101
|
Yang C, Gao J, Du J, Yang X, Jiang J. Altered Neuroendocrine Immune Responses, a Two-Sword Weapon against Traumatic Inflammation. Int J Biol Sci 2017; 13:1409-1419. [PMID: 29209145 PMCID: PMC5715524 DOI: 10.7150/ijbs.21916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/23/2017] [Indexed: 12/22/2022] Open
Abstract
During the occurrence and development of injury (trauma, hemorrhagic shock, ischemia and hypoxia), the neuroendocrine and immune system act as a prominent navigation leader and possess an inter-system crosstalk between the reciprocal information dissemination. The fundamental reason that neuroendocrinology and immunology could mix each other and permeate toward the field of traumatology is owing to their same biological languages or chemical information molecules (hormones, neurotransmitters, neuropeptides, cytokines and their corresponding receptors) shared by the neuroendocrine and immune systems. The immune system is not only modulated by the neuroendocrine system, but also can modulate the biological functions of the neuroendocrine system. The interactive linkage of these three systems precipitates the complicated space-time patterns for the courses of traumatic inflammation. Recently, compelling evidence indicates that the network linkage pattern that initiating agents of neuroendocrine responses, regulatory elements of immune cells and effecter targets for immune regulatory molecules arouse the resistance mechanism disorders, which supplies the beneficial enlightenment for the diagnosis and therapy of traumatic complications from the view of translational medicine. Here we review the alternative protective and detrimental roles as well as possible mechanisms of the neuroendocrine immune responses in traumatic inflammation.
Collapse
Affiliation(s)
- Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jie Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xuetao Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| |
Collapse
|
102
|
Moeser AJ, Pohl CS, Rajput M. Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2017; 3:313-321. [PMID: 29767141 PMCID: PMC5941262 DOI: 10.1016/j.aninu.2017.06.003] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 12/14/2022]
Abstract
The gastrointestinal (GI) barrier serves a critical role in survival and overall health of animals and humans. Several layers of barrier defense mechanisms are provided by the epithelial, immune and enteric nervous systems. Together they act in concert to control normal gut functions (e.g., digestion, absorption, secretion, immunity, etc.) whereas at the same time provide a barrier from the hostile conditions in the luminal environment. Breakdown of these critical GI functions is a central pathophysiological mechanism in the most serious GI disorders in pigs. This review will focus on the development and functional properties of the GI barrier in pigs and how common early life production stressors, such as weaning, can alter immediate and long-term barrier function and disease susceptibility. Specific stress-related pathophysiological mechanisms responsible for driving GI barrier dysfunction induced by weaning and the implications to animal health and performance will be discussed.
Collapse
Affiliation(s)
- Adam J. Moeser
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Corresponding author.
| | - Calvin S. Pohl
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Mrigendra Rajput
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
103
|
Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Repeated water avoidance stress induces visceral hypersensitivity: Role of interleukin-1, interleukin-6, and peripheral corticotropin-releasing factor. J Gastroenterol Hepatol 2017; 32:1958-1965. [PMID: 28299830 DOI: 10.1111/jgh.13787] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Repeated water avoidance stress (WAS) induces visceral hypersensitivity. Additionally, it is also known to activate corticotropin-releasing factor (CRF), mast cells, and pro-inflammatory cytokines systems, but their precise roles on visceral sensation have not been determined definitely. The aim of the study was to explore this issue. METHODS Abdominal muscle contractions induced by colonic balloon distention, that is, visceromotor response (VMR) was detected electrophysiologically in conscious rats. WAS or sham stress as control for 1 h daily was loaded, and the threshold of VMR was determined before and at 24 h after the stress. RESULTS Repeated WAS for three consecutive days reduced the threshold of VMR, but sham stress did not induce any change. Astressin, a CRF receptor antagonist (50 μg/kg) intraperitoneally (ip) at 10 min before each WAS session, prevented the visceral allodynia, but the antagonist (200 μg/kg) ip at 30 min and 15 h before measurement of the threshold after completing 3-day stress session did not modify the response. Ketotifen, a mast cell stabilizer (3 mg/kg), anakinra, an interleukin (IL)-1 receptor antagonist (20 mg/kg) or IL-6 antibody (16.6 μg/kg) ip for two times before the measurement abolished the response. CONCLUSIONS Repeated WAS for three consecutive days induced visceral allodynia, which was mediated through mast cells, IL-1, and IL-6 pathways. Inhibition of peripheral CRF signaling prevented but did not reverse this response, suggesting that peripheral CRF may be an essential trigger but may not contribute to the maintenance of repeated WAS-induced visceral allodynia.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Rintaro Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
104
|
Pohl CS, Medland JE, Mackey E, Edwards LL, Bagley KD, DeWilde MP, Williams KJ, Moeser AJ. Early weaning stress induces chronic functional diarrhea, intestinal barrier defects, and increased mast cell activity in a porcine model of early life adversity. Neurogastroenterol Motil 2017; 29:10.1111/nmo.13118. [PMID: 28573751 PMCID: PMC5650513 DOI: 10.1111/nmo.13118] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/27/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Early life adversity (ELA) is a risk factor for development of gastrointestinal disorders later in life. The underlying mechanisms through which ELA and sex interact to influence disease susceptibility remains poorly understood. METHODS Utilizing a porcine early weaning stress (EWS) model to mimic ELA, we investigated the long-term effects of EWS on functional diarrhea, ileal permeability, mast cell activity and mast cell relationship with enteric ganglia. KEY RESULTS Juvenile and adult EWS pigs exhibited chronic, functional diarrhea (EWS 43.6% vs late wean control(LWC) 4.8%, P<.0001), increased intestinal permeability (2 fold increase EWS vs LWC, P<.0001), and mast cell numbers (at 7 weeks and 20 weeks ~1.6 fold increase EWS vs LWC, P<.05). Compared with EWS male castrates (Male-C), females EWS pigs exhibited more frequent diarrhea (58.8% vs 29.9%, P=.0016), and increased intestinal permeability (1-2 fold higher in EWS females, P<.001). Increased mast cell numbers and their enhanced co-localization with neuronal ganglia were observed in both Male-C and female EWS pigs; however, female pigs exhibited greater release of mast cell tryptase upon activation with c48/80 (~1.5 fold increase, P<.05), compared with Male-C pigs. CONCLUSIONS AND INFERENCES These data demonstrate that pigs exposed to ELA exhibit increased vulnerability to functional diarrhea, intestinal permeability and mast cell activity. Further, these studies also showed that EWS female and Male-C pigs exhibited dimorphic responses to EWS with female piglets exhibited greater susceptibility and severity of diarrhea, intestinal permeability and mast cell tryptase release. Together, these findings mimic some of the key pathophysiologic findings in human functional GI disorders functional gastrointestinal disorders (FGIDs) suggesting that the EWS porcine model could be a valuable preclinical translational model for FGID research associated with ELA.
Collapse
Affiliation(s)
- Calvin S. Pohl
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America,Gastrointestinal Stress Biology Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Julia E. Medland
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Emily Mackey
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America,Gastrointestinal Stress Biology Laboratory, Michigan State University, East Lansing, Michigan, United States of America,Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Laura L. Edwards
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Kristen D. Bagley
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Morgan P. DeWilde
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America,Gastrointestinal Stress Biology Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Kurt J. Williams
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Adam J. Moeser
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America,Gastrointestinal Stress Biology Laboratory, Michigan State University, East Lansing, Michigan, United States of America,Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America,Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America,Corresponding Author: Adam J. Moeser, , Veterinary Medical Center, 784 Wilson Rd, Room G326, East Lansing, MI 48824, Phone: +1 1-517-353-5978
| |
Collapse
|
105
|
Kvidera S, Horst E, Sanz Fernandez M, Abuajamieh M, Ganesan S, Gorden P, Green H, Schoenberg K, Trout W, Keating A, Baumgard L. Characterizing effects of feed restriction and glucagon-like peptide 2 administration on biomarkers of inflammation and intestinal morphology. J Dairy Sci 2017; 100:9402-9417. [DOI: 10.3168/jds.2017-13229] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/06/2017] [Indexed: 12/21/2022]
|
106
|
Chen H, Shi H, Liu Y, Ren X, He S, Chang X, Yin Y. Activation of corticotropin-releasing factor receptor 1 aggravates dextran sodium sulphate-induced colitis in mice by promoting M1 macrophage polarization. Mol Med Rep 2017; 17:234-242. [PMID: 29115460 PMCID: PMC5780132 DOI: 10.3892/mmr.2017.7909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
The corticotropin-releasing factor (CRF) family is involved in modulating gastrointestinal motility, sensitivity and inflammation. CRF signalling exerts an important role in inflammatory bowel disease (IBD), predominantly by activating CRF receptors. The aim of the present study was to investigate the function of CRF receptor 1 (CRF-R1) in the development of mucosal inflammation induced by dextran sulphate sodium (DSS) and the underlying mechanism. Consecutive administration of CRF or CP154526 was used to activate or block the CRF-R1 in DSS-treated mice. Colonic inflammation was evaluated by determining the Disease Activity Index (DAI) and histology score. CRF-R1 expression was proportional to the DAI, the histology score and the number of macrophages. Activation of CRF-R1 aggravated mucosal inflammation by activating nuclear factor (NF)-κB and subsequently increasing the expression levels of tumour necrosis factor (TNF)-α and interleukin (IL)-6. Inhibition of CRF-R1 decreased the expression level of CRF-R1, macrophage infiltration, NF-κB activation, and TNF-α and IL-6 expression levels, ultimately alleviating the mucosal inflammation. Thus, CRF-R1 expression was proportional to the severity of DSS-induced colitis. Activation of CRF-R1 increased the DAI and histological scores of the colons from DSS-treated mice by promoting M1 macrophage polarization, demonstrated as increased NF-κB activation, and TNF-α and IL-6 release. These results provide evidence of the pro-inflammatory role of CRF-R1 in a DSS-induced ulcerative colitis (UC) model and a possible underlying mechanism, which may facilitate the elucidation of potential treatment approaches for UC.
