101
|
Van Dijck P, Brown NA, Goldman GH, Rutherford J, Xue C, Van Zeebroeck G. Nutrient Sensing at the Plasma Membrane of Fungal Cells. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0031-2016. [PMID: 28256189 PMCID: PMC11687466 DOI: 10.1128/microbiolspec.funk-0031-2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 12/25/2022] Open
Abstract
To respond to the changing environment, cells must be able to sense external conditions. This is important for many processes including growth, mating, the expression of virulence factors, and several other regulatory effects. Nutrient sensing at the plasma membrane is mediated by different classes of membrane proteins that activate downstream signaling pathways: nontransporting receptors, transceptors, classical and nonclassical G-protein-coupled receptors, and the newly defined extracellular mucin receptors. Nontransporting receptors have the same structure as transport proteins, but have lost the capacity to transport while gaining a receptor function. Transceptors are transporters that also function as a receptor, because they can rapidly activate downstream signaling pathways. In this review, we focus on these four types of fungal membrane proteins. We mainly discuss the sensing mechanisms relating to sugars, ammonium, and amino acids. Mechanisms for other nutrients, such as phosphate and sulfate, are discussed briefly. Because the model yeast Saccharomyces cerevisiae has been the most studied, especially regarding these nutrient-sensing systems, each subsection will commence with what is known in this species.
Collapse
Affiliation(s)
- Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology KU Leuven, Flanders, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium
| | - Neil Andrew Brown
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, AL5 2JQ, United Kingdom
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julian Rutherford
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Chaoyang Xue
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, NJ 07103
| | - Griet Van Zeebroeck
- VIB-KU Leuven Center for Microbiology KU Leuven, Flanders, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
102
|
Kodama S, Ishizuka J, Miyashita I, Ishii T, Nishiuchi T, Miyoshi H, Kubo Y. The morphogenesis-related NDR kinase pathway of Colletotrichum orbiculare is required for translating plant surface signals into infection-related morphogenesis and pathogenesis. PLoS Pathog 2017; 13:e1006189. [PMID: 28146587 PMCID: PMC5305266 DOI: 10.1371/journal.ppat.1006189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/13/2017] [Accepted: 01/18/2017] [Indexed: 01/27/2023] Open
Abstract
Plant infection by pathogenic fungi involves the differentiation of appressoria, specialized infection structures, initiated by fungal sensing and responding to plant surface signals. How plant fungal pathogens control infection-related morphogenesis in response to plant-derived signals has been unclear. Here we showed that the morphogenesis-related NDR kinase pathway (MOR) of the cucumber anthracnose fungus Colletotrichum orbiculare is crucial for appressorium development following perception of plant-derived signals. By screening of random insertional mutants, we identified that the MOR element CoPag1 (Perish-in-the-absence-of-GYP1) is a key component of the plant-derived signaling pathway involved in appressorium morphogenesis. Constitutive activation of the NDR kinase CoCbk1 (Cell-wall-biosynthesis-kinase-1) complemented copag1 defects. Furthermore, copag1 deletion impaired CoCbk1 phosphorylation, suggesting that CoPag1 functions via CoCbk1 activation. Searching for the plant signals that contribute to appressorium induction via MOR, we found that the cutin monomer n-octadecanal, degraded from the host cuticle by conidial esterases, functions as a signal molecule for appressorium development. Genome-wide transcriptional profiling during appressorium development revealed that MOR is responsible for the expression of a subset of the plant-signal-induced genes with potential roles in pathogenicity. Thus, MOR of C. orbiculare has crucial roles in regulating appressorium development and pathogenesis by communicating with plant-derived signals.
Collapse
Affiliation(s)
- Sayo Kodama
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Junya Ishizuka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Ito Miyashita
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Takaaki Ishii
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Hideto Miyoshi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasuyuki Kubo
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
103
|
Kou Y, Naqvi NI. Surface sensing and signaling networks in plant pathogenic fungi. Semin Cell Dev Biol 2016; 57:84-92. [DOI: 10.1016/j.semcdb.2016.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 11/29/2022]
|
104
|
Becker M, Becker Y, Green K, Scott B. The endophytic symbiont Epichloë festucae establishes an epiphyllous net on the surface of Lolium perenne leaves by development of an expressorium, an appressorium-like leaf exit structure. THE NEW PHYTOLOGIST 2016; 211:240-54. [PMID: 26991322 PMCID: PMC5069595 DOI: 10.1111/nph.13931] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/07/2016] [Indexed: 05/16/2023]
Abstract
Epichloë festucae forms a mutualistic symbiotic association with Lolium perenne. This biotrophic fungus systemically colonizes the intercellular spaces of aerial tissues to form an endophytic hyphal network. E. festucae also grows as an epiphyte, but the mechanism for leaf surface colonization is not known. Here we identify an appressorium-like structure, which we call an expressorium that allows endophytic hyphae to penetrate the cuticle from the inside of the leaf to establish an epiphytic hyphal net on the surface of the leaf. We used a combination of scanning electron, transmission electron and confocal laser scanning microscopy to characterize this novel fungal structure and determine the composition of the hyphal cell wall using aniline blue and wheat germ agglutinin labelled with Alexafluor-488. Expressoria differentiate immediately below the cuticle in the leaf blade and leaf sheath intercalary cell division zones where the hyphae grow by tip growth. Differentiation of this structure requires components of both the NoxA and NoxB NADPH oxidase complexes. Major remodelling of the hyphal cell wall occurs following exit from the leaf. These results establish that the symbiotic association of E. festucae with L. perenne involves an interconnected hyphal network of both endophytic and epiphytic hyphae.
Collapse
Affiliation(s)
- Matthias Becker
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- IGZ – Leibniz Institute of Vegetable and Ornamental Crops14979GroßbeerenGermany
| | - Yvonne Becker
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- IGZ – Leibniz Institute of Vegetable and Ornamental Crops14979GroßbeerenGermany
| | - Kimberly Green
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
| | - Barry Scott
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- Bioprotection Research CentreMassey UniversityPalmerston North4442New Zealand
| |
Collapse
|
105
|
Geoghegan IA, Gurr SJ. Chitosan Mediates Germling Adhesion in Magnaporthe oryzae and Is Required for Surface Sensing and Germling Morphogenesis. PLoS Pathog 2016; 12:e1005703. [PMID: 27315248 PMCID: PMC4912089 DOI: 10.1371/journal.ppat.1005703] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/23/2016] [Indexed: 11/23/2022] Open
Abstract
The fungal cell wall not only plays a critical role in maintaining cellular integrity, but also forms the interface between fungi and their environment. The composition of the cell wall can therefore influence the interactions of fungi with their physical and biological environments. Chitin, one of the main polysaccharide components of the wall, can be chemically modified by deacetylation. This reaction is catalyzed by a family of enzymes known as chitin deacetylases (CDAs), and results in the formation of chitosan, a polymer of β1,4-glucosamine. Chitosan has previously been shown to accumulate in the cell wall of infection structures in phytopathogenic fungi. Here, it has long been hypothesized to act as a 'stealth' molecule, necessary for full pathogenesis. In this study, we used the crop pathogen and model organism Magnaporthe oryzae to test this hypothesis. We first confirmed that chitosan localizes to the germ tube and appressorium, then deleted CDA genes on the basis of their elevated transcript levels during appressorium differentiation. Germlings of the deletion strains showed loss of chitin deacetylation, and were compromised in their ability to adhere and form appressoria on artificial hydrophobic surfaces. Surprisingly, the addition of exogenous chitosan fully restored germling adhesion and appressorium development. Despite the lack of appressorium development on artificial surfaces, pathogenicity was unaffected in the mutant strains. Further analyses demonstrated that cuticular waxes are sufficient to over-ride the requirement for chitosan during appressorium development on the plant surface. Thus, chitosan does not have a role as a 'stealth' molecule, but instead mediates the adhesion of germlings to surfaces, thereby allowing the perception of the physical stimuli necessary to promote appressorium development. This study thus reveals a novel role for chitosan in phytopathogenic fungi, and gives further insight into the mechanisms governing appressorium development in M.oryzae. Magnaporthe oryzae is a filamentous fungal pathogen which causes devastating crop losses in rice. Successful invasion of the host is dependent upon the ability of the fungus to remain undetected by the innate immune system of the plant, which recognizes conserved components of the fungal cell wall, such as chitin. Previous studies have demonstrated that infection-related changes in cell wall composition are necessary to allow the fungus to remain undetected during infection. One such change that has long been hypothesized to have a role as a 'stealth mechanism' is the deacetylation of the polysaccharide chitin by enzymes known as chitin deacetylases. The deacetylation of chitin produces a polysaccharide known as chitosan, which has previously been shown to accumulate specifically on infection structures in plant pathogenic fungi. However, in this study, we show that germling-localized chitosan is not required for pathogenicity, arguing against a role as a 'stealth mechanism' at this stage. Instead, chitosan is required for the development of the appressorium, a critical fungal infection structure required for the penetration of plant cells. This requirement can be attributed to chitosan mediating the adhesion of germlings to surfaces, which is required for the perception of physical stimuli.
Collapse
Affiliation(s)
- Ivey A. Geoghegan
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Sarah J. Gurr
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Biosciences, University of Exeter, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
106
|
Garroum I, Bidzinski P, Daraspe J, Mucciolo A, Humbel BM, Morel JB, Nawrath C. Cuticular Defects in Oryza sativa ATP-binding Cassette Transporter G31 Mutant Plants Cause Dwarfism, Elevated Defense Responses and Pathogen Resistance. PLANT & CELL PHYSIOLOGY 2016; 57:1179-88. [PMID: 27121976 DOI: 10.1093/pcp/pcw066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/23/2016] [Indexed: 05/23/2023]
Abstract
The cuticle covers the surface of the polysaccharide cell wall of leaf epidermal cells and forms an essential diffusion barrier between plant and environment. Homologs of the ATP-binding cassette (ABC) transporter AtABCG32/HvABCG31 clade are necessary for the formation of a functional cuticle in both monocots and dicots. Here we characterize the osabcg31 knockout mutant and hairpin RNA interference (RNAi)-down-regulated OsABCG31 plant lines having reduced plant growth and a permeable cuticle. The reduced content of cutin in leaves and structural alterations in the cuticle and at the cuticle-cell wall interface in plants compromised in OsABCG31 expression explain the cuticle permeability. Effects of modifications of the cuticle on plant-microbe interactions were evaluated. The cuticular alterations in OsABCG31-compromised plants did not cause deficiencies in germination of the spores or the formation of appressoria of Magnaporthe oryzae on the leaf surface, but a strong reduction of infection structures inside the plant. Genes involved in pathogen resistance were constitutively up-regulated in OsABCG31-compromised plants, thus being a possible cause of the resistance to M. oryzae and the dwarf growth phenotype. The findings show that in rice an abnormal cuticle formation may affect the signaling of plant growth and defense.
