101
|
Shi R, Jin Y, Hu W, Lian W, Cao C, Han S, Zhao S, Yuan H, Yang X, Shi J, Zhao H. Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-mediated autophagy. Am J Physiol Cell Physiol 2020; 318:C848-C856. [PMID: 32159361 DOI: 10.1152/ajpcell.00041.2020] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
More and more evidence advises that circular RNAs (circRNAs) function critically in regulating different disease microenvironments. Our previous study found that autotransplantation of adipose-derived mesenchymal stem cells (ADSCs) promotes diabetes wound healing. Exosomes derived in ADSCs play an important regulatory role. This study aimed to characterize if mmu_circ_0000250 played a role in ADSC-exosome-mediated full-thickness skin wound repair in diabetic rats. Endothelial progenitor cells (EPCs) were selected to study the therapeutic mechanism of exosomes in high-glucose (HG)-induced cell damage and dysfunction. Analysis and luciferase reporter assay were utilized to explore the interaction among mmu_circ_0000250, miRNA (miR)-128-3p, and sirtuin (SIRT)1. The diabetic rats were used to confirm the therapeutic effect of mmu_circ_0000250 against exosome-mediated wound healing. Exosomes containing a high concentration of mmu_circ_0000250 had a greater therapeutic effect on restoration of the function of EPCs by promotion autophagy activation under HG conditions. Expression of mmu_circ_0000250 promoted SIRT1 expression by miR-128-3p adsorption, which was confirmed via luciferase reporter assay and bioinformatics analysis. In vivo, exosomes containing a high concentration of mmu_circ_0000250 had a more therapeutic effect on wound healing when compared with wild-type exosomes from ADSCs. Immunohistochemistry and immunofluorescence detection showed that mmu_circ_0000250 increased angiopoiesis with exosome treatment in wound skin and suppressed apoptosis by autophagy activation. In conclusion, we verified that mmu_circ_0000250 enhanced the therapeutic effect of ADSC-exosomes to promote wound healing in diabetes by absorption of miR-128-3p and upregulation of SIRT1. Therefore, these findings advocate targeting the mmu_circ_0000250/miR-128-3p/SIRT1 axis as a candidate therapeutic option for diabetic ulcers.
Collapse
Affiliation(s)
- Rongfeng Shi
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yinpeng Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Weiwei Hu
- Science and Technology Innovation Center of Guangzhou University of Traditional Chinese Medicine, Guangzhou, People's Republic of China.,Sanyuanli Campus of Guangzhou University of Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Weishuai Lian
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Intervention Engineering, Tongji University, Shanghai, People's Republic of China
| | - Chuanwu Cao
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Intervention Engineering, Tongji University, Shanghai, People's Republic of China
| | - Shilong Han
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Intervention Engineering, Tongji University, Shanghai, People's Republic of China
| | - Suming Zhao
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Hongxin Yuan
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Xiaohu Yang
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China.,Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Hui Zhao
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| |
Collapse
|
102
|
Targeting the gut microbiota with resveratrol: a demonstration of novel evidence for the management of hepatic steatosis. J Nutr Biochem 2020; 81:108363. [PMID: 32388250 DOI: 10.1016/j.jnutbio.2020.108363] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/14/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022]
Abstract
Resveratrol is a natural polyphenol that has been reported to reduce the risk of obesity and nonalcoholic fatty liver disease (NAFLD). Recent evidence has demonstrated that the gut microbiota plays an important role in the protection against NAFLD and other metabolic diseases. The present study aimed to investigate the relationship between the gut microbiota and the beneficial effects of resveratrol on the amelioration of NAFLD in mice. We observed marked decreases in body weight and liver steatosis and improved insulin resistance in high-fat diet (HFD)-fed mice treated with resveratrol. Furthermore, we found that resveratrol treatment alleviated NAFLD in HFD-fed mice by improving the intestinal microenvironment, including gut barrier function and gut microbiota composition. On the one hand, resveratrol improved gut intestinal barrier integrity through the repair of intestinal mucosal morphology and increased the expression of physical barrier- and physiochemical barrier-related factors in HFD-fed mice. On the other hand, in HFD-fed mice, resveratrol supplementation modulated the gut bacterial composition. The resveratrol-induced gut microbiota was characterized by a decreased abundance of harmful bacteria, including Desulfovibrio, Lachnospiraceae_NK4A316_group and Alistipes, as well as an increased abundance of short-chain fatty acid (SCFA)-producing bacteria, such as Allobaculum, Bacteroides and Blautia. Moreover, transplantation of the HFDR-microbiota into HFD-fed mice sufficiently decreased body weight, liver steatosis and low-grade inflammation and improved hepatic lipid metabolism. Collectively, resveratrol would provide a potentially dietary intervention strategy against NAFLD through modulating the intestinal microenvironment.
Collapse
|
103
|
Natural antioxidants' effects on endoplasmic reticulum stress-related diseases. Food Chem Toxicol 2020; 138:111229. [PMID: 32105807 DOI: 10.1016/j.fct.2020.111229] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022]
Abstract
Endoplasmic reticulum (ER) stress is a normal molecular process induced by the over-accumulation of misfolded or unfolded proteins. ER stress induces the unfolded protein response (UPR), which reduces global protein synthesis, increases ER capacity and protein degradation, to restart ER homeostasis, allowing cell survival. However, the over-induction of UPR can also trigger inflammatory processes, tissue damage and cell death. ER stress is involved in several pathologies, like endothelial dysfunction, diabetes and heart, liver, kidney or neurological diseases. Although the progression of these diseases is the result of several pathological mechanisms, oxidative stress has been widely related to these pathologies. Moreover, ER stress can establish a progressive pathological cycle with oxidative stress. Therefore, the use of natural antioxidants, able to modulate both oxidative and ER stress, can be a new strategy to mitigate these diseases. This review is focused on the effects of natural antioxidant compounds on ER stress in endothelial dysfunction, diabetes and heart, liver, kidney or neurological diseases.
Collapse
|
104
|
Anti-aging Effects of Calorie Restriction (CR) and CR Mimetics based on the Senoinflammation Concept. Nutrients 2020; 12:nu12020422. [PMID: 32041168 PMCID: PMC7071238 DOI: 10.3390/nu12020422] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation, a pervasive feature of the aging process, is defined by a continuous, multifarious, low-grade inflammatory response. It is a sustained and systemic phenomenon that aggravates aging and can lead to age-related chronic diseases. In recent years, our understanding of age-related chronic inflammation has advanced through a large number of investigations on aging and calorie restriction (CR). A broader view of age-related inflammation is the concept of senoinflammation, which has an outlook beyond the traditional view, as proposed in our previous work. In this review, we discuss the effects of CR on multiple phases of proinflammatory networks and inflammatory signaling pathways to elucidate the basic mechanism underlying aging. Based on studies on senoinflammation and CR, we recognized that senescence-associated secretory phenotype (SASP), which mainly comprises cytokines and chemokines, was significantly increased during aging, whereas it was suppressed during CR. Further, we recognized that cellular metabolic pathways were also dysregulated in aging; however, CR mimetics reversed these effects. These results further support and enhance our understanding of the novel concept of senoinflammation, which is related to the metabolic changes that occur in the aging process. Furthermore, a thorough elucidation of the effect of CR on senoinflammation will reveal key insights and allow possible interventions in aging mechanisms, thus contributing to the development of new therapies focused on improving health and longevity.
Collapse
|
105
|
Yao Y. Ginsenosides reduce body weight and ameliorate hepatic steatosis in high fat diet‑induced obese mice via endoplasmic reticulum stress and p‑STAT3/STAT3 signaling. Mol Med Rep 2020; 21:1059-1070. [PMID: 32016448 PMCID: PMC7003045 DOI: 10.3892/mmr.2020.10935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022] Open
Abstract
Obesity has been increasing globally for over three decades. According to previous studies, dietary obesity is usually associated with endoplasmic reticulum stress (ERS) and STAT3 signaling, which result in interference with the homeostatic control of energy and lipid metabolism. Ginsenosides (GS) administered to mice will modulate adiposity and food intake; however, the mechanism of food inhibition is unknown. The aim of the present study was to investigate whether GS may inhibit ERS and regulate STAT3 phosphorylation in GT1‑7 cells (a mouse hypothalamus gonadotropin‑releasing hormone neuron cell line) and the hypothalamus in order to reduce the body weight and ameliorate hepatic steatosis in high fat diet (HFD)‑induced obese mice. In the present study, GS inhibited the appetite, reduced the body weight, visceral fat, body fat content and blood glucose, and ameliorated the glucose tolerance of the obese mice compared with HFD mice. In addition, the levels of aspartate aminotransferase and alanine aminotransferase, triglyceride (TG), leptin and insulin in the serum were reduced compared with HFD mice. There was less TG in the liver, but more in the feces compared with HFD mice. Using hematoxylin and eosin staining of HepG2 cells and liver tissues, GS were demonstrated to improve the non‑alcoholic fatty liver of the HFD‑induced obese mice and reduce the diameter of the fat cells compared with HFD mice. GS also increased oxygen consumption and carbon dioxide emissions in the metabolic cage data compared with HFD mice. In the GT1‑7 cells, GS alleviated the ERS induced by tunicamycin and enhanced the activation of the STAT3 phosphorylation pathway. Furthermore the ERS of the liver was relieved to achieve the aforementioned pharmacological effects. GS were used in the homeostatic control of the energy and lipid metabolism of a diet‑induced obesity model. In conclusion, present studies suggest that GS exert these effects by increasing STAT3 phosphorylation expression and reducing the ERS. Thus, GS reduce body weight and ameliorate hepatic steatosis in HFD‑induced obese mice.