Collapse
Affiliation(s)
- Hong Chen
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Haitao Shi
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yaping Liu
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoyang Ren
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuixiang He
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xinming Chang
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Yin
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
107
|
Ma XX, Wang FY, Tang XD. Role of mast cell activation and degranulation in irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2017; 25:2637-2644. [DOI: 10.11569/wcjd.v25.i29.2637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder whose treatment is unsatisfactory as its pathophysiology is multifactorial. The factors involved in IBS pathophysiology include visceral hypersensitivity, intestinal dysmotility, psychological factors, dysregulated gut-brain axis, intestinal microbiota alterations, impaired intestinal permeability, and mucosal immune alterations. Recently, mucosal immune alterations have received much attention in IBS. Mast cells are abundant in the intestine, and they communicate with adjacent cells such as epithelial, neuronal, smooth muscle cells or other immune cells through the mediators released when they are activated. Many studies have suggested that mast cells play a role in the pathophysiology of IBS. This review will focus on the role of mast cells in IBS.
Collapse
Affiliation(s)
- Xiang-Xue Ma
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Feng-Yun Wang
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xu-Dong Tang
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
108
|
Immunoregulatory effect of mast cells influenced by microbes in neurodegenerative diseases. Brain Behav Immun 2017; 65:68-89. [PMID: 28676349 DOI: 10.1016/j.bbi.2017.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
When related to central nervous system (CNS) health and disease, brain mast cells (MCs) can be a source of either beneficial or deleterious signals acting on neural cells. We review the current state of knowledge about molecular interactions between MCs and glia in neurodegenerative diseases such as Multiple Sclerosis, Alzheimer's disease, Amyotrophic Lateral Sclerosis, Parkinson's disease, Epilepsy. We also discuss the influence on MC actions evoked by the host microbiota, which has a profound effect on the host immune system, inducing important consequences in neurodegenerative disorders. Gut dysbiosis, reduced intestinal motility and increased intestinal permeability, that allow bacterial products to circulate and pass through the blood-brain barrier, are associated with neurodegenerative disease. There are differences between the microbiota of neurologic patients and healthy controls. Distinguishing between cause and effect is a challenging task, and the molecular mechanisms whereby remote gut microbiota can alter the brain have not been fully elucidated. Nevertheless, modulation of the microbiota and MC activation have been shown to promote neuroprotection. We review this new information contributing to a greater understanding of MC-microbiota-neural cells interactions modulating the brain, behavior and neurodegenerative processes.
Collapse
|
109
|
Ducarouge B, Pelissier-Rota M, Powell R, Buisson A, Bonaz B, Jacquier-Sarlin M. Involvement of CRF2 signaling in enterocyte differentiation. World J Gastroenterol 2017; 23:5127-5145. [PMID: 28811708 PMCID: PMC5537180 DOI: 10.3748/wjg.v23.i28.5127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/06/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the role of corticotropin releasing factor receptor (CRF2) in epithelial permeability and enterocyte cell differentiation.
METHODS For this purpose, we used rat Sprague Dawley and various colon carcinoma cell lines (SW620, HCT8R, HT-29 and Caco-2 cell lines). Expression of CRF2 protein was analyzed by fluorescent immunolabeling in normal rat colon and then by western blot in dissociated colonic epithelial cells and in the lysates of colon carcinoma cell lines or during the early differentiation of HT-29 cells (ten first days). To assess the impact of CRF2 signaling on colonic cell differentiation, HT-29 and Caco-2 cells were exposed to Urocortin 3 recombinant proteins (Ucn3, 100 nmol/L). In some experiments, cells were pre-exposed to the astressin 2b (A2b) a CRF2 antagonist in order to inhibit the action of Ucn3. Intestinal cell differentiation was first analyzed by functional assays: the trans-cellular permeability and the para-cellular permeability were determined by Dextran-FITC intake and measure of the transepithelial electrical resistance respectively. Morphological modifications associated to epithelial dysfunction were analyzed by confocal microscopy after fluorescent labeling of actin (phaloidin-TRITC) and intercellular adhesion proteins such as E-cadherin, p120ctn, occludin and ZO-1. The establishment of mature adherens junctions (AJ) was monitored by following the distribution of AJ proteins in lipid raft fractions, after separation of cell lysates on sucrose gradients. Finally, the mRNA and the protein expression levels of characteristic markers of intestinal epithelial cell (IEC) differentiation such as the transcriptional factor krüppel-like factor 4 (KLF4) or the dipeptidyl peptidase IV (DPPIV) were performed by RT-PCR and western blot respectively. The specific activities of DPPIV and alkaline phosphatase (AP) enzymes were determined by a colorimetric method.
RESULTS CRF2 protein is preferentially expressed in undifferentiated epithelial cells from the crypts of colon and in human colon carcinoma cell lines. Furthermore, CRF2 expression is down regulated according to the kinetic of HT-29 cell differentiation. By performing functional assays, we found that Ucn3-induced CRF2 signaling alters both para- and trans-cellular permeability of differentiated HT-29 and Caco-2 cells. These effects are partly mediated by Ucn3-induced morphological changes associated with the disruption of mature AJ in HT-29 cells and tight junctions (TJ) in Caco-2 cells. Ucn3-mediated activation of CRF2 decreases mRNA and protein expression levels of KLF4 a transcription factor involved in IEC differentiation. This signaling is correlated to a down-regulation of key IEC markers such as DPPIV and AP, at both transcriptional and post-transcriptional levels.
CONCLUSION Our findings suggest that CRF2 signaling could modulate IEC differentiation. These mechanisms could be relevant to the stress induced epithelial alterations found in inflammatory bowel diseases.
Collapse
|
110
|
Zhu H, Pi D, Leng W, Wang X, Hu CAA, Hou Y, Xiong J, Wang C, Qin Q, Liu Y. Asparagine preserves intestinal barrier function from LPS-induced injury and regulates CRF/CRFR signaling pathway. Innate Immun 2017; 23:546-556. [PMID: 28728455 DOI: 10.1177/1753425917721631] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stress causes intestinal inflammation and barrier dysfunction. Corticotrophin-releasing factor (CRF)/CRF receptor (CRFR) signaling pathway has been shown to be important for stress-induced intestinal mucosal alteration. L-Asparagine (ASN) is a powerful stimulator of ornithine decarboxylase and cell proliferation in a variety of cell types, including colonic cells. In the present study, we investigated whether dietary ASN supplementation could alleviate the damage of intestinal barrier function caused by LPS through modulation of CRF/CRFR signaling pathway. Twenty-four weaned pigs were randomly divided into one of four treatments: (1) non-challenged control; (2) Escherichia coli LPS challenged control; (3) LPS + 0.5% ASN; (4) LPS + 1.0% ASN. LPS stress induced villous atrophy, intestinal morphology disruption and decreased claudin-1 expression. ASN supplementation increased intestinal claudin-1 protein expression and alleviated villous atrophy and intestinal morphology impairment caused by LPS stress. In addition, ASN supplementation increased the number of intestinal intraepithelial lymphocytes and reversed the elevations of intestinal mast cell number and neutrophil number induced by LPS stress. Moreover, ASN decreased the mRNA expression of intestinal CRF, glucocorticoid receptors and tryptase. These results indicate that ASN attenuates intestinal barrier dysfunction induced by LPS stress, and regulates CRF/CRFR1 signaling pathway and mast cell activation.
Collapse
Affiliation(s)
- Huiling Zhu
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Dingan Pi
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Weibo Leng
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Xiuying Wang
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Chien-An Andy Hu
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,2 Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Yongqing Hou
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Jianglin Xiong
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Chunwei Wang
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Qin Qin
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yulan Liu
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
111
|
Zhang L, Song J, Bai T, Qian W, Hou XH. Stress induces more serious barrier dysfunction in follicle-associated epithelium than villus epithelium involving mast cells and protease-activated receptor-2. Sci Rep 2017; 7:4950. [PMID: 28694438 PMCID: PMC5503989 DOI: 10.1038/s41598-017-05064-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/23/2017] [Indexed: 02/08/2023] Open
Abstract
Psychological stress has been associated with intestinal epithelial hyperpermeability, the basic process in various functional and organic bowel diseases. In the present study, we aimed to clarify the differences and underlining mechanisms in stress-induced barrier disruption in functionally and structurally distinct epitheliums, including the villus epithelium (VE) and follicle-associated epithelium (FAE), a specialized epithelium overlaid the domes of Peyer's lymphoid follicles. Employing an Ussing Chamber system, the epithelial permeability was assessed in rats following water avoidance stress (WAS) in vivo and in mucosa tissues exposed to corticotropin-releasing factor (CRF) ex vivo. Decreased transepithelial resistance (TER) and increased paracellular and transcellular macromolecular permeability in colon, ileal VE and FAE had been observed in WAS rats and in CRF-exposed mucosa. Especially, the barrier dysfunction was more serious in the FAE. Moreover, WAS upregulated the expression of mast cell tryptase and protease-activated receptor-2 (PAR2), which positively correlated with epithelial conductance. Mast cell stabilizer cromolyn sodium obviously alleviated the barrier disruption induced by WAS in vivo and CRF in vitro. Serine protease inhibitor aprotinin and FUT-175, and selective PAR2 antagonist ENMD-1068 effectively inhibited the CRF-induced FAE hyperpermeability. Altogether, it concluded that the FAE was more susceptible to stress, and the mast cells and PAR2 signaling played crucial roles in this process.
