101
|
Lango Allen H, Caswell R, Xie W, Xu X, Wragg C, Turnpenny PD, Turner CLS, Weedon MN, Ellard S. Next generation sequencing of chromosomal rearrangements in patients with split-hand/split-foot malformation provides evidence for DYNC1I1 exonic enhancers of DLX5/6 expression in humans. J Med Genet 2014; 51:264-7. [PMID: 24459211 PMCID: PMC3963551 DOI: 10.1136/jmedgenet-2013-102142] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective Split-hand/foot malformation type 1 is an autosomal dominant condition with reduced penetrance and variable expression. We report three individuals from two families with split-hand/split-foot malformation (SHFM) in whom next generation sequencing was performed to investigate the cause of their phenotype. Methods and results The first proband has a de novo balanced translocation t(2;7)(p25.1;q22) identified by karyotyping. Whole genome sequencing showed that the chromosome 7 breakpoint is situated within the SHFM1 locus on chromosome 7q21.3. This separates the DYNC1I1 exons recently identified as limb enhancers in mouse studies from their target genes, DLX5 and DLX6. In the second family, X-linked recessive inheritance was suspected and exome sequencing was performed to search for a mutation in the affected proband and his uncle. No coding mutation was found within the SHFM2 locus at Xq26 or elsewhere in the exome, but a 106 kb deletion within the SHFM1 locus was detected through copy number analysis. Genome sequencing of the deletion breakpoints showed that the DLX5 and DLX6 genes are disomic but the putative DYNC1I1 exon 15 and 17 enhancers are deleted. Conclusions Exome sequencing identified a 106 kb deletion that narrows the SHFM1 critical region from 0.9 to 0.1 Mb and confirms a key role of DYNC1I1 exonic enhancers in normal limb formation in humans.
Collapse
Affiliation(s)
- Hana Lango Allen
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Fakhouri WD, Rahimov F, Attanasio C, Kouwenhoven EN, Ferreira De Lima RL, Felix TM, Nitschke L, Huver D, Barrons J, Kousa YA, Leslie E, Pennacchio LA, Van Bokhoven H, Visel A, Zhou H, Murray JC, Schutte BC. An etiologic regulatory mutation in IRF6 with loss- and gain-of-function effects. Hum Mol Genet 2014; 23:2711-20. [PMID: 24442519 DOI: 10.1093/hmg/ddt664] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DNA variation in Interferon Regulatory Factor 6 (IRF6) causes Van der Woude syndrome (VWS), the most common syndromic form of cleft lip and palate (CLP). However, an etiologic variant in IRF6 has been found in only 70% of VWS families. To test whether DNA variants in regulatory elements cause VWS, we sequenced three conserved elements near IRF6 in 70 VWS families that lack an etiologic mutation within IRF6 exons. A rare mutation (350dupA) was found in a conserved IRF6 enhancer element (MCS9.7) in a Brazilian family. The 350dupA mutation abrogated the binding of p63 and E47 transcription factors to cis-overlapping motifs, and significantly disrupted enhancer activity in human cell cultures. Moreover, using a transgenic assay in mice, the 350dupA mutation disrupted the activation of MCS9.7 enhancer element and led to failure of lacZ expression in all head and neck pharyngeal arches. Interestingly, disruption of the p63 Motif1 and/or E47 binding sites by nucleotide substitution did not fully recapitulate the effect of the 350dupA mutation. Rather, we recognized that the 350dupA created a CAAAGT motif, a binding site for Lef1 protein. We showed that Lef1 binds to the mutated site and that overexpression of Lef1/β-Catenin chimeric protein repressed MCS9.7-350dupA enhancer activity. In conclusion, our data strongly suggest that 350dupA variant is an etiologic mutation in VWS patients and disrupts enhancer activity by a loss- and gain-of-function mechanism, and thus support the rationale for additional screening for regulatory mutations in patients with CLP.
Collapse
|
103
|
Idogawa M, Ohashi T, Sasaki Y, Maruyama R, Kashima L, Suzuki H, Tokino T. Identification and analysis of large intergenic non-coding RNAs regulated by p53 family members through a genome-wide analysis of p53-binding sites. Hum Mol Genet 2014; 23:2847-57. [PMID: 24403050 DOI: 10.1093/hmg/ddt673] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
p53 is one of the most important known tumor suppressor genes, and it is inactivated in approximately half of human cancers. p53 family members execute various functions, such as apoptosis induction and cell cycle arrest, by modulating transcriptional regulation. Therefore, the direct transcriptional targets of the p53 family must be explored to elucidate the functional mechanisms of family members. To identify the direct transcriptional targets of p53 family members, we performed chromatin immunoprecipitation together with next-generation sequencing (ChIP-seq) and searched for p53-binding motifs across the entire human genome. Among the identified ChIP-seq peaks, approximately half were located in an intergenic region. Therefore, we assumed large intergenic non-coding RNAs (lincRNAs) to be major targets of the p53 family. Recent reports have revealed that lincRNAs play an important role in various biological and pathological processes, such as development, differentiation, stemness and carcinogenesis. Through a combination of ChIP-seq and in silico analyses, we found 23 lincRNAs that are upregulated by the p53 family. Additionally, knockdown of specific lincRNAs modulated p53-induced apoptosis and promoted the transcription of a gene cluster. Our results suggest that p53 family members, and lincRNAs constitute a complex transcriptional network involved in various biological functions and tumor suppression.
Collapse
Affiliation(s)
- Masashi Idogawa
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine and
| | | | | | | | | | | | | |
Collapse
|
104
|
Tai G, Ranjzad P, Marriage F, Rehman S, Denley H, Dixon J, Mitchell K, Day PJR, Woolf AS. Cytokeratin 15 marks basal epithelia in developing ureters and is upregulated in a subset of urothelial cell carcinomas. PLoS One 2013; 8:e81167. [PMID: 24260555 PMCID: PMC3832456 DOI: 10.1371/journal.pone.0081167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/09/2013] [Indexed: 11/29/2022] Open
Abstract
The mammalian ureter contains a water-tight epithelium surrounded by smooth muscle. Key molecules have been defined which regulate ureteric bud initiation and drive the differentiation of ureteric mesenchyme into peristaltic smooth muscle. Less is known about mechanisms underlying the developmental patterning of the multilayered epithelium characterising the mature ureter. In skin, which also contains a multilayered epithelium, cytokeratin 15 (CK15), an acidic intermediate filament protein, marks cells whose progeny contribute to epidermal regeneration following wounding. Moreover, CK15+ precursor cells in skin can give rise to basal cell carcinomas. In the current study, using transcriptome microarrays of embryonic wild type mouse ureters, Krt15, coding for CK15, was detected. Quantitative polymerase chain reaction analyses confirmed the initial finding and demonstrated that Krt15 levels increased during the fetal period when the ureteric epithelium becomes multilayered. CK15 protein was undetectable in the ureteric bud, the rudiment from which the ureter grows. Nevertheless, later in fetal development, CK15 was immunodetected in a subset of basal urothelial cells in the ureteric stalk. Superficial epithelial cells, including those positive for the differentiation marker uroplakin III, were CK15-. Transformation-related protein 63 (P63) has been implicated in epithelial differentiation in murine fetal urinary bladders. In wild type fetal ureters, CK15+ cells were positive for P63, and p63 homozygous null mutant ureters lacked CK15+ cells. In these mutant ureters, sections of the urothelium were monolayered versus the uniform multilayering found in wild type littermates. Human urothelial cell carcinomas account for considerable morbidity and mortality. CK15 was upregulated in a subset of invasive ureteric and urinary bladder cancers. Thus, in ureter development, the absence of CK15 is associated with a structurally simplified urothelium whereas, postnatally, increased CK15 levels feature in malignant urothelial overgrowth. CK15 may be a novel marker for urinary tract epithelial precursor cells.
Collapse
Affiliation(s)
- Guangping Tai
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom ; Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Günschmann C, Stachelscheid H, Akyüz MD, Schmitz A, Missero C, Brüning JC, Niessen CM. Insulin/IGF-1 controls epidermal morphogenesis via regulation of FoxO-mediated p63 inhibition. Dev Cell 2013; 26:176-87. [PMID: 23906066 PMCID: PMC3730059 DOI: 10.1016/j.devcel.2013.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 03/17/2013] [Accepted: 05/20/2013] [Indexed: 12/18/2022]
Abstract
The multilayered epidermis is established through a stratification program, which is accompanied by a shift from symmetric toward asymmetric divisions (ACD), a process under tight control of the transcription factor p63. However, the physiological signals regulating p63 activity in epidermal morphogenesis remain ill defined. Here, we reveal a role for insulin/IGF-1 signaling (IIS) in the regulation of p63 activity. Loss of epidermal IIS leads to a biased loss of ACD, resulting in impaired stratification. Upon loss of IIS, FoxO transcription factors are retained in the nucleus, where they bind and inhibit p63-regulated transcription. This is reversed by small interfering RNA-mediated knockdown of FoxOs. Accordingly, transgenic expression of a constitutive nuclear FoxO variant in the epidermis abrogates ACD and inhibits p63-regulated transcription and stratification. Collectively, the present study reveals a critical role for IIS-dependent control of p63 activity in coordination of ACD and stratification during epithelial morphogenesis. Epidermal insulin/IGF-1 signaling (IIS) regulates asymmetric cell division and mitosis IIS-controlled FoxOs bind p63 and negatively regulate p63 transcriptional activity Constitutive nuclear FoxO disturbs epidermal stratification The IIS/FoxO/p63 pathway is a major mechanism controlling epidermal stratification
Collapse
|
106
|
Split-hand/foot malformation - molecular cause and implications in genetic counseling. J Appl Genet 2013; 55:105-15. [PMID: 24163146 PMCID: PMC3909621 DOI: 10.1007/s13353-013-0178-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
Split-hand/foot malformation (SHFM) is a congenital limb defect affecting predominantly the central rays of the autopod and occurs either as an isolated trait or part of a multiple congenital anomaly syndrome. SHFM is usually sporadic, familial forms are uncommon. The condition is clinically and genetically heterogeneous and shows mostly autosomal dominant inheritance with variable expressivity and reduced penetrance. To date, seven chromosomal loci associated with isolated SHFM have been described, i.e., SHFM1 to 6 and SHFM/SHFLD. The autosomal dominant mode of inheritance is typical for SHFM1, SHFM3, SHFM4, SHFM5. Autosomal recessive and X-linked inheritance is very uncommon and have been noted only in a few families. Most of the known SHFM loci are associated with chromosomal rearrangements that involve small deletions or duplications of the human genome. In addition, three genes, i.e., TP63, WNT10B, and DLX5 are known to carry point mutations in patients affected by SHFM. In this review, we focus on the known molecular basis of isolated SHFM. We provide clinical and molecular information about each type of abnormality as well as discuss the underlying pathways and mechanism that contribute to their development. Recent progress in the understanding of SHFM pathogenesis currently allows for the identification of causative genetic changes in about 50 % of the patients affected by this condition. Therefore, we propose a diagnostic flow-chart helpful in the planning of molecular genetic tests aimed at identifying disease causing mutation. Finally, we address the issue of genetic counseling, which can be extremely difficult and challenging especially in sporadic SHFM cases.