Collapse
Affiliation(s)
- Yin Yao
- Department of Traditional Chinese Medicine Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, P.R. China
| |
Collapse
|
106
|
Chinese Herbal Medicine Formula Shenling Baizhu San Ameliorates High-Fat Diet-Induced NAFLD in Rats by Modulating Hepatic MicroRNA Expression Profiles. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2019:8479680. [PMID: 31915454 PMCID: PMC6935448 DOI: 10.1155/2019/8479680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
Abstract
Objective The purpose of present study was to investigate the potential mechanism underlying the protective effect of Shenling Baizhu San (SLBZS) on nonalcoholic fatty liver disease (NAFLD) by microRNA (miRNA) sequencing. Methods Thirty male Wistar rats were randomly divided into a normal control (NC) group, a high-fat diet (HFD) group, and an SLBZS group. After 12 weeks, the biochemical parameters and liver histologies of the rats were assessed. The Illumina HiSeq 2500 sequencing platform was used to analyse the hepatic miRNA expression profiles. Representative differentially expressed miRNAs were further validated by qRT-PCR. The functions of the differentially expressed miRNAs were analysed by bioinformatics. Results Our results identified 102 miRNAs that were differentially expressed in the HFD group compared with the NC group. Among those differentially expressed miRNAs, the expression levels of 28 miRNAs were reversed by SLBZS administration, suggesting the modulation effect of SLBZS on hepatic miRNA expression profiles. The qRT-PCR results confirmed that the expression levels of miR-155-5p, miR-146b-5p, miR-132-3p, and miR-34a-5p were consistent with those detected by sequencing. Bioinformatics analyses indicated that the target genes of the differentially expressed miRNAs reversed by SLBZS were mainly related to metabolic pathways. Conclusion This study provides novel insights into the mechanism of SLBZS in protecting against NAFLD; this mechanism may be partly related to the modulation of hepatic miRNA expression and their target pathways.
Collapse
|
107
|
Vega-Martín E, González-Blázquez R, Manzano-Lista FJ, Martín-Ramos M, García-Prieto CF, Viana M, Rubio MA, Calle-Pascual AL, Lionetti L, Somoza B, Fernández-Alfonso MS, Alcalá M, Gil-Ortega M. Impact of caloric restriction on AMPK and endoplasmic reticulum stress in peripheral tissues and circulating peripheral blood mononuclear cells from Zucker rats. J Nutr Biochem 2020; 78:108342. [PMID: 32004927 DOI: 10.1016/j.jnutbio.2020.108342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
The activation of endoplasmic reticulum (ER) stress and a reduction of AMP-dependent protein kinase (AMPK) phosphorylation have been described in obesity. We hypothesize that a moderate caloric restriction (CR) might contribute to reducing ER stress and increasing AMPK phosphorylation in peripheral tissues from genetically obese Zucker fa/fa rats and in peripheral blood mononuclear cells (PBMCs). Zucker Lean and Zucker fa/fa rats were fed with chow diet either ad libitum (AL) (C, as controls) or 80% of AL (CR) for 2 weeks, giving rise to four experimental groups: Lean C, Lean CR, fa/fa C and fa/fa CR. CR significantly increased AMPK phosphorylation in the liver, perirenal adipose tissue (PRAT) and PBMCs from fa/fa rats but not in the subcutaneous AT (SCAT), suggesting a reduced response of SCAT to CR. Liver samples of fa/fa rats exhibited an increased mRNA expression of PERK, EIF-2α, XBP-1(s), Chop and caspase 3, which was significantly reduced by CR. PRAT exhibited an overexpression of Edem and PDIA-4 in fa/fa rats, but only PDIA-4 expression was reduced by CR. eIF-2α phosphorylation was significantly increased in all studied tissues from fa/fa rats and reduced by CR. A negative correlation was detected between p-AMPK and p-eIF-2α in the liver, PRAT and PBMCs from fa/fa rats but not in SCAT. This study shows that a moderate CR reduces ER stress and improves AMPK phosphorylation in several peripheral tissues and in circulating PBMCs, suggesting that alterations observed in PBMCs could reflect metabolic alterations associated with obesity.
Collapse
Affiliation(s)
- Elena Vega-Martín
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Francisco J Manzano-Lista
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Miriam Martín-Ramos
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Concepción F García-Prieto
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Miguel A Rubio
- Department of Endocrinology and Nutrition, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Facultad de Medicina, Complutense University, C/ Prof. Martin Lagos s/n, 28040 Madrid, Spain
| | - Alfonso L Calle-Pascual
- Department of Endocrinology and Nutrition, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Facultad de Medicina, Complutense University, C/ Prof. Martin Lagos s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Lillà Lionetti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain.
| |
Collapse
|
108
|
Milton-Laskibar I, Aguirre L, Gómez-Zorita S, Rolo AP, Portillo MP. The influence of dietary conditions in the effects of resveratrol on hepatic steatosis. Food Funct 2020; 11:9432-9444. [DOI: 10.1039/d0fo01943g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the major cause for the development of chronic liver alterations.
Collapse
Affiliation(s)
- I. Milton-Laskibar
- Nutrition and Obesity group
- Department of Nutrition and Food Science
- Faculty of Pharmacy
- University of the Basque Country (UPV/EHU)
- Lucio Lascaray Research Center
| | - L. Aguirre
- Nutrition and Obesity group
- Department of Nutrition and Food Science
- Faculty of Pharmacy
- University of the Basque Country (UPV/EHU)
- Lucio Lascaray Research Center
| | - S. Gómez-Zorita
- Nutrition and Obesity group
- Department of Nutrition and Food Science
- Faculty of Pharmacy
- University of the Basque Country (UPV/EHU)
- Lucio Lascaray Research Center
| | - A. P. Rolo
- Department of Life Sciences
- Faculty of Sciences and Technology
- University of Coimbra
- Coimbra
- Portugal
| | - M. P. Portillo
- Nutrition and Obesity group
- Department of Nutrition and Food Science
- Faculty of Pharmacy
- University of the Basque Country (UPV/EHU)
- Lucio Lascaray Research Center
| |
Collapse
|
109
|
Signaling Network of Forkhead Family of Transcription Factors (FOXO) in Dietary Restriction. Cells 2019; 9:cells9010100. [PMID: 31906091 PMCID: PMC7016766 DOI: 10.3390/cells9010100] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/25/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023] Open
Abstract
Dietary restriction (DR), which is defined as a reduction of particular or total nutrient intake without causing malnutrition, has been proved to be a robust way to extend both lifespan and health-span in various species from yeast to mammal. However, the molecular mechanisms by which DR confers benefits on longevity were not yet fully elucidated. The forkhead box O transcription factors (FOXOs), identified as downstream regulators of the insulin/IGF-1 signaling pathway, control the expression of many genes regulating crucial biological processes such as metabolic homeostasis, redox balance, stress response and cell viability and proliferation. The activity of FOXOs is also mediated by AMP-activated protein kinase (AMPK), sirtuins and the mammalian target of rapamycin (mTOR). Therefore, the FOXO-related pathways form a complex network critical for coordinating a response to environmental fluctuations in order to maintain cellular homeostasis and to support physiological aging. In this review, we will focus on the role of FOXOs in different DR interventions. As different DR regimens or calorie (energy) restriction mimetics (CRMs) can elicit both distinct and overlapped DR-related signaling pathways, the benefits of DR may be maximized by combining diverse forms of interventions. In addition, a better understanding of the precise role of FOXOs in different mechanistic aspects of DR response would provide clear cellular and molecular insights on DR-induced increase of lifespan and health-span.
Collapse
|
110
|
Ardid-Ruiz A, Ibars M, Mena P, Del Rio D, Muguerza B, Arola L, Aragonès G, Suárez M. Resveratrol Treatment Enhances the Cellular Response to Leptin by Increasing OBRb Content in Palmitate-Induced Steatotic HepG2 Cells. Int J Mol Sci 2019; 20:ijms20246282. [PMID: 31842467 PMCID: PMC6941089 DOI: 10.3390/ijms20246282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
The interaction of leptin with its hepatic longest receptor (OBRb) promotes the phosphorylation of signal transducer and activator of transcription-3 (STAT3), protecting the liver from lipid accumulation. However, leptin signalling is disrupted in hepatic steatosis, causing leptin resistance. One promising strategy to combat this problem is the use of bioactive compounds such as polyphenols. Since resveratrol (RSV) is a modulator of lipid homeostasis in the liver, we investigated whether treatment with different doses of RSV restores appropriate leptin action and fat accumulation in palmitate-induced steatotic human hepatoma (HepG2) cells. Both RSV metabolism and the expression of molecules implicated in leptin signalling were analysed. RSV at a 10 μM concentration was entirely metabolized to resveratrol-3-sulfate after 24 and counteracted leptin resistance by increasing the protein levels of OBRb. In addition, RSV downregulated the expression of lipogenic genes including fatty acid synthase (Fas) and stearoyl-CoA desaturase-1 (Scd1) without any significant change in Sirtuin-1 (SIRT1) enzymatic activity. These results demonstrate that RSV restored leptin sensitivity in a cellular model of hepatic steatosis in a SIRT1-independent manner.