Collapse
Affiliation(s)
- Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Hua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
112
|
Ayyadurai S, Gibson AJ, D'Costa S, Overman EL, Sommerville LJ, Poopal AC, Mackey E, Li Y, Moeser AJ. Frontline Science: Corticotropin-releasing factor receptor subtype 1 is a critical modulator of mast cell degranulation and stress-induced pathophysiology. J Leukoc Biol 2017; 102:1299-1312. [PMID: 28684600 DOI: 10.1189/jlb.2hi0317-088rr] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/28/2017] [Accepted: 06/05/2017] [Indexed: 12/23/2022] Open
Abstract
Life stress is a major risk factor in the onset and exacerbation of mast cell-associated diseases, including allergy/anaphylaxis, asthma, and irritable bowel syndrome. Although it is known that mast cells are highly activated upon stressful events, the mechanisms by which stress modulates mast cell function and disease pathophysiology remains poorly understood. Here, we investigated the role of corticotropin-releasing factor receptor subtype 1 (CRF1) in mast cell degranulation and associated disease pathophysiology. In a mast cell-dependent model of IgE-mediated passive systemic anaphylaxis (PSA), prophylactic administration of the CRF1-antagonist antalarmin attenuated mast cell degranulation and hypothermia. Mast cell-deficient KitW-sh/W-sh mice engrafted with CRF1-/- bone marrow-derived mast cells (BMMCs) exhibited attenuated PSA-induced serum histamine, hypothermia, and clinical scores compared with wild-type BMMC-engrafted KitW-sh/W-sh mice. KitW-sh/W-sh mice engrafted with CRF1-/- BMMCs also exhibited suppressed in vivo mast cell degranulation and intestinal permeability in response to acute restraint stress. Genetic and pharmacologic experiments with murine BMMCs, rat RBL-2H3, and human LAD2 mast cells demonstrated that although CRF1 activation did not directly induce MC degranulation, CRF1 signaling potentiated the degranulation responses triggered by diverse mast cell stimuli and was associated with enhanced release of Ca2+ from intracellular stores. Taken together, our results revealed a prominent role for CRF1 signaling in mast cells as a positive modulator of stimuli-induced degranulation and in vivo pathophysiologic responses to immunologic and psychologic stress.
Collapse
Affiliation(s)
- Saravanan Ayyadurai
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Susan D'Costa
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Elizabeth L Overman
- Department of Biology, Methodist University, Fayetteville, North Carolina, USA
| | - Laura J Sommerville
- Department of Pathology, Duke University, School of Medicine, Durham, North Carolina, USA
| | - Ashwini C Poopal
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Emily Mackey
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA.,Comparative Biomedical Sciences Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Yihang Li
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Adam J Moeser
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA; .,Neuroscience Program, Michigan State University, East Lansing, Michigan, USA; and.,Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
113
|
Ren YJ, Zhang L, Bai T, Yu HL, Li Y, Qian W, Jin S, Xiong ZF, Wang H, Hou XH. Transfer of CD11c+ lamina propria mononuclear phagocytes from post-infectious irritable bowel syndrome causes mucosal barrier dysfunction and visceral hypersensitivity in recipient mice. Int J Mol Med 2017; 39:1555-1563. [PMID: 28440501 DOI: 10.3892/ijmm.2017.2966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 04/12/2017] [Indexed: 11/05/2022] Open
Abstract
The role of low-grade inflammation in the development of post‑infectious irritable bowel syndrome (PI‑IBS) has attracted increasing attention. Abnormal CD11c+ mononuclear phagocytes, such as dendritic cells (DCs), macrophages, and monocytes, are involved in the disruption of immune tolerance in organisms, which can lead to the development of chronic inflammatory diseases. The present study tested the hypothesis that CD11c+ lamina propria mononuclear phagocytes (CD11c+ LPMPs) contribute to increased mucosal permeability and visceral hypersensitivity in a PI‑IBS mouse model. CD11c+ LPMPs were isolated and purified via the digestion of intestinal tissues and magnetic‑activated cell sorting. We detected increased mucosal permeability, visceral hypersensitivity and intestinal inflammation during both the acute and chronic stages of Trichinella infection. Following the transfer of CD11c+ LPMPs from PI‑IBS mice into normal mice, low‑grade inflammation was detected, as demonstrated by increased IL‑4 expression in the ileum, as well as enhanced mucosal permeability, as indicated by decreased transepithelial electrical resistance and the pre-sence of ultrastructural alterations. More importantly, the mice that underwent adoptive transfer of CD11c+ LPMPs from the PI‑IBS mice also exhibited increased abdominal withdrawal reflex scores and a decreased threshold. Our data demonstrated that the CD11c+ LPMPs from this PI‑IBS mouse model were not only able to transfer enteric inflammation to the normal mice but also caused abnormal intestinal function, characterized by epithelial barrier disruption and visceral hyperalgesia.
Collapse
Affiliation(s)
- Ya-Jun Ren
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hong-Lu Yu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Ying Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Zhi-Fan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Huan Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiao-Hua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
114
|
Peters S, Edogawa S, Sundt W, Dyer R, Dalenberg D, Mazzone A, Singh R, Moses N, Weber C, Linden DR, MacNaughton WK, Turner JR, Camilleri M, Katzka D, Farrugia G, Grover M, Grover M. Constipation-Predominant Irritable Bowel Syndrome Females Have Normal Colonic Barrier and Secretory Function. Am J Gastroenterol 2017; 112:913-923. [PMID: 28323272 PMCID: PMC5502210 DOI: 10.1038/ajg.2017.48] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/02/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The objective of this study was to determine whether constipation-predominant irritable bowel syndrome (IBS-C) is associated with changes in intestinal barrier and secretory function. METHODS A total of 19 IBS-C patients and 18 healthy volunteers (all females) underwent saccharide excretion assay (0.1 g 13C mannitol and 1 g lactulose), measurements of duodenal and colonic mucosal barrier (transmucosal resistance (TMR), macromolecular and Escherichia coli Bio-Particle translocation), mucosal secretion (basal and acetylcholine (Ach)-evoked short-circuit current (Isc)), in vivo duodenal mucosal impedance, circulating endotoxins, and colonic tight junction gene expression. RESULTS There were no differences in the in vivo measurements of barrier function between IBS-C patients and healthy controls: cumulative excretion of 13C mannitol (0-2 h mean (s.e.m.); IBS-C: 12.1 (0.9) mg vs. healthy: 13.2 (0.8) mg) and lactulose (8-24 h; IBS-C: 0.9 (0.5) mg vs. healthy: 0.5 (0.2) mg); duodenal impedance IBS-C: 729 (65) Ω vs. healthy: 706 (43) Ω; plasma mean endotoxin activity level IBS-C: 0.36 (0.03) vs. healthy: 0.35 (0.02); and in colonic mRNA expression of occludin, zonula occludens (ZO) 1-3, and claudins 1-12 and 14-19. The ex vivo findings were consistent, with no group differences: duodenal TMR (IBS-C: 28.2 (1.9) Ω cm2 vs. healthy: 29.8 (1.9) Ω cm2) and colonic TMR (IBS-C: 19.1 (1.1) Ω cm2 vs. healthy: 17.6 (1.7) Ω cm2); fluorescein isothiocyanate (FITC)-dextran (4 kDa) and E. coli Bio-Particle flux. Colonic basal Isc was similar, but duodenal basal Isc was lower in IBS-C (43.5 (4.5) μA cm-2) vs. healthy (56.9 (4.9) μA cm-2), P=0.05. Ach-evoked ΔIsc was similar. CONCLUSIONS Females with IBS-C have normal colonic barrier and secretory function. Basal duodenal secretion is decreased in IBS-C.
Collapse
Affiliation(s)
- S Peters
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - S Edogawa
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - W Sundt
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - R Dyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - D Dalenberg
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - A Mazzone
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - R Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - N Moses
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - C Weber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - DR Linden
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - WK MacNaughton
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - JR Turner
- Departments of Pathology and Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - M Camilleri
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - D Katzka
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - G Farrugia
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - M Grover
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
115
|
Effects of dietary L-tryptophan supplementation on intestinal response to chronic unpredictable stress in broilers. Amino Acids 2017; 49:1227-1236. [PMID: 28487998 DOI: 10.1007/s00726-017-2424-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/13/2017] [Indexed: 01/12/2023]
Abstract
Stress has been recognized as a critical risk factor for gastrointestinal diseases in both humans and animals. However, nutritional strategies to attenuate stress-induced intestinal barrier function and underlying mechanisms remain largely unknown. This study tested the hypothesis that L-tryptophan enhanced intestinal barrier function by regulating mucosal serotonin metabolism in chronic unpredictable stress-exposed broilers. One-day-old male broilers (Arbor Acres) were fed a basal diet supplemented with or without L-tryptophan in the absence or presence of chronic unpredictable stress. Feed intake, body weight gain, plasma corticosterone and 5-hydroxytryptamine (5-HT), intestinal permeability, mucosal secretory IgA (sIgA), and mRNA levels for tryptophan hydroxylase 1 (TPH1), IL-1β, IL-6, TNF-α, IL-10, protein abundance for claudin-1, occludin, and ZO-1 were determined. Stress exposure led to elevated plasma corticosterone (P < 0.05), increased intestinal permeability (P < 0.05), reduced growth performance (P < 0.05), and decreased sIgA secretion compared with the controls. These effects were largely reversed (P < 0.05) by L-tryptophan supplementation. Western blot analysis showed that stress exposure resulted in decreased protein abundance for occludin, claudin-1, and ZO-1, which was attenuated by L-tryptophan. mRNA levels for IL-1β, IL-6, and TNF-α were increased, but those for IL-10 were decreased, in the jejunal tissue of broilers subjected to stress. This effect of stress on cytokine expression was abolished by L-tryptophan treatment. The effects of stress were associated with decreased plasma concentration of 5-HT (P < 0.05), and reduced (P < 0.05) mRNA levels for TPH1. L-Tryptophan supplementation markedly attenuated stress-induced alterations in 5-HT and TPH1 mRNA level in jejunal tissues of broilers. Collectively, these results indicate that L-tryptophan supplementation alleviates chronic unpredictable stress-induced intestinal barrier dysfunction by regulating 5-HT metabolism in broilers.
Collapse
|
116
|
Baxter MFA, Merino-Guzman R, Latorre JD, Mahaffey BD, Yang Y, Teague KD, Graham LE, Wolfenden AD, Hernandez-Velasco X, Bielke LR, Hargis BM, Tellez G. Optimizing Fluorescein Isothiocyanate Dextran Measurement As a Biomarker in a 24-h Feed Restriction Model to Induce Gut Permeability in Broiler Chickens. Front Vet Sci 2017; 4:56. [PMID: 28470003 PMCID: PMC5396023 DOI: 10.3389/fvets.2017.00056] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022] Open
Abstract
Fluorescein isothiocyanate dextran (FITC-d) is a 3–5 kDa marker used to measure tight junction permeability. We have previously shown that intestinal barrier function can be adversely affected by stress, poorly digested diets, or feed restriction (FR), resulting in increased intestinal inflammation-associated permeability. However, further optimization adjustments of the current FITC-d methodology are possible to enhance precision and efficacy of results in future. The objective of the present study was to optimize our current model to obtain a larger difference between control and treated groups, by optimizing the FITC-d measurement as a biomarker in a 24-h FR model to induce gut permeability in broiler chickens. One in vitro and four in vivo independent experiments were conducted. The results of the present study suggest that by increasing the dose of FITC-d (8.32 versus 4.16 mg/kg); shortening the collection time of blood samples (1 versus 2.5 h); using a pool of non-FITC-d serum as a blank, compared to previously used PBS; adding a standard curve to set a limit of detection and modifying the software’s optimal sensitivity value, it was possible to obtain more consistent and reliable results.