Collapse
|
107
|
Wolchinsky Z, Shivtiel S, Kouwenhoven EN, Putin D, Sprecher E, Zhou H, Rouleau M, Aberdam D. Angiomodulin is required for cardiogenesis of embryonic stem cells and is maintained by a feedback loop network of p63 and Activin-A. Stem Cell Res 2013; 12:49-59. [PMID: 24145187 DOI: 10.1016/j.scr.2013.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 09/23/2013] [Accepted: 09/27/2013] [Indexed: 02/09/2023] Open
Abstract
The transcription factor p63, member of the p53 gene family, encodes for two main isoforms, TAp63 and ΔNp63 with distinct functions on epithelial homeostasis and cancer. Recently, we discovered that TAp63 is essential for in vitro cardiogenesis and heart development in vivo. TAp63 is expressed by embryonic endoderm and acts on cardiac progenitors by a cell-non-autonomous manner. In the present study, we search for cardiogenic secreted factors that could be regulated by TAp63 and, by ChIP-seq analysis, identified Angiomodulin (AGM), also named IGFBP7 or IGFBP-rP1. We demonstrate that AGM is necessary for cardiac commitment of embryonic stem cells (ESCs) and its regulation depends on TAp63 isoform. TAp63 directly activates both AGM and Activin-A during ESC cardiogenesis while these secreted factors modulate TAp63 gene expression by a feedback loop mechanism. The molecular circuitry controlled by TAp63 on AGM/Activin-A signaling pathway and thus on cardiogenesis emphasizes the importance of p63 during early cardiac development.
Collapse
Affiliation(s)
- Zohar Wolchinsky
- INSERTECH, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shoham Shivtiel
- INSERTECH, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Evelyn Nathalie Kouwenhoven
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centrum, The Netherlands
| | - Daria Putin
- INSERTECH, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Huiqing Zhou
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centrum, The Netherlands; Department of Molecular Developmental Biology, Radboud University Nijmegen, The Netherlands
| | - Matthieu Rouleau
- Laboratoire de PhysioMédecine Moléculaire, CNRS FRE-3472, Nice, France; University of Nice-Sophia Antipolis, France
| | - Daniel Aberdam
- INSERTECH, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; INSERM U976, Paris, France; University of Paris Diderot, France.
| |
Collapse
|
108
|
Gurrieri F, Everman DB. Clinical, genetic, and molecular aspects of split-hand/foot malformation: an update. Am J Med Genet A 2013; 161A:2860-72. [PMID: 24115638 DOI: 10.1002/ajmg.a.36239] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 08/26/2013] [Indexed: 12/26/2022]
Abstract
We here provide an update on the clinical, genetic, and molecular aspects of split-hand/foot malformation (SHFM). This rare condition, affecting 1 in 8,500-25,000 newborns, is extremely complex because of its variability in clinical presentation, irregularities in its inheritance pattern, and the heterogeneity of molecular genetic alterations that can be found in affected individuals. Both syndromal and nonsyndromal forms are reviewed and the major molecular genetic alterations thus far reported in association with SHFM are discussed. This updated overview should be helpful for clinicians in their efforts to make an appropriate clinical and genetic diagnosis, provide an accurate recurrence risk assessment, and formulate a management plan.
Collapse
Affiliation(s)
- Fiorella Gurrieri
- Istituto di Genetica Medica, Università Cattolica del Sacro Cuore, Rome, Italy
| | | |
Collapse
|
109
|
Napoli M, Flores ER. The family that eats together stays together: new p53 family transcriptional targets in autophagy. Genes Dev 2013; 27:971-4. [PMID: 23651851 DOI: 10.1101/gad.219147.113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autophagy is a biological process that is crucial to maintain cellular homeostasis and is regulated by several metabolic pathways, including the p53 tumor suppressor pathway. In this issue of Genes & Development, Kenzelmann Broz and colleagues (pp. 1016-1031) show how the p53 family as a whole, including p63 and p73, collaborate in controlling autophagy to support tumor suppression.
Collapse
Affiliation(s)
- Marco Napoli
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
110
|
Kenzelmann Broz D, Spano Mello S, Bieging KT, Jiang D, Dusek RL, Brady CA, Sidow A, Attardi LD. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev 2013; 27:1016-31. [PMID: 23651856 DOI: 10.1101/gad.212282.112] [Citation(s) in RCA: 342] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mechanisms by which the p53 tumor suppressor acts remain incompletely understood. To gain new insights into p53 biology, we used high-throughput sequencing to analyze global p53 transcriptional networks in primary mouse embryo fibroblasts in response to DNA damage. Chromatin immunoprecipitation sequencing reveals 4785 p53-bound sites in the genome located near 3193 genes involved in diverse biological processes. RNA sequencing analysis shows that only a subset of p53-bound genes is transcriptionally regulated, yielding a list of 432 p53-bound and regulated genes. Interestingly, we identify a host of autophagy genes as direct p53 target genes. While the autophagy program is regulated predominantly by p53, the p53 family members p63 and p73 contribute to activation of this autophagy gene network. Induction of autophagy genes in response to p53 activation is associated with enhanced autophagy in diverse settings and depends on p53 transcriptional activity. While p53-induced autophagy does not affect cell cycle arrest in response to DNA damage, it is important for both robust p53-dependent apoptosis triggered by DNA damage and transformation suppression by p53. Together, our data highlight an intimate connection between p53 and autophagy through a vast transcriptional network and indicate that autophagy contributes to p53-dependent apoptosis and cancer suppression.
Collapse
Affiliation(s)
- Daniela Kenzelmann Broz
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Debiais-Thibaud M, Metcalfe CJ, Pollack J, Germon I, Ekker M, Depew M, Laurenti P, Borday-Birraux V, Casane D. Heterogeneous conservation of Dlx paralog co-expression in jawed vertebrates. PLoS One 2013; 8:e68182. [PMID: 23840829 PMCID: PMC3695995 DOI: 10.1371/journal.pone.0068182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/27/2013] [Indexed: 01/10/2023] Open
Abstract
Background The Dlx gene family encodes transcription factors involved in the development of a wide variety of morphological innovations that first evolved at the origins of vertebrates or of the jawed vertebrates. This gene family expanded with the two rounds of genome duplications that occurred before jawed vertebrates diversified. It includes at least three bigene pairs sharing conserved regulatory sequences in tetrapods and teleost fish, but has been only partially characterized in chondrichthyans, the third major group of jawed vertebrates. Here we take advantage of developmental and molecular tools applied to the shark Scyliorhinus canicula to fill in the gap and provide an overview of the evolution of the Dlx family in the jawed vertebrates. These results are analyzed in the theoretical framework of the DDC (Duplication-Degeneration-Complementation) model. Results The genomic organisation of the catshark Dlx genes is similar to that previously described for tetrapods. Conserved non-coding elements identified in bony fish were also identified in catshark Dlx clusters and showed regulatory activity in transgenic zebrafish. Gene expression patterns in the catshark showed that there are some expression sites with high conservation of the expressed paralog(s) and other expression sites with events of paralog sub-functionalization during jawed vertebrate diversification, resulting in a wide variety of evolutionary scenarios within this gene family. Conclusion Dlx gene expression patterns in the catshark show that there has been little neo-functionalization in Dlx genes over gnathostome evolution. In most cases, one tandem duplication and two rounds of vertebrate genome duplication have led to at least six Dlx coding sequences with redundant expression patterns followed by some instances of paralog sub-functionalization. Regulatory constraints such as shared enhancers, and functional constraints including gene pleiotropy, may have contributed to the evolutionary inertia leading to high redundancy between gene expression patterns.
Collapse
Affiliation(s)
- Mélanie Debiais-Thibaud
- Institut des Sciences de l’Evolution, Université de Montpellier II, UMR5554, Montpellier, France
- * E-mail:
| | - Cushla J. Metcalfe
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
| | - Jacob Pollack
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Isabelle Germon
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
| | - Marc Ekker
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Michael Depew
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Patrick Laurenti
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| | - Véronique Borday-Birraux
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| | - Didier Casane
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| |
Collapse
|
112
|
p63 attenuates epithelial to mesenchymal potential in an experimental prostate cell model. PLoS One 2013; 8:e62547. [PMID: 23658742 PMCID: PMC3641034 DOI: 10.1371/journal.pone.0062547] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/22/2013] [Indexed: 02/06/2023] Open
Abstract
The transcription factor p63 is central for epithelial homeostasis and development. In our model of epithelial to mesenchymal transition (EMT) in human prostate cells, p63 was one of the most down-regulated transcription factors during EMT. We therefore investigated the role of p63 in EMT. Over-expression of the predominant epithelial isoform ΔNp63α in mesenchymal type cells of the model led to gain of several epithelial characteristics without resulting in a complete mesenchymal to epithelial transition (MET). This was corroborated by a reciprocal effect when p63 was knocked down in epithelial EP156T cells. Global gene expression analyses showed that ΔNp63α induced gene modules involved in both cell-to-cell and cell-to-extracellular-matrix junctions in mesenchymal type cells. Genome-wide analysis of p63 binding sites using ChIP-seq analyses confirmed binding of p63 to regulatory areas of genes associated with cell adhesion in prostate epithelial cells. DH1 and ZEB1 are two elemental factors in the control of EMT. Over-expression and knock-down of these factors, respectively, were not sufficient alone or in combination with ΔNp63α to reverse completely the mesenchymal phenotype. The partial reversion of epithelial to mesenchymal transition might reflect the ability of ΔNp63α, as a key co-ordinator of several epithelial gene expression modules, to reduce epithelial to mesenchymal plasticity (EMP). The utility of ΔNp63α expression and the potential of reduced EMP in order to counteract metastasis warrant further investigation.