Collapse
Affiliation(s)
- Andrea Ardid-Ruiz
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Maria Ibars
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Veterinary Medicine, University of Parma, 43125 Parma, Italy
- School of Advanced Studies on Food and Nutrition, University of Parma, 43215 Parma, Italy
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Eurecat, Centre Tecnològic de Catalunya, Biotechnological Area, 43204 Reus, Spain
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence: ; Tel.: +34-977-558-188
| | - Manuel Suárez
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
111
|
Wu X, Xu N, Li M, Huang Q, Wu J, Gan Y, Chen L, Luo H, Li Y, Huang X, Su Z, Liu Y. Protective Effect of Patchouli Alcohol Against High-Fat Diet Induced Hepatic Steatosis by Alleviating Endoplasmic Reticulum Stress and Regulating VLDL Metabolism in Rats. Front Pharmacol 2019; 10:1134. [PMID: 31632274 PMCID: PMC6779828 DOI: 10.3389/fphar.2019.01134] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most common chronic hepatic disorder worldwide. The earliest stage of NAFLD is simple steatosis, which is characterized by the accumulation of triglycerides in hepatocytes. Inhibition of steatosis is a potential treatment for NAFLD. Patchouli alcohol (PA) is an active component of Pogostemon cablin (Blanco) Benth. (Labiatae), which is a medicinal food in Asia countries and proved to possess hepatoprotective effect. This research aimed to investigate the effectiveness of PA against high fat diet (HFD)-induced hepatic steatosis in rats. In this study, male Sprague Dawley rats were fed a HFD for 4 weeks to induce NAFLD. Oral administration with PA significantly reduced pathological severity of steatosis in HFD-fed rats. It was associated with suppressing endoplasmic reticulum (ER) stress and regulating very low-density lipoprotein (VLDL) metabolism. Our data showed that PA treatment effectively attenuated ER stress by inhibiting the activation of protein kinase-like ER kinase (PERK), inositol-requiring transmembrane kinase/endoribonuclease 1 (IRE1), and activating transcription factor 6 (ATF6). Moreover, PA decreased hepatic VLDL uptake by suppressing very low-density lipoprotein receptor (VLDLR) expression. It also restored VLDL synthesis and export by increasing apolipoprotein B100 (apoB 100) secretion and microsomal triglyceride-transfer protein (MTP) activity. Taken together, PA exerted a protective effect on the treatment of NAFLD in HFD-fed rats and may be potential therapeutic agent acting on hepatic steatosis.
Collapse
Affiliation(s)
- Xue Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nan Xu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minyao Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qionghui Huang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiazhen Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuxuan Gan
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liping Chen
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huijuan Luo
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yucui Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqi Huang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuhong Liu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
112
|
Stacchiotti A, Grossi I, García-Gómez R, Patel GA, Salvi A, Lavazza A, De Petro G, Monsalve M, Rezzani R. Melatonin Effects on Non-Alcoholic Fatty Liver Disease Are Related to MicroRNA-34a-5p/Sirt1 Axis and Autophagy. Cells 2019; 8:cells8091053. [PMID: 31500354 PMCID: PMC6770964 DOI: 10.3390/cells8091053] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Melatonin, an indole produced by pineal and extrapineal tissues, but also taken with a vegetarian diet, has strong anti-oxidant, anti-inflammatory and anti-obesogenic potentials. Non-alcoholic fatty liver disease (NAFLD) is the hepatic side of the metabolic syndrome. NAFLD is a still reversible phase but may evolve into steatohepatitis (NASH), cirrhosis and carcinoma. Currently, an effective therapy for blocking NAFLD staging is lacking. Silent information regulator 1 (SIRT1), a NAD+ dependent histone deacetylase, modulates the energetic metabolism in the liver. Micro-RNA-34a-5p, a direct inhibitor of SIRT1, is an emerging indicator of NAFLD grading. Thus, here we analyzed the effects of oral melatonin against NAFLD and underlying molecular mechanisms, focusing on steatosis, ER stress, mitochondrial shape and autophagy. Male C57BL/6J (WT) and SIRT1 heterozygous (HET) mice were placed either on a high-fat diet (58.4% energy from lard) (HFD) or on a standard maintenance diet (8.4% energy from lipids) for 16 weeks, drinking melatonin (10 mg/kg) or not. Indirect calorimetry, glucose tolerance, steatosis, inflammation, ER stress, mitochondrial changes, autophagy and microRNA-34a-5p expression were estimated. Melatonin improved hepatic metabolism and steatosis, influenced ER stress and mitochondrial shape, and promoted autophagy in WT HFD mice. Conversely, melatonin was ineffective in HET HFD mice, maintaining NASH changes. Indeed, autophagy was inconsistent in HET HFD or starved mice, as indicated by LC3II/LC3I ratio, p62/SQSTM1 and autophagosomes estimation. The beneficial role of melatonin in dietary induced NAFLD/NASH in mice was related to reduced expression of microRNA-34a-5p and sterol regulatory element-binding protein (SREBP1) but only in the presence of full SIRT1 availability.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartmental University Center of Research "Adaptation and Regeneration of Tissues and Organs (ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Ilaria Grossi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Raquel García-Gómez
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), 28029 Madrid, Spain.
| | | | - Alessandro Salvi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Antonio Lavazza
- Instituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagna (IZSLER), 25124 Brescia, Italy.
| | - Giuseppina De Petro
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), 28029 Madrid, Spain.
| | - Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartmental University Center of Research "Adaptation and Regeneration of Tissues and Organs (ARTO)", University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
113
|
Hunt NJ, Kang SWS, Lockwood GP, Le Couteur DG, Cogger VC. Hallmarks of Aging in the Liver. Comput Struct Biotechnol J 2019; 17:1151-1161. [PMID: 31462971 PMCID: PMC6709368 DOI: 10.1016/j.csbj.2019.07.021] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
While the liver demonstrates remarkable resilience during aging, there is growing evidence that it undergoes all the cellular hallmarks of aging, which increases the risk of liver and systemic disease. The aging process in the liver is driven by alterations of the genome and epigenome that contribute to dysregulation of mitochondrial function and nutrient sensing pathways, leading to cellular senescence and low-grade inflammation. These changes promote multiple phenotypic changes in all liver cells (hepatocytes, liver sinusoidal endothelial, hepatic stellate and Küpffer cells) and impairment of hepatic function. In particular, age-related changes in the liver sinusoidal endothelial cells are a significant but under-recognized risk factor for the development of age-related cardiometabolic disease. Liver aging is driven by transcription and metabolic epigenome alterations. This leads to cellular senescence and low-grade inflammation. Hepatocyte, sinusoidal endothelial, stellate and Küpffer cells undergoes the hallmarks of aging. Each cell type demonstrates phenotypical cellular changes with age.
Collapse
Key Words
- AMPK, 5′ adenosine monophosphate-activated protein kinase
- CR, caloric restriction
- Endothelial
- FOXO, forkhead box O
- Genetic
- HSC, hepatic stellate cell
- Hepatocyte
- IGF-1, insulin like growth factor 1
- IL-6, interleukin 6
- IL-8, interleukin 8
- KC, Küpffer cell
- LSEC, liver sinusoidal endothelial cell
- Mitochondrial dysfunction
- NAD, nicotinamide adenine dinucleotide
- NAFLD, non-alcoholic fatty liver disease
- NO, nitric oxide
- Nutrient sensing pathways
- PDGF, platelet derived growth factor
- PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1-α
- ROS, reactive oxygen species
- SIRT1, sirtuin 1
- Senescence
- TNFα, tumor necrosis factor alpha
- VEGF, vascular endothelial growth factor
- mTOR, mammalian target of rapamycin
- miR, microRNA
- αSMA, alpha smooth muscle actin
Collapse
Affiliation(s)
- Nicholas J Hunt
- ANZAC Research Institute, Aging and Alzheimer's Institute, Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW, Australia.,The University of Sydney, Concord Clinical School, Sydney Medical School, Sydney, NSW, Australia.,The University of Sydney, Nutrition Ecology, Charles Perkins Centre, Sydney, NSW, Australia
| | - Sun Woo Sophie Kang
- ANZAC Research Institute, Aging and Alzheimer's Institute, Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW, Australia.,The University of Sydney, Nutrition Ecology, Charles Perkins Centre, Sydney, NSW, Australia
| | - Glen P Lockwood
- ANZAC Research Institute, Aging and Alzheimer's Institute, Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW, Australia.,The University of Sydney, Nutrition Ecology, Charles Perkins Centre, Sydney, NSW, Australia
| | - David G Le Couteur
- ANZAC Research Institute, Aging and Alzheimer's Institute, Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW, Australia.,The University of Sydney, Concord Clinical School, Sydney Medical School, Sydney, NSW, Australia.,The University of Sydney, Nutrition Ecology, Charles Perkins Centre, Sydney, NSW, Australia
| | - Victoria C Cogger
- ANZAC Research Institute, Aging and Alzheimer's Institute, Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW, Australia.,The University of Sydney, Concord Clinical School, Sydney Medical School, Sydney, NSW, Australia.,The University of Sydney, Nutrition Ecology, Charles Perkins Centre, Sydney, NSW, Australia
| |
Collapse
|
114
|
Olivares-Marin IK, González-Hernández JC, Madrigal-Perez LA. Resveratrol cytotoxicity is energy-dependent. J Food Biochem 2019; 43:e13008. [PMID: 31385323 DOI: 10.1111/jfbc.13008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/03/2019] [Accepted: 07/21/2019] [Indexed: 12/16/2022]
Abstract
Resveratrol is a phytochemical that may promote health. However, it has also been reported to be a toxic compound. The molecular mechanism by which resveratrol acts remains unclear. The inhibition of the oxidative phosphorylation (OXPHOS) pathway appears to be the molecular mechanism of resveratrol. Taking this into account, we propose that the cytotoxic properties of resveratrol depend on the energy (e.g., carbohydrates, lipids, and proteins) availability in the cells. In this regard, in a condition with low energy accessibility, resveratrol could enhance ATP starvation to lethal levels. In contrast, when cells are supplemented with high quantities of energy and resveratrol, the inhibition of OXPHOS might produce a low-energy environment, mimicking the beneficial effects of caloric restriction. This review suggests that investigating a possible complex relationship between caloric intake and the differential effects of resveratrol on OXPHOS may be justified. PRACTICAL APPLICATIONS: A low-calorie diet accompanied by significant levels of resveratrol might modify cellular bioenergetics, which could impact cellular viability and enhance the anti-cancer properties of resveratrol.