Collapse
Affiliation(s)
- Mikayla F A Baxter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Ruben Merino-Guzman
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Brittany D Mahaffey
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Kyle D Teague
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Lucas E Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Amanda D Wolfenden
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Xochitl Hernandez-Velasco
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lisa R Bielke
- Department of Animal Science, The Ohio State University, Columbus, OH, USA
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Guillermo Tellez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
117
|
Lafuse WP, Gearinger R, Fisher S, Nealer C, Mackos AR, Bailey MT. Exposure to a Social Stressor Induces Translocation of Commensal Lactobacilli to the Spleen and Priming of the Innate Immune System. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2383-2393. [PMID: 28167628 PMCID: PMC5340647 DOI: 10.4049/jimmunol.1601269] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/05/2017] [Indexed: 12/18/2022]
Abstract
Studies have shown that exposure to psychological stressors leads to inflammation throughout the body. This has been widely studied using social disruption (SDR), a social stressor that involves repeated social defeat in subordinate mice. Exposure to SDR increases serum cytokine levels, results in accumulation of spleen CD11b+ myeloid cells, and primes macrophages for increased cytokine and microbicidal activity. Our previous studies showed that intestinal microbes are necessary for SDR-enhancement of innate immunity. In this study, we show that SDR increases spleen CD11b+Ly6CintermLy6G+ neutrophil and CD11b+Ly6ChiLy6G-monocyte numbers compared with control mice. Further, we found that neutrophils and monocytes from stressor-exposed mice expressed higher levels of IL-1β mRNA. To determine whether bacterial translocation may contribute to these effects, bacterial 16S rRNA was quantified using quantitative real-time RT-PCR with bacterial group-specific primers. Exposure to the SDR stressor specifically increased Lactobacillus RNA in the spleen, which localized in spleen monocytes. The increased spleen levels of Lactobacillus 16S rRNA in SDR mice positively correlated with increased levels of IL-1β and IL-23 mRNA. Our findings indicate that during stressor exposure, Lactobacillus spp. can translocate to the spleen and prime the innate immune system for enhanced reactivity.
Collapse
Affiliation(s)
- William P Lafuse
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210
| | - Rachel Gearinger
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210
| | - Sydney Fisher
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43210; and
| | - Connor Nealer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210
| | - Amy R Mackos
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43210; and
| | - Michael T Bailey
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43210; and
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
118
|
Zhao HW, Yue YH, Han H, Chen XL, Lu YG, Zheng JM, Hou HT, Lang XM, He LL, Hu QL, Dun ZQ. Effect of toll-like receptor 3 agonist poly I:C on intestinal mucosa and epithelial barrier function in mouse models of acute colitis. World J Gastroenterol 2017; 23:999-1009. [PMID: 28246473 PMCID: PMC5311109 DOI: 10.3748/wjg.v23.i6.999] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/26/2016] [Accepted: 10/31/2016] [Indexed: 02/06/2023] Open
Abstract
AIM
To investigate potential effects of poly I:C on mucosal injury and epithelial barrier disruption in dextran sulfate sodium (DSS)-induced acute colitis.
METHODS
Thirty C57BL/6 mice were given either regular drinking water (control group) or 2% (w/v) DSS drinking water (model and poly I:C groups) ad libitum for 7 d. Poly I:C was administrated subcutaneously (20 μg/mouse) 2 h prior to DSS induction in mice of the poly I:C group. Severity of colitis was evaluated by disease activity index, body weight, colon length, histology and myeloperoxidase (MPO) activity, as well as the production of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin 17 (IL-17) and interferon-γ (IFN-γ). Intestinal permeability was analyzed by the fluorescein isothiocyanate labeled-dextran (FITC-D) method. Ultrastructural features of the colon tissue were observed under electron microscopy. Expressions of tight junction (TJ) proteins, including zo-1, occludin and claudin-1, were measured by immunohistochemistry/immunofluorescence, Western blot and real-time quantitative polymerase chain reaction (RT-qPCR).
RESULTS
DSS caused significant damage to the colon tissue in the model group. Administration of poly I:C dramatically protected against DSS-induced colitis, as demonstrated by less body weight loss, lower disease activity index score, longer colon length, colonic MPO activity, and improved macroscopic and histological scores. It also ameliorated DSS-induced ultrastructural changes of the colon epithelium, as observed under scanning electron microscopy, as well as FITC-D permeability. The mRNA and protein expressions of TJ protein, zo-1, occludin and claudin-1 were also found to be significantly enhanced in the poly I:C group, as determined by immunohistochemistry/immunofluorescence, Western blot and RT-qPCR. By contrast, poly I:C pretreatment markedly reversed the DSS-induced up-regulated expressions of the inflammatory cytokines TNF-α, IL-17 and IFN-γ.
CONCLUSION
Our study suggested that poly I:C may protect against DSS-induced colitis through maintaining integrity of the epithelial barrier and regulating innate immune responses, which may shed light on the therapeutic potential of poly I:C in human colitis.
Collapse
|
119
|
The role of neuroimmune signaling in alcoholism. Neuropharmacology 2017; 122:56-73. [PMID: 28159648 DOI: 10.1016/j.neuropharm.2017.01.031] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 02/07/2023]
Abstract
Alcohol consumption and stress increase brain levels of known innate immune signaling molecules. Microglia, the innate immune cells of the brain, and neurons respond to alcohol, signaling through Toll-like receptors (TLRs), high-mobility group box 1 (HMGB1), miRNAs, pro-inflammatory cytokines and their associated receptors involved in signaling between microglia, other glia and neurons. Repeated cycles of alcohol and stress cause a progressive, persistent induction of HMGB1, miRNA and TLR receptors in brain that appear to underlie the progressive and persistent loss of behavioral control, increased impulsivity and anxiety, as well as craving, coupled with increasing ventral striatal responses that promote reward seeking behavior and increase risk of developing alcohol use disorders. Studies employing anti-oxidant, anti-inflammatory, anti-depressant, and innate immune antagonists further link innate immune gene expression to addiction-like behaviors. Innate immune molecules are novel targets for addiction and affective disorders therapies. This article is part of the Special Issue entitled "Alcoholism".
Collapse
|
120
|
Prado-Rebolledo OF, Delgado-Machuca JDJ, Macedo-Barragan RJ, Garcia-Márquez LJ, Morales-Barrera JE, Latorre JD, Hernandez-Velasco X, Tellez G. Evaluation of a selected lactic acid bacteria-based probiotic on Salmonella enterica serovar Enteritidis colonization and intestinal permeability in broiler chickens. Avian Pathol 2016; 46:90-94. [PMID: 27545145 DOI: 10.1080/03079457.2016.1222808] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two experiments were conducted to evaluate the effect of a lactic acid bacteria-based probiotic (FloraMax-B11®) against Salmonella enterica serovar Enteritidis intestinal colonization and intestinal permeability in broiler chickens. Experiment 1 consisted of two independent trials. In each trial, day-old broiler chicks were assigned to one of two groups: control + S. Enteritidis or probiotic + S. Enteritidis. At 72 h post-S. Enteritidis challenge, haematology and caecal content were evaluated for S. Enteritidis colonization. In Experiment 2, day-old broiler chicks were assigned to one of four groups: negative control; probiotic; control + S. Enteritidis; or probiotic + S. Enteritidis. At 72 h post-S. Enteritidis challenge, chickens in all groups were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). In both trials of Experiment 1, a significant reduction (P < 0.05) in colony-forming units/gram of S. Enteritidis in caecal content and a reduction in the incidence of S. Enteritidis enriched caecal samples were observed in probiotic + S. Enteritidis chickens. In addition, significant heterophilia and lymphopaenia were observed in control + S. Enteritidis chickens. In Experiment 2, a decrease in numbers of S. Enteritidis in caeca were observed in probiotic + S. Enteritidis chickens when compared to control + S. Enteritidis. Also, an increase in serum FITC-d concentration was detected in control + S. Enteritidis. These results suggest that early infection with S. Enteritidis can increase intestinal permeability, but the adverse effects can be prevented by the administration of the probiotic tested.