Collapse
|
113
|
Monti P, Russo D, Bocciardi R, Foggetti G, Menichini P, Divizia MT, Lerone M, Graziano C, Wischmeijer A, Viadiu H, Ravazzolo R, Inga A, Fronza G. EEC- and ADULT-associated TP63 mutations exhibit functional heterogeneity toward P63 responsive sequences. Hum Mutat 2013; 34:894-904. [PMID: 23463580 DOI: 10.1002/humu.22304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/22/2013] [Indexed: 01/05/2023]
Abstract
TP63 germ-line mutations are responsible for a group of human ectodermal dysplasia syndromes, underlining the key role of P63 in the development of ectoderm-derived tissues. Here, we report the identification of two TP63 alleles, G134V (p.Gly173Val) and insR155 (p.Thr193_Tyr194insArg), associated to ADULT and EEC syndromes, respectively. These alleles, along with previously identified G134D (p.Gly173Asp) and R204W (p.Arg243Trp), were functionally characterized in yeast, studied in a mammalian cell line and modeled based on the crystal structure of the P63 DNA-binding domain. Although the p.Arg243Trp mutant showed both complete loss of transactivation function and ability to interfere over wild-type P63, the impact of p.Gly173Asp, p.Gly173Val, and p.Thr193_Tyr194insArg varied depending on the response element (RE) tested. Interestingly, p.Gly173Asp and p.Gly173Val mutants were characterized by a severe defect in transactivation along with interfering ability on two DN-P63α-specific REs derived from genes closely related to the clinical manifestations of the TP63-associated syndromes, namely PERP and COL18A1. The modeling of the mutations supported the distinct functional effect of each mutant. The present results highlight the importance of integrating different functional endpoints that take in account the features of P63 proteins' target sequences to examine the impact of TP63 mutations and the associated clinical variability.
Collapse
Affiliation(s)
- Paola Monti
- Molecular Mutagenesis and DNA Repair Unit, Istituto di Ricerca e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Iwata JI, Suzuki A, Pelikan RC, Ho TV, Sanchez-Lara PA, Urata M, Dixon MJ, Chai Y. Smad4-Irf6 genetic interaction and TGFβ-mediated IRF6 signaling cascade are crucial for palatal fusion in mice. Development 2013; 140:1220-30. [PMID: 23406900 DOI: 10.1242/dev.089615] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cleft palate is one of the most common human birth defects and is associated with multiple genetic and environmental risk factors. Although mutations in the genes encoding transforming growth factor beta (TGFβ) signaling molecules and interferon regulatory factor 6 (Irf6) have been identified as genetic risk factors for cleft palate, little is known about the relationship between TGFβ signaling and IRF6 activity during palate formation. Here, we show that TGFβ signaling regulates expression of Irf6 and the fate of the medial edge epithelium (MEE) during palatal fusion in mice. Haploinsufficiency of Irf6 in mice with basal epithelial-specific deletion of the TGFβ signaling mediator Smad4 (Smad4(fl/fl);K14-Cre;Irf6(+/R84C)) results in compromised p21 expression and MEE persistence, similar to observations in Tgfbr2(fl/fl);K14-Cre mice, although the secondary palate of Irf6(+/R84C) and Smad4(fl/fl);K14-Cre mice form normally. Furthermore, Smad4(fl/fl);K14-Cre;Irf6(+/R84C) mice show extra digits that are consistent with abnormal toe and nail phenotypes in individuals with Van der Woude and popliteal pterygium syndromes, suggesting that the TGFβ/SMAD4/IRF6 signaling cascade might be a well-conserved mechanism in regulating multiple organogenesis. Strikingly, overexpression of Irf6 rescued p21 expression and MEE degeneration in Tgfbr2(fl/fl);K14-Cre mice. Thus, IRF6 and SMAD4 synergistically regulate the fate of the MEE, and TGFβ-mediated Irf6 activity is responsible for MEE degeneration during palatal fusion in mice.
Collapse
Affiliation(s)
- Jun-ichi Iwata
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
115
|
APR-246/PRIMA-1(MET) rescues epidermal differentiation in skin keratinocytes derived from EEC syndrome patients with p63 mutations. Proc Natl Acad Sci U S A 2013; 110:2157-62. [PMID: 23355676 DOI: 10.1073/pnas.1201993110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
p53 and p63 share extensive sequence and structure homology. p53 is frequently mutated in cancer, whereas mutations in p63 cause developmental disorders manifested in ectodermal dysplasia, limb defects, and orofacial clefting. We have established primary adult skin keratinocytes from ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome patients with p63 mutations as an in vitro human model to study the disease mechanism in the skin of EEC patients. We show that these patient keratinocytes cultured either in submerged 2D cultures or in 3D skin equivalents have impaired epidermal differentiation and stratification. Treatment of these patient keratinocytes with the mutant p53-targeting compound APR-246/PRIMA-1(MET) (p53 reactivation and induction of massive apoptosis) that has been successfully tested in a phase I/II clinical trial in cancer patients partially but consistently rescued morphological features and gene expression during epidermal stratification in both 2D and 3D models. This rescue coincides with restoration of p63 target-gene expression. Our data show that EEC patient keratinocytes with p63 mutations can be used for characterization of the abnormal molecular circuitry in patient skin and may open possibilities for the design of novel pharmacological treatment strategies for patients with mutant p63-associated developmental abnormalities.
Collapse
|
116
|
Gallant-Behm CL, Espinosa JM. ΔNp63α utilizes multiple mechanisms to repress transcription in squamous cell carcinoma cells. Cell Cycle 2013; 12:409-16. [PMID: 23324337 PMCID: PMC3587441 DOI: 10.4161/cc.23593] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
ΔNp63α is a potent oncogene in squamous cell carcinomas (SCCs) and a pro-proliferative factor expressed by basal epithelial cells. ΔNp63α functions both as a transcriptional repressor and activator, but it is not clear how these activities contribute to its oncogenic potential. ΔNp63α was proposed to function as a dominant negative of the related factor p53. Additionally, ΔNp63α was shown to inactivate its family member TAp73 and mediate recruitment of repressive histone deacetylase (HDAC) complexes to chromatin. Recently, we identified a new mechanism of repression involving recruitment of histone H2A/H2A.Z exchange complexes and H2A.Z deposition at ΔNp63α target genes. Here, we aimed to define the possible co-occurrence of the various repressive mechanisms. In lung SCC cells expressing ΔNp63α, p53 and TAp73, we found that ΔNp63α exerts its pro-proliferative and transcriptional repressive effects in a manner independent of p53, TAp73 and histone H3 and H4 deacetylation. Instead, ΔNp63α target genes are differentiated from non-target genes within the p53 network by incorporation and accumulation of acetylated H2A.Z. These results indicate that ΔNp63α utilizes multiple mechanisms of repression in diverse epithelial and SCC cells.
Collapse
Affiliation(s)
- Corrie L Gallant-Behm
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA
| | | |
Collapse
|
117
|
Yang JH, Li JH, Jiang S, Zhou H, Qu LH. ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res 2012; 41:D177-87. [PMID: 23161675 PMCID: PMC3531181 DOI: 10.1093/nar/gks1060] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) represent two classes of important non-coding RNAs in eukaryotes. Although these non-coding RNAs have been implicated in organismal development and in various human diseases, surprisingly little is known about their transcriptional regulation. Recent advances in chromatin immunoprecipitation with next-generation DNA sequencing (ChIP-Seq) have provided methods of detecting transcription factor binding sites (TFBSs) with unprecedented sensitivity. In this study, we describe ChIPBase (http://deepbase.sysu.edu.cn/chipbase/), a novel database that we have developed to facilitate the comprehensive annotation and discovery of transcription factor binding maps and transcriptional regulatory relationships of lncRNAs and miRNAs from ChIP-Seq data. The current release of ChIPBase includes high-throughput sequencing data that were generated by 543 ChIP-Seq experiments in diverse tissues and cell lines from six organisms. By analysing millions of TFBSs, we identified tens of thousands of TF-lncRNA and TF-miRNA regulatory relationships. Furthermore, two web-based servers were developed to annotate and discover transcriptional regulatory relationships of lncRNAs and miRNAs from ChIP-Seq data. In addition, we developed two genome browsers, deepView and genomeView, to provide integrated views of multidimensional data. Moreover, our web implementation supports diverse query types and the exploration of TFs, lncRNAs, miRNAs, gene ontologies and pathways.