Collapse
Affiliation(s)
| | | | - Luis Alberto Madrigal-Perez
- Laboratorio de Biotecnología Microbiana, Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Mexico
| |
Collapse
|
115
|
Li S, Yu W, Guan X, Huang K, Liu J, Liu D, Duan R. Effects of millet whole grain supplementation on the lipid profile and gut bacteria in rats fed with high-fat diet. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
116
|
Xia HM, Wang J, Xie XJ, Xu LJ, Tang SQ. Green tea polyphenols attenuate hepatic steatosis, and reduce insulin resistance and inflammation in high-fat diet-induced rats. Int J Mol Med 2019; 44:1523-1530. [PMID: 31364723 DOI: 10.3892/ijmm.2019.4285] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/04/2019] [Indexed: 11/05/2022] Open
Abstract
Non‑alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, insulin resistance and inflammation; however, the exact pathogenesis of NAFLD is not fully understood. Green tea polyphenols (GTP) exhibit beneficial effects against metabolic syndrome. However, the effect of GTP on NAFLD remains largely unknown. The aim of the present study was to investigate the effects of GTP on NAFLD in high‑fat diet (HFD)‑induced rats. The NAFLD rat model was induced with a HFD for 8 weeks. A total of 30 adult male Sprague Dawley rats were randomly divided into three groups: i) Normal control group; ii) HFD group; and iii) HFD with GTP group. Hematoxylin and eosin and Oil Red O analyses were performed. The levels of alanine aminotransferase (ALT), aspartate amino-transferase (AST) and inflammatory cytokines in the serum, as well as oxidative stress markers and hepatic lipids in the liver were measured. In addition, parameters associated with glucose metabolism were also assessed. Western blotting and RT‑qPCR were used to determine the expression levels of 5' adenosine monophosphate‑activated protein kinase (AMPK). HFD‑induced rats exhibited features associated with NAFLD. GTP intervention significantly reduced serum ALT and AST levels. Fasting serum glucose, insulin resistance and hepatic lipid levels were all decreased in the GTP‑treated rats. GTP also significantly decreased the levels of TNF‑α, IL‑6 and malondialdehyde. In contrast, superoxide dismutase levels were increased in the liver. Furthermore, GTP also significantly increased phosphorylation of AMPK and attenuated histopathological changes indicative of injury in liver tissue. GTP has a protective effect on HFD‑induced hepatic steatosis, insulin resistance and inflammation, and the underlying mechanism may involve the AMPK pathway.
Collapse
Affiliation(s)
- Hong-Miao Xia
- Medical Examination Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin Wang
- Medical Examination Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao-Jie Xie
- Medical Examination Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li-Juan Xu
- Medical Examination Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shi-Qi Tang
- Medical Examination Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
117
|
Xu J, Chen Y, Xing Y, Ye S. Metformin inhibits high glucose-induced mesangial cell proliferation, inflammation and ECM expression through the SIRT1-FOXO1-autophagy axis. Clin Exp Pharmacol Physiol 2019; 46:813-820. [PMID: 31267567 DOI: 10.1111/1440-1681.13120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
Abstract
The aim of this study was to investigate the role of metformin in high glucose-induced mesangial cell proliferation, inflammation and extracellular matrix (ECM) accumulation and to elucidate the underlying mechanism of metformin function. An MTT assay was used to examine rat mesangial cell (RMC) proliferation. The levels of TNF-α, IL-6 and TGF-β in RMCs were determined by ELISA. The protein expression of fibronectin, collagen IV and autophagy-related proteins (Beclin-1, LC3-I and LC3-II) in RMCs was detected using western blot. Fluorescence microscopy analysis was carried out to evaluate RMC autophagy. Our results showed that high glucose-induced RMC proliferation, inflammation and ECM expression, but these effects were markedly reduced by metformin. We confirmed that metformin suppressed high glucose-induced RMC proliferation, inflammation and ECM expression via induction of autophagy. Mechanistic investigation demonstrated an axis of SIRT1-FOXO1 in RMC autophagy. Our data indicated that metformin inhibits high glucose-induced mesangial cell proliferation, inflammation and ECM expression through a SIRT1-FOXO1-autophagy axis.
Collapse
Affiliation(s)
- Jiang Xu
- School of Medicine, Shandong University, Jinan, China.,Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Chen
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Xing
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shandong Ye
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
118
|
Li Z, Li Y, Zhang HX, Guo JR, Lam CWK, Wang CY, Zhang W. Mitochondria-Mediated Pathogenesis and Therapeutics for Non-Alcoholic Fatty Liver Disease. Mol Nutr Food Res 2019; 63:e1900043. [PMID: 31199058 DOI: 10.1002/mnfr.201900043] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/03/2019] [Indexed: 12/28/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a worldwide epidemic over the last decade. Remarkable progress has been made in understanding the pathogenesis of NAFLD and, subsequently, in developing medications to treat this disease. Although the mechanisms of NAFLD are complex and multifactorial, accumulating and emerging evidence indicates that mitochondria play a critical role in the pathogenesis and progression of NAFLD. Pharmacologic therapies acting on mitochondria may therefore pave the way to novel strategies for the prevention and protection against NAFLD. This review focuses on new insights into the role of hepatic mitochondrial dysfunction in NAFLD, and summarizes recent studies on mitochondria-centric therapies for NAFLD utilizing new medications or repurposing of currently available drugs. Although some studies presented may feature controversial results or are still in lack of clinical verification, it is undoubted that medications that may spare the mitochondria from multiple levels of damage are highly promising, and have begun to be used with some degree of success.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Yan Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Hui-Xia Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Jian-Ru Guo
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Cai-Yun Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
119
|
de Freitas Carvalho MM, Lage NN, de Souza Paulino AH, Pereira RR, de Almeida LT, da Silva TF, de Brito Magalhães CL, de Lima WG, Silva ME, Pedrosa ML, da Costa Guerra JF. Effects of açai on oxidative stress, ER stress, and inflammation-related parameters in mice with high fat diet-fed induced NAFLD. Sci Rep 2019; 9:8107. [PMID: 31147590 PMCID: PMC6542795 DOI: 10.1038/s41598-019-44563-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most predominant liver disease worldwide, is a progressive condition that encompasses a spectrum of disorders ranging from steatosis to steatohepatitis, and, ultimately, cirrhosis and hepatocellular carcinoma. Although the underlying mechanism is complex and multifactorial, several intracellular events leading to its progression have been identified, including oxidative stress, inflammation, mitochondrial dysfunction, apoptosis, and altered endoplasmic reticulum (ER) homeostasis. Phenolic compounds, such as those present in açai (Euterpe oleracea Mart.), are considered promising therapeutic agents due to their possible beneficial effects on the prevention and treatment of NAFLD. We tested in vitro effects of aqueous açai extract (AAE) in HepG2 cells and its influence on oxidative stress, endoplasmic reticulum stress, and inflammation in a murine model of high fat diet-induced NAFLD. In vitro AAE exhibited high antioxidant capacity, high potential to inhibit reactive oxygen species production, and no cytotoxicity. In vivo, AAE administration (3 g/kg) for six weeks attenuated liver damage (alanine aminotransferase levels), inflammatory process (number of inflammatory cells and serum TNFα), and oxidative stress, through the reduction of lipid peroxidation and carbonylation of proteins determined by OxyBlot and modulation of the antioxidant enzymes: glutathione reductase, SOD and catalase. No change was observed in collagen content indicating an absence of fibrosis, stress-related genes in RE, and protein expression of caspase-3, a marker of apoptosis. With these results, we provide evidence that açai exhibits hepatoprotective effects and may prevent the progression of liver damage related to NAFLD by targeting pathways involved in its progression.