Collapse
Affiliation(s)
- Omar F Prado-Rebolledo
- a Facultad de Medicina Veterinaria y Zootecnia , Universidad de Colima , Colima , México
| | | | | | - Luis J Garcia-Márquez
- b Centro Universitario de Investigación y Desarrollo Agrícola , Universidad de Colima , Colima , México
| | - Jesus E Morales-Barrera
- c Departamento de Producción Agrícola y Animal , Universidad Autónoma Metropolitana , México City , México
| | - Juan D Latorre
- d Department of Poultry Science, Center of Excellence for Poultry Science , University of Arkansas , Fayetteville , AR , USA
| | - Xochitl Hernandez-Velasco
- e Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia , Universidad Nacional Autónoma de México , México City , México
| | - Guillermo Tellez
- d Department of Poultry Science, Center of Excellence for Poultry Science , University of Arkansas , Fayetteville , AR , USA
| |
Collapse
|
121
|
Jones H, Hargrove L, Kennedy L, Meng F, Graf-Eaton A, Owens J, Alpini G, Johnson C, Bernuzzi F, Demieville J, DeMorrow S, Invernizzi P, Francis H. Inhibition of mast cell-secreted histamine decreases biliary proliferation and fibrosis in primary sclerosing cholangitis Mdr2(-/-) mice. Hepatology 2016; 64:1202-1216. [PMID: 27351144 PMCID: PMC5033697 DOI: 10.1002/hep.28704] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/11/2016] [Accepted: 06/23/2016] [Indexed: 01/03/2023]
Abstract
UNLABELLED Hepatic fibrosis is marked by activation of hepatic stellate cells (HSCs). Cholestatic injury precedes liver fibrosis, and cholangiocytes interact with HSCs promoting fibrosis. Mast cells (MCs) infiltrate following liver injury and release histamine, increasing biliary proliferation. We evaluated if inhibition of MC-derived histamine decreases biliary proliferation and fibrosis. Wild-type and multidrug resistance 2 knockout mice (9-11 weeks) were treated with cromolyn sodium for 1 week to block MC-derived histamine. Biliary mass and proliferation were evaluated by immunohistochemistry for cytokeratin 19 and Ki-67. Bile flow, bicarbonate excretion, and total bile acids were measured in all mice. Fibrosis was evaluated by sirius red/fast green staining and by quantitative polymerase chain reaction for alpha-smooth muscle actin, fibronectin, collagen type 1a, and transforming growth factor-beta 1. HSC activation was evaluated by quantitative polymerase chain reaction in total liver and immunofluorescent staining in tissues for synaptophysin 9. Histamine serum secretion was measured by enzymatic immunoassay. Mouse liver and human liver samples from control or primary sclerosing cholangitis patients were evaluated for MC markers by quantitative polymerase chain reaction and immunohistochemistry. In vitro, cultured MCs were transfected with histidine decarboxylase short hairpin RNA to decrease histamine secretion and subsequently cocultured with cholangiocytes or HSCs prior to measuring fibrosis markers, proliferation, and transforming growth factor-beta 1 secretion. Treatment with cromolyn sodium decreased biliary proliferation, fibrosis, histamine secretion, and bile flow in multidrug resistance 2 knockout mice. Primary sclerosing cholangitis mice and patients have increased MCs. Knockdown of MC histidine decarboxylase decreased cholangiocyte and HSC proliferation/activation. CONCLUSION MCs are recruited to proliferating cholangiocytes and promote fibrosis. Inhibition of MC-derived histamine decreases fibrosis, and regulation of MC mediators may be therapeutic for primary sclerosing cholangitis. (Hepatology 2016;64:1202-1216).
Collapse
Affiliation(s)
- Hannah Jones
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Rozzano, Milan, Italy
| | - Laura Hargrove
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Rozzano, Milan, Italy
| | - Lindsey Kennedy
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Rozzano, Milan, Italy
- Medicine, Texas A&M Health Science Center, Rozzano, Milan, Italy
| | - Allyson Graf-Eaton
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
| | - Jennifer Owens
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
- Medicine, Texas A&M Health Science Center, Rozzano, Milan, Italy
| | | | - Francesca Bernuzzi
- Temple, Texas, USA and Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | | | - Sharon DeMorrow
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
- Medicine, Texas A&M Health Science Center, Rozzano, Milan, Italy
| | - Pietro Invernizzi
- Temple, Texas, USA and Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Rozzano, Milan, Italy
- Medicine, Texas A&M Health Science Center, Rozzano, Milan, Italy
| |
Collapse
|
122
|
Abstract
Gastrointestinal disease is a prevalent cause of morbidity and mortality and the use of animal models have been instrumental in studying mechanisms of digestive pathophysiology. As investigators attempt to translate the wealth of basic science information developed from rodent, models, large animal models provide a number of translational advantages. The pig, in particular, is arguably one of the most powerful models of human organ systems, including the gastrointestinal tract. The pig has provided important tools and insight into intestinal ischemia/reperfusion injury, intestinal mucosal repair, as well as new insights into esophageal injury and repair. Porcine model development has taken advantage of the size of the animal, allowing increased surgical and endoscopic access. In addition, cellular tools such as the intestinal porcine epithelial cell line and porcine enteroids are providing the methodology to translate basic science findings using in-depth mechanistic analyses. Further opportunities in porcine digestive disease modeling include developing additional transgenic pig strains. Collectively, porcine models hold great promise for the future of clinically relevant digestive disease research.
Collapse
|
123
|
Medland JE, Pohl CS, Edwards LL, Frandsen S, Bagley K, Li Y, Moeser AJ. Early life adversity in piglets induces long-term upregulation of the enteric cholinergic nervous system and heightened, sex-specific secretomotor neuron responses. Neurogastroenterol Motil 2016; 28:1317-29. [PMID: 27134125 PMCID: PMC5002263 DOI: 10.1111/nmo.12828] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/04/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Early life adversity (ELA) is a risk factor for the later-life onset of gastrointestinal (GI) diseases such as irritable bowel syndrome (IBS); however, the mechanisms are poorly understood. Here, we utilized a porcine model of ELA, early weaning stress (EWS), to investigate the influence of ELA on the development and function of the enteric nervous system (ENS). METHODS Female and castrated male (Male-C) piglets were weaned from their sow either at 15 days of age (EWS) or 28 days of age (late weaning control, LWC). At 60 and 170 days of age, ileal mucosa-submucosa preparations were mounted in Ussing chambers and veratridine- and corticotropin releasing factor (CRF)-releasing factor-evoked short circuit current (Isc ) responses were recorded as indices of secretomotor neuron function. Enteric neuron numbers and the expression of select neurotransmitters and their receptors were also measured. KEY RESULTS Compared with LWC pigs, female, but not Male-C EWS, pigs exhibited heightened veratridine-induced Isc responses at 60 and 170 days of age that were inhibited with tetrodotoxin and atropine. Ileum from EWS pigs had higher numbers of enteric neurons that were choline acetyltransferase positive. Markers of increased cholinergic signaling (increased acetylcholinesterase) and downregulated mucosal muscarinic receptor 3 gene expression were also observed in EWS pigs. CONCLUSIONS & INFERENCES This study demonstrated that EWS in pigs induces lasting and sex-specific hypersensitivity of secretomotor neuron function and upregulation of the cholinergic ENS. These findings may represent a mechanistic link between ELA and lifelong susceptibility to GI diseases such as IBS.
Collapse
Affiliation(s)
- Julia E. Medland
- Comparative Biomedical Sciences Program, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Calvin S. Pohl
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Laura L. Edwards
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Shellsea Frandsen
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Kristen Bagley
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Yihang Li
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Adam J. Moeser
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA,Neuroscience Program, Michigan State University
| |
Collapse
|
124
|
Gong L, Li J, Tang Y, Han T, Wei C, Yu X, Li J, Wang R, Ma X, Liu K, Geng L, Liu S, Yan B, Liu C. The antinociception of oxytocin on colonic hypersensitivity in rats was mediated by inhibition of mast cell degranulation via Ca(2+)-NOS pathway. Sci Rep 2016; 6:31452. [PMID: 27538454 PMCID: PMC4990927 DOI: 10.1038/srep31452] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
This study was conducted to investigate the effects of oxytocin (OT) on visceral hypersensitivity/pain and mast cell degranulation and the underlying mechanisms. We found that oxytocin receptor (OTR) was expressed in colonic mast cells in humans and rats, as well as in human mast cell line-1 (HMC-1), rat basophilic leukemia cell line (RBL-2H3) and mouse mastocytoma cell line (P815). OT decreased 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced visceral hypersensitivity, colonic mast cell degranulation and histamine release after mast cell degranulation in rats. Also, OT attenuated the compound 48/80 (C48/80)-evoked histamine release in P815 cells and inward currents, responsible for the mast cell degranulation, in HMC-1, RBL-2H3 and P815 cells. Moreover, these protective effects of OT against visceral hypersensitivity and mast cell degranulation were eliminated by coadministration of OTR antagonist atosiban or a nonselective inhibitor of nitric oxide synthase (NOS), NG-Methyl-L-arginine acetate salt (L-NMMA). Notably, OT evoked a concentration-dependent increase of intracellular Ca(2+) in HMC-1, RBL-2H3 and P815 cells, which was responsible for the activation of neuronal NOS (NOS1) and endothelial NOS (NOS3). Our findings strongly suggest that OT might exert the antinociception on colonic hypersensitivity through inhibition of mast cell degranulation via Ca(2+)-NOS pathway.
Collapse
Affiliation(s)
- Liping Gong
- Department of Physiology, School of Medicine, Shandong University, China
| | - Jing Li
- Central Hospital of Zibo, Zibo, China
| | - Yan Tang
- Department of Physiology, School of Medicine, Shandong University, China
| | - Ting Han
- Department of Physiology, School of Medicine, Shandong University, China
| | | | - Xiao Yu
- Department of Physiology, School of Medicine, Shandong University, China
| | - Jingxin Li
- Department of Physiology, School of Medicine, Shandong University, China
| | - Rong Wang
- Department of Physiology, School of Medicine, Shandong University, China
| | - Xuelian Ma
- Department of Physiology, School of Medicine, Shandong University, China
| | - Kejing Liu
- Department of Physiology, School of Medicine, Shandong University, China
| | - Lingyun Geng
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | | - Bing Yan
- Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Chuanyong Liu
- Department of Physiology, School of Medicine, Shandong University, China
- Provincial Key Lab of Mental Disorder, School of Medicine, Shandong University, China
| |
Collapse
|
125
|
Corticotropin-Releasing Factor and Toll-Like Receptor Gene Expression Is Associated with Low-Grade Inflammation in Irritable Bowel Syndrome Patients with Depression. Gastroenterol Res Pract 2016; 2016:7394924. [PMID: 27478433 PMCID: PMC4960335 DOI: 10.1155/2016/7394924] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 12/12/2022] Open
Abstract
The mechanism of low-grade inflammation in irritable bowel syndrome (IBS) is unclear; our research concentrates on the involvement of the corticotropin-releasing factor (CRF) and Toll-like receptor (TLR) gene expression in the process of low-grade inflammation in IBS patients with depression. This study suggests more IBS patients are presenting with the states of depression and anxiety. IBS patients with depression have shown a lower grade inflammatory response and an imbalance of the inflammatory response. CRF1, CRF2, TLR2, and TLR4 in IBS patients with depression are significantly higher than those without depression and controls. Thus, activation of the CRF-TLR associated pathways produces an inflammatory reaction, which can concurrently affect the digestive tract and the CNS and induce the corresponding digestive and psychiatric symptoms.
