to identify the RNA-binding proteins interacting with circUPF2. RNA immunoprecipitation (RIP), RNA pull-down, electrophoretic mobility shift assay (EMSA), immunofluorescence (IF) -fluorescence in situ hybridization (FISH), and rescue assays were used to validate the interactions among circUPF2, IGF2BP2 and SLC7A11. Finally, a tumor xenograft assay was used to examine the biological functions and underlying mechanisms of Exo-SR and circUPF2 in vivo. RESULTS A novel exosomal circRNA, circUPF2, was identified and revealed to be significantly enriched in Exo-SR. Exosomes with enriched circUPF2 enhanced sorafenib resistance by promoting SLC7A11 expression and suppressing ferroptosis in HCC cells. Mechanistically, circUPF2 acts as a framework to enhance the creation of the circUPF2-IGF2BP2-SLC7A11 ternary complex contributing to the stabilization of SLC7A11 mRNA. Consequently, exosomal circUPF2 promotes SLC7A11 expression and enhances the function of system Xc- in HCC cells, leading to decreased sensitivity to ferroptosis and resistance to sorafenib. CONCLUSIONS The resistance to sorafenib in HCC is facilitated by the exosomal circUPF2, which promotes the formation of the circUPF2-IGF2BP2-SLC7A11 ternary complex and increases the stability of SLC7A11 mRNA. Focusing on exosomal circUPF2 could potentially be an innovative approach for HCC treatment.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Humans
- Exosomes/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Sorafenib/pharmacology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Ferroptosis/drug effects
- Drug Resistance, Neoplasm
- Cell Line, Tumor
- Animals
- Mice
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Mice, Nude
- Amino Acid Transport System y+/metabolism
- Amino Acid Transport System y+/genetics
- Antineoplastic Agents/pharmacology
- Gene Expression Regulation, Neoplastic
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Feng-Lin Dong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zong-Zhen Xu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China
| | - Ying-Qiao Wang
- Department of Hematology, The Third Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Tao Li
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xin Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China.
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Jie Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, China.
| |
Collapse
|
127
|
Digby B, Finn S, Ó Broin P. Computational approaches and challenges in the analysis of circRNA data. BMC Genomics 2024; 25:527. [PMID: 38807085 PMCID: PMC11134749 DOI: 10.1186/s12864-024-10420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Circular RNAs (circRNA) are a class of non-coding RNA, forming a single-stranded covalently closed loop structure generated via back-splicing. Advancements in sequencing methods and technologies in conjunction with algorithmic developments of bioinformatics tools have enabled researchers to characterise the origin and function of circRNAs, with practical applications as a biomarker of diseases becoming increasingly relevant. Computational methods developed for circRNA analysis are predicated on detecting the chimeric back-splice junction of circRNAs whilst mitigating false-positive sequencing artefacts. In this review, we discuss in detail the computational strategies developed for circRNA identification, highlighting a selection of tool strengths, weaknesses and assumptions. In addition to circRNA identification tools, we describe methods for characterising the role of circRNAs within the competing endogenous RNA (ceRNA) network, their interactions with RNA-binding proteins, and publicly available databases for rich circRNA annotation.
Collapse
Affiliation(s)
- Barry Digby
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland.
| | - Stephen Finn
- Discipline of Histopathology, School of Medicine, Trinity College Dublin and Cancer Molecular Diagnostic Laboratory, Dublin, Ireland
| | - Pilib Ó Broin
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
128
|
Giusti SA, Pino NS, Pannunzio C, Ogando MB, Armando NG, Garrett L, Zimprich A, Becker L, Gimeno ML, Lukin J, Merino FL, Pardi MB, Pedroncini O, Di Mauro GC, Durner VG, Fuchs H, de Angelis MH, Patop IL, Turck CW, Deussing JM, Vogt Weisenhorn DM, Jahn O, Kadener S, Hölter SM, Brose N, Giesert F, Wurst W, Marin-Burgin A, Refojo D. A brain-enriched circular RNA controls excitatory neurotransmission and restricts sensitivity to aversive stimuli. SCIENCE ADVANCES 2024; 10:eadj8769. [PMID: 38787942 PMCID: PMC11122670 DOI: 10.1126/sciadv.adj8769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Circular RNAs (circRNAs) are a large class of noncoding RNAs. Despite the identification of thousands of circular transcripts, the biological significance of most of them remains unexplored, partly because of the lack of effective methods for generating loss-of-function animal models. In this study, we focused on circTulp4, an abundant circRNA derived from the Tulp4 gene that is enriched in the brain and synaptic compartments. By creating a circTulp4-deficient mouse model, in which we mutated the splice acceptor site responsible for generating circTulp4 without affecting the linear mRNA or protein levels, we were able to conduct a comprehensive phenotypic analysis. Our results demonstrate that circTulp4 is critical in regulating neuronal and brain physiology, modulating the strength of excitatory neurotransmission and sensitivity to aversive stimuli. This study provides evidence that circRNAs can regulate biologically relevant functions in neurons, with modulatory effects at multiple levels of the phenotype, establishing a proof of principle for the regulatory role of circRNAs in neural processes.
Collapse
Affiliation(s)
- Sebastian A. Giusti
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalia S. Pino
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Camila Pannunzio
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Mora B. Ogando
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Natalia G. Armando
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lillian Garrett
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Annemarie Zimprich
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lore Becker
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Maria L. Gimeno
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Jeronimo Lukin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Florencia L. Merino
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - M. Belen Pardi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Olivia Pedroncini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Giuliana C. Di Mauro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | | | - Helmut Fuchs
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | | | - Christoph W. Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniela M. Vogt Weisenhorn
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Olaf Jahn
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | | | - Sabine M. Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Munich, Munich, Germany
| | - Antonia Marin-Burgin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Damian Refojo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
129
|
Zhang S, Li H, Jiang W, Chen X, Zhou H, Wang C, Kong H, Shi Y, Shi X. CircCamsap1 is dispensable for male fertility in mice. PeerJ 2024; 12:e17399. [PMID: 38799061 PMCID: PMC11122046 DOI: 10.7717/peerj.17399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Circular RNAs (circRNAs) are a large class of RNAs present in mammals. Among these, circCamsap1 is a well-acknowledged circRNA with significant implications, particularly in the development and progression of diverse tumors. However, the potential consequences of circCamsap1 depletion in vivo on male reproduction are yet to be thoroughly investigated. Methods The presence of circCamsap1 in the mouse testes was confirmed, and gene expression analysis was performed using reverse transcription quantitative polymerase chain reaction. CircCamsap1 knockout mice were generated utilizing the CRISPR/Cas9 system. Phenotypic analysis of both the testes and epididymis was conducted using histological and immunofluorescence staining. Additionally, fertility and sperm motility were assessed. Results Here, we successfully established a circCamsap1 knockout mouse model without affecting the expression of parental gene. Surprisingly, male mice lacking circCamsap1 (circCamsap1-/-) exhibited normal fertility, with no discernible differences in testicular and epididymal histology, spermatogenesis, sperm counts or sperm motility compared to circCamsap1+/+ mice. These findings suggest that circCamsap1 may not play an essential role in physiological spermatogenesis. Nonetheless, this result also underscores the complexity of circRNA function in male reproductive biology. Therefore, further research is necessary to elucidate the precise roles of other circRNAs in regulating male fertility.