Collapse
Affiliation(s)
- Mayara Medeiros de Freitas Carvalho
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Nara Nunes Lage
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Alice Helena de Souza Paulino
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Renata Rebeca Pereira
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Letícia Trindade de Almeida
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Tales Fernando da Silva
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Cíntia Lopes de Brito Magalhães
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Wanderson Geraldo de Lima
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Marcelo Eustáquio Silva
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Department of Foods, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Maria Lucia Pedrosa
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | |
Collapse
|
120
|
Yu WG, He Y, Chen YF, Gao XY, Ning WE, Liu CY, Tang TF, Liu Q, Huang XC. Fumigaclavine C attenuates adipogenesis in 3T3-L1 adipocytes and ameliorates lipid accumulation in high-fat diet-induced obese mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:161-169. [PMID: 31080347 PMCID: PMC6488706 DOI: 10.4196/kjpp.2019.23.3.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/05/2018] [Accepted: 08/13/2018] [Indexed: 01/17/2023]
Abstract
Fumigaclavine C (FC), an active indole alkaloid, is obtained from endophytic Aspergillus terreus (strain No. FC118) by the root of Rhizophora stylosa (Rhizophoraceae). This study is designed to evaluate whether FC has anti-adipogenic effects in 3T3-L1 adipocytes and whether it ameliorates lipid accumulation in high-fat diet (HFD)-induced obese mice. FC notably increased the levels of glycerol in the culture supernatants and markedly reduced lipid accumulation in 3T3-L1 adipocytes. FC differentially inhibited the expressions of adipogenesis-related genes, including the peroxisome proliferator-activated receptor proteins, CCAAT/enhancer-binding proteins, and sterol regulatory element-binding proteins. FC markedly reduced the expressions of lipid synthesis-related genes, such as the fatty acid binding protein, lipoprotein lipase, and fatty acid synthase. Furthermore, FC significantly increased the expressions of lipolysis-related genes, such as the hormone-sensitive lipase, Aquaporin-7, and adipose triglyceride lipase. In HFD-induced obese mice, intraperitoneal injections of FC decreased both the body weight and visceral adipose tissue weight. FC administration significantly reduced lipid accumulation. Moreover, FC could dose-dependently and differentially regulate the expressions of lipid metabolism-related transcription factors. All these data indicated that FC exhibited anti-obesity effects through modulating adipogenesis and lipolysis.
Collapse
Affiliation(s)
- Wan-Guo Yu
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.,Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
| | - Yun He
- Gastroenterology Department, Liuzhou General Hospital, Liuzhou 545006, Guangxi, China
| | - Yun-Fang Chen
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.,Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
| | - Xiao-Yao Gao
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.,Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
| | - Wan-E Ning
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.,Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
| | - Chun-You Liu
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.,Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
| | - Ting-Fan Tang
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.,Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
| | - Quan Liu
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.,Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
| | - Xiao-Cheng Huang
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.,Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
| |
Collapse
|
121
|
Wang C, Chi J, Che K, Ma X, Qiu M, Wang Z, Wang Y. The combined effect of mesenchymal stem cells and resveratrol on type 1 diabetic neuropathy. Exp Ther Med 2019; 17:3555-3563. [PMID: 30988737 PMCID: PMC6447822 DOI: 10.3892/etm.2019.7383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/30/2018] [Indexed: 01/09/2023] Open
Abstract
Diabetic neuropathy (DN) is one of the most common diabetic complications that results in an increase in patient discomfort and pain. The present study demonstrated that mesenchymal stem cells (MSCs) or resveratrol (RSV) may improve diabetic hyperglycemia and neuropathy. The aim of the present study was to investigate the combined effect of MSCs and RSV on DN. A total of 100 non-obese diabetic mice were divided into the following six groups: Normal control, MSCs, RSV, MSCs + RSV, insulin and diabetic control groups. Following homologous therapy, the levels of blood glucose and C-peptide, islets, nuclear factor (NF)-κB, nerve growth factor (NGF) and myelin basic protein (MBP), and the sciatic nerve structure in each group were examined and evaluated. Following the administration of therapy, the levels of blood glucose and C-peptide in mice in the MSCs + RSV group were significantly improved when compared with the other diabetic groups, and the dosage of insulin therapy required was the lowest among the six experimental groups (P<0.05). The levels of NGF, MBP and NF-κB in the MSCs + RSV group were significantly improved compared with the MSCs and RSV groups (P<0.05). Furthermore, the diameter of the axon, number of myelinated nerve fibers and the depth of the myelin sheath in the MSCs + RSV group were greatest among the five examined groups (excluding the control). The combination of RSV and MSCs could relieve hyperglycemia and improve DN. This indicated that the combination of RSV and MSCs may be a novel therapeutic method for the treatment of DN.
Collapse
Affiliation(s)
- Chen Wang
- Endocrinology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jingwei Chi
- Laboratory of Thyroid Disease, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Kui Che
- Laboratory of Thyroid Disease, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiaolong Ma
- Endocrinology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Mingyue Qiu
- Endocrinology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zhongchao Wang
- Endocrinology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yangang Wang
- Endocrinology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
122
|
Tomaipitinca L, Mandatori S, Mancinelli R, Giulitti F, Petrungaro S, Moresi V, Facchiano A, Ziparo E, Gaudio E, Giampietri C. The Role of Autophagy in Liver Epithelial Cells and Its Impact on Systemic Homeostasis. Nutrients 2019; 11:nu11040827. [PMID: 30979078 PMCID: PMC6521167 DOI: 10.3390/nu11040827] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy plays a role in several physiological and pathological processes as it controls the turnover rate of cellular components and influences cellular homeostasis. The liver plays a central role in controlling organisms’ metabolism, regulating glucose storage, plasma proteins and bile synthesis and the removal of toxic substances. Liver functions are particularly sensitive to autophagy modulation. In this review we summarize studies investigating how autophagy influences the hepatic metabolism, focusing on fat accumulation and lipids turnover. We also describe how autophagy affects bile production and the scavenger function within the complex homeostasis of the liver. We underline the role of hepatic autophagy in counteracting the metabolic syndrome and the associated cardiovascular risk. Finally, we highlight recent reports demonstrating how the autophagy occurring within the liver may affect skeletal muscle homeostasis as well as different extrahepatic solid tumors, such as melanoma.
Collapse
Affiliation(s)
- Luana Tomaipitinca
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Sara Mandatori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Federico Giulitti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Simonetta Petrungaro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Viviana Moresi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata IDI-IRCCS, 00167 Rome, Italy.
| | - Elio Ziparo
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Claudia Giampietri
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
123
|
Ding S, Yuan C, Si B, Wang M, Da S, Bai L, Wu W. Combined effects of ambient particulate matter exposure and a high-fat diet on oxidative stress and steatohepatitis in mice. PLoS One 2019; 14:e0214680. [PMID: 30921449 PMCID: PMC6438678 DOI: 10.1371/journal.pone.0214680] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chronic exposure to ambient particulate matter with aerodynamic diameters < 2.5 (PM2.5) induces oxidative injury and liver pathogenesis. The present study assessed the effect and mechanism of long-term, real-world airborne particulate matter (PM) exposure on oxidative stress and hepatic steatosis in the context of a standard chow diet (STD) and a high-fat diet (HFD); the study further explored whether a combination of PM exposure and HFD treatment exacerbates the adverse effects in mice. METHODS C57BL/6J mice fed with STD or HFD (41.26% kcal fat) were exposed to PM or filtered air (FA) for 5 months. Lipid metabolism, oxidative stress and liver pathogenesis were evaluated. Real-time PCR and western blotting were performed to determine gene expression and molecular signal transduction in liver. RESULTS Chronic airborne PM exposure impaired oxidative homeostasis, caused inflammation and induced hepatic steatosis in mice. Further investigation found that exposure to real-world PM increased the expression of hepatic Nrf2 and Nrf2-regulated antioxidant enzyme gene. The increased protein expression of the sterol regulatory element binding protein-1c (SREBP-1c) and fatty acid synthase (FAS) in the liver were also observed in PM-exposed groups. Furthermore, the combination of PM exposure and HFD treatment caused a synergistic effect on the changes of lipid accumulation oxidative stress, inflammation in the mouse liver. CONCLUSIONS Through in vivo study, we reveal that the combination of real-world ambient PM exposure and HFD treatment aggravates hepatic lipid metabolism disorders, inflammation and oxidative stress. PM exposure may accelerate the progression to non-alcoholic steatohepatitis by regulating SREBP-1c/FAS regulatory axis.
Collapse
Affiliation(s)
- Shibin Ding
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, PR China
- * E-mail:
| | - Chunyan Yuan
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Bingjie Si
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Mengruo Wang
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Shuyan Da
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Lanxin Bai
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Weidong Wu
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| |
Collapse
|
124
|
Jang YJ, Kim JH, Byun S. Modulation of Autophagy for Controlling Immunity. Cells 2019; 8:cells8020138. [PMID: 30744138 PMCID: PMC6406335 DOI: 10.3390/cells8020138] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an essential process that maintains physiological homeostasis by promoting the transfer of cytoplasmic constituents to autophagolysosomes for degradation. In immune cells, the autophagy pathway plays an additional role in facilitating proper immunological functions. Specifically, the autophagy pathway can participate in controlling key steps in innate and adaptive immunity. Accordingly, alterations in autophagy have been linked to inflammatory diseases and defective immune responses against pathogens. In this review, we discuss the various roles of autophagy signaling in coordinating immune responses and how these activities are connected to pathological conditions. We highlight the therapeutic potential of autophagy modulators that can impact immune responses and the mechanisms of action responsible.