Collapse
Affiliation(s)
- Imène Garroum
- University of Lausanne, Department of Plant Molecular Biology, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Przemyslaw Bidzinski
- INRA, UMR-BGPI TA A-54/K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France Present address: INRA, SupAgro, UMR-BPMP, Bat. 7, 2 place Pierre Viala, 34060 Montpellier, Cedex 2, France
| | - Jean Daraspe
- University of Lausanne, Electron Microscopy Facility, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Antonio Mucciolo
- University of Lausanne, Electron Microscopy Facility, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Bruno M Humbel
- University of Lausanne, Electron Microscopy Facility, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jean-Benoit Morel
- INRA, UMR-BGPI TA A-54/K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Christiane Nawrath
- University of Lausanne, Department of Plant Molecular Biology, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
107
|
Harata K, Nishiuchi T, Kubo Y. Colletotrichum orbiculare WHI2, a Yeast Stress-Response Regulator Homolog, Controls the Biotrophic Stage of Hemibiotrophic Infection Through TOR Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:468-483. [PMID: 27018615 DOI: 10.1094/mpmi-02-16-0030-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The hemibiotrophic fungus Colletotrichum orbiculare first establishes a biotrophic infection stage in cucumber (Cucumber sativus) epidermal cells and subsequently transitions to a necrotrophic stage. Here, we found that C. orbiculare established hemibiotrophic infection via C. orbiculare WHI2, a yeast stress regulator homolog, and TOR (target of rapamycin) signaling. Plant defense responses such as callose deposition, H2O2, and antimicrobial proteins were strongly induced by the C. orbiculare whi2Δ mutant, resulting in defective pathogenesis. Expression analysis of biotrophy-specific genes evaluated by the promoter VENUS fusion gene indicated weaker VENUS signal intensity in the whi2Δ mutant, thereby suggesting that C. orbiculare WHI2 plays a key role in regulating biotrophic infection of C. orbiculare. The involvement of CoWHI2 in biotrophic infection was further explored with a DNA microarray. In the Cowhi2Δ mutant, TOR-dependent ribosomal protein-related genes were strikingly upregulated compared with the wild type. Moreover, callose deposition in the host plant after inoculation with the Cowhi2Δ mutant treated with rapamycin, which inhibits TOR activity, was reduced, and the mutant remained biotrophic in contrast to the untreated mutant. Thus, regulation of TOR by Whi2 is apparently crucial to the biotrophic stage of hemibiotrophic infection in C. orbiculare.
Collapse
Affiliation(s)
- Ken Harata
- 1 Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; and
| | - Takumi Nishiuchi
- 2 Division of Functional Genomics, Advanced Science Research Centre, Kanazawa University, Kanazawa, Japan
| | - Yasuyuki Kubo
- 1 Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; and
| |
Collapse
|
108
|
Zhang S, Jiang C, Zhang Q, Qi L, Li C, Xu JR. Thioredoxins are involved in the activation of the PMK1 MAP kinase pathway during appressorium penetration and invasive growth in Magnaporthe oryzae. Environ Microbiol 2016; 18:3768-3784. [PMID: 27059015 DOI: 10.1111/1462-2920.13315] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In Magnaporthe oryzae, the Mst11-Mst7-Pmk1 MAP kinase pathway is essential for appressorium formation and invasive growth. To determine their roles in Pmk1 activation and plant infection, we characterized the two thioredoxin genes, TRX1 and TRX2, in M. oryzae. Whereas the Δtrx1 mutants had no detectable phenotypes, deletion of TRX2 caused pleiotropic defects in growth, conidiation, light sensing, responses to stresses and plant infection progresses. The Δtrx1 Δtrx2 double mutant had more severe defects than the Δtrx2 mutant and was non-pathogenic in infection assays. The Δtrx2 and Δtrx1 Δtrx2 mutant rarely formed appressoria on hyphal tips and were defective in invasive growth after penetration. Pmk1 phosphorylation was barely detectable in the Δtrx2 and Δtrx1 Δtrx2 mutants. Deletion of TRX2 affected proper folding or intra-/inter-molecular interaction of Mst7 and expression of the dominant active MST7 allele partially rescued the defects of the Δtrx1 Δtrx2 mutant. Furthermore, Cys305 is important for Mst7 function and Trx2 directly interacts with Mst7 in co-IP assays. Our data indicated that thioredoxins play important roles in intra-cellular ROS signalling and pathogenesis in M. oryzae. As the predominant thioredoxin gene, TRX2 may regulate the activation of Pmk1 MAPK via its effects on Mst7.
Collapse
Affiliation(s)
- Shijie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Qiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linlu Qi
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chaohui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
109
|
Gao X, Jin Q, Jiang C, Li Y, Li C, Liu H, Kang Z, Xu JR. FgPrp4 Kinase Is Important for Spliceosome B-Complex Activation and Splicing Efficiency in Fusarium graminearum. PLoS Genet 2016; 12:e1005973. [PMID: 27058959 PMCID: PMC4825928 DOI: 10.1371/journal.pgen.1005973] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/11/2016] [Indexed: 12/23/2022] Open
Abstract
PRP4 encodes the only kinase among the spliceosome components. Although it is an essential gene in the fission yeast and other eukaryotic organisms, the Fgprp4 mutant was viable in the wheat scab fungus Fusarium graminearum. Deletion of FgPRP4 did not block intron splicing but affected intron splicing efficiency in over 60% of the F. graminearum genes. The Fgprp4 mutant had severe growth defects and produced spontaneous suppressors that were recovered in growth rate. Suppressor mutations were identified in the PRP6, PRP31, BRR2, and PRP8 orthologs in nine suppressor strains by sequencing analysis with candidate tri-snRNP component genes. The Q86K mutation in FgMSL1 was identified by whole genome sequencing in suppressor mutant S3. Whereas two of the suppressor mutations in FgBrr2 and FgPrp8 were similar to those characterized in their orthologs in yeasts, suppressor mutations in Prp6 and Prp31 orthologs or FgMSL1 have not been reported. Interestingly, four and two suppressor mutations identified in FgPrp6 and FgPrp31, respectively, all are near the conserved Prp4-phosphorylation sites, suggesting that these mutations may have similar effects with phosphorylation by Prp4 kinase. In FgPrp31, the non-sense mutation at R464 resulted in the truncation of the C-terminal 130 aa region that contains all the conserved Prp4-phosphorylation sites. Deletion analysis showed that the N-terminal 310-aa rich in SR residues plays a critical role in the localization and functions of FgPrp4. We also conducted phosphoproteomics analysis with FgPrp4 and identified S289 as the phosphorylation site that is essential for its functions. These results indicated that FgPrp4 is critical for splicing efficiency but not essential for intron splicing, and FgPrp4 may regulate pre-mRNA splicing by phosphorylation of other components of the tri-snRNP although itself may be activated by phosphorylation at S289.
Collapse
Affiliation(s)
- Xuli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiaojun Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Yang Li
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Chaohui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
110
|
Ma Z, Geudens N, Kieu NP, Sinnaeve D, Ongena M, Martins JC, Höfte M. Biosynthesis, Chemical Structure, and Structure-Activity Relationship of Orfamide Lipopeptides Produced by Pseudomonas protegens and Related Species. Front Microbiol 2016; 7:382. [PMID: 27065956 PMCID: PMC4811929 DOI: 10.3389/fmicb.2016.00382] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/10/2016] [Indexed: 11/13/2022] Open
Abstract
Orfamide-type cyclic lipopeptides (CLPs) are biosurfactants produced by Pseudomonas and involved in lysis of oomycete zoospores, biocontrol of Rhizoctonia and insecticidal activity against aphids. In this study, we compared the biosynthesis, structural diversity, in vitro and in planta activities of orfamides produced by rhizosphere-derived Pseudomonas protegens and related Pseudomonas species. Genetic characterization together with chemical identification revealed that the main orfamide compound produced by the P. protegens group is orfamide A, while the related strains Pseudomonas sp. CMR5c and CMR12a produce orfamide B. Comparison of orfamide fingerprints led to the discovery of two new orfamide homologs (orfamide F and orfamide G) in Pseudomonas sp. CMR5c. The structures of these two CLPs were determined by nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. Mutagenesis and complementation showed that orfamides determine the swarming motility of parental Pseudomonas sp. strain CMR5c and their production was regulated by luxR type regulators. Orfamide A and orfamide B differ only in the identity of a single amino acid, while orfamide B and orfamide G share the same amino acid sequence but differ in length of the fatty acid part. The biological activities of orfamide A, orfamide B, and orfamide G were compared in further bioassays. The three compounds were equally active against Magnaporthe oryzae on rice, against Rhizoctonia solani AG 4-HGI in in vitro assays, and caused zoospore lysis of Phytophthora and Pythium. Furthermore, we could show that orfamides decrease blast severity in rice plants by blocking appressorium formation in M. oryzae. Taken all together, our study shows that orfamides produced by P. protegens and related species have potential in biological control of a broad spectrum of fungal plant pathogens.
Collapse
Affiliation(s)
- Zongwang Ma
- Laboratory of Phytopathology, Crop Protection, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium
| | - Niels Geudens
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University Ghent, Belgium
| | - Nam P Kieu
- Laboratory of Phytopathology, Crop Protection, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium
| | - Davy Sinnaeve
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University Ghent, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions Unit, Faculty of Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Crop Protection, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium
| |
Collapse
|
111
|
Zeilinger S, Gupta VK, Dahms TES, Silva RN, Singh HB, Upadhyay RS, Gomes EV, Tsui CKM, Nayak S C. Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol Rev 2016; 40:182-207. [PMID: 26591004 PMCID: PMC4778271 DOI: 10.1093/femsre/fuv045] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/11/2015] [Accepted: 10/11/2015] [Indexed: 12/22/2022] Open
Abstract
Fungi interact with plants in various ways, with each interaction giving rise to different alterations in both partners. While fungal pathogens have detrimental effects on plant physiology, mutualistic fungi augment host defence responses to pathogens and/or improve plant nutrient uptake. Tropic growth towards plant roots or stomata, mediated by chemical and topographical signals, has been described for several fungi, with evidence of species-specific signals and sensing mechanisms. Fungal partners secrete bioactive molecules such as small peptide effectors, enzymes and secondary metabolites which facilitate colonization and contribute to both symbiotic and pathogenic relationships. There has been tremendous advancement in fungal molecular biology, omics sciences and microscopy in recent years, opening up new possibilities for the identification of key molecular mechanisms in plant-fungal interactions, the power of which is often borne out in their combination. Our fragmentary knowledge on the interactions between plants and fungi must be made whole to understand the potential of fungi in preventing plant diseases, improving plant productivity and understanding ecosystem stability. Here, we review innovative methods and the associated new insights into plant-fungal interactions.