Collapse
Affiliation(s)
- Jian-Hua Yang
- RNA Information Center, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | | | | | | | | |
Collapse
|
118
|
Ferone G, Mollo MR, Thomason HA, Antonini D, Zhou H, Ambrosio R, De Rosa L, Salvatore D, Getsios S, van Bokhoven H, Dixon J, Missero C. p63 control of desmosome gene expression and adhesion is compromised in AEC syndrome. Hum Mol Genet 2012; 22:531-43. [PMID: 23108156 PMCID: PMC3542863 DOI: 10.1093/hmg/dds464] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ankyloblepharon, ectodermal defects, cleft lip/palate (AEC) syndrome is a rare autosomal dominant disorder caused by mutations in the p63 gene, essential for embryonic development of stratified epithelia. The most severe cutaneous manifestation of this disorder is the long-lasting skin fragility associated with severe skin erosions after birth. Using a knock-in mouse model for AEC syndrome, we found that skin fragility was associated with microscopic blistering between the basal and suprabasal compartments of the epidermis and reduced desmosomal contacts. Expression of desmosomal cadherins and desmoplakin was strongly reduced in AEC mutant keratinocytes and in newborn epidermis. A similar impairment in desmosome gene expression was observed in human keratinocytes isolated from AEC patients, in p63-depleted keratinocytes and in p63 null embryonic skin, indicating that p63 mutations causative of AEC syndrome have a dominant-negative effect on the wild-type p63 protein. Among the desmosomal components, desmocollin 3, desmoplakin and desmoglein 1 were the most significantly reduced by mutant p63 both at the RNA and protein levels. Chromatin immunoprecipitation experiments and transactivation assays revealed that p63 controls these genes at the transcriptional level. Consistent with reduced desmosome function, AEC mutant and p63-deficient keratinocytes had an impaired ability to withstand mechanical stress, which was alleviated by epidermal growth factor receptor inhibitors known to stabilize desmosomes. Our study reveals that p63 is a crucial regulator of a subset of desmosomal genes and that this function is impaired in AEC syndrome. Reduced mechanical strength resulting from p63 mutations can be alleviated pharmacologically by increasing desmosome adhesion with possible therapeutic implications.
Collapse
|
119
|
Gallant-Behm CL, Ramsey MR, Bensard CL, Nojek I, Tran J, Liu M, Ellisen LW, Espinosa JM. ΔNp63α represses anti-proliferative genes via H2A.Z deposition. Genes Dev 2012; 26:2325-36. [PMID: 23019126 DOI: 10.1101/gad.198069.112] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ΔNp63α is a member of the p53 family of transcription factors that functions as an oncogene in squamous cell carcinomas (SCCs). Because ΔNp63α and p53 bind virtually identical DNA sequence motifs, it has been proposed that ΔNp63α functions as a dominant-negative inhibitor of p53 to promote proliferation and block apoptosis. However, most SCCs concurrently overexpress ΔNp63α and inactivate p53, suggesting the autonomous action of these oncogenic events. Here we report the discovery of a novel mechanism of transcriptional repression by ΔNp63α that reconciles these observations. We found that although both proteins bind the same genomic sites, they regulate largely nonoverlapping gene sets. Upon activation, p53 binds all enhancers regardless of ΔNp63α status but fails to transactivate genes repressed by ΔNp63α. We found that ΔNp63α associates with the SRCAP chromatin regulatory complex involved in H2A/H2A.Z exchange and mediates H2A.Z deposition at its target loci. Interestingly, knockdown of SRCAP subunits or H2A.Z leads to specific induction of ΔNp63α-repressed genes. We identified SAMD9L as a key anti-proliferative gene repressed by ΔNp63α and H2A.Z whose depletion suffices to reverse the arrest phenotype caused by ΔNp63α knockdown. Collectively, these results illuminate a molecular pathway contributing to the autonomous oncogenic effects of ΔNp63α.
Collapse
|
120
|
Wu N, Sulpice E, Obeid P, Benzina S, Kermarrec F, Combe S, Gidrol X. The miR-17 family links p63 protein to MAPK signaling to promote the onset of human keratinocyte differentiation. PLoS One 2012; 7:e45761. [PMID: 23029228 PMCID: PMC3454365 DOI: 10.1371/journal.pone.0045761] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/24/2012] [Indexed: 12/19/2022] Open
Abstract
The p63 protein plays a key role in regulating human keratinocyte proliferation and differentiation. Although some p63-regulating microRNAs (miRNAs) have been identified in the control of epidermal homeostasis, little is known about miRNAs acting downstream of p63. In this paper, we characterized multiple p63-regulated miRNAs (miR-17, miR-20b, miR-30a, miR-106a, miR-143 and miR-455-3p) and elucidated their roles in the onset of keratinocyte differentiation. We identified RB, p21 and multiple MAPKs as targets of these p63-controlled miRNAs. Upon inhibition of most of these miRNAs, we observed defects in commitment to differentiation that could be reversed by siRNA-mediated silencing of their targets. Furthermore, knockdown of MAPK8 and MAPK9 efficiently restored expression of the early differentiation markers keratin 1 and keratin 10 in p63-silenced primary human keratinocytes. These results highlight new mechanistic roles of multiple miRNAs, particularly the miR-17 family (miR-17, miR-20b and miR-106a), as regulatory intermediates for coordinating p63 with MAPK signaling in the commitment of human mature keratinocytes to early differentiation.
Collapse
Affiliation(s)
- Ning Wu
- CEA, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- INSERM, U1038, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - Eric Sulpice
- CEA, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- INSERM, U1038, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - Patricia Obeid
- CEA, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- INSERM, U1038, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - Sami Benzina
- CEA, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- INSERM, U1038, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - Frédérique Kermarrec
- CEA, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- INSERM, U1038, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - Stéphanie Combe
- CEA, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- INSERM, U1038, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - Xavier Gidrol
- CEA, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- INSERM, U1038, Grenoble, France
- Université Joseph Fourier, Grenoble, France
- * E-mail:
| |
Collapse
|
121
|
Birnbaum RY, Everman DB, Murphy KK, Gurrieri F, Schwartz CE, Ahituv N. Functional characterization of tissue-specific enhancers in the DLX5/6 locus. Hum Mol Genet 2012; 21:4930-8. [PMID: 22914741 DOI: 10.1093/hmg/dds336] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Disruption of distaless homeobox 5 and 6 (Dlx5/6) in mice results in brain, craniofacial, genital, ear and limb defects. In humans, chromosomal aberrations in the DLX5/6 region, some of which do not encompass DLX5/6, are associated with split hand/foot malformation 1 (SHFM1) as well as intellectual disability, craniofacial anomalies and hearing loss, suggesting that the disruption of DLX5/6 regulatory elements could lead to these abnormalities. Here, we characterized enhancers in the DLX5/6 locus whose tissue-specific expression and genomic location along with previously characterized enhancers correlate with phenotypes observed in individuals with chromosomal abnormalities. By analyzing chromosomal aberrations at 7q21, we refined the minimal SHFM1 critical region and used comparative genomics to select 26 evolutionary conserved non-coding sequences in this critical region for zebrafish enhancer assays. Eight of these sequences were shown to function as brain, olfactory bulb, branchial arch, otic vesicle and fin enhancers, recapitulating dlx5a/6a expression. Using a mouse enhancer assay, several of these zebrafish enhancers showed comparable expression patterns in the branchial arch, otic vesicle, forebrain and/or limb at embryonic day 11.5. Examination of the coordinates of various chromosomal rearrangements in conjunction with the genomic location of these tissue-specific enhancers showed a correlation with the observed clinical abnormalities. Our findings suggest that chromosomal abnormalities that disrupt the function of these tissue-specific enhancers could be the cause of SHFM1 and its associated phenotypes. In addition, they highlight specific enhancers in which mutations could lead to non-syndromic hearing loss, craniofacial defects or limb malformations.
Collapse
Affiliation(s)
- Ramon Y Birnbaum
- Department of Bioengineering and Therapeutic Sciences and 2Institute for Human Genetics, University of California-San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
122
|
McDade SS, Henry AE, Pivato GP, Kozarewa I, Mitsopoulos C, Fenwick K, Assiotis I, Hakas J, Zvelebil M, Orr N, Lord CJ, Patel D, Ashworth A, McCance DJ. Genome-wide analysis of p63 binding sites identifies AP-2 factors as co-regulators of epidermal differentiation. Nucleic Acids Res 2012; 40:7190-206. [PMID: 22573176 PMCID: PMC3424553 DOI: 10.1093/nar/gks389] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 04/11/2012] [Accepted: 04/15/2012] [Indexed: 01/15/2023] Open
Abstract
The p63 transcription factor (TP63) is critical in development, growth and differentiation of stratifying epithelia. This is highlighted by the severity of congenital abnormalities caused by TP63 mutations in humans, the dramatic phenotypes in knockout mice and de-regulation of TP63 expression in neoplasia altering the tumour suppressive roles of the TP53 family. In order to define the normal role played by TP63 and provide the basis for better understanding how this network is perturbed in disease, we used chromatin immunoprecipitation combined with massively parallel sequencing (ChIP-seq) to identify >7500 high-confidence TP63-binding regions across the entire genome, in primary human neonatal foreskin keratinocytes (HFKs). Using integrative strategies, we demonstrate that only a subset of these sites are bound by TP53 in response to DNA damage. We identify a role for TP63 in transcriptional regulation of multiple genes genetically linked to cleft palate and identify AP-2alpha (TFAP2A) as a co-regulator of a subset of these genes. We further demonstrate that AP-2gamma (TFAP2C) can bind a subset of these regions and that acute depletion of either TFAP2A or TFAP2C alone is sufficient to reduce terminal differentiation of organotypic epidermal skin equivalents, indicating overlapping physiological functions with TP63.
Collapse
Affiliation(s)
- Simon S. McDade
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Alexandra E. Henry
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Geraldine P. Pivato
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Iwanka Kozarewa
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Constantinos Mitsopoulos
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Kerry Fenwick
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Ioannis Assiotis
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Jarle Hakas
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Marketa Zvelebil
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Nicholas Orr
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Christopher J. Lord
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Daksha Patel
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Alan Ashworth
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| | - Dennis J. McCance
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chelsea, London SW3 6JB, UK
| |
Collapse
|
123
|
Martynova E, Pozzi S, Basile V, Dolfini D, Zambelli F, Imbriano C, Pavesi G, Mantovani R. Gain-of-function p53 mutants have widespread genomic locations partially overlapping with p63. Oncotarget 2012; 3:132-43. [PMID: 22361592 PMCID: PMC3326644 DOI: 10.18632/oncotarget.447] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
p53 and p63 are transcription factors -TFs- playing master roles in the DNA-damage response and in the development and maintenance of pluristratified epithelia, respectively. p53 mutations are common in epithelial tumors and HaCaT keratinocytes harbor two p53 alleles -H179Y and R282Q- with gain-of-function (GOF) activity. Indeed, functional inactivation of mutp53 affects the growth rate of HaCaT. We investigated the strategy of mutp53, by performing ChIP-Seq experiments of mutp53 and p63 and analyzed the transcriptome after mutp53 inactivation. Mutp53 bind to 7135 locations in vivo, with a robust overlap with p63. De novo motifs discovery recovered a p53/p63RE with high information content in sites bound by p63 and mutp53/p63, but not by mutp53 alone: these sites are rather enriched in elements of other TFs. The HaCaT p63 locations are only partially overlapping with those of normal keratinocytes; importantly, and enriched in mutp53 sites which delineate a functionally different group of target genes. Our data favour a model whereby mutp53 GOF mutants act both by tethering growth-controlling TFs and highjacking p63 to new locations.