Collapse
Affiliation(s)
- Young Jin Jang
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanjugun55365, Korea.
| | - Jae Hwan Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
| | - Sanguine Byun
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea.
| |
Collapse
|
125
|
López-Domènech S, Abad-Jiménez Z, Iannantuoni F, de Marañón AM, Rovira-Llopis S, Morillas C, Bañuls C, Víctor VM, Rocha M. Moderate weight loss attenuates chronic endoplasmic reticulum stress and mitochondrial dysfunction in human obesity. Mol Metab 2019; 19:24-33. [PMID: 30385096 PMCID: PMC6323177 DOI: 10.1016/j.molmet.2018.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE In obese patients undergoing caloric restriction, there are several potential mechanisms involved in the improvement of metabolic outcomes. The present study further explores whether caloric restriction can modulate endoplasmic reticulum (ER) stress and mitochondrial function, as both are known to be mechanisms underlying inflammation and insulin resistance (IR) during obesity. METHODS A total of 64 obese patients with BMI ≥35 kg/m2 underwent a dietary program consisting of 6 weeks of a very-low-calorie diet followed by 18 weeks of low-calorie diet. We evaluated changes in the metabolic and inflammatory markers -TNFα, hsCRP, complement component 3 (C3c), and retinol binding protein 4 (RBP4)-, in the ER stress markers and modulators -eIF2α-P, sXBP1, ATF6, JNK-P, CHOP, GRP78, and SIRT1-, and in mitochondrial function parameters -mitochondrial reactive oxygen species (mROS), glutathione peroxidase 1 (GPX1), cytosolic Ca2+, and mitochondrial membrane potential. RESULTS The dietary intervention produced an 8.85% weight loss associated with enhanced insulin sensitivity, a less marked atherogenic lipid profile, and a decrease in systemic inflammation (TNFα, hsCRP) and adipokine levels (RBP4 and C3c). Chronic ER stress was significantly reduced (ATF6-CHOP, JNK-P) and expression levels of SIRT1 and GRP78 - a Ca2+-dependent chaperone - were increased and accompanied by the restoration of Ca2+ depots. Furthermore, mROS production and mitochondrial membrane potential improvement were associated with the up-regulation of the antioxidant enzyme GPX1. CONCLUSIONS Our data provide evidence that moderate weight loss attenuates systemic inflammation and IR and promotes the amelioration of ER stress and mitochondrial dysfunction, increasing the expression of chaperones, SIRT1 and antioxidant GPX1.
Collapse
Affiliation(s)
- Sandra López-Domènech
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain
| | - Zaida Abad-Jiménez
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain
| | - Francesca Iannantuoni
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain
| | - Aranzazu M de Marañón
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain
| | - Susana Rovira-Llopis
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain
| | - Carlos Morillas
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain
| | - Celia Bañuls
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain
| | - Víctor Manuel Víctor
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain; CIBER CB06/04/0071 Research Group, CIBER Hepatic and Digestive Diseases, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain; Department of Physiology, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain.
| | - Milagros Rocha
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain; CIBER CB06/04/0071 Research Group, CIBER Hepatic and Digestive Diseases, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain.
| |
Collapse
|
126
|
Consumption of decaffeinated coffee protects against the development of early non-alcoholic steatohepatitis: Role of intestinal barrier function. Redox Biol 2018; 21:101092. [PMID: 30605883 PMCID: PMC6313826 DOI: 10.1016/j.redox.2018.101092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 02/08/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide lacking universally accepted therapies. Studies suggest that coffee consumption is associated with a reduced risk of NAFLD; however, molecular mechanisms and ingredients involved remain to be fully understood. Here, we determined the effects of regular intake of decaffeinated coffee on the development of NAFLD in mice, and molecular mechanisms involved. Methods Female C57BL/6J mice (n = 6–7/ group) were pair-fed either a liquid control diet (C) or fat-, fructose- and cholesterol-rich diet (FFC) +/- decaffeinated coffee (DeCaf, 6 g/kg BW) for 4 days or 6 weeks. Indices of liver damage, hepatic inflammation and parameters of insulin resistance and intestinal permeability as well as nitric oxide system were determined. Results Early signs of insulin resistance and non-alcoholic steatohepatitis (NASH) found after 6 weeks of FFC feeding were significantly lower in FFC+DeCaf-fed mice when compared to FFC-fed animals. Moreover, elevation of portal endotoxin levels and loss of tight junction proteins in proximal small intestine found in FFC-fed mice were significantly attenuated in FFC+DeCaf-fed animals. These beneficial effects of DeCaf were associated with a protection against the significant induction of inducible NO-synthase protein levels and 3-nitrotyrosine protein adducts found in proximal small intestine of FFC-fed mice. Similar protective effects of DeCaf were also found in mice fed the FFC diet short-term. Conclusion Our results suggest that protective effects of DeCaf on the development of NAFLD are at least in part related to maintaining intestinal barrier function. decaffeinated coffee protects mice from the development of NAFLD. decaffeinated coffee attenuated increased translocation of bacterial endotoxins. decaffeinated coffee prevents diet-induced induction of iNOS in small intestine.
Collapse
|
127
|
Zhang L, Yao Z, Ji G. Herbal Extracts and Natural Products in Alleviating Non-alcoholic Fatty Liver Disease via Activating Autophagy. Front Pharmacol 2018; 9:1459. [PMID: 30618753 PMCID: PMC6297257 DOI: 10.3389/fphar.2018.01459] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease world-wide, and currently therapeutic options for NAFLD are limited. Herbal medicine (HM) may offer an attractive alternative for the treatment of NAFLD. Recent years have witnessed a growing interest in the autophagy-inducing agents, and autophagy activation has been recognized as an efficient strategy in managing NAFLD and related complications. Pharmacological studies have demonstrated certain potential of HM extracts and natural products in inducing autophagy, which might contribute to the efficacy of HM in preventing and treating NAFLD. This review aims to summarize current understanding of mechanisms of HM extracts and natural products in preventing and treating NAFLD. Specially, we focused on mechanisms by which autophagy can target the main pathogenesis events associated with NAFLD, including hepatic steatosis, inflammation, oxidative stress, and apoptosis. It is hoped that this brief review can provide a general understanding of HM extracts and natural products in treating NAFLD, and raise awareness of potential clinical application of HM in general.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Guang Ji
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
128
|
Pandey VK, Mathur A, Kakkar P. Emerging role of Unfolded Protein Response (UPR) mediated proteotoxic apoptosis in diabetes. Life Sci 2018; 216:246-258. [PMID: 30471281 DOI: 10.1016/j.lfs.2018.11.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Endoplasmic reticulum (ER) is a crucial single membrane organelle that acts as a quality control system for cellular proteins as it is intricately involved in their synthesis, folding and trafficking to the respective targets. Type 2 diabetes is characterized by enhanced blood glucose level that promotes insulin resistance and hampers cellular glucose metabolism. Hyperglycemia provokes mitochondrial ROS production and glycation of proteins which exert a tremendous load on ER for conventional refolding of misfolded/unfolded and nascent proteins that perturb ER homeostasis resulting in apoptotic cell death. Impairment in ER functions is suspected to be through specific ER membrane-bound proteins known as Unfolded Protein Response (UPR) sensor proteins. Conformational changes in these proteins induce oligomerization and cross-autophosphorylation which facilitate processes required for the restoration of ER homeostatic imbalance. Multiple studies have reported the involvement of UPR mediated autophagy and apoptotic pathways in the progression of metabolic disorders including diabetes, cardiac ischemia/reperfusion injury and hypoxia-mediated cell death. In this review, the involvement of UPR pathways in the progression of diabetes associated complications have been addressed, which underscores molecular crosstalks during neuropathy, nephropathy, hepatic injury and retinopathy. A better understanding of these molecular interventions may reveal advanced therapeutic approaches for preventing diabetic comorbidities. The article also highlights the importance of phytochemicals that are emerging as novel ER stress inhibitors and are being explored for targeted interaction in preventing cell death responses during diabetes.
Collapse
Affiliation(s)
- Vivek Kumar Pandey
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Alpana Mathur
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Poonam Kakkar
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
129
|
Novel targets for delaying aging: The importance of the liver and advances in drug delivery. Adv Drug Deliv Rev 2018; 135:39-49. [PMID: 30248361 DOI: 10.1016/j.addr.2018.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
Abstract
Age-related changes in liver function have a significant impact on systemic aging and susceptibility to age-related diseases. Nutrient sensing pathways have emerged as important targets for the development of drugs that delay aging and the onset age-related diseases. This supports a central role for the hepatic regulation of metabolism in the association between nutrition and aging. Recently, a role for liver sinusoidal endothelial cells (LSECs) in the relationship between aging and metabolism has also been proposed. Age-related loss of fenestrations within LSECs impairs the transfer of substrates (such as lipoproteins and insulin) between sinusoidal blood and hepatocytes, resulting in post-prandial hyperlipidemia and insulin resistance. Targeted drug delivery methods such as nanoparticles and quantum dots will facilitate the direct delivery of drugs that regulate fenestrations in LSECs, providing an innovative approach to ameliorating age-related diseases and increasing healthspan.