Collapse
Affiliation(s)
- Shu Zhang
- Center of Reproduction, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Haojie Li
- Center of Reproduction, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Jiang
- Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, Jiangsu, China
| | - Xia Chen
- Center of Reproduction, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Han Zhou
- Center of Reproduction, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Chang Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hao Kong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yichao Shi
- Center of Reproduction, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xiaodan Shi
- Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
130
|
Li YC, You ZH, Yu CQ, Wang L, Hu L, Hu PW, Qiao Y, Wang XF, Huang YA. DeepCMI: a graph-based model for accurate prediction of circRNA-miRNA interactions with multiple information. Brief Funct Genomics 2024; 23:276-285. [PMID: 37539561 DOI: 10.1093/bfgp/elad030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/25/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Recently, the role of competing endogenous RNAs in regulating gene expression through the interaction of microRNAs has been closely associated with the expression of circular RNAs (circRNAs) in various biological processes such as reproduction and apoptosis. While the number of confirmed circRNA-miRNA interactions (CMIs) continues to increase, the conventional in vitro approaches for discovery are expensive, labor intensive, and time consuming. Therefore, there is an urgent need for effective prediction of potential CMIs through appropriate data modeling and prediction based on known information. In this study, we proposed a novel model, called DeepCMI, that utilizes multi-source information on circRNA/miRNA to predict potential CMIs. Comprehensive evaluations on the CMI-9905 and CMI-9589 datasets demonstrated that DeepCMI successfully infers potential CMIs. Specifically, DeepCMI achieved AUC values of 90.54% and 94.8% on the CMI-9905 and CMI-9589 datasets, respectively. These results suggest that DeepCMI is an effective model for predicting potential CMIs and has the potential to significantly reduce the need for downstream in vitro studies. To facilitate the use of our trained model and data, we have constructed a computational platform, which is available at http://120.77.11.78/DeepCMI/. The source code and datasets used in this work are available at https://github.com/LiYuechao1998/DeepCMI.
Collapse
Affiliation(s)
- Yue-Chao Li
- School of Information Engineering, Xijing University, Xi'an, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi'an, China
| | - Lei Wang
- Guangxi Academy of Sciences, Nanning, China
| | - Lun Hu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi, China
| | - Peng-Wei Hu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi, China
| | - Yan Qiao
- College of Agriculture and Forestry, Longdong University, Qingyang 745000, China
| | - Xin-Fei Wang
- School of Information Engineering, Xijing University, Xi'an, China
| | - Yu-An Huang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
131
|
Chen Z, Ma X, Chen Z, Chen W, Li L, Lin Y, Hu Y, Shang Y, Zhao Y, He J, Zhou C, Meng X. Exosome-transported circ_0061407 and circ_0008103 play a tumour-repressive role and show diagnostic value in non-small-cell lung cancer. J Transl Med 2024; 22:427. [PMID: 38711144 PMCID: PMC11071259 DOI: 10.1186/s12967-024-05215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs), one of the major contents of exosomes, have been shown to participate in the occurrence and progression of cancers. The role and the diagnostic potential of exosome-transported circRNAs in non-small-cell lung cancer (NSCLC) remain largely unknown. METHODS The NSCLC-associated exosomal circ_0061407 and circ_0008103 were screened by circRNA microarray. The role of circ_0061407 and circ_0008103 in NSCLC was examined in vitro and in vivo. The encapsulation of the two circRNAs into exosomes and the transport to recipient cells were observed by confocal microscopy. The effects of exosome-transported circ_0061407 and circ_0008103 on recipient cells were investigated using a co-culture device. Bioinformatics analyses were performed to predict the mechanisms by which circ_0061407 and circ_0008103 affected NSCLC. The quantitative polymerase chain reaction was used to quantify the exosome-containing circ_0061407 and circ_0008103 in the serum samples of healthy, pneumonia, benign lung tumours, and NSCLC. The diagnostic efficacy was evaluated using receiver operating characteristic curves. RESULTS The levels of circ_0061407 and circ_0008103 within exosomes were down-regulated in the serum of patients with NSCLC. The up-regulation of circ_0061407 and circ_0008103 inhibited the proliferation, migration/invasion, cloning formation of NSCLC cells in vitro and inhibited lung tumour growth in vivo. Circ_0061407 and circ_0008103 were observed to be packaged in exosomes and transported to recipient cells, where they inhibited the proliferation, migration/invasion, and cloning formation abilities of the recipient cells. Moreover, circ_0061407 and circ_0008103 might be involved in the progression of NSCLC by interacting with microRNAs and proteins. Additionally, lower serum exosomal circ_0061407 and circ_0008103 levels were associated with advanced pathological staging and distant metastasis. CONCLUSIONS This study identified two novel exosome-transported circRNAs (circ_0061407 and circ_0008103) associated with NSCLC. These findings may provide additional insights into the development of NSCLC and potential diagnostic biomarkers for NSCLC.
Collapse
MESH Headings
- Exosomes/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/blood
- RNA, Circular/genetics
- RNA, Circular/blood
- RNA, Circular/metabolism
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/blood
- Animals
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Male
- Gene Expression Regulation, Neoplastic
- Female
- Mice, Nude
- Middle Aged
- Mice, Inbred BALB C
- ROC Curve
- Mice
Collapse
Affiliation(s)
- Zhenhua Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xinyi Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Ziyuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, Zhejiang, China
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, Zhejiang, China
| | - Leyi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yichen Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yulin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yue Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yikai Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jinxian He
- Department of Thoracic Surgery, The Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315048, China
| | - Chengwei Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, Zhejiang, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
132
|
Lin J, Zhong W, Lyu Z, Peng J, Rong Y, Zeng K, Lai J, Wu D, Wang J, Li Y, Zheng J, Zhang J, Pan Z. Circular RNA circTATDN3 promotes the Warburg effect and proliferation in colorectal cancer. Cancer Lett 2024; 589:216825. [PMID: 38548218 DOI: 10.1016/j.canlet.2024.216825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
As one of the key metabolic enzymes in the glycolytic pathway, lactate dehydrogenase A (LDHA) might be linked to tumor proliferation by driving the Warburg effect. Circular RNAs (circRNAs) are widely implicated in tumor progression. Here, we report that circTATDN3, a circular RNA that interacts with LDHA, plays a critical role in proliferation and energy metabolism in CRC. We found that circTATDN3 expression was increased in CRC cells and tumor tissues and that high circTATDN3 expression was positively associated with poor postoperative prognosis in CRC patients. Additionally, circTATDN3 promoted the proliferation of CRC cells in vivo and vitro. Mechanistically, circTATDN3 was shown to function as an adaptor molecule that enhances the binding of LDHA to FGFR1, leading to increased LDHA phosphorylation and consequently promoting the Warburg effect. Moreover, circTATDN3 increased the expression of LDHA by sponging miR-511-5p, which synergistically promoted CRC progression and the Warburg effect. In conclusion, circTATDN3 may be a target for the treatment of CRC.