Collapse
Affiliation(s)
- Elena Martynova
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Neilsen PM, Noll JE, Mattiske S, Bracken CP, Gregory PA, Schulz RB, Lim SP, Kumar R, Suetani RJ, Goodall GJ, Callen DF. Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene 2012; 32:2992-3000. [DOI: 10.1038/onc.2012.305] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
125
|
Neilsen PM, Noll JE, Suetani RJ, Schulz RB, Al-Ejeh F, Evdokiou A, Lane DP, Callen DF. Mutant p53 uses p63 as a molecular chaperone to alter gene expression and induce a pro-invasive secretome. Oncotarget 2012; 2:1203-17. [PMID: 22203497 PMCID: PMC3282078 DOI: 10.18632/oncotarget.382] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mutations in the TP53 gene commonly result in the expression of a full-length protein that drives cancer cell invasion and metastasis. Herein, we have deciphered the global landscape of transcriptional regulation by mutant p53 through the application of a panel of isogenic H1299 derivatives with inducible expression of several common cancer-associated p53 mutants. We found that the ability of mutant p53 to alter the transcriptional profile of cancer cells is remarkably conserved across different p53 mutants. The mutant p53 transcriptional landscape was nested within a small subset of wild-type p53 responsive genes, suggesting that the oncogenic properties of mutant p53 are conferred by retaining its ability to regulate a defined set of p53 target genes. These mutant p53 target genes were shown to converge upon a p63 signalling axis. Both mutant p53 and wild-type p63 were co-recruited to the promoters of these target genes, thus providing a molecular basis for their selective regulation by mutant p53. We demonstrate that mutant p53 manipulates the gene expression pattern of cancer cells to facilitate invasion through the release of a pro-invasive secretome into the tumor microenvironment. Collectively, this study provides mechanistic insight into the complex nature of transcriptional regulation by mutant p53 and implicates a role for tumor-derived p53 mutations in the manipulation of the cancer cell secretome.
Collapse
Affiliation(s)
- Paul M Neilsen
- Cancer Therapeutics Laboratory, Discipline of Medicine, University of Adelaide, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Mulder KW, Wang X, Escriu C, Ito Y, Schwarz RF, Gillis J, Sirokmány G, Donati G, Uribe-Lewis S, Pavlidis P, Murrell A, Markowetz F, Watt FM. Diverse epigenetic strategies interact to control epidermal differentiation. Nat Cell Biol 2012; 14:753-63. [PMID: 22729083 DOI: 10.1038/ncb2520] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 05/10/2012] [Indexed: 12/13/2022]
Abstract
It is becoming clear that interconnected functional gene networks, rather than individual genes, govern stem cell self-renewal and differentiation. To identify epigenetic factors that impact on human epidermal stem cells we performed siRNA-based genetic screens for 332 chromatin modifiers. We developed a Bayesian mixture model to predict putative functional interactions between epigenetic modifiers that regulate differentiation. We discovered a network of genetic interactions involving EZH2, UHRF1 (both known to regulate epidermal self-renewal), ING5 (a MORF complex component), BPTF and SMARCA5 (NURF complex components). Genome-wide localization and global mRNA expression analysis revealed that these factors impact two distinct but functionally related gene sets, including integrin extracellular matrix receptors that mediate anchorage of epidermal stem cells to their niche. Using a competitive epidermal reconstitution assay we confirmed that ING5, BPTF, SMARCA5, EZH2 and UHRF1 control differentiation under physiological conditions. Thus, regulation of distinct gene expression programs through the interplay between diverse epigenetic strategies protects epidermal stem cells from differentiation.
Collapse
Affiliation(s)
- Klaas W Mulder
- Epithelial Cell Biology Group, Cancer Research UK Cambridge Research Institute, Robinson Way, Cambridge CB2 0RE, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Birnbaum RY, Clowney EJ, Agamy O, Kim MJ, Zhao J, Yamanaka T, Pappalardo Z, Clarke SL, Wenger AM, Nguyen L, Gurrieri F, Everman DB, Schwartz CE, Birk OS, Bejerano G, Lomvardas S, Ahituv N. Coding exons function as tissue-specific enhancers of nearby genes. Genome Res 2012; 22:1059-68. [PMID: 22442009 PMCID: PMC3371700 DOI: 10.1101/gr.133546.111] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/19/2012] [Indexed: 01/17/2023]
Abstract
Enhancers are essential gene regulatory elements whose alteration can lead to morphological differences between species, developmental abnormalities, and human disease. Current strategies to identify enhancers focus primarily on noncoding sequences and tend to exclude protein coding sequences. Here, we analyzed 25 available ChIP-seq data sets that identify enhancers in an unbiased manner (H3K4me1, H3K27ac, and EP300) for peaks that overlap exons. We find that, on average, 7% of all ChIP-seq peaks overlap coding exons (after excluding for peaks that overlap with first exons). By using mouse and zebrafish enhancer assays, we demonstrate that several of these exonic enhancer (eExons) candidates can function as enhancers of their neighboring genes and that the exonic sequence is necessary for enhancer activity. Using ChIP, 3C, and DNA FISH, we further show that one of these exonic limb enhancers, Dync1i1 exon 15, has active enhancer marks and physically interacts with Dlx5/6 promoter regions 900 kb away. In addition, its removal by chromosomal abnormalities in humans could cause split hand and foot malformation 1 (SHFM1), a disorder associated with DLX5/6. These results demonstrate that DNA sequences can have a dual function, operating as coding exons in one tissue and enhancers of nearby gene(s) in another tissue, suggesting that phenotypes resulting from coding mutations could be caused not only by protein alteration but also by disrupting the regulation of another gene.
Collapse
Affiliation(s)
- Ramon Y. Birnbaum
- Department of Bioengineering and Therapeutic Sciences
- Institute for Human Genetics
| | - E. Josephine Clowney
- Department of Anatomy
- Program in Biomedical Sciences, University of California, San Francisco, California 94143, USA
| | - Orly Agamy
- The Morris Kahn Laboratory of Human Genetics, NIBN, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Mee J. Kim
- Department of Bioengineering and Therapeutic Sciences
- Institute for Human Genetics
| | - Jingjing Zhao
- Department of Bioengineering and Therapeutic Sciences
- Institute for Human Genetics
- Key Laboratory of Advanced Control and Optimization for Chemical Processes of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Takayuki Yamanaka
- Department of Bioengineering and Therapeutic Sciences
- Institute for Human Genetics
| | - Zachary Pappalardo
- Department of Bioengineering and Therapeutic Sciences
- Institute for Human Genetics
| | | | - Aaron M. Wenger
- Department of Computer Science, Stanford University, Stanford, California 94305-5329, USA
| | - Loan Nguyen
- Department of Bioengineering and Therapeutic Sciences
- Institute for Human Genetics
| | - Fiorella Gurrieri
- Istituto di Genetica Medica, Università Cattolica S. Cuore, Rome 00168, Italy
| | - David B. Everman
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, South Carolina 29646, USA
| | - Charles E. Schwartz
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, South Carolina 29646, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, USA
| | - Ohad S. Birk
- The Morris Kahn Laboratory of Human Genetics, NIBN, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Gill Bejerano
- Department of Computer Science, Stanford University, Stanford, California 94305-5329, USA
- Department of Developmental Biology, Stanford University, Stanford, California 94305-5329, USA
| | | | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences
- Institute for Human Genetics
| |
Collapse
|
128
|
Analysis of large phenotypic variability of EEC and SHFM4 syndromes caused by K193E mutation of the TP63 gene. PLoS One 2012; 7:e35337. [PMID: 22574117 PMCID: PMC3344828 DOI: 10.1371/journal.pone.0035337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/15/2012] [Indexed: 01/08/2023] Open
Abstract
EEC (ectrodactyly, ectodermal dysplasia, clefting; OMIM 604292) is an autosomal dominant developmental disorder resulting mainly from pathogenic mutations of the DNA-binding domain (DBD) of the TP63 gene. In this study, we showed that K193E mutation in nine affected individuals of a four-generation kindred with a large degree of phenotypic variability causes four different syndromes or TP63-related disorders: EEC, Ectrodactyly-ectodermal dysplasia (EE), isolated ectodermal dysplasia, and isolated Split Hand/Foot Malformation type 4 (SHFM4). Genotype-phenotype and DBD structural modeling analysis showed that the K193-located loop L2-A is associated with R280 through hydrogen bonding interactions, while R280 mutations also often cause large phenotypic variability of EEC and SHFM4. Thus, we speculate that K193 and several other DBD mutation-associated syndromes may share similar pathogenic mechanisms, particularly in the case of the same mutation with different phenotypes. Our study and others also suggest that the phenotypic variability of EEC is attributed, at least partially, to genetic and/or epigenetic modifiers.