Collapse
Affiliation(s)
- Susanne Zeilinger
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Vijai K Gupta
- Molecular Glycobiotechnology Group, Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, SK, Canada
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
| | - Harikesh B Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Ram S Upadhyay
- Department of Botany, Banaras Hindu University, Varanasi 221 005, India
| | - Eriston Vieira Gomes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
| | - Clement Kin-Ming Tsui
- Department of Pathology and Laboratory Medicine, the University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Chandra Nayak S
- Department of Biotechnology, University of Mysore, Mysore-570001, Karnataka, India
| |
Collapse
|
112
|
Venturi V, Keel C. Signaling in the Rhizosphere. TRENDS IN PLANT SCIENCE 2016; 21:187-198. [PMID: 26832945 DOI: 10.1016/j.tplants.2016.01.005] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 05/20/2023]
Abstract
Signaling studies in the rhizosphere have focused on close interactions between plants and symbiotic microorganisms. However, this focus is likely to expand to other microorganisms because the rhizomicrobiome is important for plant health and is able to influence the structure of the microbial community. We discuss here the shaping of the rhizomicrobiome and define which aspects can be considered signaling. We divide signaling in the rhizosphere into three categories: (i) between microbes, (ii) from plants to microorganisms, and (iii) from microorganisms to plants. Signals act on diverse organisms including the plant. Mycorrhizal and rhizobial interkingdom signaling has revealed its pivotal role in establishing associations, and the recent discovery of signaling with non-symbiotic microorganisms indicates the important role of communication in shaping the rhizomicrobiome.
Collapse
Affiliation(s)
- Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy.
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
113
|
Yu PL, Chen LH, Chung KR. How the Pathogenic Fungus Alternaria alternata Copes with Stress via the Response Regulators SSK1 and SHO1. PLoS One 2016; 11:e0149153. [PMID: 26863027 PMCID: PMC4749125 DOI: 10.1371/journal.pone.0149153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/27/2016] [Indexed: 01/06/2023] Open
Abstract
The tangerine pathotype of Alternaria alternata is a necrotrophic fungal pathogen causing brown spot disease on a number of citrus cultivars. To better understand the dynamics of signal regulation leading to oxidative and osmotic stress response and fungal infection on citrus, phenotypic characterization of the yeast SSK1 response regulator homolog was performed. It was determined that SSK1 responds to diverse environmental stimuli and plays a critical role in fungal pathogenesis. Experiments to determine the phenotypes resulting from the loss of SSK1 reveal that the SSK1 gene product may be fulfilling similar regulatory roles in signaling pathways involving a HOG1 MAP kinase during ROS resistance, osmotic resistance, fungicide sensitivity and fungal virulence. The SSK1 mutants display elevated sensitivity to oxidants, fail to detoxify H2O2 effectively, induce minor necrosis on susceptible citrus leaves, and displays resistance to dicarboximide and phenylpyrrole fungicides. Unlike the SKN7 response regulator, SSK1 and HOG1 confer resistance to salt-induced osmotic stress via an unknown kinase sensor rather than the “two component” histidine kinase HSK1. SSK1 and HOG1 play a moderate role in sugar-induced osmotic stress. We also show that SSK1 mutants are impaired in their ability to produce germ tubes from conidia, indicating a role for the gene product in cell differentiation. SSK1 also is involved in multi-drug resistance. However, deletion of the yeast SHO1 (synthetic high osmolarity) homolog resulted in no noticeable phenotypes. Nonetheless, our results show that A. alternata can sense and react to different types of stress via SSK1, HOG1 and SKN7 in a cooperative manner leading to proper physiological and pathological functions.
Collapse
Affiliation(s)
- Pei-Ling Yu
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung-Hsing University, Taichung, Taiwan
| | - Li-Hung Chen
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung-Hsing University, Taichung, Taiwan
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung-Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
114
|
Hou R, Jiang C, Zheng Q, Wang C, Xu JR. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2015; 16:987-99. [PMID: 25781642 PMCID: PMC6638501 DOI: 10.1111/mpp.12254] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium graminearum, is harmful to humans and animals. Because different nitrogen sources are known to have opposite effects on DON production, in this study, we characterized the regulatory mechanisms of the AREA transcription factor in trichothecene biosynthesis. The ΔareA mutant showed significantly reduced vegetative growth and DON production in cultures inoculated with hyphae. Suppression of TRI gene expression and DON production by ammonium were diminished in the ΔareA mutant. The deletion of AREA also affected the stimulatory effects of arginine on DON biosynthesis. The AreA-green fluorescent protein (GFP) fusion complemented the ΔareA mutant, and its localization to the nucleus was enhanced under nitrogen starvation conditions. Site-directed mutagenesis showed that the conserved predicted protein kinase A (PKA) phosphorylation site S874 was important for AreA function, indicating that AreA may be a downstream target of the cyclic adenosine monophosphate (cAMP)-PKA pathway, which is known to regulate DON production. We also showed that AreA interacted with Tri10 in co-immunoprecipitation assays. The interaction of AreA with Tri10 is probably related to its role in the regulation of TRI gene expression. Interestingly, the ΔareA mutant showed significantly reduced PKA activity and expression of all three predicted ammonium permease (MEP) genes, in particular MEP1, under low ammonium conditions. Taken together, our results show that AREA is involved in the regulation of DON production by ammonium suppression and the cAMP-PKA pathway. The AreA transcription factor may interact with Tri10 and control the expression and up-regulation of MEP genes.
Collapse
Affiliation(s)
- Rui Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
| | - Qian Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
115
|
Leroch M, Mueller N, Hinsenkamp I, Hahn M. The signalling mucin Msb2 regulates surface sensing and host penetration via BMP1 MAP kinase signalling in Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2015; 16:787-98. [PMID: 25582910 PMCID: PMC6638485 DOI: 10.1111/mpp.12234] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Botrytis cinerea is a necrotrophic fungus that infects a wide range of fruit, vegetable and flower crops. Penetration of the host cuticle occurs via infection structures that are formed in response to appropriate plant surface signals. The differentiation of these structures requires a highly conserved mitogen-activated protein (MAP) kinase cascade including the MAP kinase BMP1. In yeast and several plant-pathogenic fungi, the signalling mucin Msb2 has been shown to be involved in surface recognition and MAP kinase activation. In this study, a B. cinerea msb2 mutant was generated and characterized. The mutant showed normal growth, sporulation, sclerotia formation and stress resistance. In the absence of nutrients, abnormal germination with multiple germ tubes was observed. In the presence of sugars, normal germination occurred, but msb2 germlings were almost unable to form appressoria or infection cushions on hard surfaces. Nevertheless, the msb2 mutant showed only a moderate delay in lesion formation on different host plants, and formed expanding lesions similar to the wild-type. Although the wild-type showed increasing BMP1 phosphorylation during the first hours of germination on hard surfaces, the phosphorylation levels in the msb2 mutant were strongly reduced. Several genes encoding secreted proteins were found to be co-regulated by BMP1 and Msb2 during germination. Taken together, B. cinerea Msb2 is likely to represent a hard surface sensor of germlings and hyphae that triggers infection structure formation via the activation of the BMP1 MAP kinase pathway.
Collapse
Affiliation(s)
- Michaela Leroch
- Department of Biology, University of Kaiserslautern, 67653, Kaiserslautern, Germany
| | - Nathalie Mueller
- Department of Biology, University of Kaiserslautern, 67653, Kaiserslautern, Germany
| | - Isabel Hinsenkamp
- Department of Biology, University of Kaiserslautern, 67653, Kaiserslautern, Germany
| | - Matthias Hahn
- Department of Biology, University of Kaiserslautern, 67653, Kaiserslautern, Germany
| |
Collapse
|
116
|
Harries E, Gandía M, Carmona L, Marcos JF. The Penicillium digitatum protein O-mannosyltransferase Pmt2 is required for cell wall integrity, conidiogenesis, virulence and sensitivity to the antifungal peptide PAF26. MOLECULAR PLANT PATHOLOGY 2015; 16:748-761. [PMID: 25640475 PMCID: PMC6638402 DOI: 10.1111/mpp.12232] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The activity of protein O-mannosyltransferases (Pmts) affects the morphogenesis and virulence of fungal pathogens. Recently, PMT genes have been shown to determine the sensitivity of Saccharomyces cerevisiae to the antifungal peptide PAF26. This study reports the identification and characterization of the three Pdpmt genes in the citrus post-harvest pathogen Penicillium digitatum. The Pdpmt genes are expressed during fungal growth and fruit infection, with the highest induction for Pdpmt2. Pdpmt2 complemented the growth defect of the S. cerevisiae Δpmt2 strain. The Pdpmt2 gene mutation in P. digitatum caused pleiotropic effects, including a reduction in fungal growth and virulence, whereas its constitutive expression had no phenotypic effect. The Pdpmt2 null mutants also showed a distinctive colourless phenotype with a strong reduction in the number of conidia, which was associated with severe alterations in the development of conidiophores. Additional effects of the Pdpmt2 mutation were hyphal morphological alterations, increased sensitivity to cell wall-interfering compounds and a blockage of invasive growth. In contrast, the Pdpmt2 mutation increased tolerance to oxidative stress and to the antifungal activity of PAF26. These data confirm the role of protein O-glycosylation in the PAF26-mediated antifungal mechanism present in distantly related fungal species. Important to future crop protection strategies, this study demonstrates that a mutation rendering fungi more resistant to an antifungal peptide results in severe deleterious effects on fungal growth and virulence.
Collapse
Affiliation(s)
- Eleonora Harries
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), CSIC, Avda, Agustín Escardino-7, Paterna, 46980, Valencia, Spain
| | - Mónica Gandía
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), CSIC, Avda, Agustín Escardino-7, Paterna, 46980, Valencia, Spain
| | - Lourdes Carmona
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), CSIC, Avda, Agustín Escardino-7, Paterna, 46980, Valencia, Spain
| | - Jose F Marcos
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), CSIC, Avda, Agustín Escardino-7, Paterna, 46980, Valencia, Spain
| |
Collapse
|
117
|
Pusztahelyi T, Holb IJ, Pócsi I. Secondary metabolites in fungus-plant interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:573. [PMID: 26300892 PMCID: PMC4527079 DOI: 10.3389/fpls.2015.00573] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/13/2015] [Indexed: 05/18/2023]
Abstract
Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.