Collapse
|
126
|
Abstract
The present review examines the pig as a model for physiological studies in human subjects related to nutrient sensing, appetite regulation, gut barrier function, intestinal microbiota and nutritional neuroscience. The nutrient-sensing mechanisms regarding acids (sour), carbohydrates (sweet), glutamic acid (umami) and fatty acids are conserved between humans and pigs. In contrast, pigs show limited perception of high-intensity sweeteners and NaCl and sense a wider array of amino acids than humans. Differences on bitter taste may reflect the adaptation to ecosystems. In relation to appetite regulation, plasma concentrations of cholecystokinin and glucagon-like peptide-1 are similar in pigs and humans, while peptide YY in pigs is ten to twenty times higher and ghrelin two to five times lower than in humans. Pigs are an excellent model for human studies for vagal nerve function related to the hormonal regulation of food intake. Similarly, the study of gut barrier functions reveals conserved defence mechanisms between the two species particularly in functional permeability. However, human data are scant for some of the defence systems and nutritional programming. The pig model has been valuable for studying the changes in human microbiota following nutritional interventions. In particular, the use of human flora-associated pigs is a useful model for infants, but the long-term stability of the implanted human microbiota in pigs remains to be investigated. The similarity of the pig and human brain anatomy and development is paradigmatic. Brain explorations and therapies described in pig, when compared with available human data, highlight their value in nutritional neuroscience, particularly regarding functional neuroimaging techniques.
Collapse
|
127
|
Mast cells in gastrointestinal disorders. Eur J Pharmacol 2016; 778:139-45. [DOI: 10.1016/j.ejphar.2016.02.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 01/01/2023]
|
128
|
Zhang L, Song J, Hou X. Mast Cells and Irritable Bowel Syndrome: From the Bench to the Bedside. J Neurogastroenterol Motil 2016; 22:181-192. [PMID: 26755686 PMCID: PMC4819856 DOI: 10.5056/jnm15137] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/07/2015] [Accepted: 12/26/2015] [Indexed: 12/11/2022] Open
Abstract
Irritable bowel syndrome (IBS) is traditionally defined as a functional disorder since it lacks demonstrable pathological abnormalities. However, in recent years, low grade inflammatory infiltration, often rich in mast cells, in both the small and large bowel, has been observed in some patients with IBS. The close association of mast cells with major intestinal functions, such as epithelial secretion and permeability, neuroimmune interactions, visceral sensation, and peristalsis, makes researchers and gastroenterologists to focus attention on the key roles of mast cells in the pathogenesis of IBS. Numerous studies have been carried out to identify the mechanisms in the development, infiltration, activation, and degranulation of intestinal mast cells, as well as the actions of mast cells in the processes of mucosal barrier disruption, mucosal immune dysregulation, visceral hypersensitivity, dysmotility, and local and central stress in IBS. Moreover, therapies targeting mast cells, such as mast cell stabilizers (cromoglycate and ketotifen) and antagonists of histamine and serotonin receptors, have been tried in IBS patients, and have partially exhibited considerable efficacy. This review focuses on recent advances in the role of mast cells in IBS, with particular emphasis on bridging experimental data with clinical therapeutics for IBS patients.
Collapse
Affiliation(s)
- Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,
China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,
China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,
China
| |
Collapse
|
129
|
Pigrau M, Rodiño-Janeiro BK, Casado-Bedmar M, Lobo B, Vicario M, Santos J, Alonso-Cotoner C. The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome. Neurogastroenterol Motil 2016; 28:463-86. [PMID: 26556786 DOI: 10.1111/nmo.12717] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Intestinal homeostasis is a dynamic process that takes place at the interface between the lumen and the mucosa of the gastrointestinal tract, where a constant scrutiny for antigens and toxins derived from food and microorganisms is carried out by the vast gut-associated immune system. Intestinal homeostasis is preserved by the ability of the mucus layer and the mucosal barrier to keep the passage of small-sized and antigenic molecules across the epithelium highly selective. When combined and preserved, immune surveillance and barrier's selective permeability, the host capacity of preventing the development of intestinal inflammation is optimized, and viceversa. In addition, the brain-gut-microbiome axis, a multidirectional communication system that integrates distant and local regulatory networks through neural, immunological, metabolic, and hormonal signaling pathways, also regulates intestinal function. Dysfunction of the brain-gut-microbiome axis may induce the loss of gut mucosal homeostasis, leading to uncontrolled permeation of toxins and immunogenic particles, increasing the risk of appearance of intestinal inflammation, mucosal damage, and gut disorders. Irritable bowel syndrome is prevalent stress-sensitive gastrointestinal disorder that shows a female predominance. Interestingly, the role of stress, sex and gonadal hormones in the regulation of intestinal mucosal and the brain-gut-microbiome axis functioning is being increasingly recognized. PURPOSE We aim to critically review the evidence linking sex, and stress to intestinal barrier and brain-gut-microbiome axis dysfunction and the implications for irritable bowel syndrome.
Collapse
Affiliation(s)
- M Pigrau
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - B K Rodiño-Janeiro
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Casado-Bedmar
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - B Lobo
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Vicario
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - J Santos
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - C Alonso-Cotoner
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
130
|
Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation. Clin Ther 2016; 37:984-95. [PMID: 26046241 DOI: 10.1016/j.clinthera.2015.04.002] [Citation(s) in RCA: 389] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE Gut microbiota regulate intestinal function and health. However, mounting evidence indicates that they can also influence the immune and nervous systems and vice versa. This article reviews the bidirectional relationship between the gut microbiota and the brain, termed the microbiota-gut-brain (MGB) axis, and discusses how it contributes to the pathogenesis of certain disorders that may involve brain inflammation. METHODS Articles were identified with a search of Medline (starting in 1980) by using the key words anxiety, attention-deficit hypersensitivity disorder (ADHD), autism, cytokines, depression, gut, hypothalamic-pituitary-adrenal (HPA) axis, inflammation, immune system, microbiota, nervous system, neurologic, neurotransmitters, neuroimmune conditions, psychiatric, and stress. FINDINGS Various afferent or efferent pathways are involved in the MGB axis. Antibiotics, environmental and infectious agents, intestinal neurotransmitters/neuromodulators, sensory vagal fibers, cytokines, and essential metabolites all convey information to the central nervous system about the intestinal state. Conversely, the hypothalamic-pituitary-adrenal axis, the central nervous system regulatory areas of satiety, and neuropeptides released from sensory nerve fibers affect the gut microbiota composition directly or through nutrient availability. Such interactions seem to influence the pathogenesis of a number of disorders in which inflammation is implicated, such as mood disorder, autism-spectrum disorders, attention-deficit hypersensitivity disorder, multiple sclerosis, and obesity. IMPLICATIONS Recognition of the relationship between the MGB axis and the neuroimmune systems provides a novel approach for better understanding and management of these disorders. Appropriate preventive measures early in life or corrective measures such as use of psychobiotics, fecal microbiota transplantation, and flavonoids are discussed.
Collapse
Affiliation(s)
- Anastasia I Petra
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Smaro Panagiotidou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Erifili Hatziagelaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece
| | - Julia M Stewart
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Pio Conti
- Department of Medical Sciences, Immunology Division, University of Chieti, Via dei Vestini, Chieti, Italy
| | - Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts; Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts.
| |
Collapse
|
131
|
Quigley EMM. Overlapping irritable bowel syndrome and inflammatory bowel disease: less to this than meets the eye? Therap Adv Gastroenterol 2016; 9:199-212. [PMID: 26929782 PMCID: PMC4749858 DOI: 10.1177/1756283x15621230] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Though distinct in terms of pathology, natural history and therapeutic approach, irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) have some features in common. These include shared symptomatology and largely similar demographics. However, in most instances, clinical presentation, together with laboratory, imaging and endoscopic findings will readily permit the differentiation of active IBD from IBS. More problematic is the situation where a subject with IBD, in apparent remission, continues to complain of symptoms which, in aggregate, satisfy commonly employed criteria for the diagnosis of IBS. Access to methodologies, such the assay for levels of calprotectin in feces, now allows identification of ongoing inflammation in some such individuals and prompts appropriate therapy. More challenging is the IBD patient with persisting symptoms and no detectable evidence of inflammation; is this coincident IBS, IBS triggered by IBD or an even more subtle level of IBD activity unrecognized by available laboratory or imaging methods? Arguments can be advanced for each of these proposals; lacking definitive data, this issue remains unresolved. The occurrence of IBS-type symptoms in the IBD patient, together with some data suggesting a very subtle level of 'inflammation' or 'immune activation' in IBS, raises other questions: is IBS a prodromal form of IBD; and are IBS and IBD part of the spectrum of the same disease? All of the available evidence indicates that the answer to both these questions should be a resounding 'no'. Indeed, the whole issue of overlap between IBS and IBD should be declared moot given their differing pathophysiologies, contrasting natural histories and divergent treatment paths. The limited symptom repertoire of the gastrointestinal tract may well be fundamental to the apparent confusion that has, of late, bedeviled this area.
Collapse
|
132
|
Erchegyi J, Wang L, Gulyas J, Samant M, Perrin MH, Lewis K, Miller C, Vaughan J, Donaldson C, Fischer W, Low W, Yakabi S, Karasawa H, Taché Y, Rivier C, Rivier J. Characterization of Multisubstituted Corticotropin Releasing Factor (CRF) Peptide Antagonists (Astressins). J Med Chem 2016; 59:854-66. [PMID: 26789203 DOI: 10.1021/acs.jmedchem.5b00926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CRF mediates numerous stress-related endocrine, autonomic, metabolic, and behavioral responses. We present the synthesis and chemical and biological properties of astressin B analogues {cyclo(30-33)[D-Phe(12),Nle(21,38),C(α)MeLeu(27,40),Glu(30),Lys(33)]-acetyl-h/r-CRF(9-41)}. Out of 37 novel peptides, 17 (2, 4, 6-8, 10, 11, 16, 17, 27, 29, 30, 32-36) and 16 (3, 5, 9, 12-15, 18, 19, 22-26, 28, 31) had k(i) to CRF receptors in the high picomolar and low nanomole ranges, respectively. Peptides 1, 2, and 11 inhibited h/rCRF and urocortin 1-induced cAMP release from AtT20 and A7r5 cells. When Astressin C 2 was administered to adrenalectomized rats at 1.0 mg subcutaneously, it inhibited ACTH release for >7 d. Additional rat data based on the inhibitory effect of (2) on h/rCRF-induced stimulation of colonic secretory motor activity and urocortin 2-induced delayed gastric emptying also indicate a safe and long-lasting antagonistic effect. The overall properties of selected analogues may fulfill the criteria expected from clinical candidates.