Collapse
|
129
|
Baral A, Kumar P, Halder R, Mani P, Yadav VK, Singh A, Das SK, Chowdhury S. Quadruplex-single nucleotide polymorphisms (Quad-SNP) influence gene expression difference among individuals. Nucleic Acids Res 2012; 40:3800-11. [PMID: 22238381 PMCID: PMC3351168 DOI: 10.1093/nar/gkr1258] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/18/2011] [Accepted: 12/05/2011] [Indexed: 01/08/2023] Open
Abstract
Non-canonical guanine quadruplex structures are not only predominant but also conserved among bacterial and mammalian promoters. Moreover recent findings directly implicate quadruplex structures in transcription. These argue for an intrinsic role of the structural motif and thereby posit that single nucleotide polymorphisms (SNP) that compromise the quadruplex architecture could influence function. To test this, we analysed SNPs within quadruplex motifs (Quad-SNP) and gene expression in 270 individuals across four populations (HapMap) representing more than 14,500 genotypes. Findings reveal significant association between quadruplex-SNPs and expression of the corresponding gene in individuals (P < 0.0001). Furthermore, analysis of Quad-SNPs obtained from population-scale sequencing of 1000 human genomes showed relative selection bias against alteration of the structural motif. To directly test the quadruplex-SNP-transcription connection, we constructed a reporter system using the RPS3 promoter-remarkable difference in promoter activity in the 'quadruplex-destabilized' versus 'quadruplex-intact' promoter was noticed. As a further test, we incorporated a quadruplex motif or its disrupted counterpart within a synthetic promoter reporter construct. The quadruplex motif, and not the disrupted-motif, enhanced transcription in human cell lines of different origin. Together, these findings build direct support for quadruplex-mediated transcription and suggest quadruplex-SNPs may play significant role in mechanistically understanding variations in gene expression among individuals.
Collapse
Affiliation(s)
- Aradhita Baral
- Proteomics and Structural Biology Unit, G.N.R. Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India and Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Pankaj Kumar
- Proteomics and Structural Biology Unit, G.N.R. Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India and Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Rashi Halder
- Proteomics and Structural Biology Unit, G.N.R. Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India and Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Prithvi Mani
- Proteomics and Structural Biology Unit, G.N.R. Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India and Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Vinod Kumar Yadav
- Proteomics and Structural Biology Unit, G.N.R. Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India and Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ankita Singh
- Proteomics and Structural Biology Unit, G.N.R. Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India and Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Swapan K. Das
- Proteomics and Structural Biology Unit, G.N.R. Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India and Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shantanu Chowdhury
- Proteomics and Structural Biology Unit, G.N.R. Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India and Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
130
|
Vera-Carbonell A, Moya-Quiles MR, Ballesta-Martínez M, López-González V, Bafallíu JA, Guillén-Navarro E, López-Expósito I. Rapp–Hodgkin syndrome and SHFM1 patients: Delineating the p63–Dlx5/Dlx6 pathway. Gene 2012; 497:292-7. [DOI: 10.1016/j.gene.2012.01.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/27/2012] [Accepted: 01/29/2012] [Indexed: 11/29/2022]
|
131
|
ZNF750 is a p63 target gene that induces KLF4 to drive terminal epidermal differentiation. Dev Cell 2012; 22:669-77. [PMID: 22364861 DOI: 10.1016/j.devcel.2011.12.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/11/2011] [Accepted: 12/04/2011] [Indexed: 02/08/2023]
Abstract
Disrupted epidermal differentiation characterizes numerous diseases that impact >25% of the population. In a search for dominant mediators of differentiation, we defined a requirement for ZNF750 in terminal epidermal differentiation. ZNF750 controlled genes mutated in numerous human skin diseases, including FLG, LOR, LCE3B, ALOXE3, and SPINK5. ZNF750 induced progenitor differentiation via an evolutionarily conserved C2H2 zinc finger motif. The epidermal master regulator, p63, bound the ZNF750 promoter and was necessary for its induction. ZNF750 restored differentiation to p63-deficient tissue, suggesting that it acts downstream of p63. A search for functionally important ZNF750 targets via analysis of ZNF750-regulated genes identified KLF4, a transcription factor that activates late epidermal differentiation. ZNF750 binds to KLF4 at multiple sites flanking the transcriptional start site and controls its expression. ZNF750 thus directly links a tissue-specifying factor, p63, to an effector of terminal differentiation, KLF4, and represents a potential future target for disorders of this process.
Collapse
|
132
|
Sullivan KD, Gallant-Behm CL, Henry RE, Fraikin JL, Espinosa JM. The p53 circuit board. Biochim Biophys Acta Rev Cancer 2012; 1825:229-44. [PMID: 22333261 DOI: 10.1016/j.bbcan.2012.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/27/2012] [Accepted: 01/28/2012] [Indexed: 12/17/2022]
Abstract
The p53 tumor suppressor is embedded in a large gene network controlling diverse cellular and organismal phenotypes. Multiple signaling pathways converge onto p53 activation, mostly by relieving the inhibitory effects of its repressors, MDM2 and MDM4. In turn, signals originating from increased p53 activity diverge into distinct effector pathways to deliver a specific cellular response to the activating stimuli. Much attention has been devoted to dissecting how the various input pathways trigger p53 activation and how the activity of the p53 protein itself can be modulated by a plethora of co-factors and post-translational modifications. In this review we will focus instead on the multiple configurations of the effector pathways. We will discuss how p53-generated signals are transmitted, amplified, resisted and eventually integrated by downstream gene circuits operating at the transcriptional, post-transcriptional and post-translational levels. We will also discuss how context-dependent variations in these gene circuits define the cellular response to p53 activation and how they may impact the clinical efficacy of p53-based targeted therapies.
Collapse
Affiliation(s)
- Kelly D Sullivan
- Howard Hughes Medical Institute & Department of Molecular, Cellular and Developmental Biology, The University of Colorado at Boulder, Boulder, CO 80309-0347, USA
| | | | | | | | | |
Collapse
|
133
|
Romano RA, Smalley K, Magraw C, Serna VA, Kurita T, Raghavan S, Sinha S. ΔNp63 knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Development 2012; 139:772-82. [PMID: 22274697 PMCID: PMC3265062 DOI: 10.1242/dev.071191] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2011] [Indexed: 12/17/2022]
Abstract
The transcription factor p63 is important in the development of the skin as p63-null mice exhibit striking defects in embryonic epidermal morphogenesis. Understanding the mechanisms that underlie this phenotype is complicated by the existence of multiple p63 isoforms, including TAp63 and ΔNp63. To investigate the role of ΔNp63 in epidermal morphogenesis we generated ΔNp63 knock-in mice in which the ΔNp63-specific exon is replaced by GFP. Homozygous ΔNp63(gfp/gfp) animals exhibit severe developmental anomalies including truncated forelimbs and the absence of hind limbs, largely phenocopying existing knockouts in which all p63 isoforms are deleted. ΔNp63-null animals show a poorly developed stratified epidermis comprising isolated clusters of disorganized epithelial cells. Despite the failure to develop a mature stratified epidermis, the patches of ΔNp63-null keratinocytes are able to stratify and undergo a program of terminal differentiation. However, we observe premature expression of markers associated with terminal differentiation, which is unique to ΔNp63-null animals and not evident in the skin of mice lacking all p63 isoforms. We posit that the dysregulated and accelerated keratinocyte differentiation phenotype is driven by significant alterations in the expression of key components of the Notch signaling pathway, some of which are direct transcriptional targets of ΔNp63 as demonstrated by ChIP experiments. The analysis of ΔNp63(gfp/gfp) knockout mice reaffirms the indispensable role of the ΔN isoform of p63 in epithelial biology and confirms that ΔNp63-null keratinocytes are capable of committing to an epidermal cell lineage, but are likely to suffer from diminished renewal capacity and an altered differentiation fate.
Collapse
Affiliation(s)
- Rose-Anne Romano
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Kirsten Smalley
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Caitlin Magraw
- College of Dental Medicine and Department of Dermatology, Columbia University, New York, NY 10032, USA
| | - Vanida Ann Serna
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Takeshi Kurita
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Srikala Raghavan
- College of Dental Medicine and Department of Dermatology, Columbia University, New York, NY 10032, USA
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
134
|
Ferone G, Thomason HA, Antonini D, De Rosa L, Hu B, Gemei M, Zhou H, Ambrosio R, Rice DP, Acampora D, van Bokhoven H, Del Vecchio L, Koster MI, Tadini G, Spencer-Dene B, Dixon M, Dixon J, Missero C. Mutant p63 causes defective expansion of ectodermal progenitor cells and impaired FGF signalling in AEC syndrome. EMBO Mol Med 2012; 4:192-205. [PMID: 22247000 PMCID: PMC3376849 DOI: 10.1002/emmm.201100199] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 11/11/2022] Open
Abstract
Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome, which is characterized by cleft palate and severe defects of the skin, is an autosomal dominant disorder caused by mutations in the gene encoding transcription factor p63. Here, we report the generation of a knock-in mouse model for AEC syndrome (p63(+/L514F) ) that recapitulates the human disorder. The AEC mutation exerts a selective dominant-negative function on wild-type p63 by affecting progenitor cell expansion during ectodermal development leading to a defective epidermal stem cell compartment. These phenotypes are associated with impairment of fibroblast growth factor (FGF) signalling resulting from reduced expression of Fgfr2 and Fgfr3, direct p63 target genes. In parallel, a defective stem cell compartment is observed in humans affected by AEC syndrome and in Fgfr2b(-/-) mice. Restoring Fgfr2b expression in p63(+/L514F) epithelial cells by treatment with FGF7 reactivates downstream mitogen-activated protein kinase signalling and cell proliferation. These findings establish a functional link between FGF signalling and p63 in the expansion of epithelial progenitor cells and provide mechanistic insights into the pathogenesis of AEC syndrome.