Collapse
Affiliation(s)
- Tünde Pusztahelyi
- Central Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of DebrecenDebrecen, Hungary
| | - Imre J. Holb
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Horticulture, University of DebrecenDebrecen, Hungary
- Department of Plant Pathology, Centre for Agricultural Research, Plant Protection Institute, Hungarian Academy of SciencesDebrecen, Hungary
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, Hungary
| |
Collapse
|
118
|
Perez-Nadales E, Di Pietro A. The transmembrane protein Sho1 cooperates with the mucin Msb2 to regulate invasive growth and plant infection in Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2015; 16:593-603. [PMID: 25382187 PMCID: PMC6638380 DOI: 10.1111/mpp.12217] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In the vascular wilt pathogen Fusarium oxysporum, the mitogen-activated protein kinase (MAPK) Fmk1 is essential for plant infection. The mucin-like membrane protein Msb2 regulates a subset of Fmk1-dependent functions. Here, we examined the role of the tetraspan transmembrane protein Sho1 as an additional regulator of the Fmk1 pathway and determined its genetic interaction with Msb2. Targeted Δsho1 mutants were generated in wild-type and Δmsb2 backgrounds to test possible interactions between the two genes. The mutants were examined for hyphal growth under different stress conditions, phosphorylation of the MAPK Fmk1 and an array of Fmk1-dependent virulence functions. Similar to Msb2, Sho1 was required for the activation of Fmk1 phosphorylation, as well as Fmk1-dependent gene expression and invasive growth functions, including extracellular pectinolytic activity, cellophane penetration, plant tissue colonization and virulence on tomato plants. Δsho1 mutants were hypersensitive to the cell wall-perturbing compound Calcofluor White, and this phenotype was exacerbated in the Δmsb2 Δsho1 double mutant. These results highlight that Sho1 and Msb2 have partially overlapping functions upstream of the Fmk1 MAPK cascade, to promote invasive growth and plant infection, as well as cell wall integrity, in F. oxysporum.
Collapse
Affiliation(s)
- Elena Perez-Nadales
- Departamento de Genética and Campus de Excelencia Agroalimentario (ceiA3), Universidad de Córdoba, 14071, Córdoba, Spain
| | - Antonio Di Pietro
- Departamento de Genética and Campus de Excelencia Agroalimentario (ceiA3), Universidad de Córdoba, 14071, Córdoba, Spain
| |
Collapse
|
119
|
Qi L, Kim Y, Jiang C, Li Y, Peng Y, Xu JR. Activation of Mst11 and Feedback Inhibition of Germ Tube Growth in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:881-91. [PMID: 26057388 DOI: 10.1094/mpmi-12-14-0391-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Appressorium formation and invasive growth are two important steps in the infection cycle of Magnaporthe oryzae that are regulated by the Mst11-Mst7-Pmk1 mitogen-activated protein kinase (MAPK) pathway. However, the molecular mechanism involved in the activation of Mst11 MAPK kinase kinase is not clear in the rice blast fungus. In this study, we functionally characterized the regulatory region of Mst11 and its self-inhibitory binding. Deletion of the middle region of Mst11, which contains the Ras-association (RA) domain and two conserved phosphorylation sites (S453 and S458), blocked Pmk1 activation and appressorium formation. However, the MST11(ΔRA) transformant MRD-2 still formed appressoria, although it was reduced in virulence. Interestingly, over 50% of its germ tubes branched and formed two appressoria by 48 h, which was suppressed by treatments with exogenous cAMP. The G18V dominant active mutation enhanced the interaction of Ras2 with Mst11, suggesting that Mst11 has stronger interactions with the activated Ras2. Furthermore, deletion and site-directed mutagenesis analyses indicated that phosphorylation at S453 and S458 of Mst11 is important for appressorium formation and required for the activation of Pmk1. We also showed that the N-terminal region of Mst11 directly interacted with its kinase domain, and the S789G mutation reduced their interactions. Expression of the MST11(S789G) allele rescued the defect of the mst11 mutant in plant infection and resulted in the formation of appressoria on hydrophilic surfaces, suggesting the gain-of-function effect of the S789G mutation. Overall, our results indicate that the interaction of Mst11 with activated Ras2 and phosphorylation of S453 and S458 play regulatory roles in Mst11 activation and infection-related morphogenesis, possibly by relieving its self-inhibitory interaction between its N-terminal region and the C-terminal kinase domain. In addition, binding of Mst11 to Ras2 may be involved in the feedback inhibition of cAMP signaling and further differentiation of germ tubes after appressorium formation.
Collapse
Affiliation(s)
- Linlu Qi
- 1 MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Yangseon Kim
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Cong Jiang
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
- 3 NWAFU-PU Joint Research Center, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Yang Li
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Youliang Peng
- 1 MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jin-Rong Xu
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
- 3 NWAFU-PU Joint Research Center, Northwestern A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
120
|
Liu H, Zhang S, Ma J, Dai Y, Li C, Lyu X, Wang C, Xu JR. Two Cdc2 Kinase Genes with Distinct Functions in Vegetative and Infectious Hyphae in Fusarium graminearum. PLoS Pathog 2015; 11:e1004913. [PMID: 26083253 PMCID: PMC4470668 DOI: 10.1371/journal.ppat.1004913] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/26/2015] [Indexed: 11/30/2022] Open
Abstract
Eukaryotic cell cycle involves a number of protein kinases important for the onset and progression through mitosis, most of which are well characterized in the budding and fission yeasts and conserved in other fungi. However, unlike the model yeast and filamentous fungi that have a single Cdc2 essential for cell cycle progression, the wheat scab fungus Fusarium graminearum contains two CDC2 orthologs. The cdc2A and cdc2B mutants had no obvious defects in growth rate and conidiation but deletion of both of them is lethal, indicating that these two CDC2 orthologs have redundant functions during vegetative growth and asexual reproduction. However, whereas the cdc2B mutant was normal, the cdc2A mutant was significantly reduced in virulence and rarely produced ascospores. Although deletion of CDC2A had no obvious effect on the formation of penetration branches or hyphopodia, the cdc2A mutant was limited in the differentiation and growth of infectious growth in wheat tissues. Therefore, CDC2A plays stage-specific roles in cell cycle regulation during infectious growth and sexual reproduction. Both CDC2A and CDC2B are constitutively expressed but only CDC2A was up-regulated during plant infection and ascosporogenesis. Localization of Cdc2A- GFP to the nucleus but not Cdc2B-GFP was observed in vegetative hyphae, ascospores, and infectious hyphae. Complementation assays with chimeric fusion constructs showed that both the N- and C-terminal regions of Cdc2A are important for its functions in pathogenesis and ascosporogenesis but only the N-terminal region is important for its subcellular localization. Among the Sordariomycetes, only three Fusarium species closely related to F. graminearum have two CDC2 genes. Furthermore, F. graminearum uniquely has two Aurora kinase genes and one additional putative cyclin gene, and its orthologs of CAK1 and other four essential mitotic kinases in the budding yeast are dispensable for viability. Overall, our data indicate that cell cycle regulation is different between vegetative and infectious hyphae in F. graminearum and Cdc2A, possibly by interacting with a stage-specific cyclin, plays a more important role than Cdc2B during ascosporogenesis and plant infection. In the model yeasts and filamentous fungi, CDC2 is an essential gene that encodes the only CDK essential for mitotic cell cycle progression. However, the wheat scab fungus F. graminearum contains two CDC2 orthologs. The cdc2A and cdc2B deletion mutants had no defects in vegetative growth but deletion of both is lethal. Whereas the cdc2B mutant was normal, the cdc2A mutant was almost non-pathogenic, indicating that only Cdc2A is essential in infectious hyphae. Cdc2A and Cdc2B differ in subcellular localization and only localization of Cdc2A to the nucleus was increased in cells active in mitosis. Furthermore, F. graminearum uniquely has two orthologs of Ipl1 Aurora kinase and mutants deleted of orthologs of five essential yeast mitotic kinase genes were viable. However, most of these mutants were significantly reduced in virulence. Overall, our data indicate that F. graminearum differs from the model fungi in CDK and other key mitotic kinase genes, and cell cycle regulation is different between vegetative and infectious hyphae. This is the first report on two Cdc2 kinases in fungi and they differ in subcellular localization and functions during sexual reproduction and plant infection.
Collapse
Affiliation(s)
- Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Shijie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jiwen Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yafeng Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Chaohui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xueliang Lyu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
121
|
Wang G, Li G, Zhang S, Jiang C, Qin J, Xu JR. Activation of the signalling mucin MoMsb2 and its functional relationship with Cbp1 in Magnaporthe oryzae. Environ Microbiol 2015; 17:2969-81. [PMID: 25808678 DOI: 10.1111/1462-2920.12847] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 11/27/2022]
Abstract
Various surface signals are recognized by Magnaporthe oryzae to activate the Pmk1 MAP kinase that is essential for appressorium formation and invasive growth. One of upstream sensors of the Pmk1 pathway is the MoMsb2 signalling mucin. However, the activation of MoMsb2 and its relationship with other sensors is not clear. In this study, we showed that the cleavage and transmembrane domains are essential for MoMsb2 functions. Cleavage of MoMsb2 was further confirmed by western blot analysis, and five putative cleavage sites were functionally characterized. Expression of the extracellular region alone partially rescued the defects of Momsb2 in appressorium formation and virulence. The cytoplasmic region of MoMsb2, although dispensable for appressorium formation, was more important for penetration and invasive growth. Interestingly, the Momsb2 cbp1 double mutant deleted of both mucin genes was blocked in Pmk1 activation. It failed to form appressoria on artificial surfaces and was non-pathogenic. In addition, we showed that MoMsb2 interacts with Ras2 but not with MoCdc42 in co-immunoprecipitation assays. Overall, results from this study indicated that the extracellular and cytoplasmic regions of MoMsb2 have distinct functions in appressorium formation, penetration and invasive growth, and MoMsb2 has overlapping functions with Cbp1 in recognizing environmental signals for Pmk1 activation.
Collapse
Affiliation(s)
- Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Guotian Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Shijie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
122
|
The AngFus3 Mitogen-Activated Protein Kinase Controls Hyphal Differentiation and Secondary Metabolism in Aspergillus niger. EUKARYOTIC CELL 2015; 14:602-15. [PMID: 25888553 DOI: 10.1128/ec.00018-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/13/2015] [Indexed: 01/04/2023]
Abstract
Adaptation to a changing environment is essential for the survival and propagation of sessile organisms, such as plants or fungi. Filamentous fungi commonly respond to a worsening of their growth conditions by differentiation of asexually or sexually produced spores. The formation of these specialized cell types is, however, also triggered as part of the general life cycle by hyphal age or density. Spores typically serve for dispersal and, therefore, translocation but can also act as resting states to endure times of scarcity. Eukaryotic differentiation in response to environmental and self-derived signals is commonly mediated by three-tiered mitogen-activated protein (MAP) kinase signaling cascades. Here, we report that the MAP kinase Fus3 of the black mold Aspergillus niger (AngFus3) and its upstream kinase AngSte7 control vegetative spore formation and secondary metabolism. Mutants lacking these kinases are defective in conidium induction in response to hyphal density but are fully competent in starvation-induced sporulation, indicating that conidiation in A. niger is triggered by various independent signals. In addition, the mutants exhibit an altered profile of volatile metabolites and secrete dark pigments into the growth medium, suggesting a dysregulation of the secondary metabolism. By assigning the AngFus3 MAP kinase pathway to the transduction of a potentially self-derived trigger, this work contributes to the unraveling of the intricate signaling networks controlling fungal differentiation. Moreover, our data further support earlier observations that differentiation and secondary metabolism are tightly linked in filamentous fungi.
