101
|
Shenoy AT, Brissac T, Gilley RP, Kumar N, Wang Y, Gonzalez-Juarbe N, Hinkle WS, Daugherty SC, Shetty AC, Ott S, Tallon LJ, Deshane J, Tettelin H, Orihuela CJ. Streptococcus pneumoniae in the heart subvert the host response through biofilm-mediated resident macrophage killing. PLoS Pathog 2017; 13:e1006582. [PMID: 28841717 PMCID: PMC5589263 DOI: 10.1371/journal.ppat.1006582] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/07/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022] Open
Abstract
For over 130 years, invasive pneumococcal disease has been associated with the presence of extracellular planktonic pneumococci, i.e. diplococci or short chains in affected tissues. Herein, we show that Streptococcus pneumoniae that invade the myocardium instead replicate within cellular vesicles and transition into non-purulent biofilms. Pneumococci within mature cardiac microlesions exhibited salient biofilm features including intrinsic resistance to antibiotic killing and the presence of an extracellular matrix. Dual RNA-seq and subsequent principal component analyses of heart- and blood-isolated pneumococci confirmed the biofilm phenotype in vivo and revealed stark anatomical site-specific differences in virulence gene expression; the latter having major implications on future vaccine antigen selection. Our RNA-seq approach also identified three genomic islands as exclusively expressed in vivo. Deletion of one such island, Region of Diversity 12, resulted in a biofilm-deficient and highly inflammogenic phenotype within the heart; indicating a possible link between the biofilm phenotype and a dampened host-response. We subsequently determined that biofilm pneumococci released greater amounts of the toxin pneumolysin than did planktonic or RD12 deficient pneumococci. This allowed heart-invaded wildtype pneumococci to kill resident cardiac macrophages and subsequently subvert cytokine/chemokine production and neutrophil infiltration into the myocardium. This is the first report for pneumococcal biofilm formation in an invasive disease setting. We show that biofilm pneumococci actively suppress the host response through pneumolysin-mediated immune cell killing. As such, our findings contradict the emerging notion that biofilm pneumococci are passively immunoquiescent.
Collapse
Affiliation(s)
- Anukul T. Shenoy
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, The University of Texas Health San Antonio, San Antonio, TX, United States of America
| | - Terry Brissac
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Ryan P. Gilley
- Department of Microbiology, Immunology, and Molecular Genetics, The University of Texas Health San Antonio, San Antonio, TX, United States of America
| | - Nikhil Kumar
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Yong Wang
- Division of Pulmonary, Allergy & Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Norberto Gonzalez-Juarbe
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Whitney S. Hinkle
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Sean C. Daugherty
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Amol C. Shetty
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Sandra Ott
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Luke J. Tallon
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Jessy Deshane
- Division of Pulmonary, Allergy & Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Carlos J. Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, The University of Texas Health San Antonio, San Antonio, TX, United States of America
- * E-mail:
| |
Collapse
|
102
|
Brown LR, Caulkins RC, Schartel TE, Rosch JW, Honsa ES, Schultz-Cherry S, Meliopoulos VA, Cherry S, Thornton JA. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae. Front Cell Infect Microbiol 2017. [PMID: 28638805 PMCID: PMC5461340 DOI: 10.3389/fcimb.2017.00233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bacteria growing within biofilms are protected from antibiotics and the immune system. Within these structures, horizontal transfer of genes encoding virulence factors, and promoting antibiotic resistance occurs, making biofilms an extremely important aspect of pneumococcal colonization and persistence. Identifying environmental cues that contribute to the formation of biofilms is critical to understanding pneumococcal colonization and infection. Iron has been shown to be essential for the formation of pneumococcal biofilms; however, the role of other physiologically important metals such as copper, zinc, and manganese has been largely neglected. In this study, we investigated the effect of metals on pneumococcal aggregation and early biofilm formation. Our results show that biofilms increase as zinc concentrations increase. The effect was found to be zinc-specific, as altering copper and manganese concentrations did not affect biofilm formation. Scanning electron microscopy analysis revealed structural differences between biofilms grown in varying concentrations of zinc. Analysis of biofilm formation in a mutant strain lacking the peroxide-generating enzyme pyruvate oxidase, SpxB, revealed that zinc does not protect against pneumococcal H2O2. Further, analysis of a mutant strain lacking the major autolysin, LytA, indicated the role of zinc as a negative regulator of LytA-dependent autolysis, which could affect biofilm formation. Additionally, analysis of cell-cell aggregation via plating and microscopy revealed that high concentrations of zinc contribute to intercellular interaction of pneumococci. The findings from this study demonstrate that metal availability contributes to the ability of pneumococci to form aggregates and subsequently, biofilms.