Collapse
Affiliation(s)
- Jiatong Lin
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, 510006, China
| | - Wenhui Zhong
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Zejian Lyu
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Jingwen Peng
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, SunYat-sen University, Guangzhou, Guandong, China
| | - Yi Rong
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou City, Guangdong Province, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Kejing Zeng
- Department of Endocrinology, Department of Diabetes and Obesity Reversal Research Center Guangdong Second Provincial General Hospital, 466 Xingang Middle Road, Guangzhou, Guangdong, 510317, China
| | - Jianguo Lai
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, Guangzhou, China
| | - Deqing Wu
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China.
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China.
| | - Jianwei Zhang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Zihao Pan
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China.
| |
Collapse
|
133
|
Drula R, Braicu C, Neagoe IB. Current advances in circular RNA detection and investigation methods: Are we running in circles? WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1850. [PMID: 38702943 DOI: 10.1002/wrna.1850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 05/06/2024]
Abstract
Circular RNAs (circRNAs), characterized by their closed-loop structure, have emerged as significant transcriptomic regulators, with roles spanning from microRNA sponging to modulation of gene expression and potential peptide coding. The discovery and functional analysis of circRNAs have been propelled by advancements in both experimental and bioinformatics tools, yet the field grapples with challenges related to their detection, isoform diversity, and accurate quantification. This review navigates through the evolution of circRNA research methodologies, from early detection techniques to current state-of-the-art approaches that offer comprehensive insights into circRNA biology. We examine the limitations of existing methods, particularly the difficulty in differentiating circRNA isoforms and distinguishing circRNAs from their linear counterparts. A critical evaluation of various bioinformatics tools and novel experimental strategies is presented, emphasizing the need for integrated approaches to enhance our understanding and interpretation of circRNA functions. Our insights underscore the dynamic and rapidly advancing nature of circRNA research, highlighting the ongoing development of analytical frameworks designed to address the complexity of circRNAs and facilitate the assessment of their clinical utility. As such, this comprehensive overview aims to catalyze further advancements in circRNA study, fostering a deeper understanding of their roles in cellular processes and potential implications in disease. This article is categorized under: RNA Methods > RNA Nanotechnology RNA Methods > RNA Analyses in Cells RNA Methods > RNA Analyses In Vitro and In Silico.
Collapse
Affiliation(s)
- Rareș Drula
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana-Berindan Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
134
|
Liu Z, Yang J, Wang N, Liu J, Geng J, Zhu J, Cong B, Sun H, Wu R. Integrative lncRNA, circRNA, and mRNA analysis reveals expression profiles of six forensic body fluids/tissue. Int J Legal Med 2024; 138:731-742. [PMID: 37994925 DOI: 10.1007/s00414-023-03131-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
RNAs have attracted much attention in forensic body fluid/tissue identification (BFID) due to their tissue-specific expression characteristics. Among RNAs, long RNAs (e.g., mRNA) have a higher probability of containing more polymorphic sites that can be used to assign the specific donor of the body fluid/tissue. However, few studies have characterized their overall profiles in forensic science. In this study, we sequenced the transcriptomes of 30 samples from venous blood, menstrual blood, semen, saliva, vaginal secretion, and skin tissue, obtaining a comprehensive picture of mRNA, lncRNA, and circRNA profiles. A total of 90,305 mRNAs, 102,906 lncRNAs (including 19,549 novel lncRNAs), and 40,204 circRNAs were detected. RNA type distribution, length distribution, and expression distribution were presented according to their annotation and expression level, and many novel body fluid/tissue-specific RNA markers were identified. Furthermore, the cognate relations among the three RNAs were analyzed according to gene annotations. Finally, SNPs and InDels from RNA transcripts were genotyped, and 21,611 multi-SNP and 4,471 multi-InDel transcriptomic microhaplotypes (tMHs) were identified. These results provide a comprehensive understanding of transcriptome profiles, which could provide new avenues for tracing the origin of the body fluid/tissue and identifying an individual.
Collapse
Affiliation(s)
- Zhiyong Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingyi Yang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Nana Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiajun Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiaojiao Geng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jianzhang Zhu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
135
|
Daniel Thomas S, Vijayakumar K, John L, Krishnan D, Rehman N, Revikumar A, Kandel Codi JA, Prasad TSK, S S V, Raju R. Machine Learning Strategies in MicroRNA Research: Bridging Genome to Phenome. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:213-233. [PMID: 38752932 DOI: 10.1089/omi.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
MicroRNAs (miRNAs) have emerged as a prominent layer of regulation of gene expression. This article offers the salient and current aspects of machine learning (ML) tools and approaches from genome to phenome in miRNA research. First, we underline that the complexity in the analysis of miRNA function ranges from their modes of biogenesis to the target diversity in diverse biological conditions. Therefore, it is imperative to first ascertain the miRNA coding potential of genomes and understand the regulatory mechanisms of their expression. This knowledge enables the efficient classification of miRNA precursors and the identification of their mature forms and respective target genes. Second, and because one miRNA can target multiple mRNAs and vice versa, another challenge is the assessment of the miRNA-mRNA target interaction network. Furthermore, long-noncoding RNA (lncRNA)and circular RNAs (circRNAs) also contribute to this complexity. ML has been used to tackle these challenges at the high-dimensional data level. The present expert review covers more than 100 tools adopting various ML approaches pertaining to, for example, (1) miRNA promoter prediction, (2) precursor classification, (3) mature miRNA prediction, (4) miRNA target prediction, (5) miRNA- lncRNA and miRNA-circRNA interactions, (6) miRNA-mRNA expression profiling, (7) miRNA regulatory module detection, (8) miRNA-disease association, and (9) miRNA essentiality prediction. Taken together, we unpack, critically examine, and highlight the cutting-edge synergy of ML approaches and miRNA research so as to develop a dynamic and microlevel understanding of human health and diseases.
Collapse
Affiliation(s)
- Sonet Daniel Thomas
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Krithika Vijayakumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Levin John
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Deepak Krishnan
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Thiruvananthapuram, Kerala, India
| | - Jalaluddin Akbar Kandel Codi
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | | | - Vinodchandra S S
- Department of Computer Science, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| |
Collapse
|
136
|
ZHAO ANDI, WANG YUE, WANG ZIJIN, SHAO QING, GONG QI, ZHU HUI, SHEN SHIYA, LIU HU, CHEN XUEJUAN. Circ_0053943 complexed with IGF2BP3 drives uveal melanoma progression via regulating N6-methyladenosine modification of Epidermal growth factor receptor. Oncol Res 2024; 32:983-998. [PMID: 38686044 PMCID: PMC11055987 DOI: 10.32604/or.2024.045972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/22/2023] [Indexed: 05/02/2024] Open
Abstract
Numerous studies have characterized the critical role of circular RNAs (circRNAs) as regulatory factors in the progression of multiple cancers. However, the biological functions of circRNAs and their underlying molecular mechanisms in the progression of uveal melanoma (UM) remain enigmatic. In this study, we identified a novel circRNA, circ_0053943, through re-analysis of UM microarray data and quantitative RT-PCR. Circ_0053943 was found to be upregulated in UM and to promote the proliferation and metastatic ability of UM cells in both in vitro and in vivo settings. Mechanistically, circ_0053943 was observed to bind to the KH1 and KH2 domains of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), thereby enhancing the function of IGF2BP3 by stabilizing its target mRNA. RNA sequencing assays identified epidermal growth factor receptor (EGFR) as a target gene of circ_0053943 and IGF2BP3 at the transcriptional level. Rescue assays demonstrated that circ_0053943 exerts its biological function by stabilizing EGFR mRNA and regulating the downstream mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway. Collectively, circ_0053943 may promote UM progression by stabilizing EGFR mRNA and activating the MAPK/ERK signaling pathway through the formation of a circ_0053943/IGF2BP3/EGFR RNA-protein ternary complex, thus providing a potential biomarker and therapeutic target for UM.