Collapse
|
123
|
Swidergall M, van Wijlick L, Ernst JF. Signaling domains of mucin Msb2 in Candida albicans. EUKARYOTIC CELL 2015; 14:359-70. [PMID: 25636320 PMCID: PMC4385809 DOI: 10.1128/ec.00264-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/23/2015] [Indexed: 11/20/2022]
Abstract
Candida albicans adapts to the human host by environmental sensing using the Msb2 signal mucin, which regulates fungal morphogenesis and resistance characteristics. Msb2 is anchored within the cytoplasmic membrane by a single transmembrane (TM) region dividing it into a large N-terminal exodomain, which is shed, and a small cytoplasmic domain. Analyses of strains carrying deleted Msb2 variants revealed an exodomain segment required for cleavage, shedding, and all functions of Msb2. Phosphorylation of the mitogen-activated protein kinase (MAP kinase) Cek1 was regulated by three distinct regions in Msb2: in unstressed cells, N-terminal sequences repressed phosphorylation, while its induction under cell wall stress required the cytoplasmic tail (C-tail) and sequences N-terminally flanking the TM region, downstream of the proposed cleavage site. Within the latter Msb2 region, overlapping but not identical sequences were also required for hyphal morphogenesis, basal resistance to antifungals, and, in unstressed cells, downregulation of the PMT1 transcript, encoding protein O-mannosyltransferase-1. Deletion of two-thirds of the exodomain generated a truncated Msb2 variant with a striking ability to induce hyperfilamentous growth, which depended on the presence of the Msb2-interacting protein Sho1, the MAP kinase Cek1, and the Efg1 transcription factor. Under cell wall stress, the cytoplasmic tail relocalized partially to the nucleus and contributed to regulation of 117 genes, as revealed by transcriptomic analyses. Genes regulated by the C-tail contained binding sites for the Ace2 and Azf1 transcription factors and included the ALS cell wall genes. We concluded that Msb2 fulfills its numerous functions by employing functional domains that are distributed over its entire length.
Collapse
Affiliation(s)
- Marc Swidergall
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Lasse van Wijlick
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany Manchot Graduate School, Molecules of Infection II, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Joachim F Ernst
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany Manchot Graduate School, Molecules of Infection II, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
124
|
Gu Q, Chen Y, Liu Y, Zhang C, Ma Z. The transmembrane protein FgSho1 regulates fungal development and pathogenicity via the MAPK module Ste50-Ste11-Ste7 in Fusarium graminearum. THE NEW PHYTOLOGIST 2015; 206:315-328. [PMID: 25388878 DOI: 10.1111/nph.13158] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathways have been characterized in Fusarium graminearum. Currently, the upstream sensors of these pathways are unknown. Biological functions of a transmembrane protein FgSho1 were investigated using a target gene deletion strategy. The relationship between FgSho1 and the MAPK cassette FgSte50-Ste11-Ste7 was analyzed in depth. The transmembrane protein FgSho1 is required for conidiation, full virulence, and deoxynivalenol (DON) biosynthesis in F. graminearum. Furthermore, FgSho1 and FgSln1 have an additive effect on virulence of F. graminearum. The yeast two-hybrid, coimmunoprecipitation, colocalization and affinity capture-mass spectrometry analyses strongly indicated that FgSho1 physically interacts with the MAPK module FgSte50-Ste11-Ste7. Similar to the FgSho1 mutant, the mutants of FgSte50, FgSte11, and FgSte7 were defective in conidiation, pathogenicity, and DON biosynthesis. In addition, FgSho1 plays a minor role in the response to osmotic stress but it is involved in the cell wall integrity pathway, which is independent of the module FgSte50-Ste11-Ste7 in F. graminearum. Collectively, results of this study strongly indicate that FgSho1 regulates fungal development and pathogenicity via the MAPK module FgSte50-Ste11-Ste7 in F. graminearum, which is different from what is known in the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Qin Gu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yun Chen
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ye Liu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chengqi Zhang
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
125
|
Yamazaki A, Hayashi M. Building the interaction interfaces: host responses upon infection with microorganisms. CURRENT OPINION IN PLANT BIOLOGY 2015; 23:132-9. [PMID: 25621846 DOI: 10.1016/j.pbi.2014.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/20/2014] [Accepted: 12/11/2014] [Indexed: 05/24/2023]
Abstract
Research fields of plant symbiosis and plant immunity were relatively ignorant with each other until a little while ago. Recently, however, increasing intercommunications between those two fields have begun to provide novel aspects and knowledge for understanding relationships between plants and microorganisms. Here, we review recent reports on plant-microbe interactions, focusing on the infection processes, in order to elucidate plant cellular responses that are triggered by both symbionts and pathogens. Highlighting the core elements of host responses over biotic interactions will provide insights into general mechanisms of plant-microbe interactions.
Collapse
Affiliation(s)
- Akihiro Yamazaki
- Plant Symbiosis Research Team, RIKEN Center for Sustainable Resource Science Tsurumi, Kanagawa 230-0045, Japan
| | - Makoto Hayashi
- Plant Symbiosis Research Team, RIKEN Center for Sustainable Resource Science Tsurumi, Kanagawa 230-0045, Japan.
| |
Collapse
|
126
|
Kong S, Park SY, Lee YH. Systematic characterization of the bZIP transcription factor gene family in the rice blast fungus, Magnaporthe oryzae. Environ Microbiol 2014; 17:1425-43. [PMID: 25314920 DOI: 10.1111/1462-2920.12633] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 01/26/2023]
Abstract
Regulatory roles of the basic leucine zipper (bZIP) transcription factors (TFs) in fungi have been identified in diverse cellular processes such as development, nutrient utilization and various stress responses. In this study, the 22 Magnaporthe oryzae genes encoding bZIP TFs were systematically characterized. Phylogenetic analysis of fungal bZIP TFs revealed that seven MobZIPs are Magnaporthe-specific, while others belongs to 15 clades of orthologous Ascomycota genes. Expression patterns of MobZIPs under various conditions showed that they are highly stress responsive. We generated deletion mutants for 13 MobZIPs: nine with orthologues in other fungal species and four Magnaporthe-specific ones. Seven of them exhibited defects in mycelial growth, development and/or pathogenicity. Consistent with the conserved functions of the orthologues, MobZIP22 and MobZIP13 played a role in sulfur metabolism and iron homeostasis respectively. Along with MobZIP22 and MobZIP13, one Magnaporthe-specific gene, MobZIP11 is essential for pathogenicity in a reactive oxygen species-dependent manner. Taken together, our results will contribute to understanding the regulatory mechanisms of the bZIP TF gene family in fungal development, adaptation to environmental stresses and pathogenicity in the rice blast fungus.
Collapse
Affiliation(s)
- Sunghyung Kong
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
127
|
Shalaby S, Horwitz BA. Plant phenolic compounds and oxidative stress: integrated signals in fungal-plant interactions. Curr Genet 2014; 61:347-57. [PMID: 25407462 DOI: 10.1007/s00294-014-0458-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 01/09/2023]
Abstract
Upon invasion of a host, fungal pathogens are exposed to a variety of stresses. Plants release reactive oxygen species, and mount a variety of preformed and induced chemical defenses. Phenolic compounds are one example: they are ubiquitous in plants, and an invading pathogen encounters them already at the leaf surface, or for soil-borne pathogens, in the rhizosphere. Phenolic and related aromatic compounds show varying degrees of toxicity to cells. Some compounds are quite readily metabolized, and others less so. It was known already from classical studies that phenolic substrates induce the expression of the enzymes for their degradation. Recently, the ability to degrade phenolics was shown to be a virulence factor. Conversely, phenolic compounds can increase the effectiveness of antifungals. Phenolics are known antioxidants, yet they have been shown to elicit cellular responses that would usually be triggered to counter oxidant stress. Here, we review the evidence for a connection between the fungal response to phenolics as small-molecule signals, and the response to oxidants. The connections proposed here should enable genetic screens to identify specific fungal receptors for plant phenolics. Furthermore, understanding how the pathogen detects plant phenolic compounds as a stress signal may facilitate new antifungal strategies.
Collapse
Affiliation(s)
- Samer Shalaby
- Department of Biology, Technion, Israel Institute of Technology, 3200000, Haifa, Israel
| | | |
Collapse
|
128
|
Du Y, Hong L, Tang W, Li L, Wang X, Ma H, Wang Z, Zhang H, Zheng X, Zhang Z. Threonine deaminase MoIlv1 is important for conidiogenesis and pathogenesis in the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol 2014; 73:53-60. [PMID: 25307542 DOI: 10.1016/j.fgb.2014.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 09/28/2014] [Accepted: 10/01/2014] [Indexed: 01/01/2023]
Abstract
Threonine deaminase is the first critical enzyme in the biosynthesis of branched-chain amino acids (BCAAs), which catalyzes threonine into NH2 and ketobutyrate acid. Previously, we identified and characterized two acetolactate synthases MoIlv2 and MoIlv6 that are involved in the second step of BCAA biosynthesis. Deletion of MoILV2 and MoILV6 resulted in auxotrophy for leucine, isoleucine, and valine and defects in conidiation, appressorial penetration, and pathogenicity. Here, we identified a threonine dehydratase, named MoIlv1, from Magnaporthe oryzae. MoIlv1 is a homolog of Saccharomyces cerevisiae Ilv1p, which has an important role in the biosynthesis of isoleucine. To characterize the function of MoIlv1, a ΔMoilv1 knock-out mutant was generated and analyzed. Disruption of MoILV1 resulted in abnormal conidial morphology, reduced conidiation, limited appressorium-mediated penetration, and attenuated virulence on both barley and rice seedlings. Further analysis by domain-specific deletion revealed that the PALP domain is indispensable for MoIlv1 function. Our study indicates that MoIlv1 is a protein involved in isoleucine biosynthesis that underlies the complex process governing morphogenesis, appressorium formation, invasive hyphae growth, and pathogenicity.
Collapse
Affiliation(s)
- Yan Du
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Li Hong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Wei Tang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Lianwei Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaoli Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Hongyu Ma
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhengyi Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China.