Collapse
Affiliation(s)
- Judit Erchegyi
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Lixin Wang
- Department of Medicine, CURE/Digestive Diseases Center, Digestive Diseases Division, University of California at Los Angeles, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, United States
| | - Jozsef Gulyas
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Manoj Samant
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Marilyn H Perrin
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Kathy Lewis
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Charleen Miller
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Joan Vaughan
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Cynthia Donaldson
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Wolfgang Fischer
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - William Low
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Seiichi Yakabi
- Department of Medicine, CURE/Digestive Diseases Center, Digestive Diseases Division, University of California at Los Angeles, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, United States
| | - Hiroshi Karasawa
- Department of Medicine, CURE/Digestive Diseases Center, Digestive Diseases Division, University of California at Los Angeles, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, United States
| | - Yvette Taché
- Department of Medicine, CURE/Digestive Diseases Center, Digestive Diseases Division, University of California at Los Angeles, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, United States
| | - Catherine Rivier
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jean Rivier
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
133
|
LIU SUMEI, CHANG JEN, LONG NICOLE, BECKWITH KAYLEE, TALHOUARNE GAËLLE, BROOKS JULIAJ, QU MEIHUA, REN WEI, WOOD JACKIED, COOPER SCOTT, BHARGAVA ADITI. Endogenous CRF in rat large intestine mediates motor and secretory responses to stress. Neurogastroenterol Motil 2016; 28:281-91. [PMID: 26611915 PMCID: PMC4727995 DOI: 10.1111/nmo.12725] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/12/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) mediates our body's overall responses to stress. The role of central CRF in stress-stimulated colonic motility is well characterized. We hypothesized that transient perturbation in expression of enteric CRF is sufficient to change stress-induced colonic motor and secretory responses. METHODS Sprague-Dawley rats (adult, male) were subjected to 1-h partial restraint stress (PRS) and euthanized at 0, 4, 8, and 24 h. CRF mRNA and peptide levels in the colon were quantified by real-time RT-PCR, enzyme immuno-assay and immunohistochemistry. Double-stranded RNA (dsRNA) designed to target CRF (dsCRF) was injected into the colonic wall to attain RNA interference-mediated inhibition of CRF mRNA expression. DsRNA for β-globin was used as a control (dsControl). Four days after dsRNA injection, rats were subjected to 1-h PRS. Fecal output was measured. Ussing chamber techniques were used to assess colonic mucosal ion secretion and transepithelial tissue conductance. KEY RESULTS Exposure to PRS elevated CRF expression and increased CRF release in the rat colon. Injection of dsCRF inhibited basal CRF expression and prevented the PRS-induced increase in CRF expression, whereas CRF expression in dsControl-injected colons remained high after PRS. In rats treated with dsControl, PRS caused a significant increase in fecal pellet output, colonic baseline ion secretion, and transepithelial tissue conductance. Inhibition of CRF expression in the colon prevented PRS-induced increase in fecal output, baseline ion secretion, and transepithelial tissue conductance. CONCLUSIONS & INFERENCES These results provide direct evidence that transient perturbation in peripherally expressed CRF prevents colonic responses to stress.
Collapse
Affiliation(s)
- SUMEI LIU
- Department of Biology, College of Science and Health, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA,Corresponding author: Sumei Liu, Ph.D., Address: Department of Biology, College of Science and Health, University of Wisconsin-La Crosse, 3010 Cowley Hall, 1725 State Street, La Crosse, WI 54601, USA, Tel: 1-608-785-6971, Fax: 1-608-785-6959,
| | - JEN CHANG
- Department of Ob-Gyn and Surgery, The Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - NICOLE LONG
- Department of Biology, College of Science and Health, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - KAYLEE BECKWITH
- Department of Biology, College of Science and Health, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - GAËLLE TALHOUARNE
- Department of Biology, College of Science and Health, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - JULIA J. BROOKS
- Department of Ob-Gyn and Surgery, The Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - MEI-HUA QU
- Departments of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - WEI REN
- Departments of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - JACKIE D. WOOD
- Departments of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - SCOTT COOPER
- Department of Biology, College of Science and Health, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - ADITI BHARGAVA
- Department of Ob-Gyn and Surgery, The Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
134
|
Xu XJ, Liu L, Yao SK. Nerve growth factor and diarrhea-predominant irritable bowel syndrome (IBS-D): a potential therapeutic target? J Zhejiang Univ Sci B 2016; 17:1-9. [PMID: 26739521 PMCID: PMC4710835 DOI: 10.1631/jzus.b1500181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 11/07/2015] [Indexed: 02/05/2023]
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder characterized by recurrent abdominal pain or discomfort associated with abnormal bowel habits. Diarrhea-predominant IBS (IBS-D) is a major subtype of IBS, the predominant manifestations of which are abdominal pain and diarrhea. The pathogenesis of IBS-D remained unknown until recently. The effects of psychosocial stress, central hypervigilance, neuroendocrine abnormality, disturbed gastrointestinal motility, mucosal immune activation, intestinal barrier dysfunction, visceral hypersensitivity (VH), altered gut flora, and genetic susceptibility may be involved in its development. Recently, increased attention has been placed on the neural-immune-endocrine network mechanism in IBS-D, especially the role of various neuroendocrine mediators. As a member of the neurotrophin family, nerve growth factor (NGF) has diverse biological effects, and participates in the pathogenesis of many diseases. Basic studies have demonstrated that NGF is associated with inflammatory- and stress-related VH, as well as stress-related intestinal barrier dysfunction. The aim of this study is to summarize recent literature and discuss the role of NGF in the pathophysiology of IBS-D, especially in VH and intestinal barrier dysfunction, as well as its potential as a therapeutic target in IBS-D.
Collapse
Affiliation(s)
- Xiao-juan Xu
- Gastroenterology Department, China-Japan Friendship Hospital, Beijing 100029, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100073, China
| | - Liang Liu
- Jinan Central Hospital Affiliated to Shandong University, Jinan 250014, China
| | - Shu-kun Yao
- Gastroenterology Department, China-Japan Friendship Hospital, Beijing 100029, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100073, China
| |
Collapse
|
135
|
Lauffer A, Vanuytsel T, Vanormelingen C, Vanheel H, Salim Rasoel S, Tóth J, Tack J, Fornari F, Farré R. Subacute stress and chronic stress interact to decrease intestinal barrier function in rats. Stress 2016; 19:225-34. [PMID: 26947111 DOI: 10.3109/10253890.2016.1154527] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Psychological stress increases intestinal permeability, potentially leading to low-grade inflammation and symptoms in functional gastrointestinal disorders. We assessed the effect of subacute, chronic and combined stress on intestinal barrier function and mast cell density. Male Wistar rats were allocated to four experimental groups (n = 8/group): 1/sham; 2/subacute stress (isolation and limited movement for 24 h); 3/chronic crowding stress for 14 days and 4/combined subacute and chronic stress. Jejunum and colon were collected to measure: transepithelial electrical resistance (TEER; a measure of epithelial barrier function); gene expression of tight junction molecules; mast cell density. Plasma corticosterone concentration was increased in all three stress conditions versus sham, with highest concentrations in the combined stress condition. TEER in the jejunum was decreased in all stress conditions, but was significantly lower in the combined stress condition than in the other groups. TEER in the jejunum correlated negatively with corticosterone concentration. Increased expression of claudin 1, 5 and 8, occludin and zonula occludens 1 mRNAs was detected after subacute stress in the jejunum. In contrast, colonic TEER was decreased only after combined stress, and the expression of tight junction molecules was unaltered. Increased mast cell density was observed in the chronic and combined stress condition in the colon only. In conclusion, our data show that chronic stress sensitizes the gastrointestinal tract to the effects of subacute stress on intestinal barrier function; different underlying cellular and molecular alterations are indicated in the small intestine versus the colon.
Collapse
Affiliation(s)
- Adriana Lauffer
- a Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
- b Programa De Pós-Graduação: Ciências Em Gastroenterologia E Hepatologia, Faculdade De Medicina, UFRGS , Porto Alegre , Brazil , and
| | - Tim Vanuytsel
- a Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Christophe Vanormelingen
- a Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Hanne Vanheel
- a Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Shadea Salim Rasoel
- a Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Joran Tóth
- a Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Jan Tack
- a Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Fernando Fornari
- b Programa De Pós-Graduação: Ciências Em Gastroenterologia E Hepatologia, Faculdade De Medicina, UFRGS , Porto Alegre , Brazil , and
| | - Ricard Farré
- a Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
- c Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas (CIBERehd), Instituto De Salud Carlos II , Barcelona , Spain
| |
Collapse
|
136
|
Sand E, Linninge C, Lozinska L, Egecioglu E, Roth B, Molin G, Weström B, Ekblad E, Ohlsson B. Buserelin treatment to rats causes enteric neurodegeneration with moderate effects on CRF-immunoreactive neurons and Enterobacteriaceae in colon, and in acetylcholine-mediated permeability in ileum. BMC Res Notes 2015; 8:824. [PMID: 26710832 PMCID: PMC4693429 DOI: 10.1186/s13104-015-1800-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023] Open
Abstract
Background The gonadotropin-releasing hormone (GnRH) analog buserelin causes enteric neuronal loss. Acute stress or injection of corticotropin-releasing factor (CRF) affects motility, secretion, and barrier function of the gastrointestinal tract. The aim of the study was to characterize the CRF immunoreactivity in enteric neurons after buserelin treatment, and to evaluate possible effects of enteric neuropathy on gut microbiota, intestinal permeability, and stress response behavior. Results Sixty rats were given buserelin (20 μg) or saline subcutaneously for 5 days, repeated four times with 3 weeks in-between. At the study end, enteric neuronal density, enteric expression of CRF, gut microbial composition, and plasma levels of adrenocorticotropic hormone (ACTH) and CRF were analyzed. Intestinal permeability was examined in Ussing chambers and the reaction to stressful events was measured by behavior tests. Buserelin treatment reduced the number of neurons along the entire gastrointestinal tract, with increased relative numbers of CRF-immunoreactive submucosal and myenteric neurons in colon (p < 0.05 and p < 0.01, respectively). The overall microbial diversity and relative abundance did not differ between groups, but Enterobacteriaceae was decreased in colon in buserelin-treated rats (p = 0.020). Basal intestinal permeability did not differ between groups, whereas carbachol stimulation increased ileum permeability in controls (p < 0.05), but not in buserelin-treated rats. Buserelin did not affect stress behavior. Conclusions Although buserelin treatment leads to enteric neuronal loss along the gastrointestinal tract with an increased percentage of CRF-immunoreactive neurons in colon, the physiology is well preserved, with modest effects on colon microbiota and absence of carbachol-induced permeability in ileum as the only observed changes. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1800-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elin Sand
- Division of Internal Medicine, Department of Clinical Sciences, Skåne University Hospital, Lund University, Inga Marie Nilssons street 32, 205 02, Malmö, Sweden. .,Neurogastroenterology Unit, Department of Experimental Medical Science, BMC B11, Lund University, 221 84, Lund, Sweden.