Collapse
Affiliation(s)
- ANDI ZHAO
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - YUE WANG
- Department of Ophthalmology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - ZIJIN WANG
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - QING SHAO
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - QI GONG
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - HUI ZHU
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - SHIYA SHEN
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - HU LIU
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - XUEJUAN CHEN
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
137
|
Huo K, Chen T, Kong D, Zhang W, Shao J. Comprehensive analysis of circRNA expression profiles in postmenopausal women differing in bone mineral density. Medicine (Baltimore) 2024; 103:e37813. [PMID: 38640297 PMCID: PMC11029967 DOI: 10.1097/md.0000000000037813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) seriously endangers the bone health of older women. Although there are currently indicators to diagnose PMOP, early diagnostic biomarkers are lacking. Circular ribonucleic acid (circRNA) has a stable structure, regulates gene expression, participates in the pathological process of disease, and has the potential to become a biomarker. The purpose of this study was to investigate circRNAs that could be used to predict patients with early PMOP. Ribonucleic acid (RNA) sequencing was performed on peripheral blood leukocytes from 15 female patients to identify differential circRNAs between different groups. Using bioinformatics analysis, enrichment analysis was performed to discover relevant functions and pathways. CircRNA-micro ribonucleic acid (miRNA) interaction analysis and messenger ribonucleic acid (mRNA) prediction and network construction help us to understand the relationship between circRNA, miRNA, and mRNA. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the gene expression of candidate circRNAs. We screened out 2 co-expressed differential circRNAs, namely hsa_circ_0060849 and hsa_circ_0001394. By analyzing the regulatory network, a total of 54 miRNAs and 57 osteoporosis-related mRNAs were identified, which, as potential downstream target genes of hsa_circ_0060849 and hsa_circ_0001394, may play a key role in the occurrence and development of PMOP. The occurrence and development of PMOP is regulated by circRNAs, and hsa_circ_0060849 and hsa_circ_0001394 can be used as new diagnostic markers and therapeutic targets for early PMOP.
Collapse
Affiliation(s)
- Kailun Huo
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Yinchuan, Ningxia Hui-Autonomous Region, China
| | - Tianning Chen
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Yinchuan, Ningxia Hui-Autonomous Region, China
| | - Dece Kong
- Department of Orthopedics, Pudong New Area Gongli Hospital, Shanghai, China
| | - Weiwei Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Shao
- Department of Orthopedics, Pudong New Area Gongli Hospital, Shanghai, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
138
|
Fuchs Wightman F, Lukin J, Giusti S, Soutschek M, Bragado L, Pozzi B, Pierelli M, González P, Fededa J, Schratt G, Fujiwara R, Wilusz J, Refojo D, de la Mata M. Influence of RNA circularity on Target RNA-Directed MicroRNA Degradation. Nucleic Acids Res 2024; 52:3358-3374. [PMID: 38381063 PMCID: PMC11014252 DOI: 10.1093/nar/gkae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/03/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
A subset of circular RNAs (circRNAs) and linear RNAs have been proposed to 'sponge' or block microRNA activity. Additionally, certain RNAs induce microRNA destruction through the process of Target RNA-Directed MicroRNA Degradation (TDMD), but whether both linear and circular transcripts are equivalent in driving TDMD is unknown. Here, we studied whether circular/linear topology of endogenous and artificial RNA targets affects TDMD. Consistent with previous knowledge that Cdr1as (ciRS-7) circular RNA protects miR-7 from Cyrano-mediated TDMD, we demonstrate that depletion of Cdr1as reduces miR-7 abundance. In contrast, overexpression of an artificial linear version of Cdr1as drives miR-7 degradation. Using plasmids that express a circRNA with minimal co-expressed cognate linear RNA, we show differential effects on TDMD that cannot be attributed to the nucleotide sequence, as the TDMD properties of a sequence often differ when in a circular versus linear form. By analysing RNA sequencing data of a neuron differentiation system, we further detect potential effects of circRNAs on microRNA stability. Our results support the view that RNA circularity influences TDMD, either enhancing or inhibiting it on specific microRNAs.
Collapse
Affiliation(s)
- Federico Fuchs Wightman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires 1428, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires 1428, Argentina
| | - Jerónimo Lukin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Buenos Aires 1425, Argentina
| | - Sebastián A Giusti
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Buenos Aires 1425, Argentina
| | - Michael Soutschek
- Lab of Systems Neuroscience, D-HEST Institute for Neuroscience, ETH Zürich 8092, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, ETH Zürich 8092, Switzerland
| | - Laureano Bragado
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires 1428, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires 1428, Argentina
| | - Berta Pozzi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires 1428, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires 1428, Argentina
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - María L Pierelli
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires 1428, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires 1428, Argentina
| | - Paula González
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”, IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Buenos Aires 1650, Argentina
| | - Juan P Fededa
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”, IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Buenos Aires 1650, Argentina
| | - Gerhard Schratt
- Lab of Systems Neuroscience, D-HEST Institute for Neuroscience, ETH Zürich 8092, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, ETH Zürich 8092, Switzerland
| | - Rina Fujiwara
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX77030, USA
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX77030, USA
| | - Damián Refojo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Buenos Aires 1425, Argentina
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Manuel de la Mata
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires 1428, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires 1428, Argentina
| |
Collapse
|
139
|
Wang Y, Zou R, Li D, Gao X, Lu X. Exosomal circSTRBP from cancer cells facilitates gastric cancer progression via regulating miR-1294/miR-593-3p/E2F2 axis. J Cell Mol Med 2024; 28:e18217. [PMID: 38520208 PMCID: PMC10960172 DOI: 10.1111/jcmm.18217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/27/2023] [Accepted: 01/09/2024] [Indexed: 03/25/2024] Open
Abstract
CircRNAs represent a new class of non-coding RNAs which show aberrant expression in diverse cancers, such as gastric cancer (GC). circSTRBP, for instance, is suggested to be overexpressed in GC cells and tissues. However, the biological role of circSTRBP in the progression of GC and the potential mechanisms have not been investigated. circSTRBP levels within GC cells and tissues were measured by RT-qPCR. The stability of circSTRBP was assessed by actinomycin D and Ribonuclease R treatment. Cell proliferation, migration, invasion and in vitro angiogenic abilities after circSTRBP knockdown were analysed through CCK-8 assay, transwell culture system and the tube formation assay. The interaction of circSTRBP with the predicted target microRNA (miRNA) was examined by RNA immunoprecipitation and luciferase reporter assays. Xenograft tumour model was established to evaluate the role of exosomal circSTRBP in the tumour formation of GC cells. circSTRBP was upregulated in GC cells and tissues, and there was an increased level of circSTRBP in GC-derived exosomes. circSTRBP in the exosomes enhanced GC cell growth and migration in vitro, which modulates E2F Transcription Factor 2 (E2F2) expression through targeting miR-1294 and miR-593-3p. Additionally, exosomal circSTRBP promoted the tumour growth of GC cells in the xenograft model. Exosomal circSTRBP is implicated in the progression of GC by modulating the activity of miR-1294/miR-593-3p/E2F2 axis.