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
129
|
Lu J, Cao H, Zhang L, Huang P, Lin F. Systematic analysis of Zn2Cys6 transcription factors required for development and pathogenicity by high-throughput gene knockout in the rice blast fungus. PLoS Pathog 2014; 10:e1004432. [PMID: 25299517 PMCID: PMC4192604 DOI: 10.1371/journal.ppat.1004432] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/28/2014] [Indexed: 11/18/2022] Open
Abstract
Because of great challenges and workload in deleting genes on a large scale, the functions of most genes in pathogenic fungi are still unclear. In this study, we developed a high-throughput gene knockout system using a novel yeast-Escherichia-Agrobacterium shuttle vector, pKO1B, in the rice blast fungus Magnaporthe oryzae. Using this method, we deleted 104 fungal-specific Zn(2)Cys(6) transcription factor (TF) genes in M. oryzae. We then analyzed the phenotypes of these mutants with regard to growth, asexual and infection-related development, pathogenesis, and 9 abiotic stresses. The resulting data provide new insights into how this rice pathogen of global significance regulates important traits in the infection cycle through Zn(2)Cys(6)TF genes. A large variation in biological functions of Zn(2)Cys(6)TF genes was observed under the conditions tested. Sixty-one of 104 Zn(2)Cys(6) TF genes were found to be required for fungal development. In-depth analysis of TF genes revealed that TF genes involved in pathogenicity frequently tend to function in multiple development stages, and disclosed many highly conserved but unidentified functional TF genes of importance in the fungal kingdom. We further found that the virulence-required TF genes GPF1 and CNF2 have similar regulation mechanisms in the gene expression involved in pathogenicity. These experimental validations clearly demonstrated the value of a high-throughput gene knockout system in understanding the biological functions of genes on a genome scale in fungi, and provided a solid foundation for elucidating the gene expression network that regulates the development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Jianping Lu
- School of Life Sciences Zhejiang University, Hangzhou, Zhejiang Province, China
- * E-mail:
| | - Huijuan Cao
- Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lilin Zhang
- School of Life Sciences Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Pengyun Huang
- School of Life Sciences Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fucheng Lin
- Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan Province, China
| |
Collapse
|
130
|
Brown NA, Dos Reis TF, Goinski AB, Savoldi M, Menino J, Almeida MT, Rodrigues F, Goldman GH. The Aspergillus nidulans signalling mucin MsbA regulates starvation responses, adhesion and affects cellulase secretion in response to environmental cues. Mol Microbiol 2014; 94:1103-1120. [PMID: 25294314 DOI: 10.1111/mmi.12820] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2014] [Indexed: 01/27/2023]
Abstract
In the heterogeneous semi-solid environment naturally occupied by lignocellulolytic fungi the majority of nutrients are locked away as insoluble plant biomass. Hence, lignocellulolytic fungi must actively search for, and attach to, a desirable source of nutrients. During growth on lignocellulose a period of carbon deprivation provokes carbon catabolite derepression and scavenging hydrolase secretion. Subsequently, starvation and/or contact sensing was hypothesized to play a role in lignocellulose attachment and degradation. In Aspergillus nidulans the extracellular signalling mucin, MsbA, influences growth under nutrient-poor conditions including lignocellulose. Cellulase secretion and activity was affected by MsbA via a mechanism that was independent of cellulase transcription. MsbA modulated both the cell wall integrity and filamentous growth MAPK pathways influencing adhesion, biofilm formation and secretion. The constitutive activation of MsbA subsequently enhanced cellulase activity by increasing the secretion of the cellobiohydrolase, CbhA, while improved substrate attachment and may contribute to an enhanced starvation response. Starvation and/or contact sensing therefore represents a new dimension to the already multifaceted regulation of cellulase activity.
Collapse
Affiliation(s)
- Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Tian L, Xu J, Zhou L, Guo W. VdMsb regulates virulence and microsclerotia production in the fungal plant pathogen Verticillium dahliae. Gene 2014; 550:238-44. [PMID: 25151308 DOI: 10.1016/j.gene.2014.08.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 01/28/2023]
Abstract
The vascular wilt fungus Verticillium dahliae infects the roots of cotton plants and can seriously diminish the yield and quality of this and other dicotyledons. However, the key genes involved in V. dahliae infection and pathogenesis in cotton remain unclear. Msb encodes a transmembrane mucin that is highly conserved in the MAPK signal pathway. Msb has been implicated previously in pathogenicity in various aerial plant fungi. In this study, V. dahliae Msb (VdMsb) was found to be required for fungal virulence and microsclerotia production. Strains lacking VdMsb exhibited reduced conidiation and microsclerotia formation. Compared with wild-type and gene-complemented strains, the invasive growth and adhesive capacity of VdMsb deletion mutants were significantly decreased. These results suggest that VdMsb plays a role in development and virulence in V. dahliae.
Collapse
Affiliation(s)
- Liangliang Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
132
|
Germination and infectivity of microconidia in the rice blast fungus Magnaporthe oryzae. Nat Commun 2014; 5:4518. [PMID: 25082370 PMCID: PMC4143928 DOI: 10.1038/ncomms5518] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 06/26/2014] [Indexed: 11/09/2022] Open
Abstract
The rice blast fungus Magnaporthe oryzae is a model for studying fungal-plant interactions. Although it produces two types of spores (microconidia and macroconidia), previous infection studies have exclusively dealt with macroconidia. Germination of microconidia has not been reported, and their role in plant infection is not defined. Here we show that approximately 10% of microconidia germinate on plant surfaces, and that colonies derived from germinated microconidia are normal in growth and pathogenesis. In infection assays with rice and barley seedlings, microconidia fail to infect intact plants, but they can colonize and develop necrotic lesions on wounded leaves and stems. Microconidia also cause disease symptoms on inoculated spikelets in infection assays with barley and Brachypodium heads. Furthermore, microconidia are detected inside rice plants that developed blast lesions under laboratory or field conditions. Therefore, microconidia can germinate and are infectious, and may be an important factor in the rice blast cycle.
Collapse
|
133
|
Lanver D, Berndt P, Tollot M, Naik V, Vranes M, Warmann T, Münch K, Rössel N, Kahmann R. Plant surface cues prime Ustilago maydis for biotrophic development. PLoS Pathog 2014; 10:e1004272. [PMID: 25033195 PMCID: PMC4102580 DOI: 10.1371/journal.ppat.1004272] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/12/2014] [Indexed: 11/19/2022] Open
Abstract
Infection-related development of phytopathogenic fungi is initiated by sensing and responding to plant surface cues. This response can result in the formation of specialized infection structures, so-called appressoria. To unravel the program inducing filaments and appressoria in the biotrophic smut fungus Ustilago maydis, we exposed cells to a hydrophobic surface and the cutin monomer 16-hydroxy hexadecanoic acid. Genome-wide transcriptional profiling at the pre-penetration stage documented dramatic transcriptional changes in almost 20% of the genes. Comparisons with the U. maydis sho1 msb2 double mutant, lacking two putative sensors for plant surface cues, revealed that these plasma membrane receptors regulate a small subset of the surface cue-induced genes comprising mainly secreted proteins including potential plant cell wall degrading enzymes. Targeted gene deletion analysis ascribed a role to up-regulated GH51 and GH62 arabinofuranosidases during plant penetration. Among the sho1/msb2-dependently expressed genes were several secreted effectors that are essential for virulence. Our data also demonstrate specific effects on two transcription factors that redirect the transcriptional regulatory network towards appressorium formation and plant penetration. This shows that plant surface cues prime U. maydis for biotrophic development. A basic requirement for pathogens to infect their hosts and to cause disease is to detect that they are in contact with the host surface. Plant pathogenic fungi typically respond to leaf surface contact with the development of specialized infection structures enabling the fungus to penetrate the leaf cuticle and to enter the plant tissue. In this study we analyzed the response of the corn smut fungus Ustilago maydis to two plant surface cues, such as hydrophobic surface and cutin monomers. Based on genome-wide gene expression analysis we found that these cues trigger the production of secreted plant cell wall degrading enzymes helping the fungus to penetrate the plant surface. In addition, genes were activated that code for a group of secreted proteins, so-called effectors, that affect virulence after penetration. These results demonstrate that plant surface cues trigger fungal penetration of the plant surface and also prime the fungus for later development inside plant tissue. These specific responses required two cell surface proteins that likely function as plant surface sensors.
Collapse
Affiliation(s)
- Daniel Lanver
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Patrick Berndt
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Marie Tollot
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Vikram Naik
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Miroslav Vranes
- Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences, Department of Genetics, Karlsruhe, Germany
| | - Tobias Warmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Karin Münch
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Nicole Rössel
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
- * E-mail:
| |
Collapse
|
134
|
Moretti M, Rossi M, Ciuffo M, Turina M. Functional characterization of the three mitogen-activated protein kinase kinases (MAP2Ks) present in the Cryphonectria parasitica genome reveals the necessity of Cpkk1 and Cpkk2, but not Cpkk3, for pathogenesis on chestnut (Castanea spp.). MOLECULAR PLANT PATHOLOGY 2014; 15:500-12. [PMID: 24373159 PMCID: PMC6638907 DOI: 10.1111/mpp.12111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The biological function(s) of the cpkk1, cpkk2 and cpkk3 genes, encoding the three mitogen-activated protein kinase kinases (MAP2Ks) of Cryphonectria parasitica, the causal agent of chestnut blight, were examined through knockout strains. Cpkk1, the Mkk1 orthologue, acts in a phosphorylation cascade essential for cell integrity; Cpkk2 is the Ste7 orthologue involved in the pheromone response pathway; Cpkk3 is the Pbs2 orthologue, the MAP2K activated during the high-osmolarity response. Our analysis confirmed the role of each MAP2K in its respective signalling cascade with some peculiarities: abnormal hyphae with a reduced number of septa and thinner cell walls were observed in Δcpkk1 mutants, and a strong growth defect on solid media was evident in Δcpkk2 mutants, when compared with the controls. Virulence on chestnut was affected in both the Δcpkk1 and Δcpkk2 strains, which were also unable to complete the developmental steps essential for mating. No alterations were reported in Δcpkk3, except under hyperosmotic conditions and in the presence of fludioxonil. Δcpkk2 mutants, however, showed higher sensitivity during growth in medium containing the antibiotic G418 (Geneticin).
Collapse
Affiliation(s)
- Marino Moretti
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | | | | | | |
Collapse
|
135
|
Zhang H, Zhao Q, Guo X, Guo M, Qi Z, Tang W, Dong Y, Ye W, Zheng X, Wang P, Zhang Z. Pleiotropic function of the putative zinc-finger protein MoMsn2 in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:446-60. [PMID: 24405033 DOI: 10.1094/mpmi-09-13-0271-r] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The mitogen-activated protein kinase MoOsm1-mediated osmoregulation pathway plays crucial roles in stress responses, asexual and sexual development, and pathogenicity in Magnaporthe oryzae. Utilizing an affinity purification approach, we identified the putative transcriptional activator MoMsn2 as a protein that interacts with MoOsm1 in vivo. Disruption of the MoMSN2 gene resulted in defects in aerial hyphal growth, conidial production, and infection of host plants. Quantitative reverse transcription-polymerase chain reaction analysis showed that the expression of several genes involved in conidiophore formation was reduced in ΔMomsn2, suggesting that MoMsn2 might function as a transcriptional regulator of these genes. Subsequently, MoCos1 was identified as one of the MoMsn2 targets through yeast one-hybrid analysis in which MoMsn2 binds to the AGGGG and CCCCT motif of the MoCOS1 promoter region. Phenotypic characterization showed that MoMsn2 was required for appressorium formation and penetration and pathogenicity. Although the ΔMomsn2 mutant was tolerant to the cell-wall stressor Calcofluor white, it was sensitive to common osmotic stressors. Further analysis suggests that MoMsn2 is involved in the regulation of the cell-wall biosynthesis pathway. Finally, transcriptome data revealed that MoMsn2 modulates numerous genes participating in conidiation, infection, cell-wall integrity, and stress response. Collectively, our results led to a model in which MoMsn2 mediates a series of downstream genes that control aerial hyphal growth, conidiogenesis, appressorium formation, cell-wall biosynthesis, and infection and that also offer potential targets for the development of new disease management strategies.