Collapse
|
130
|
Potential Therapeutic Benefits of Herbs and Supplements in Patients with NAFLD. Diseases 2018; 6:diseases6030080. [PMID: 30201879 PMCID: PMC6165515 DOI: 10.3390/diseases6030080] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023] Open
Abstract
Our aim is to review the efficacy of various herbs and supplements as a possible therapeutic option in the treatment and/or prevention of nonalcoholic fatty liver disease (NAFLD). We performed a systematic review of medical literature using the PubMed Database by searching the chemical names of many common herbs and supplements with “AND (NAFLD or NASH)”. Studies and medical literature that discussed the roles and usage of herbs and supplements in NAFLD and nonalcoholic steatohepatitis (NASH) from inception until 20 June 2018 were reviewed. Many studies have claimed that the use of various herbs and supplements may improve disease endpoints and outcomes related to NAFLD and/or NASH. Improvement in liver function tests were noted. Amelioration or reduction of lobular inflammation, hepatic steatosis, and fibrosis were also noted. However, well-designed studies demonstrating improved clinical outcomes are lacking. Furthermore, experts remain concerned about the lack of regulation of herbs/supplements and the need for further research on potential adverse effects and herb–drug interactions. In conclusion, preliminary data on several herbs have demonstrated promising antioxidant, anti-inflammatory, anti-apoptotic, and anti-adipogenic properties that may help curtail the progression of NAFLD/NASH. Clinical trials testing the safety and efficacy must be completed before widespread use can be recommended.
Collapse
|
131
|
Zhu Y, Huang JJ, Zhang XX, Yan Y, Yin XW, Ping G, Jiang WM. Qing Gan Zi Shen Tang alleviates adipose tissue dysfunction with up-regulation of SIRT1 in spontaneously hypertensive rat. Biomed Pharmacother 2018; 105:246-255. [DOI: 10.1016/j.biopha.2018.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 11/17/2022] Open
|
132
|
Ding S, Jiang J, Wang Z, Zhang G, Yin J, Wang X, Wang S, Yu Z. Resveratrol reduces the inflammatory response in adipose tissue and improves adipose insulin signaling in high-fat diet-fed mice. PeerJ 2018; 6:e5173. [PMID: 29967759 PMCID: PMC6027658 DOI: 10.7717/peerj.5173] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
Abstract
Background Obesity-induced glucose metabolism disorder is associated with chronic, low-grade, systemic inflammation and is considered a risk factor for diabetes and metabolic syndrome. Resveratrol (RES), a natural anti-inflammatory compound, is observed to improve glucose tolerance and insulin sensitivity in obese rodents and humans. This study aimed to test the effects of RES administration on insulin signaling and the inflammatory response in visceral white adipose tissue (WAT) caused by a high-fat diet (HFD) in mice. Methods A total of 40 wild-type C57BL/6 male mice were divided into four groups (10 in each group): the standard chow diet (STD) group was fed a STD; the HFD group was fed a HFD; and the HFD-RES/L and HFD-RES/H groups were fed a HFD plus RES (200 and 400 mg/kg/day, respectively). The L and H in RES/L and RES/H stand for low and high, respectively. Glucose tolerance, insulin sensitivity, circulating inflammatory biomarkers and lipid profile were determined. Quantitative PCR and Western blot were used to determine the expression of CC-chemokine receptor 2 (CCR2), other inflammation markers, glucose transporter 4 (GLUT4), insulin receptor substrate 1 (IRS-1) and pAkt/Akt and to assess targets of interest involving glucose metabolism and inflammation in visceral WAT. Results HFD increased the levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol and proinflammatory cytokines in serum, decreased the high-density lipoprotein cholesterol level in serum, and induced insulin resistance and WAT inflammation in mice. However, RES treatment alleviated insulin resistance, increased the expressions of pAkt, GLUT4 and IRS-1 in WAT, and decreased serum proinflammatory cytokine levels, macrophage infiltration and CCR2 expression in WAT. Conclusion Our results indicated that WAT CCR2 may play a vital role in macrophage infiltration and the inflammatory response during the development of insulin resistance in HFD-induced obesity. These data suggested that administration of RES offers protection against abnormal glucose metabolism and inflammatory adaptations in visceral WAT in mice with HFD-induced obesity.
Collapse
Affiliation(s)
- Shibin Ding
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jinjin Jiang
- School of Public Health, Capital Medical University, Beijing, PR China
| | - Zhe Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Guofu Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jianli Yin
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Xiaoya Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Sui Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Zengli Yu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China
| |
Collapse
|
133
|
Endoplasmic Reticulum Stress in Metabolic Disorders. Cells 2018; 7:cells7060063. [PMID: 29921793 PMCID: PMC6025008 DOI: 10.3390/cells7060063] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolic disorders have become among the most serious threats to human health, leading to severe chronic diseases such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, as well as cardiovascular diseases. Interestingly, despite the fact that each of these diseases has different physiological and clinical symptoms, they appear to share certain pathological traits such as intracellular stress and inflammation induced by metabolic disturbance stemmed from over nutrition frequently aggravated by a modern, sedentary life style. These modern ways of living inundate cells and organs with saturating levels of sugar and fat, leading to glycotoxicity and lipotoxicity that induce intracellular stress signaling ranging from oxidative to ER stress response to cope with the metabolic insults (Mukherjee, et al., 2015). In this review, we discuss the roles played by cellular stress and its responses in shaping metabolic disorders. We have summarized here current mechanistic insights explaining the pathogenesis of these disorders. These are followed by a discussion of the latest therapies targeting the stress response pathways.
Collapse
|
134
|
Abstract
The liver has a unique ability of regenerating after injuries or partial loss of its mass. The mechanisms responsible for liver regeneration - mostly occurring when the hepatic tissue is damaged or functionally compromised by metabolic stress - have been studied in considerable detail over the last few decades, because this phenomenon has both basic-biology and clinical relevance. More specifically, recent interest has been focusing on the widespread occurrence of abnormal nutritional habits in the Western world that result in an increased prevalence of non-alcoholic fatty liver disease (NAFLD). NAFLD is closely associated with insulin resistance and dyslipidemia, and it represents a major clinical challenge. The disease may progress to steatohepatitis with persistent inflammation and progressive liver damage, both of which will compromise regeneration under conditions of partial hepatectomy in surgical oncology or in liver transplantation procedures. Here, we analyze the impact of ER stress and SIRT1 in lipid metabolism and in fatty liver pathology, and their consequences on liver regeneration. Moreover, we discuss the fine interplay between ER stress and SIRT1 functioning when contextualized to liver regeneration. An improved understanding of the cellular and molecular intricacies contributing to liver regeneration could be of great clinical relevance in areas as diverse as obesity, metabolic syndrome and type 2 diabetes, as well as oncology and transplantation.
Collapse
Affiliation(s)
| | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
135
|
Perakakis N, Ghaly W, Peradze N, Boutari C, Batirel S, Douglas VP, Mantzoros CS. Research advances in metabolism 2017. Metabolism 2018; 83:280-289. [PMID: 29378200 DOI: 10.1016/j.metabol.2018.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wael Ghaly
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Physiology, Fayoum University, Fayoum, Egypt
| | - Natia Peradze
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Chrysoula Boutari
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Saime Batirel
- Department of Medical Biochemistry, Faculty of Medicine, Marmara University, Istanbul 34854, Turkey; Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Istanbul 34854, Turkey
| | - Vivian Paraskevi Douglas
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
136
|
Luan B, Sun C. MiR-138-5p affects insulin resistance to regulate type 2 diabetes progression through inducing autophagy in HepG2 cells by regulating SIRT1. Nutr Res 2018; 59:90-98. [PMID: 30442237 DOI: 10.1016/j.nutres.2018.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/28/2018] [Accepted: 05/06/2018] [Indexed: 01/22/2023]
Abstract
Insulin resistance (IR) is considered as a major factor of type 2 diabetes (T2D), which is seriously detrimental to human health. In our present study, we found that the expression of miR-138-5p was increased in the insulin-resistant HepG2 cells induced by TNF-α. Therefore, we hypothesized that miR-138-5p might play a regulatory role in the IR. To examine this hypothesis, HepG2 cells were transfected with miR-138-5p inhibitor. Silencing of miR-138-5p increased glucose uptake and glycogen synthesis of TNF-α-stimulated HepG2 cells and decreased glucose concentration in medium, suggesting that downregulation of miR-138-5p suppressed IR in HepG2 cells. Besides that, we found that sirtuin 1 (SIRT1) was the target gene of the miR-138-5p. Moreover, co-transfection with SIRT1-siRNA and miR-138-5p inhibitor suppressed glucose uptake and glycogen synthesis of HepG2 cells compared with miR-138-5p inhibitor-transfected group, indicating that downregulation of SIRT1 weakened the inhibitory effect of miR-138-5p inhibitor on IR. In addition, overexpressed SIRT1 increased Beclin1, LC3 II/I level, and the number of GFP-LC3 dots and decreased p62 level, whereas downregulation of SIRT1 had the opposite effects. Our results demonstrated that overexpressed SIRT1 activated autophagy in HepG2 cells. Moreover, we observed that 3-methyladenine (an inhibitor of autophagy) treatment decreased the high glucose uptake and glycogen synthesis of miR-138-5p inhibitor-transfected HepG2 cells, suggesting that the inhibition of autophagy abolished the inhibitory effect of miR-138-5p inhibitor on IR in HepG2 cells. Taken together, this study suggested that miR-138-5p contributed to the TNF-α-induced IR, possibly through inducing autophagy in HepG2 cells by regulating SIRT1. MiR-138-5p might be a potential and promising target for the treatment of IR.