Collapse
|
135
|
Mitchell K, O'Sullivan J, Missero C, Blair E, Richardson R, Anderson B, Antonini D, Murray J, Shanske A, Schutte B, Romano RA, Sinha S, Bhaskar S, Black G, Dixon J, Dixon M. Exome sequence identifies RIPK4 as the Bartsocas-Papas syndrome locus. Am J Hum Genet 2012; 90:69-75. [PMID: 22197488 DOI: 10.1016/j.ajhg.2011.11.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/14/2011] [Accepted: 11/14/2011] [Indexed: 10/14/2022] Open
Abstract
Pterygium syndromes are complex congenital disorders that encompass several distinct clinical conditions characterized by multiple skin webs affecting the flexural surfaces often accompanied by craniofacial anomalies. In severe forms, such as in the autosomal-recessive Bartsocas-Papas syndrome, early lethality is common, complicating the identification of causative mutations. Using exome sequencing in a consanguineous family, we identified the homozygous mutation c.1127C>A in exon 7 of RIPK4 that resulted in the introduction of the nonsense mutation p.Ser376X into the encoded ankyrin repeat-containing kinase, a protein that is essential for keratinocyte differentiation. Subsequently, we identified a second mutation in exon 2 of RIPK4 (c.242T>A) that resulted in the missense variant p.Ile81Asn in the kinase domain of the protein. We have further demonstrated that RIPK4 is a direct transcriptional target of the protein p63, a master regulator of stratified epithelial development, which acts as a nodal point in the cascade of molecular events that prevent pterygium syndromes.
Collapse
|
136
|
Abstract
We investigated the expression of microRNAs (miRNAs) associated with replicative senescence in human primary keratinocytes. A cohort of miRNAs up-regulated in senescence was identified by genome-wide miRNA profiling, and their change in expression was validated in proliferative versus senescent cells. Among these, miRNA (miR)-138, -181a, -181b, and -130b expression increased with serial passages. miR-138, -181a, and -181b, but not miR-130b, overexpression in proliferating cells was sufficient per se to induce senescence, as evaluated by inhibition of BrdU incorporation and quantification of senescence-activated β-galactosidase staining. We identified Sirt1 as a direct target of miR-138, -181a, and -181b, whereas ΔNp63 expression was inhibited by miR-130b. We also found that ΔNp63α inhibits miR-138, -181a, -181b, and -130b expression by binding directly to p63-responsive elements located in close proximity to the genomic loci of these miRNAs in primary keratinocytes. These findings suggest that changes in miRNA expression, by modulating the levels of regulatory proteins such as p63 and Sirt1, strongly contribute to induction of senescence in primary human keratinocytes, thus linking these two proteins. Our data also indicate that suppression of miR-138, -181a, -181b, and -130b expression is part of a growth-promoting strategy of ΔNp63α in epidermal proliferating cells.
Collapse
|
137
|
Paris M, Rouleau M, Pucéat M, Aberdam D. Regulation of skin aging and heart development by TAp63. Cell Death Differ 2011; 19:186-93. [PMID: 22158419 DOI: 10.1038/cdd.2011.181] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Since the discovery of the TP63 gene in 1998, many studies have demonstrated that ΔNp63, a p63 isoform of the p53 gene family, is involved in multiple functions during skin development and in adult stem/progenitor cell regulation. In contrast, TAp63 studies have been mostly restricted to its apoptotic function and more recently as the guardian of oocyte integrity. TAp63 endogenous expression is barely detectable in embryos and adult (except in oocytes), presumably because of its rapid degradation and the lack of antibodies able to detect weak expression. Nevertheless, two recent independent studies have demonstrated novel functions for TAp63 that could have potential implications to human pathologies. The first discovery is related to the protective role of TAp63 on premature aging. TAp63 controls skin homeostasis by maintaining dermal and epidermal progenitor/stem cell pool and protecting them from senescence, DNA damage and genomic instability. The second study is related to the role of TAp63, expressed by the primitive endoderm, on heart development. This unexpected role for TAp63 has been discovered by manipulation of embryonic stem cells in vitro and confirmed by the severe cardiomyopathy observed in brdm2 p63-null embryonic hearts. Interestingly, in both cases, TAp63 acts in a cell-nonautonomous manner on adjacent cells. Here, we discuss these findings and their potential connection during development.
Collapse
Affiliation(s)
- M Paris
- L'OREAL Recherche, Clichy, France
| | | | | | | |
Collapse
|
138
|
Brown S, Teo A, Pauklin S, Hannan N, Cho CHH, Lim B, Vardy L, Dunn NR, Trotter M, Pedersen R, Vallier L. Activin/Nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors. Stem Cells 2011; 29:1176-85. [PMID: 21630377 DOI: 10.1002/stem.666] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activin/Nodal signaling is necessary to maintain pluripotency of human embryonic stem cells (hESCs) and to induce their differentiation toward endoderm. However, the mechanisms by which Activin/Nodal signaling achieves these opposite functions remain unclear. To unravel these mechanisms, we examined the transcriptional network controlled in hESCs by Smad2 and Smad3, which represent the direct effectors of Activin/Nodal signaling. These analyses reveal that Smad2/3 participate in the control of the core transcriptional network characterizing pluripotency, which includes Oct-4, Nanog, FoxD3, Dppa4, Tert, Myc, and UTF1. In addition, similar experiments performed on endoderm cells confirm that a broad part of the transcriptional network directing differentiation is downstream of Smad2/3. Therefore, Activin/Nodal signaling appears to control divergent transcriptional networks in hESCs and in endoderm. Importantly, we observed an overlap between the transcriptional network downstream of Nanog and Smad2/3 in hESCs; whereas, functional studies showed that both factors cooperate to control the expression of pluripotency genes. Therefore, the effect of Activin/Nodal signaling on pluripotency and differentiation could be dictated by tissue specific Smad2/3 partners such as Nanog, explaining the mechanisms by which signaling pathways can orchestrate divergent cell fate decisions.
Collapse
Affiliation(s)
- Stephanie Brown
- The Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Rouleau M, Medawar A, Hamon L, Shivtiel S, Wolchinsky Z, Zhou H, De Rosa L, Candi E, de la Forest Divonne S, Mikkola ML, van Bokhoven H, Missero C, Melino G, Pucéat M, Aberdam D. TAp63 Is Important for Cardiac Differentiation of Embryonic Stem Cells and Heart Development. Stem Cells 2011; 29:1672-83. [DOI: 10.1002/stem.723] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
140
|
Ehrlichia chaffeensis TRP120 binds a G+C-rich motif in host cell DNA and exhibits eukaryotic transcriptional activator function. Infect Immun 2011; 79:4370-81. [PMID: 21859854 DOI: 10.1128/iai.05422-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ehrlichia chaffeensis is an obligately intracellular bacterium that modulates host cell gene transcription in the mononuclear phagocyte, but the host gene targets and mechanisms involved in transcriptional modulation are not well-defined. In this study, we identified a novel tandem repeat DNA-binding domain in the E. chaffeensis 120-kDa tandem repeat protein (TRP120) that directly binds host cell DNA. TRP120 was observed by immunofluorescent microscopy in the nucleus of E. chaffeensis-infected host cells and was detected in nuclear extracts by Western immunoblotting with TRP120-specific antibody. The TRP120 binding sites and associated host cell target genes were identified using high-throughput deep sequencing (Illumina) of immunoprecipitated DNA (chromatin immunoprecipitation and high-throughput DNA sequencing). Multiple em motif elicitation (MEME) analysis of the most highly enriched TRP120-bound sequences revealed a G+C-rich DNA motif, and recombinant TRP120 specifically bound synthetic oligonucleotides containing the motif. TRP120 target gene binding sites were mapped most frequently to intersecting regions (intron/exon; 49%) but were also identified in upstream regulatory regions (25%) and downstream locations (26%). Genes targeted by TRP120 were most frequently associated with transcriptional regulation, signal transduction, and apoptosis. TRP120 targeted inflammatory chemokine genes, CCL2, CCL20, and CXCL11, which were strongly upregulated during E. chaffeensis infection and were also upregulated by direct transfection with recombinant TRP120. This study reveals that TRP120 is a novel DNA-binding protein that is involved in a host gene transcriptional regulation strategy.
Collapse
|
141
|
Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res 2011; 21:1757-67. [PMID: 21750106 DOI: 10.1101/gr.121541.111] [Citation(s) in RCA: 389] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The human body contains thousands of unique cell types, each with specialized functions. Cell identity is governed in large part by gene transcription programs, which are determined by regulatory elements encoded in DNA. To identify regulatory elements active in seven cell lines representative of diverse human cell types, we used DNase-seq and FAIRE-seq (Formaldehyde Assisted Isolation of Regulatory Elements) to map "open chromatin." Over 870,000 DNaseI or FAIRE sites, which correspond tightly to nucleosome-depleted regions, were identified across the seven cell lines, covering nearly 9% of the genome. The combination of DNaseI and FAIRE is more effective than either assay alone in identifying likely regulatory elements, as judged by coincidence with transcription factor binding locations determined in the same cells. Open chromatin common to all seven cell types tended to be at or near transcription start sites and to be coincident with CTCF binding sites, while open chromatin sites found in only one cell type were typically located away from transcription start sites and contained DNA motifs recognized by regulators of cell-type identity. We show that open chromatin regions bound by CTCF are potent insulators. We identified clusters of open regulatory elements (COREs) that were physically near each other and whose appearance was coordinated among one or more cell types. Gene expression and RNA Pol II binding data support the hypothesis that COREs control gene activity required for the maintenance of cell-type identity. This publicly available atlas of regulatory elements may prove valuable in identifying noncoding DNA sequence variants that are causally linked to human disease.
Collapse
|
142
|
Romano R, Solomon L, Sinha S. Tp63 in Oral Development, Neoplasia, and Autoimmunity. J Dent Res 2011; 91:125-32. [DOI: 10.1177/0022034511411302] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Tp63 gene encodes for multiple isoforms of the p63 transcription factor, a member of the p53 family of proteins. Much like its more famous sibling, the biological role of p63 is quite complex, with wide-ranging effects on development, differentiation, and cellular lineage choices. The crucial function of p63 is epitomized by the striking phenotype of p63 knockout mice. These animals have a profound block in the development of stratified epithelia and aplasia of multiple ectodermal appendages, as well as orofacial clefting and limb defects. Remarkably, a similar spectrum of phenotypic alterations is observed in human syndromes resulting from Tp63 gene mutations. p63 is an important hub in the transcriptional and signaling networks of epithelial cells; thus, it is not surprising that dysregulation of this transcription factor is associated with squamous cell carcinoma. Finally, as a testament to the growing repertoire of p63-associated diseases, autoantibodies to p63 are associated with chronic ulcerative stomatitis, an oral immunologically mediated disease. Over the past decade, our understanding of the broad biologic and pathophysiological roles of p63 has grown significantly. In this review, we discuss the molecular attributes of Tp63 and the clinical consequences of Tp63 dysregulation, particularly as it pertains to oral tissues.