Collapse
Affiliation(s)
- Yin Wang
- Department of GastroenterologyBozhou Hospital affiliated to Anhui Medical UniversityBozhouChina
| | - Rong Zou
- Department of Gastroenterology, Wuhan Puren HospitalWuhan University of Science and TechnologyWuhanChina
| | - Deke Li
- Department of AnesthesiologyThe Fifth Hospital of WuhanChina
| | - Xiankui Gao
- Department of GastroenterologyBozhou Hospital affiliated to Anhui Medical UniversityBozhouChina
| | - Xingjun Lu
- Department of GastroenterologyBozhou Hospital affiliated to Anhui Medical UniversityBozhouChina
| |
Collapse
|
140
|
Snyder K, Dixon CE, Henchir J, Gorse K, Vagni VA, Janesko-Feldman K, Kochanek PM, Jackson TC. Gene knockout of RNA binding motif 5 in the brain alters RIMS2 protein homeostasis in the cerebellum and Hippocampus and exacerbates behavioral deficits after a TBI in mice. Exp Neurol 2024; 374:114690. [PMID: 38218585 PMCID: PMC11178365 DOI: 10.1016/j.expneurol.2024.114690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
RNA binding motif 5 (RBM5) is a tumor suppressor in cancer but its role in the brain is unclear. We used conditional gene knockout (KO) mice to test if RBM5 inhibition in the brain affects chronic cortical brain tissue survival or function after a controlled cortical impact (CCI) traumatic brain injury (TBI). RBM5 KO decreased baseline contralateral hemispheric volume (p < 0.0001) and exacerbated ipsilateral tissue loss at 21 d after CCI in male mice vs. wild type (WT) (p = 0.0019). CCI injury, but not RBM5 KO, impaired beam balance performance (0-5d post-injury) and swim speed on the Morris Water Maze (MWM) (19-20d) (p < 0.0001). RBM5 KO was associated with mild learning impairment in female mice (p = 0.0426), reflected as a modest increase in escape latency early in training (14-18d post-injury). However, KO did not affect spatial memory at 19d post-injury in male or in female mice but it was impaired by CCI in females (p = 0.0061). RBM5 KO was associated with impaired visual function in male mice on the visible platform test at 20d post-injury (p = 0.0256). To explore signaling disturbances in KOs related to behavior, we first cross-referenced known brain-specific RBM5-regulated gene targets with genes in the curated RetNet database that impact vision. We then performed a secondary literature search on RBM5-regulated genes with a putative role in hippocampal function. Regulating synaptic membrane exocytosis 2 (RIMS) 2 was identified as a gene of interest because it regulates both vision and hippocampal function. Immunoprecipitation and western blot confirmed protein expression of a novel ~170 kDa RIMS2 variant in the cerebellum, and in the hippocampus, it was significantly increased in KO vs WT (p < 0.0001), and in a sex-dependent manner (p = 0.0390). Furthermore, male KOs had decreased total canonical RIMS2 levels in the cerebellum (p = 0.0027) and hippocampus (p < 0.0001), whereas female KOs had increased total RIMS1 levels in the cerebellum (p = 0.0389). In summary, RBM5 modulates brain function in mammals. Future work is needed to test if RBM5 dependent regulation of RIMS2 splicing effects vision and cognition, and to verify potential sex differences on behavior in a larger cohort of mice.
Collapse
Affiliation(s)
- Kara Snyder
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL 33602, United States of America; University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL 33612, United States of America.
| | - C Edward Dixon
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Jeremy Henchir
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Kiersten Gorse
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL 33602, United States of America; University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL 33612, United States of America.
| | - Vincent A Vagni
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Travis C Jackson
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL 33602, United States of America; University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL 33612, United States of America.
| |
Collapse
|
141
|
Yang J, Lei X, Zhang F. Identification of circRNA-disease associations via multi-model fusion and ensemble learning. J Cell Mol Med 2024; 28:e18180. [PMID: 38506066 PMCID: PMC10951890 DOI: 10.1111/jcmm.18180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 03/21/2024] Open
Abstract
Circular RNA (circRNA) is a common non-coding RNA and plays an important role in the diagnosis and therapy of human diseases, circRNA-disease associations prediction based on computational methods can provide a new way for better clinical diagnosis. In this article, we proposed a novel method for circRNA-disease associations prediction based on ensemble learning, named ELCDA. First, the association heterogeneous network was constructed via collecting multiple information of circRNAs and diseases, and multiple similarity measures are adopted here, then, we use metapath, matrix factorization and GraphSAGE-based models to extract features of nodes from different views, the final comprehensive features of circRNAs and diseases via ensemble learning, finally, a soft voting ensemble strategy is used to integrate the predicted results of all classifier. The performance of ELCDA is evaluated by fivefold cross-validation and compare with other state-of-the-art methods, the experimental results show that ELCDA is outperformance than others. Furthermore, three common diseases are used as case studies, which also demonstrate that ELCDA is an effective method for predicting circRNA-disease associations.