Collapse
Affiliation(s)
- Bingguo Luan
- Department of Endocrinology and metabolism, Yantaishan Hospital of Yantai, Shandong, 264000, China.
| | - Caixia Sun
- Department of Endocrinology and metabolism, Yantaishan Hospital of Yantai, Shandong, 264000, China
| |
Collapse
|
137
|
El-Sherbiny M, Eldosoky M, El-Shafey M, Othman G, Elkattawy HA, Bedir T, Elsherbiny NM. Vitamin D nanoemulsion enhances hepatoprotective effect of conventional vitamin D in rats fed with a high-fat diet. Chem Biol Interact 2018; 288:65-75. [PMID: 29653100 DOI: 10.1016/j.cbi.2018.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/27/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is associated with hyperlipidemia, obesity and type II diabetes. Due to increasing prevalence of these diseases globally, NAFLD is considered as a common form of chronic liver diseases. Vitamin D is a fat soluble vitamin with reported anti-inflammatory, anti-oxidant and immune modulating activity. Hypovitaminosis D often coexists with NAFLD and various studies reported beneficial role of vitamin D in modulating NAFLD. However, variable oral bioavailability, poor water solubility, and chemical degradation hinder the clinical application of vitamin D. PURPOSE We evaluated the potential protective effect of Vitamin D nanoemulsion (developed by sonication and pH-Shifting of pea protein isolate and canola oil) compared to conventional vitamin D against liver injury in rats fed with high fat diet (HFD). METHODS We analyzed liver function enzymes, lipid profile, lipid metabolism, levels and histopathology of inflammation and fibrosis in rat liver tissues. RESULTS HFD fed rats exhibited deterioration of liver function, poor lipid profile, decreased fatty acid oxidation and up-regulation of inflammatory cytokines and extracellular matrix deposition. Vitamin D administration reduced elevated liver enzymes, improved lipid profile, enhanced fatty acid oxidation and attenuated liver inflammation and fibrosis. Interestingly, vitamin D nanoemulsion was superior to conventional vitamin D with remarkable hepatoprotective effect against HFD-induced liver injury. CONCLUSION This study demonstrated vitamin D nanoemulsion as a more efficient formulation with more prominent hepatoprotective effect against HFD-induced liver injury compared to conventional oral vitamin D.
Collapse
Affiliation(s)
- Mohamed El-Sherbiny
- Anatomy Department, Mansoura Faculty of Medicine, Egypt; Almaarefa College of Medicine, Riyadh, Saudi Arabia
| | - Mohamed Eldosoky
- Medical Physiology Department, Mansoura Faculty of Medicine, Egypt
| | - Mohamed El-Shafey
- Anatomy Department, Mansoura Faculty of Medicine, Egypt; Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Gamal Othman
- Medical Biochemistry Department, Mansoura Faculty of Medicine, Egypt; Almaarefa College of Medicine, Riyadh, Saudi Arabia
| | - Hany A Elkattawy
- Medical Physiology Department, Zagazig Obesity Management and Research Unit, Zagazig Faculty of Medicine, Egypt; Almaarefa College of Medicine, Riyadh, Saudi Arabia
| | - Tamer Bedir
- Medical Microbiology and Immunology Department, Mansoura Faculty of Medicine, Egypt
| | - Nehal Mohsen Elsherbiny
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Egypt.
| |
Collapse
|
138
|
Yan WJ, Liu RB, Wang LK, Ma YB, Ding SL, Deng F, Hu ZY, Wang DB. Sirt3-Mediated Autophagy Contributes to Resveratrol-Induced Protection against ER Stress in HT22 Cells. Front Neurosci 2018. [PMID: 29535606 PMCID: PMC5835095 DOI: 10.3389/fnins.2018.00116] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Endoplasmic reticulum (ER) stress occurring in stringent conditions is critically involved in neuronal survival and death. Resveratrol is a non-flavonoid polyphenol that has neuroprotective effects against many neurological disorders. Here, we investigated the potential protective effects of resveratrol in an in vitro ER stress model mimicked by tunicamycin (TM) treatment in neuronal HT22 cells. We found that TM dose-dependently decreased cell viability and increased apoptosis, which were both significantly attenuated by resveratrol treatment. Resveratrol markedly reduced the expression or activation of ER stress-associated factors, including GRP78, CHOP, and caspase-12. The results of immunocytochemistry and western blot showed that resveratrol promoted autophagy in TM-treated cells, as evidenced by increased LC3II puncta number, bcelin1 expression and LC3II/LC3I ratio. Pretreatment with the autophagy inhibitor chloroquine could reduce the protective effects of resveratrol. In addition, the expression of Sirt3 protein and its downstream enzyme activities were significantly increased in resveratrol-treated HT22 cells. To confirm the involvement of Sirt3-mediated mechanisms, siRNA transfection was used to knockdown Sirt3 expression in vitro. The results showed that downregulation of Sirt3 could partially prevented the autophagy and protection induced by resveratrol after TM treatment. Our study demonstrates a pivotal role of Sirt3-mediated autophagy in mediating resveratrol-induced protection against ER stress in vitro, and suggests the therapeutic values of resveratrol in ER stress-associated neuronal injury conditions.
Collapse
Affiliation(s)
- Wen-Jun Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Ruo-Bin Liu
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Ling-Kai Wang
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Ya-Bing Ma
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Shao-Li Ding
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Fei Deng
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Zhong-Yuan Hu
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Da-Bin Wang
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
139
|
Staats S, Wagner AE, Kowalewski B, Rieck FT, Soukup ST, Kulling SE, Rimbach G. Dietary Resveratrol Does Not Affect Life Span, Body Composition, Stress Response, and Longevity-Related Gene Expression in Drosophila melanogaster. Int J Mol Sci 2018; 19:ijms19010223. [PMID: 29324667 PMCID: PMC5796172 DOI: 10.3390/ijms19010223] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, we tested the effect of the stilbene resveratrol on life span, body composition, locomotor activity, stress response, and the expression of genes encoding proteins centrally involved in ageing pathways in the model organism Drosophila melanogaster. Male and female w1118 D. melanogaster were fed diets based on sucrose, corn meal, and yeast. Flies either received a control diet or a diet supplemented with 500 µmol/L resveratrol. Dietary resveratrol did not affect mean, median, and maximal life span of male and female flies. Furthermore, body composition remained largely unchanged following the resveratrol supplementation. Locomotor activity, as determined by the climbing index, was not significantly different between control and resveratrol-supplemented flies. Resveratrol-fed flies did not exhibit an improved stress response towards hydrogen peroxide as compared to controls. Resveratrol did not change mRNA steady levels of antioxidant (catalase, glutathione-S-transferase, NADH dehydrogenase, glutathione peroxidase, superoxide dismutase 2) and longevity-related genes, including sirtuin 2, spargel, and I'm Not Dead Yet. Collectively, present data suggest that resveratrol does not affect life span, body composition, locomotor activity, stress response, and longevity-associated gene expression in w1118 D. melanogaster.
Collapse
Affiliation(s)
- Stefanie Staats
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, D-24118 Kiel, Germany.
| | - Anika E Wagner
- Institute of Nutritional Medicine, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | - Bianca Kowalewski
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, D-24118 Kiel, Germany.
| | - Florian T Rieck
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner Institute, Haid-und-Neu-Strasse 9, D-76131 Karlsruhe, Germany.
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner Institute, Haid-und-Neu-Strasse 9, D-76131 Karlsruhe, Germany.
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner Institute, Haid-und-Neu-Strasse 9, D-76131 Karlsruhe, Germany.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, D-24118 Kiel, Germany.
| |
Collapse
|
140
|
Milton-Laskibar I, Aguirre L, Etxeberria U, Milagro FI, Martínez JA, Portillo MP. Involvement of autophagy in the beneficial effects of resveratrol in hepatic steatosis treatment. A comparison with energy restriction. Food Funct 2018; 9:4207-4215. [DOI: 10.1039/c8fo00930a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Involvement of autophagy in the liver delipidating effects of resveratrol and energy restriction.
Collapse
Affiliation(s)
- I. Milton-Laskibar
- Nutrition and Obesity Group
- Department of Nutrition and Food Science
- University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute
- Vitoria
- Spain
| | - L. Aguirre
- Nutrition and Obesity Group
- Department of Nutrition and Food Science
- University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute
- Vitoria
- Spain
| | - U. Etxeberria
- Department of Nutrition
- Food Sciences and Physiology
- Centre for Nutrition Research
- University of Navarra
- Pamplona
| | - F. I. Milagro
- Department of Nutrition
- Food Sciences and Physiology
- Centre for Nutrition Research
- University of Navarra
- Pamplona
| | - J. A. Martínez
- Department of Nutrition
- Food Sciences and Physiology
- Centre for Nutrition Research
- University of Navarra
- Pamplona
| | - María P. Portillo
- Nutrition and Obesity Group
- Department of Nutrition and Food Science
- University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute
- Vitoria
- Spain
| |
Collapse
|