| | - Caroline Linninge
- Department of Food Technology, Engineering and Nutrition, Lund University, 22100, Lund, Sweden.
| | - Liudmyla Lozinska
- Department of Biology, Functional Biology, Lund University, 221 84, Lund, Sweden.
| | - Emil Egecioglu
- Department of Clinical Neuroscience and Rehabilitation, University of Gothenburg, 405 30, Gothenburg, Sweden.
| | - Bodil Roth
- Division of Internal Medicine, Department of Clinical Sciences, Skåne University Hospital, Lund University, Inga Marie Nilssons street 32, 205 02, Malmö, Sweden.
| | - Göran Molin
- Department of Food Technology, Engineering and Nutrition, Lund University, 22100, Lund, Sweden.
| | - Björn Weström
- Department of Biology, Functional Biology, Lund University, 221 84, Lund, Sweden.
| | - Eva Ekblad
- Neurogastroenterology Unit, Department of Experimental Medical Science, BMC B11, Lund University, 221 84, Lund, Sweden.
| | - Bodil Ohlsson
- Division of Internal Medicine, Department of Clinical Sciences, Skåne University Hospital, Lund University, Inga Marie Nilssons street 32, 205 02, Malmö, Sweden.
| |
Collapse
|
137
|
Pohl CS, Medland JE, Moeser AJ. Early-life stress origins of gastrointestinal disease: animal models, intestinal pathophysiology, and translational implications. Am J Physiol Gastrointest Liver Physiol 2015; 309:G927-41. [PMID: 26451004 PMCID: PMC4683303 DOI: 10.1152/ajpgi.00206.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/01/2015] [Indexed: 01/31/2023]
Abstract
Early-life stress and adversity are major risk factors in the onset and severity of gastrointestinal (GI) disease in humans later in life. The mechanisms by which early-life stress leads to increased GI disease susceptibility in adult life remain poorly understood. Animal models of early-life stress have provided a foundation from which to gain a more fundamental understanding of this important GI disease paradigm. This review focuses on animal models of early-life stress-induced GI disease, with a specific emphasis on translational aspects of each model to specific human GI disease states. Early postnatal development of major GI systems and the consequences of stress on their development are discussed in detail. Relevant translational differences between species and models are highlighted.
Collapse
Affiliation(s)
- Calvin S. Pohl
- 1Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; ,2Gastrointestinal Stress Biology Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan; and
| | - Julia E. Medland
- 3Comparative Biomedical Sciences Program, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Adam J. Moeser
- 1Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; ,2Gastrointestinal Stress Biology Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan; and
| |
Collapse
|
138
|
Nozu T, Kumei S, Miyagishi S, Takakusaki K, Okumura T. Colorectal distention induces acute and delayed visceral hypersensitivity: role of peripheral corticotropin-releasing factor and interleukin-1 in rats. J Gastroenterol 2015; 50:1153-61. [PMID: 25808230 DOI: 10.1007/s00535-015-1070-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/13/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Most studies evaluating visceral sensation measure visceromotor response (VMR) to colorectal distention (CRD). However, CRD itself induces visceral sensitization, and little is known about the detailed characteristics of this response. The present study tried to clarify this question. METHODS VMR was determined by measuring abdominal muscle contractions as a response to CRD in rats. The CRD set consisted of two isobaric distentions (60 mmHg for 10 min twice, with a 30-min rest), and the CRD set was performed on two separate days, i.e., days 1 and 3, 8. RESULTS On day 1, VMR to the second CRD was increased as compared with that to the first CRD, which is the acute sensitization. VMR to the first CRD on day 3 returned to the same level as that to the first CRD on day 1, and total VMR, i.e., the whole response to the CRD set, was not different between day 1 and day 3. However, total VMR was significantly increased on day 8 as compared with that on day 1, suggesting CRD induced the delayed sensitization. Intraperitoneally administered astressin (200 µg/kg), a corticotropin-releasing factor receptor antagonist, at the end of the first CRD blocked the acute sensitization, but anakinra (20 mg/kg, intraperitoneally), an interleukin-1 receptor antagonist, did not modify it. Astressin (200 µg/kg, twice before CRD on day 8) did not alter the delayed sensitization, but anakinra (20 mg/kg, twice) abolished it. CONCLUSIONS CRD induced both acute sensitization and delayed sensitization, which were mediated through peripheral corticotropin-releasing factor and interleukin-1 pathways, respectively.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan.
| | - Shima Kumei
- Department of General Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Saori Miyagishi
- Department of General Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Toshikatsu Okumura
- Department of General Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| |
Collapse
|
139
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015; 9:392. [PMID: 26528128 PMCID: PMC4604320 DOI: 10.3389/fncel.2015.00392] [Citation(s) in RCA: 700] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022] Open
Abstract
The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a "leaky gut" may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function.
Collapse
Affiliation(s)
- John R Kelly
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Psychiatry and Neurobehavioural Science, University College Cork Cork, Ireland
| | - Paul J Kennedy
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Anatomy and Neuroscience, University College Cork Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Psychiatry and Neurobehavioural Science, University College Cork Cork, Ireland
| | - Gerard Clarke
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Psychiatry and Neurobehavioural Science, University College Cork Cork, Ireland
| | - Niall P Hyland
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Pharmacology and Therapeutics, University College Cork Cork, Ireland
| |
Collapse
|
140
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
141
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
142
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
143
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
144
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
145
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
146
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
147
|
Corticotropin-releasing factor receptor type 1 and type 2 interaction in irritable bowel syndrome. J Gastroenterol 2015; 50:819-30. [PMID: 25962711 DOI: 10.1007/s00535-015-1086-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/25/2015] [Indexed: 02/06/2023]
Abstract
Irritable bowel syndrome (IBS) displays chronic abdominal pain or discomfort with altered defecation, and stress-induced altered gut motility and visceral sensation play an important role in the pathophysiology. Corticotropin-releasing factor (CRF) is a main mediator of stress responses and mediates these gastrointestinal functional changes. CRF in brain and periphery acts through two subtype receptors such as CRF receptor type 1 (CRF1) and type 2 (CRF2), and activating CRF1 exclusively stimulates colonic motor function and induces visceral hypersensitivity. Meanwhile, several recent studies have demonstrated that CRF2 has a counter regulatory action against CRF1, which may imply that CRF2 inhibits stress response induced by CRF1 in order to prevent it from going into an overdrive state. Colonic contractility and sensation may be explained by the state of the intensity of CRF1 signaling. CRF2 signaling may play a role in CRF1-triggered enhanced colonic functions through modulation of CRF1 activity. Blocking CRF2 further enhances CRF-induced stimulation of colonic contractility and activating CRF2 inhibits stress-induced visceral sensitization. Therefore, we proposed the hypothesis, i.e., balance theory of CRF1 and CRF2 signaling as follows. Both CRF receptors may be activated simultaneously and the signaling balance of CRF1 and CRF2 may determine the functional changes of gastrointestinal tract induced by stress. CRF signaling balance might be abnormally shifted toward CRF1, leading to enhanced colonic motility and visceral sensitization in IBS. This theory may lead to understanding the pathophysiology and provide the novel therapeutic options targeting altered signaling balance of CRF1 and CRF2 in IBS.
Collapse
|
148
|
Porcine models of digestive disease: the future of large animal translational research. Transl Res 2015; 166:12-27. [PMID: 25655839 PMCID: PMC4458388 DOI: 10.1016/j.trsl.2015.01.004] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/03/2015] [Accepted: 01/07/2015] [Indexed: 12/14/2022]
Abstract
There is increasing interest in nonrodent translational models for the study of human disease. The pig, in particular, serves as a useful animal model for the study of pathophysiological conditions relevant to the human intestine. This review assesses currently used porcine models of gastrointestinal physiology and disease and provides a rationale for the use of these models for future translational studies. The pig has proven its utility for the study of fundamental disease conditions such as ischemia-reperfusion injury, stress-induced intestinal dysfunction, and short bowel syndrome. Pigs have also shown great promise for the study of intestinal barrier function, surgical tissue manipulation and intervention, as well as biomaterial implantation and tissue transplantation. Advantages of pig models highlighted by these studies include the physiological similarity to human intestine and mechanisms of human disease. Emerging future directions for porcine models of human disease include the fields of transgenics and stem cell biology, with exciting implications for regenerative medicine.
Collapse
|
149
|
Tamara VDS. "Role of Psychosocial Factors on the Course of Inflammatory Bowel Disease and Associated Psychotherapeutic Approaches. A Fresh Perspective and Review". ACTA ACUST UNITED AC 2015. [DOI: 10.15406/ghoa.2015.02.00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
150
|
Lu XF, Zhang SS. Role of mast cells in irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2015; 23:2239-2244. [DOI: 10.11569/wcjd.v23.i14.2239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder characterized by high prevalence and recurrence rates, which contribute to the patient's poor quality of life and an economic burden to the society and family for substantial costs. Multiple factors (e.g., stress, infection, and food allergy) can induce IBS via the neuro-endocrine-immune system. Abdominal pain, a hallmark symptom of IBS, correlates with visceral hypersensitivity. In recent years, the immune-associated mechanism for IBS has received more and more attention. Mast cells (MCs) are important immune cells in the intestine. The changes in the number, degranulation and interaction of MCs with the nerve play an important role in the development of IBS. This paper reviews the association between mast cells and the onset of IBS.
Collapse
|