Collapse
|
136
|
Turrà D, Segorbe D, Di Pietro A. Protein kinases in plant-pathogenic fungi: conserved regulators of infection. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:267-88. [PMID: 25090477 DOI: 10.1146/annurev-phyto-102313-050143] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phytopathogenic fungi have evolved an amazing diversity of infection modes and nutritional strategies, yet the signaling pathways that govern pathogenicity are remarkably conserved. Protein kinases (PKs) catalyze the reversible phosphorylation of proteins, regulating a variety of cellular processes. Here, we present an overview of our current understanding of the different classes of PKs that contribute to fungal pathogenicity on plants and of the mechanisms that regulate and coordinate PK activity during infection-related development. In addition to the well-studied PK modules, such as MAPK (mitogen-activated protein kinase) and cAMP (cyclic adenosine monophosphate)-PKA (protein kinase A) cascades, we also discuss new PK pathways that have emerged in recent years as key players of pathogenic development and disease. Understanding how conserved PK signaling networks have been recruited during the evolution of fungal pathogenicity not only advances our knowledge of the highly elaborate infection process but may also lead to the development of novel strategies for the control of plant disease.
Collapse
Affiliation(s)
- David Turrà
- Departamento de Genética and Campus de Excelencia Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; , ,
| | | | | |
Collapse
|
137
|
Fernandez J, Wilson RA. Cells in cells: morphogenetic and metabolic strategies conditioning rice infection by the blast fungus Magnaporthe oryzae. PROTOPLASMA 2014; 251:37-47. [PMID: 23990109 DOI: 10.1007/s00709-013-0541-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
The rice blast fungus Magnaporthe oryzae is a global food security threat due to its destruction of cultivated rice. Of the world's rice harvest, 10-30 % is lost each year to this pathogen, and changing climates are likely to favor its spread into new areas. Insights into how the fungus might be contained could come from the wealth of molecular and cellular studies that have been undertaken in order to shed light on the biological underpinnings of blast disease, aspects of which we review herein. Infection begins when a three-celled spore lands on the surface of a leaf, germinates, and develops the specialized infection structure called the appressorium. The mature appressorium develops a high internal turgor that acts on a thin penetration peg, forcing it through the rice cuticle and into the underlying epidermal cells. Primary then invasive hyphae (IH) elaborate from the peg and grow asymptomatically from one living rice cell to another for the first few days of infection before host cells begin to die and characteristic necrotic lesions form on the surface of the leaf, from which spores are produced to continue the life cycle. To gain new insights into the biology of rice blast disease, we argue that, conceptually, the infection process can be viewed as two discrete phases occurring in markedly different environments and requiring distinct biochemical pathways and morphogenetic regulation: outside the host cell, where the appressorium develops in a nutrient-free environment, and inside the host cell, where filamentous growth occurs in a glucose-rich, nitrogen-poor environment, at least from the perspective of the fungus. Here, we review the physiological and metabolic changes that occur in M. oryzae as it transitions from the surface to the interior of the host, thus enabling us to draw lessons about the strategies that allow M. oryzae cells to thrive in rice cells.
Collapse
Affiliation(s)
- Jessie Fernandez
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | | |
Collapse
|
138
|
Rebollar A, López-García B. PAF104, a synthetic peptide to control rice blast disease by blocking appressorium formation in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1407-1416. [PMID: 23902261 DOI: 10.1094/mpmi-04-13-0110-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Magnaporthe oryzae is the most devastating pathogen of rice and the main cause of crop losses worldwide. The successful management of blast disease caused by this fungus is a clear necessity. The synthetic peptide PAF104 has been characterized by its inhibition of M. oryzae appressorium formation on hydrophobic surfaces. Growth and the ability of conidia to germinate was not affected by PAF104, indicating the lack of toxicity on fungal conidia. The addition of the cutin monomer 1,16-hexadecanediol does not interfere with the inhibitory effect of PAF104 on in vitro hydrophobic surfaces. On the other hand, inhibition of appressorium formation by PAF104 was nullified by the exogenous addition of cAMP. Our results suggest that PAF104 affects the Pmk1 pathway by repression of the gene expression of MoMSB2, which encodes a sensing surface protein, and the mitogen-activated protein/extracellular signal-regulated kinase kinase kinase MST11. The pathogenicity of M. oryzae was reduced after PAF104 treatment specifically blocking appressorium formation. Our results support PAF104 as a promising compound to control rice blast disease by blocking a specific target related to appressorium formation, a process essential for infection of rice leaves. Moreover, PAF104 is proposed as a lead compound to develop novel specific fungicides with improved properties.
Collapse
|
139
|
Balzergue C, Chabaud M, Barker DG, Bécard G, Rochange SF. High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. FRONTIERS IN PLANT SCIENCE 2013; 4:426. [PMID: 24194742 PMCID: PMC3810610 DOI: 10.3389/fpls.2013.00426] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/09/2013] [Indexed: 05/20/2023]
Abstract
The arbuscular mycorrhizal symbiosis associates soil fungi with the roots of the majority of plants species and represents a major source of soil phosphorus acquisition. Mycorrhizal interactions begin with an exchange of molecular signals between the two partners. A root signaling pathway is recruited, for which the perception of fungal signals triggers oscillations of intracellular calcium concentration. High phosphate availability is known to inhibit the establishment and/or persistence of this symbiosis, thereby favoring the direct, non-symbiotic uptake of phosphorus by the root system. In this study, Medicago truncatula plants were used to investigate the effects of phosphate supply on the early stages of the interaction. When plants were supplied with high phosphate fungal attachment to the roots was drastically reduced. An experimental system was designed to individually study the effects of phosphate supply on the fungus, on the roots, and on root exudates. These experiments revealed that the most important effects of high phosphate supply were on the roots themselves, which became unable to host mycorrhizal fungi even when these had been appropriately stimulated. The ability of the roots to perceive their fungal partner was then investigated by monitoring nuclear calcium spiking in response to fungal signals. This response did not appear to be affected by high phosphate supply. In conclusion, high levels of phosphate predominantly impact the plant host, but apparently not in its ability to perceive the fungal partner.
Collapse
Affiliation(s)
- Coline Balzergue
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Université Paul Sabatier, UMR5546Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, UMR5546Castanet-Tolosan, France
| | - Mireille Chabaud
- Laboratory of Plant–Microbe Interactions, Institut National de la Recherche Agronomique (UMR441), Centre National de la Recherche Scientifique (UMR2594)Castanet-Tolosan, France
| | - David G. Barker
- Laboratory of Plant–Microbe Interactions, Institut National de la Recherche Agronomique (UMR441), Centre National de la Recherche Scientifique (UMR2594)Castanet-Tolosan, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Université Paul Sabatier, UMR5546Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, UMR5546Castanet-Tolosan, France
| | - Soizic F. Rochange
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Université Paul Sabatier, UMR5546Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, UMR5546Castanet-Tolosan, France
| |
Collapse
|
140
|
Landraud P, Chuzeville S, Billon-Grande G, Poussereau N, Bruel C. Adaptation to pH and role of PacC in the rice blast fungus Magnaporthe oryzae. PLoS One 2013; 8:e69236. [PMID: 23874922 PMCID: PMC3712939 DOI: 10.1371/journal.pone.0069236] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/06/2013] [Indexed: 11/30/2022] Open
Abstract
Fungi are known to adapt to pH partly via specific activation of the Pal signaling pathway and subsequent gene regulation through the transcription factor PacC. The role of PacC in pathogenic fungi has been explored in few species, and each time its partaking in virulence has been found. We studied the impact of pH and the role of PacC in the biology of the rice pathogen Magnaporthe oryzae. Conidia formation and germination were affected by pH whereas fungal growth and appressorium formation were not. Growth in vitro and in planta was characterized by alkalinization and ammonia accumulation in the surrounding medium. Expression of the MoPACC gene increased when the fungus was placed under alkaline conditions. Except for MoPALF, expression of the MoPAL genes encoding the pH-signaling components was not influenced by pH. Deletion of PACC caused a progressive loss in growth rate from pH 5 to pH 8, a loss in conidia production at pH 8 in vitro, a loss in regulation of the MoPALF gene, a decreased production of secreted lytic enzymes and a partial loss in virulence towards barley and rice. PacC therefore plays a significant role in M. oryzae’s biology, and pH is revealed as one component at work during interaction between the fungus and its host plants.
Collapse
Affiliation(s)
- Patricia Landraud
- UMR 5240 - Microbiologie, Adaptation et Pathogénie; Université Lyon 1, CNRS, Bayer CropScience, Villeurbanne, France
| | - Sarah Chuzeville
- UMR 5240 - Microbiologie, Adaptation et Pathogénie; Université Lyon 1, CNRS, Bayer CropScience, Villeurbanne, France
| | - Geneviève Billon-Grande
- UMR 5240 - Microbiologie, Adaptation et Pathogénie; Université Lyon 1, CNRS, Bayer CropScience, Villeurbanne, France
| | - Nathalie Poussereau
- UMR 5240 - Microbiologie, Adaptation et Pathogénie; Université Lyon 1, CNRS, Bayer CropScience, Villeurbanne, France
| | - Christophe Bruel
- UMR 5240 - Microbiologie, Adaptation et Pathogénie; Université Lyon 1, CNRS, Bayer CropScience, Villeurbanne, France
- * E-mail:
| |
Collapse
|
141
|
Fleißner A. Turning the switch: using chemical genetics to elucidate protein kinase functions in filamentous fungi. FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2013.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
142
|
Kong LA, Li GT, Liu Y, Liu MG, Zhang SJ, Yang J, Zhou XY, Peng YL, Xu JR. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae. Fungal Genet Biol 2013; 56:33-41. [PMID: 23591122 DOI: 10.1016/j.fgb.2013.03.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 03/27/2013] [Accepted: 03/31/2013] [Indexed: 12/13/2022]
Abstract
Melanized appressoria are highly specialized infection structures formed by germ tubes of the rice blast fungus Magnaporthe oryzae for plant infection. M. oryzae also forms appressorium-like structures on hyphal tips. Whereas appressorium formation by conidial germ tubes has been well characterized, formation of appressorium-like structures by hyphal tips is under-investigated. In a previous study, we found that the chs7 deletion mutant failed to form appressoria on germ tubes but were normal in the development of appressorium-like structures on artificial hydrophobic surfaces. In this study, we compared the differences between the formation of appressoria by germ tubes and appressorium-like structures by hyphal tips in M. oryzae. Structurally, both appressoria and appressorium-like structures had a melanin layer that was absent in the pore region. In general, the latters were 1.4-fold larger in size but had lower turgor pressure than appressoria, which is consistent with its lower efficiency in plant penetration. Treatments with cAMP, IBMX, or a cutin monomer efficiently induced appressorium formation but not the development of appressorium-like structures. In contrast, coating surfaces with waxes stimulated the formation of both infection structures. Studies with various signaling mutants indicate that Osm1 and Mps1 are dispensable but Pmk1 is essential for both appressorium formation and development of appressorium-like structures on hyphal tips. Interestingly, the cpkA mutant was reduced in the differentiation of appressorium-like structures but not appressorium formation. We also observed that the con7 mutant generated in our lab failed to form appressorium-like structures on hyphal tips but still produced appressoria by germ tubes on hydrophobic surfaces. Con7 is a transcription factor regulating the expression of CHS7. Overall, these results indicate that the development of appressorium-like structures by hyphal tips and formation of appressoria by germ tubes are not identical differentiation processes in M. oryzae and may involve different molecular mechanisms.