Collapse
Affiliation(s)
- R.A. Romano
- State University of New York at Buffalo, Department of Biochemistry, Buffalo, NY, USA
| | - L.W. Solomon
- Tufts University School of Dental Medicine, Department of Oral and Maxillofacial Pathology, One Kneeland Street, DHS 646-A, Boston, MA 02111-1527, USA
| | - S. Sinha
- State University of New York at Buffalo, Department of Biochemistry, Buffalo, NY, USA
| |
Collapse
|
143
|
A symphony of regulations centered on p63 to control development of ectoderm-derived structures. J Biomed Biotechnol 2011; 2011:864904. [PMID: 21716671 PMCID: PMC3118300 DOI: 10.1155/2011/864904] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/25/2011] [Accepted: 03/16/2011] [Indexed: 12/27/2022] Open
Abstract
The p53-related transcription factor p63 is critically important for basic cellular functions during development of the ectoderm and derived structure and tissues, including skin, limb, palate, and hair. On the one side, p63 is required to sustain the proliferation of keratinocyte progenitors, while on the other side it is required for cell stratification, commitment to differentiate, cell adhesion, and epithelial-mesenchymal signaling. Molecules that are components or regulators of the p63 pathway(s) are rapidly being identified, and it comes with no surprise that alterations in the p63 pathway lead to congenital conditions in which the skin and other ectoderm-derived structures are affected. In this paper, we summarize the current knowledge of the molecular and cellular regulations centered on p63, derived from the comprehension of p63-linked human diseases and the corresponding animal models, as well as from cellular models and high-throughput molecular approaches. We point out common themes and features, that allow to speculate on the possible role of p63 downstream events and their potential exploitation in future attempts to correct the congenital defect in preclinical studies.
Collapse
|
144
|
Emons J, Dutilh BE, Decker E, Pirzer H, Sticht C, Gretz N, Rappold G, Cameron ER, Neil JC, Stein GS, van Wijnen AJ, Wit JM, Post JN, Karperien M. Genome-wide screening in human growth plates during puberty in one patient suggests a role for RUNX2 in epiphyseal maturation. J Endocrinol 2011; 209:245-54. [PMID: 21307122 PMCID: PMC5268842 DOI: 10.1530/joe-10-0219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In late puberty, estrogen decelerates bone growth by stimulating growth plate maturation. In this study, we analyzed the mechanism of estrogen action using two pubertal growth plate specimens of one girl at Tanner stage B2 and Tanner stage B3. Histological analysis showed that progression of puberty coincided with characteristic morphological changes: a decrease in total growth plate height (P=0.002), height of the individual zones (P<0.001), and an increase in intercolumnar space (P<0.001). Microarray analysis of the specimens identified 394 genes (72% upregulated and 28% downregulated) that changed with the progression of puberty. Overall changes in gene expression were small (average 1.38-fold upregulated and 1.36-fold downregulated genes). The 394 genes mapped to 13 significantly changing pathways (P<0.05) associated with growth plate maturation (e.g. extracellular matrix, cell cycle, and cell death). We next scanned the upstream promoter regions of the 394 genes for the presence of evolutionarily conserved binding sites for transcription factors implicated in growth plate maturation such as estrogen receptor (ER), androgen receptor, ELK1, STAT5B, cyclic AMP response element (CREB), and RUNX2. High-quality motif sites for RUNX2 (87 genes), ELK1 (43 genes), and STAT5B (31 genes), but not ER, were evolutionarily conserved, indicating their functional relevance across primates. Moreover, we show that some of these sites are direct target genes of these transcription factors as shown by ChIP assays.
Collapse
Affiliation(s)
- Joyce Emons
- Department of Paediatrics, Leiden University Medical Center, 2300 ZA Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
McDade SS, Patel D, McCance DJ. p63 maintains keratinocyte proliferative capacity through regulation of Skp2-p130 levels. J Cell Sci 2011; 124:1635-43. [PMID: 21511729 DOI: 10.1242/jcs.084723] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
p63 is a master regulator of proliferation and differentiation in stratifying epithelia, and its expression is frequently altered in carcinogenesis. However, its role in maintaining proliferative capacity remains unclear. Here, we demonstrate that hypoproliferation and loss of differentiation in organotypic raft cultures of primary neonatal human foreskin keratinocytes (HFKs) depleted of the α and β isoforms of p63 result from p53-p21-mediated accumulation of retinoblastoma (Rb) family member p130. Hypoproliferation in p63-depleted HFKs can be rescued by depletion of p53, p21(CIP1) or p130. Furthermore, we identified the gene encoding S-phase kinase-associated protein 2 (Skp2), the recognition component of the SCF(Skp2) E3 ubiquitin ligase, as a novel target of p63, potentially influencing p130 levels. Expression of Skp2 is maintained by p63 binding to a site in intron 2 and mRNA levels are downregulated in p63-depleted cells. Hypoproliferation in p63-depleted cells can be restored by re-expression of Skp2. Taken together, these results indicate that p63 plays a multifaceted role in maintaining proliferation in the mature regenerating epidermis, in addition to being required for differentiation.
Collapse
Affiliation(s)
- Simon S McDade
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | | |
Collapse
|
146
|
Vanbokhoven H, Melino G, Candi E, Declercq W. p63, a story of mice and men. J Invest Dermatol 2011; 131:1196-207. [PMID: 21471985 DOI: 10.1038/jid.2011.84] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The transcription factor p63 is essential for the formation of the epidermis and other stratifying epithelia. This is clearly demonstrated by the severe abnormality of p63-deficient mice and by the development of certain types of ectodermal dysplasias in humans as a result of p63 mutations. Investigation of the in vivo functions of p63 is complicated by the occurrence of 10 different splicing isoforms and by its interaction with the other family members, p53 and p73. In vitro and in vivo models have been used to unravel the functions of p63 and its different isoforms, but the results or their interpretation are often contradictory. This review focuses on what mammalian in vivo models and patient studies have taught us in the last 10 years.
Collapse
Affiliation(s)
- Hans Vanbokhoven
- Department of Human Genetics, Molecular Neurogenetics Unit, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
147
|
VanderMeer JE, Ahituv N. cis-regulatory mutations are a genetic cause of human limb malformations. Dev Dyn 2011; 240:920-30. [PMID: 21509892 DOI: 10.1002/dvdy.22535] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2010] [Indexed: 01/04/2023] Open
Abstract
The underlying mutations that cause human limb malformations are often difficult to determine, particularly for limb malformations that occur as isolated traits. Evidence from a variety of studies shows that cis-regulatory mutations, specifically in enhancers, can lead to some of these isolated limb malformations. Here, we provide a review of human limb malformations that have been shown to be caused by enhancer mutations and propose that cis-regulatory mutations will continue to be identified as the cause of additional human malformations as our understanding of regulatory sequences improves.
Collapse
Affiliation(s)
- Julia E VanderMeer
- Department of Bioengineering and Therapeutic Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
148
|
Geremek M, Bruinenberg M, Ziętkiewicz E, Pogorzelski A, Witt M, Wijmenga C. Gene expression studies in cells from primary ciliary dyskinesia patients identify 208 potential ciliary genes. Hum Genet 2010; 129:283-93. [PMID: 21136274 DOI: 10.1007/s00439-010-0922-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 11/15/2010] [Indexed: 11/30/2022]
Abstract
Cilia are small cellular projections that either act as sensors (primary cilia) or propel fluid over the epithelia of various organs (motile cilia). The organellum has gained much attention lately because of its involvement in a group of human diseases called ciliopathies. Primary ciliary dyskinesia (PCD) is an autosomal recessive ciliopathy caused by mutations in cilia motility genes. The disease is characterized by recurrent respiratory tract infections due to the lack of an efficient mucociliary clearance. We performed whole-genome gene expression profiling in bronchial biopsies from PCD patients. We used the quality threshold clustering algorithm to identify groups of genes that revealed highly correlated RNA expression patterns in the biopsies. The largest cluster contained 372 genes and was significantly enriched for genes related to cilia. The database and literature search showed that 164 genes in this cluster were known cilia genes, strongly indicating that the remaining 208 genes were likely to be new cilia genes. The tissue expression pattern of the 208 new cilia genes and the 164 known genes was consistent with the presence of motile cilia in a given tissue. The analysis of the upstream promotor sequences revealed evidence for RFX transcription factors binding site motif in both subgroups. Based on the correlated expression patterns in PCD-affected tissues, we identified 208 genes that we predict to be involved in cilia biology. Our predictions are based directly on the human material and not on model organisms. This list of genes provides candidate genes for PCD and other ciliopathies.
Collapse
Affiliation(s)
- Maciej Geremek
- International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
149
|
van Heeringen SJ, Veenstra GJC. GimmeMotifs: a de novo motif prediction pipeline for ChIP-sequencing experiments. ACTA ACUST UNITED AC 2010; 27:270-1. [PMID: 21081511 PMCID: PMC3018809 DOI: 10.1093/bioinformatics/btq636] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Summary: Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data. Similar redundant motifs are compared using the weighted information content (WIC) similarity score and clustered using an iterative procedure. A comprehensive output report is generated with several different evaluation metrics to compare and evaluate the results. Benchmarks show that the method performs well on human and mouse ChIP-seq datasets. GimmeMotifs consists of a suite of command-line scripts that can be easily implemented in a ChIP-seq analysis pipeline. Availability: GimmeMotifs is implemented in Python and runs on Linux. The source code is freely available for download at http://www.ncmls.eu/bioinfo/gimmemotifs/. Contact:s.vanheeringen@ncmls.ru.nl Supplementary Information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Simon J van Heeringen
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | |
Collapse
|