Collapse
Affiliation(s)
- Jing Yang
- School of Computer ScienceShaanxi Normal UniversityXi'anShaanxiChina
| | - Xiujuan Lei
- School of Computer ScienceShaanxi Normal UniversityXi'anShaanxiChina
| | - Fa Zhang
- School of Medical TechnologyBeijing Institute of TechnologyBeijingChina
| |
Collapse
|
142
|
Wang X, Zhang S, Lv B, Chen H, Zhang W, Dong L, Bao L, Wang M, Wang Y, Mao W, Cui L, Pang Y, Wang F, Yan F, Zhang Z, Cui G. Circular RNA PTP4A2 regulates microglial polarization through STAT3 to promote neuroinflammation in ischemic stroke. CNS Neurosci Ther 2024; 30:e14512. [PMID: 37869777 PMCID: PMC11017462 DOI: 10.1111/cns.14512] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
OBJECTIVE Microglial polarization plays a critical role in neuroinflammation and may be a potential therapeutic target for ischemic stroke. This study was to explore the role and underlying molecular mechanism of Circular RNA PTP4A2 (circPTP4A2) in microglial polarization after ischemic stroke. METHODS C57BL/6J mice underwent transient middle cerebral artery occlusion (tMCAO), while primary mouse microglia and BV2 microglial cells experienced oxygen glucose deprivation/reperfusion (OGD/R) to mimic ischemic conditions. CircPTP4A2 shRNA lentivirus and Colivelin were used to knock down circPTP4A2 and upregulate signal transducer and activator of transcription 3 (STAT3) phosphorylation, respectively. Microglial polarization was assessed using immunofluorescence staining and Western blot. RNA pull-down and RNA binding protein immunoprecipitation (RIP) were applied to detect the binding between circPTP4A2 and STAT3. RESULTS The levels of circPTP4A2 were significantly increased in plasma and peri-infarct cortex in tMCAO mice. CircPTP4A2 knockdown reduced infarct volume, increased cortical cerebral blood flow (CBF), and attenuated neurological deficits. It also decreased pro-inflammatory factors levels in peri-infarct cortex and plasma, and increased anti-inflammatory factors concentrations 24 h post-stroke. In addition, circPTP4A2 knockdown suppressed M1 microglial polarization and promoted M2 microglial polarization in both tMCAO mice and OGD/R-induced BV2 microglial cells. Moreover, circPTP4A2 knockdown inhibited the phosphorylation of STAT3 induced by oxygen-glucose deprivation. In contrast, increased phosphorylation of STAT3 partly counteracted the effects of circPTP4A2 knockdown. RNA pull-down and RIP assays further certified the binding between circPTP4A2 and STAT3. CONCLUSION These results revealed regulatory mechanisms of circPTP4A2 that stimulated neuroinflammation by driving STAT3-dependent microglial polarization in ischemic brain injury. CircPTP4A2 knockdown reduced cerebral ischemic injury and promoted microglial M2 polarization, which could be a novel therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Xingzhi Wang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouChina
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouChina
| | - Shenyang Zhang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouChina
| | - Bingchen Lv
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouChina
| | - Hao Chen
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouChina
| | - Wei Zhang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouChina
| | - Liguo Dong
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouChina
| | - Lei Bao
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouChina
| | - Miao Wang
- Department of GeriatricsThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Yan Wang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouChina
| | - Wenqi Mao
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouChina
| | - Likun Cui
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouChina
| | - Ye Pang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouChina
| | - Fei Wang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouChina
| | - Fuling Yan
- Department of NeurologyAffiliated to ZhongDa Hospital of Southeast UniversityNanjingChina
| | - Zuohui Zhang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouChina
| | - Guiyun Cui
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouChina
| |
Collapse
|
143
|
Hu K, Guo J, Zeng J, Shao Y, Wu B, Mo J, Mo G. Current state of research on copper complexes in the treatment of breast cancer. Open Life Sci 2024; 19:20220840. [PMID: 38585632 PMCID: PMC10997149 DOI: 10.1515/biol-2022-0840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024] Open
Abstract
Breast cancer, a malignancy originating from the epithelium or ductal epithelium of the breast, is not only highly prevalent in women but is also the leading cause of cancer-related deaths in women worldwide. Research has indicated that breast cancer incidence is increasing in younger women, prompting significant interest from scientists actively researching breast cancer treatment. Copper is highly accumulated in breast cancer cells, leading to the development of copper complexes that cause immunogenic cell death, apoptosis, oxidative stress, redox-mediated cell death, and autophagy by regulating the expression of key cell death proteins or assisting in the onset of cell death. However, they have not yet been applied to clinical therapy due to their solubility in physiological buffers and their different and unpredictable mechanisms of action. Herein, we review existing relevant studies, summarize the detailed mechanisms by which they exert anti-breast cancer effects, and propose a potential mechanism by which copper complexes may exert antitumor effects by causing copper death in breast cancer cells. Since copper death in breast cancer is closely related to prognosis and immune infiltration, further copper complex research may provide an opportunity to mitigate the high incidence and mortality rates associated with breast cancer.
Collapse
Affiliation(s)
- Kui Hu
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jingna Guo
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jiemin Zeng
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Yunhao Shao
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Binhua Wu
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China
| | - Jian Mo
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Guixi Mo
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
144
|
Scoyni F, Sitnikova V, Giudice L, Korhonen P, Trevisan DM, Hernandez de Sande A, Gomez-Budia M, Giniatullina R, Ugidos IF, Dhungana H, Pistono C, Korvenlaita N, Välimäki NN, Kangas SM, Hiltunen AE, Gribchenko E, Kaikkonen-Määttä MU, Koistinaho J, Ylä-Herttuala S, Hinttala R, Venø MT, Su J, Stoffel M, Schaefer A, Rajewsky N, Kjems J, LaPierre MP, Piwecka M, Jolkkonen J, Giniatullin R, Hansen TB, Malm T. ciRS-7 and miR-7 regulate ischemia-induced neuronal death via glutamatergic signaling. Cell Rep 2024; 43:113862. [PMID: 38446664 DOI: 10.1016/j.celrep.2024.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Brain functionality relies on finely tuned regulation of gene expression by networks of non-coding RNAs (ncRNAs) such as the one composed by the circular RNA ciRS-7 (also known as CDR1as), the microRNA miR-7, and the long ncRNA Cyrano. We describe ischemia-induced alterations in the ncRNA network both in vitro and in vivo and in transgenic mice lacking ciRS-7 or miR-7. Our data show that cortical neurons downregulate ciRS-7 and Cyrano and upregulate miR-7 expression during ischemia. Mice lacking ciRS-7 exhibit reduced lesion size and motor impairment, while the absence of miR-7 alone results in increased ischemia-induced neuronal death. Moreover, miR-7 levels in pyramidal excitatory neurons regulate neurite morphology and glutamatergic signaling, suggesting a potential molecular link to the in vivo phenotype. Our data reveal the role of ciRS-7 and miR-7 in modulating ischemic stroke outcome, shedding light on the pathophysiological function of intracellular ncRNA networks in the brain.
Collapse
Affiliation(s)
- Flavia Scoyni
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland.
| | - Valeriia Sitnikova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Davide M Trevisan
- Department of Biosciences and Nutrition, Karolinska Institute, 17177 Stockholm, Sweden
| | | | - Mireia Gomez-Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Irene F Ugidos
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Hiramani Dhungana
- Neuroscience Center, University of Helsinki, 00290 Helsinki, Finland
| | - Cristiana Pistono
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Nea Korvenlaita
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Nelli-Noora Välimäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | | | - Anniina E Hiltunen
- Medical Research Center Oulu and Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Emma Gribchenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Minna U Kaikkonen-Määttä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland; Neuroscience Center, University of Helsinki, 00290 Helsinki, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Reetta Hinttala
- Biocenter Oulu, University of Oulu, 90014 Oulu, Finland; Medical Research Center Oulu and Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Morten T Venø
- Omiics ApS, 8200 Aarhus, Denmark; Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Junyi Su
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Anne Schaefer
- Departments of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6504, USA; Max Planck Institute, Biology of Ageing, 50931 Cologne, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Mary P LaPierre
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Monika Piwecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Thomas B Hansen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland.