Collapse
Affiliation(s)
- Ling-An Kong
- NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Kunova A, Pizzatti C, Cortesi P. Impact of tricyclazole and azoxystrobin on growth, sporulation and secondary infection of the rice blast fungus, Magnaporthe oryzae. PEST MANAGEMENT SCIENCE 2013; 69:278-284. [PMID: 22933369 DOI: 10.1002/ps.3386] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/26/2012] [Accepted: 07/10/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Rice blast, caused by Magnaporthe oryzae B. Couch sp. nov., is one of the most destructive rice diseases worldwide, causing substantial yield losses every year. In Italy, its management is based mainly on the use of two fungicides, azoxystrobin and tricyclazole, that restrain the disease progress. The aim of this study was to investigate and compare the inhibitory effects of the two fungicides on the growth, sporulation and secondary infection of M. oryzae. RESULTS Magnaporthe oryzae mycelium growth was inhibited at low concentrations of azoxystrobin and relatively high concentrations of tricyclazole, while sporulation was more sensitive to both fungicides and was affected at similarly low doses. Furthermore, infection efficiency of conidia obtained from mycelia exposed to tricyclazole was affected to a higher extent than for conidia produced on azoxystrobin-amended media, even though germination of such conidia was reduced after azoxystrobin treatment. CONCLUSIONS This study presents for the first time detailed azoxystrobin and tricyclazole growth-response curves for M. oryzae mycelium growth and sporulation. Furthermore, high efficacy of tricyclazole towards inhibition of sporulation and secondary infection indicates an additional possible mode of action of this fungicide that is different from inhibition of melanin biosynthesis.
Collapse
Affiliation(s)
- Andrea Kunova
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Milan, Italy
| | | | | |
Collapse
|
144
|
Shi JX, Adato A, Alkan N, He Y, Lashbrooke J, Matas AJ, Meir S, Malitsky S, Isaacson T, Prusky D, Leshkowitz D, Schreiber L, Granell AR, Widemann E, Grausem B, Pinot F, Rose JKC, Rogachev I, Rothan C, Aharoni A. The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning. THE NEW PHYTOLOGIST 2013; 197:468-480. [PMID: 23205954 DOI: 10.1111/nph.12032] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/04/2012] [Indexed: 05/20/2023]
Abstract
Fleshy tomato fruit typically lacks stomata; therefore, a proper cuticle is particularly vital for fruit development and interaction with the surroundings. Here, we characterized the tomato SlSHINE3 (SlSHN3) transcription factor to extend our limited knowledge regarding the regulation of cuticle formation in fleshy fruits. We created SlSHN3 overexpressing and silenced plants, and used them for detailed analysis of cuticular lipid compositions, phenotypic characterization, and the study on the mode of SlSHN3 action. Heterologous expression of SlSHN3 in Arabidopsis phenocopied overexpression of the Arabidopsis SHNs. Silencing of SlSHN3 results in profound morphological alterations of the fruit epidermis and significant reduction in cuticular lipids. We demonstrated that SlSHN3 activity is mediated by control of genes associated with cutin metabolism and epidermal cell patterning. As with SlSHN3 RNAi lines, mutation in the SlSHN3 target gene, SlCYP86A69, resulted in severe cutin deficiency and altered fruit surface architecture. In vitro activity assays demonstrated that SlCYP86A69 possesses NADPH-dependent ω-hydroxylation activity, particularly of C18:1 fatty acid to the 18-hydroxyoleic acid cutin monomer. This study provided insights into transcriptional mechanisms mediating fleshy fruit cuticle formation and highlighted the link between cutin metabolism and the process of fruit epidermal cell patterning.
Collapse
Affiliation(s)
- Jian Xin Shi
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Avital Adato
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - Noam Alkan
- Department of Postharvest Science of Fresh Produce, ARO, the Volcani Center, PO Box 6, Bet-Dagan, 50250, Israel
| | - Yonghua He
- Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Justin Lashbrooke
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - Antonio J Matas
- Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Sagit Meir
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - Sergey Malitsky
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - Tal Isaacson
- Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, ARO, the Volcani Center, PO Box 6, Bet-Dagan, 50250, Israel
| | - Dena Leshkowitz
- Department of Biological Services, Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - Lukas Schreiber
- Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Antonio R Granell
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Emilie Widemann
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357-, Université de Strasbourg, 67083, Strasbourg Cedex, France
| | - Bernard Grausem
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357-, Université de Strasbourg, 67083, Strasbourg Cedex, France
| | - Franck Pinot
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357-, Université de Strasbourg, 67083, Strasbourg Cedex, France
| | - Jocelyn K C Rose
- Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ilana Rogachev
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - Christophe Rothan
- UMR 619 Fruit Biology, INRA Bordeaux, 71 Av. Edouard Bourleaux, 33 883, Villenave d'Ornon, France
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| |
Collapse
|
145
|
Yi M, Valent B. Communication between filamentous pathogens and plants at the biotrophic interface. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:587-611. [PMID: 23750888 DOI: 10.1146/annurev-phyto-081211-172916] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Fungi and oomycetes that colonize living plant tissue form extensive interfaces with plant cells in which the cytoplasm of the microorganism is closely aligned with the host cytoplasm for an extended distance. In all cases, specialized biotrophic hyphae function to hijack host cellular processes across an interfacial zone consisting of a hyphal plasma membrane, a specialized interfacial matrix, and a plant-derived membrane. The interface is the site of active secretion by both players. This cross talk at the interface determines the winner in adversarial relationships and establishes the partnership in mutualistic relationships. Fungi and oomycetes secrete many specialized effector proteins for controlling the host, and they can stimulate remarkable cellular reorganization even in distant plant cells. Breakthroughs in live-cell imaging of fungal and oomycete encounter sites, including live-cell imaging of pathogens secreting fluorescently labeled effector proteins, have led to recent progress in understanding communication across the interface.
Collapse
Affiliation(s)
- Mihwa Yi
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506-5502, USA.
| | | |
Collapse
|
146
|
|
147
|
Genetic control of infection-related development in Magnaporthe oryzae. Curr Opin Microbiol 2012; 15:678-84. [DOI: 10.1016/j.mib.2012.09.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 11/23/2022]
|
148
|
Geurts R, Vleeshouwers V. Mycorrhizal Symbiosis: Ancient Signalling Mechanisms Co-opted. Curr Biol 2012; 22:R997-9. [DOI: 10.1016/j.cub.2012.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
149
|
Current understanding of HOG-MAPK pathway in Aspergillus fumigatus. Mycopathologia 2012; 175:13-23. [PMID: 23161019 DOI: 10.1007/s11046-012-9600-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/04/2012] [Indexed: 10/27/2022]
Abstract
Aspergillus fumigatus is an important opportunistic fungal pathogen that causes lethal systemic invasive aspergillosis. It must be able to adapt to stress in the microenvironment during host invasion and systemic spread. The high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) signaling pathway is a key element that controls adaptation to environmental stress. It plays a critical role in the virulence of several fungal pathogens. In this review, we summarize the current knowledge about the functions of different components of the HOG-MAPK pathway in A. fumigatus through mutant analysis or inferences from the genome annotation, focusing on their roles in adaptation to stress, regulation of infection-related morphogenesis, and effect on virulence. We also briefly compare the functions of the HOG pathway in A. fumigatus with those in the model fungi Saccharomyces cerevisiae and Aspergillus nidulans as well as several other human and plant pathogens including Candida albicans, Cryptococcus neoformans, and Magnaporthe oryzae. The genes described in this review mainly include tcsB, fos1, skn7, sho1, pbs2, and sakA whose deletion mutants have already been established in A. fumigatus. Among them, fos1 has been considered a virulence factor in A. fumigatus, indicating that components of the HOG pathway may be suitable as targets for developing new fungicides. However, quite a few of the genes of this pathway, such as sskA (ssk1), sskB, steC, and downstream regulator genes, are not well characterized. System biology approaches may contribute to a more comprehensive understanding of HOG pathway functions with dynamic details.
Collapse
|
150
|
Zheng D, Zhang S, Zhou X, Wang C, Xiang P, Zheng Q, Xu JR. The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. PLoS One 2012; 7:e49495. [PMID: 23166686 PMCID: PMC3498113 DOI: 10.1371/journal.pone.0049495] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/09/2012] [Indexed: 11/18/2022] Open
Abstract
Fusarium head blight (FHB) caused by Fusarium graminearum is a destructive disease of wheat and barley worldwide. In a previous study of systematic characterization of protein kinase genes in F. graminearum, mutants of three putative components of the osmoregulation MAP kinase pathway were found to have distinct colony morphology and hyphal growth defects on PDA plates. Because the osmoregulation pathway is not known to regulate aerial hyphal growth and branching, in this study we further characterized the functions of the FgHog1 pathway in growth, pathogenesis, and development. The Fghog1, Fgpbs2, and Fgssk2 mutants were all reduced in growth rate, aerial hyphal growth, and hyphal branching angle. These mutants were not only hypersensitive to osmotic stress but also had increased sensitivity to oxidative, cytoplasm membrane, and cell wall stresses. The activation of FgHog1 was blocked in the Fgpbs2 and Fgssk2 mutants, indicating the sequential activation of FgSsk2-FgPbs2-FgHog1 cascade. Interestingly, the FgHog1 MAPK pathway mutants appeared to be sensitive to certain compounds present in PDA. They were female sterile but retained male fertility. We also used the metabolomics profiling approach to identify compatible solutes that were accumulated in the wild type but not in the Fghog1 deletion mutant. Overall, our results indicate that the FgSsk2-FgPbs2-FgHog1 MAPK cascade is important for regulating hyphal growth, branching, plant infection, and hyperosmotic and general stress responses in F. graminearum.
Collapse
Affiliation(s)
- Dawei Zheng
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Shijie Zhang
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoying Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (XZ); (JX)
| | - Chenfang Wang
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Ping Xiang
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Zheng
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (XZ); (JX)
| |
Collapse
|