| |
Collapse
|
145
|
Cui Y, Wang L, Liang W, Huang L, Zhuang S, Shi H, Xu N, Hu J. Identification and Validation of the Pyroptosis-Related Hub Gene Signature and the Associated Regulation Axis in Diabetic Keratopathy. J Diabetes Res 2024; 2024:2920694. [PMID: 38529047 PMCID: PMC10963115 DOI: 10.1155/2024/2920694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
Background Diabetic keratopathy (DK) poses a significant challenge in diabetes mellitus, yet its molecular pathways and effective treatments remain elusive. The aim of our research was to explore the pyroptosis-related genes in the corneal epithelium of the streptozocin-induced diabetic rats. Methods After sixteen weeks of streptozocin intraperitoneal injection, corneal epithelium from three diabetic rats and three normal groups underwent whole-transcriptome sequencing. An integrated bioinformatics pipeline, including differentially expressed gene (DEG) identification, enrichment analysis, protein-protein interaction (PPI) network, coexpression, drug prediction, and immune deconvolution analyses, identified hub genes and key drivers in DK pathogenesis. These hub genes were subsequently validated in vivo through RT-qPCR. Results A total of 459 DEGs were screened out from the diabetic group and nondiabetic controls. Gene Set Enrichment Analysis highlighted significant enrichment of the NOD-like receptor, Toll-like receptor, and NF-kappa B signaling pathways. Intersection of DEGs and pyroptosis-related datasets showed 33 differentially expressed pyroptosis-related genes (DEPRGs) associated with pathways such as IL-17, NOD-like receptor, TNF, and Toll-like receptor signaling. A competing endogenous RNA network comprising 16 DEPRGs, 22 lncRNAs, 13 miRNAs, and 3 circRNAs was constructed. After PPI network, five hub genes (Nfkb1, Casp8, Traf6, Ptgs2, and Il18) were identified as upregulated in the diabetic group, and their expression was validated by RT-qPCR in streptozocin-induced rats. Immune infiltration characterization showed that diabetic corneas owned a higher proportion of resting mast cells, activated NK cells, and memory-resting CD4 T cells. Finally, several small compounds including all-trans-retinoic acid, Chaihu Shugan San, dexamethasone, and resveratrol were suggested as potential therapies targeting these hub genes for DK. Conclusions The identified and validated hub genes, Nfkb1, Casp8, Traf6, Ptgs2, and Il18, may play crucial roles in DK pathogenesis and serve as therapeutic targets.
Collapse
Affiliation(s)
- Yi Cui
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, USA
| | - Li Wang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Wentao Liang
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, USA
| | - Li Huang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Shuting Zhuang
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Hong Shi
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Nuo Xu
- Department of Ophthalmology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
146
|
Liu D, Zhou X, He Y, Zhao J. The Roles of CircRNAs in Mitochondria. J Cancer 2024; 15:2759-2769. [PMID: 38577612 PMCID: PMC10988319 DOI: 10.7150/jca.92111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
Mitochondria participate in varieties of cellular events. It is widely accepted that human mitochondrial genome encodes 13 proteins, 2 rRNAs, and 22 tRNAs. Gene variation derived from human nuclear genome cannot completely explain mitochondrial diseases. The advent of high-throughput sequencing coupled with novel bioinformatic analyses decode the complexity of mitochondria-derived transcripts. Recently, circular RNAs (circRNAs) from both human mitochondrial genome and nuclear genome have been found to be located at mitochondria. Studies about the roles and molecular mechanisms underlying trafficking of the nucleus encoded circRNAs to mitochondria and mitochondria encoded circRNAs to the nucleus or cytoplasm in mammals are only beginning to emerge. These circRNAs have been associated with a variety of diseases, especially cancers. Here, we discuss the emerging field of mitochondria-located circRNAs by reviewing their identification, expression patterns, regulatory roles, and functional mechanisms. Mitochondria-located circRNAs have regulatory roles in cellular physiology and pathology. We also highlight future perspectives and challenges in studying mitochondria-located circRNAs, as well as their potential biomedical applications.
Collapse
Affiliation(s)
- Donghong Liu
- Department of Special Medical Care, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Xinyu Zhou
- Department of Epidemiology, Naval Medical University, Shanghai, 200433, China
| | - Yida He
- Department of Epidemiology, Naval Medical University, Shanghai, 200433, China
| | - Jun Zhao
- Department of Special Medical Care, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| |
Collapse
|
147
|
Ferreira HJ, Stevenson BJ, Pak H, Yu F, Almeida Oliveira J, Huber F, Taillandier-Coindard M, Michaux J, Ricart-Altimiras E, Kraemer AI, Kandalaft LE, Speiser DE, Nesvizhskii AI, Müller M, Bassani-Sternberg M. Immunopeptidomics-based identification of naturally presented non-canonical circRNA-derived peptides. Nat Commun 2024; 15:2357. [PMID: 38490980 PMCID: PMC10943130 DOI: 10.1038/s41467-024-46408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/16/2024] [Indexed: 03/18/2024] Open
Abstract
Circular RNAs (circRNAs) are covalently closed non-coding RNAs lacking the 5' cap and the poly-A tail. Nevertheless, it has been demonstrated that certain circRNAs can undergo active translation. Therefore, aberrantly expressed circRNAs in human cancers could be an unexplored source of tumor-specific antigens, potentially mediating anti-tumor T cell responses. This study presents an immunopeptidomics workflow with a specific focus on generating a circRNA-specific protein fasta reference. The main goal of this workflow is to streamline the process of identifying and validating human leukocyte antigen (HLA) bound peptides potentially originating from circRNAs. We increase the analytical stringency of our workflow by retaining peptides identified independently by two mass spectrometry search engines and/or by applying a group-specific FDR for canonical-derived and circRNA-derived peptides. A subset of circRNA-derived peptides specifically encoded by the region spanning the back-splice junction (BSJ) are validated with targeted MS, and with direct Sanger sequencing of the respective source transcripts. Our workflow identifies 54 unique BSJ-spanning circRNA-derived peptides in the immunopeptidome of melanoma and lung cancer samples. Our approach enlarges the catalog of source proteins that can be explored for immunotherapy.
Collapse
Affiliation(s)
- Humberto J Ferreira
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Brian J Stevenson
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - HuiSong Pak
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Almeida Oliveira
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Florian Huber
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Marie Taillandier-Coindard
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Justine Michaux
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Emma Ricart-Altimiras
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Anne I Kraemer
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Markus Müller
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
- Agora Cancer Research Centre, Lausanne, Switzerland.
- Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
148
|
Zou H, Ji B, Zhang M, Liu F, Xie X, Peng S. MHGTMDA: Molecular heterogeneous graph transformer based on biological entity graph for miRNA-disease associations prediction. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102139. [PMID: 38384447 PMCID: PMC10879798 DOI: 10.1016/j.omtn.2024.102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
MicroRNAs (miRNAs) play a crucial role in the prevention, prognosis, diagnosis, and treatment of complex diseases. Existing computational methods primarily focus on biologically relevant molecules directly associated with miRNA or disease, overlooking the fact that the human body is a highly complex system where miRNA or disease may indirectly correlate with various types of biomolecules. To address this, we propose a novel prediction model named MHGTMDA (miRNA and disease association prediction using heterogeneous graph transformer based on molecular heterogeneous graph). MHGTMDA integrates biological entity relationships of eight biomolecules, constructing a relatively comprehensive heterogeneous biological entity graph. MHGTMDA serves as a powerful molecular heterogeneity map transformer, capturing structural elements and properties of miRNAs and diseases, revealing potential associations. In a 5-fold cross-validation study, MHGTMDA achieved an area under the receiver operating characteristic curve of 0.9569, surpassing state-of-the-art methods by at least 3%. Feature ablation experiments suggest that considering features among multiple biomolecules is more effective in uncovering miRNA-disease correlations. Furthermore, we conducted differential expression analyses on breast cancer and lung cancer, using MHGTMDA to further validate differentially expressed miRNAs. The results demonstrate MHGTMDA's capability to identify novel MDAs.
Collapse
Affiliation(s)
- Haitao Zou
- Guilin University of Technology, College of Information Science and Engineering, Guilin 541006, China
- Hunan University, College of Computer Science and Electronic Engineering, Changsha 410082, China
| | - Boya Ji
- Hunan University, College of Computer Science and Electronic Engineering, Changsha 410082, China
| | - Meng Zhang
- Xiangya Hospital, The Department of Thoracic Surgery, Changsha 410082, China
| | - Fen Liu
- Hunan Provincial People’s Hospital, Institute of Cardiovascular Epidemiology, Changsha 410082, China
| | - Xiaolan Xie
- Guilin University of Technology, College of Information Science and Engineering, Guilin 541006, China
| | - Shaoliang Peng
- Hunan University, College of Computer Science and Electronic Engineering, Changsha 410082, China
| |
Collapse
|
149
|
Huang GW, Yang TQ, Chen QQ, Liu XM, Xie LH, Huang W, Chen XL, Geng YQ, Gu J. circular RNA circ-231 promotes protein biogenesis of TPI1 and PRDX6 through mediating the interaction of eIF4A3 with STAU1 to facilitate unwinding of secondary structure in 5' UTR, enhancing progression of human esophageal squamous cell carcinoma (ESCC). J Cancer 2024; 15:2518-2537. [PMID: 38577609 PMCID: PMC10988296 DOI: 10.7150/jca.92578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/06/2024] [Indexed: 04/06/2024] Open
Abstract
Background: The nuclear cap-binding complex (CBC)-dependent translation (CT) is an important initial translation pathway for 5'-cap-dependent translation in normal mammal cells. Eukaryotic translation initiation factor 4A-III (eIF4A3), as an RNA helicase, is recruited to CT complex and enhances CT efficiency through participating in unwinding of secondary structure in the 5' UTR. However, the detailed mechanism for eIF4A3 implicated in unwinding of secondary structure in the 5' UTR in normal mammal cells is still unclear. Specially, we need to investigate whether the kind of mechanism in normal mammal cells extrapolates to cancer cells, e.g. ESCC, and further interrogate whether and how the mechanism triggers malignant phenotype of ESCC, which are important for identifying a potential therapeutic target for patients with ESCC. Methods: Bioinformatics analysis, RNA immunoprecipitation and RNA pulldown assays were performed to detect the interaction of circular RNA circ-231 with eIF4A3. In vitro and in vivo assays were performed to detect biological roles of circ-231 in ESCC. RNA immunoprecipitation, RNA pulldown, mass spectrometry analysis and co-immunoprecipitation assays were used to measure the interaction of circ-231, eIF4A3 and STAU1 in HEK293T and ESCC. In vitro EGFP reporter and 5' UTR of mRNA pulldown assays were performed to probe for the binding of circ-231, eIF4A3 and STAU1 to secondary structure of 5' UTR. Results: RNA immunoprecipitation assays showed that circ-231 interacted with eIF4A3 in HEK293T and ESCC. Further study confirmed that circ-231 orchestrated with eIF4A3 to control protein expression of TPI1 and PRDX6, but not for mRNA transcripts. The in-depth mechanism study uncovered that both circ-231 and eIF4A3 were involved in unwinding of secondary structure in 5' UTR of TPI1 and PRDX6. More importantly, circ-231 promoted the interaction between eIF4A3 and STAU1. Intriguingly, both circ-231 and eIF4A3 were dependent on STAU1 binding to secondary structure in 5' UTR. Biological function assays revealed that circ-231 promoted the migration and proliferation of ESCC via TPI1 and PRDX6. In ESCC, the up-regulated expression of circ-231 was observed and patients with ESCC characterized by higher expression of circ-231 have concurrent lymph node metastasis, compared with control. Conclusions: Our data unravels the detailed mechanism by which STAU1 binds to secondary structure in 5' UTR of mRNAs and recruits eIF4A3 through interacting with circ-231 and thereby eIF4A3 is implicated in unwinding of secondary structure, which is common to HEK293T and ESCC. However, importantly, our data reveals that circ-231 promotes migration and proliferation of ESCC and the up-regulated circ-231 greatly correlates with tumor lymph node metastasis, insinuating that circ-231 could be a therapeutic target and an indicator of risk of lymph node metastasis for patients with ESCC.
Collapse
Affiliation(s)
- Guo-Wei Huang
- Department of Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
| | - Ti-Qun Yang
- Department of Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
| | - Qian-Qian Chen
- Department of Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
| | - Xing-Mu Liu
- Department of Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
| | - Ling-Hui Xie
- Department of Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
| | - Wei Huang
- Department of Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
| | - Xue-Ling Chen
- Department of Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
| | - Yi-Qun Geng
- Department of Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
| | - Jiang Gu
- Department of Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, P.R. China
| |
Collapse
|
150
|
Dremel SE, Tagawa T, Koparde VN, Hernandez-Perez C, Arbuckle JH, Kristie TM, Krug LT, Ziegelbauer JM. Interferon induced circRNAs escape herpesvirus host shutoff and suppress lytic infection. EMBO Rep 2024; 25:1541-1569. [PMID: 38263330 PMCID: PMC10933408 DOI: 10.1038/s44319-023-00051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
To globally profile circRNAs, we employ RNA-Sequencing paired with chimeric junction analysis for alpha-, beta-, and gamma-herpesvirus infection. We find circRNAs are, as a population, resistant to host shutoff. We validate this observation using ectopic expression assays of human and murine herpesvirus endoribonucleases. During lytic infection, four circRNAs are commonly induced across all subfamilies of human herpesviruses, suggesting a shared mechanism of regulation. We test one such mechanism, namely how interferon-stimulation influences circRNA expression. 67 circRNAs are upregulated by either interferon-β or -γ treatment, with half of these also upregulated during lytic infection. Using gain and loss of function studies we find an interferon-stimulated circRNA, circRELL1, inhibits lytic Herpes Simplex Virus-1 infection. We previously reported circRELL1 inhibits lytic Kaposi sarcoma-associated herpesvirus infection, suggesting a pan-herpesvirus antiviral activity. We propose a two-pronged model in which interferon-stimulated genes may encode both mRNA and circRNA with antiviral activity. This is critical in cases of host shutoff, such as alpha- and gamma-herpesvirus infection, where the mRNA products are degraded but circRNAs escape.
Collapse
Affiliation(s)
- Sarah E Dremel
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, 20892, USA
| | - Takanobu Tagawa
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, 20892, USA
| | - Vishal N Koparde
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, Bethesda, 20892, USA
- Frederick National Laboratory for Cancer Research Advanced Biomedical Computational Sciences, Leidos Biomedical Research, Inc., Frederick, 21701, USA
| | | | - Jesse H Arbuckle
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, 20892, USA
| | - Thomas M Kristie
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, 20892, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, 20892, USA
| | - Joseph M Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, 20892, USA.
| |
Collapse
|