Collapse
Affiliation(s)
- Lindsey R Brown
- Department of Biological Sciences, Mississippi State UniversityStarkville, MS, United States
| | - Rachel C Caulkins
- Department of Biological Sciences, Mississippi State UniversityStarkville, MS, United States
| | - Tyler E Schartel
- Department of Biological Sciences, Mississippi State UniversityStarkville, MS, United States
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, United States
| | - Erin S Honsa
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, United States
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, United States
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, United States
| | - Sean Cherry
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, United States
| | - Justin A Thornton
- Department of Biological Sciences, Mississippi State UniversityStarkville, MS, United States
| |
Collapse
|
103
|
Boyles TH, Brink A, Calligaro GL, Cohen C, Dheda K, Maartens G, Richards GA, van Zyl Smit R, Smith C, Wasserman S, Whitelaw AC, Feldman C. South African guideline for the management of community-acquired pneumonia in adults. J Thorac Dis 2017; 9:1469-1502. [PMID: 28740661 DOI: 10.21037/jtd.2017.05.31] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tom H Boyles
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Adrian Brink
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa.,Ampath National Laboratory Services, Milpark Hospital, Johannesburg, South Africa
| | - Greg L Calligaro
- Lung Infection and Immunity Unit, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Cape Town, South Africa
| | - Cheryl Cohen
- Centre for Respiratory Disease and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa.,School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Keertan Dheda
- Lung Infection and Immunity Unit, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Cape Town, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Guy A Richards
- Department of Critical Care, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Richard van Zyl Smit
- Lung Infection and Immunity Unit, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Cape Town, South Africa
| | | | - Sean Wasserman
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Andrew C Whitelaw
- Division of Medical Microbiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.,National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Charles Feldman
- Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | |
Collapse
|
104
|
Kadam A, Eutsey RA, Rosch J, Miao X, Longwell M, Xu W, Woolford CA, Hillman T, Motib AS, Yesilkaya H, Mitchell AP, Hiller NL. Promiscuous signaling by a regulatory system unique to the pandemic PMEN1 pneumococcal lineage. PLoS Pathog 2017; 13:e1006339. [PMID: 28542565 PMCID: PMC5436883 DOI: 10.1371/journal.ppat.1006339] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/07/2017] [Indexed: 01/03/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a leading cause of death and disease in children and elderly. Genetic variability among isolates from this species is high. These differences, often the product of gene loss or gene acquisition via horizontal gene transfer, can endow strains with new molecular pathways, diverse phenotypes, and ecological advantages. PMEN1 is a widespread and multidrug-resistant pneumococcal lineage. Using comparative genomics we have determined that a regulator-peptide signal transduction system, TprA2/PhrA2, was acquired by a PMEN1 ancestor and is encoded by the vast majority of strains in this lineage. We show that TprA2 is a negative regulator of a PMEN1-specific gene encoding a lanthionine-containing peptide (lcpA). The activity of TprA2 is modulated by its cognate peptide, PhrA2. Expression of phrA2 is density-dependent and its C-terminus relieves TprA2-mediated inhibition leading to expression of lcpA. In the pneumococcal mouse model with intranasal inoculation, TprA2 had no effect on nasopharyngeal colonization but was associated with decreased lung disease via its control of lcpA levels. Furthermore, the TprA2/PhrA2 system has integrated into the pneumococcal regulatory circuitry, as PhrA2 activates TprA/PhrA, a second regulator-peptide signal transduction system widespread among pneumococci. Extracellular PhrA2 can release TprA-mediated inhibition, activating expression of TprA-repressed genes in both PMEN1 cells as well as another pneumococcal lineage. Acquisition of TprA2/PhrA2 has provided PMEN1 isolates with a mechanism to promote commensalism over dissemination and control inter-strain gene regulation.
Collapse
Affiliation(s)
- Anagha Kadam
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Rory A. Eutsey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jason Rosch
- Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Xinyu Miao
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Mark Longwell
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, Pennsylvania, United States of America
| | - Wenjie Xu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Carol A. Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Todd Hillman
- Pittsburgh Ear Associates, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Anfal Shakir Motib
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| | - Hasan Yesilkaya
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
105
|
González-Juarbe N, Bradley KM, Shenoy AT, Gilley RP, Reyes LF, Hinojosa CA, Restrepo MI, Dube PH, Bergman MA, Orihuela CJ. Pore-forming toxin-mediated ion dysregulation leads to death receptor-independent necroptosis of lung epithelial cells during bacterial pneumonia. Cell Death Differ 2017; 24:917-928. [PMID: 28387756 PMCID: PMC5423117 DOI: 10.1038/cdd.2017.49] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/07/2017] [Accepted: 03/07/2017] [Indexed: 12/29/2022] Open
Abstract
We report that pore-forming toxins (PFTs) induce respiratory epithelial cell necroptosis independently of death receptor signaling during bacterial pneumonia. Instead, necroptosis was activated as a result of ion dysregulation arising from membrane permeabilization. PFT-induced necroptosis required RIP1, RIP3 and MLKL, and could be induced in the absence or inhibition of TNFR1, TNFR2 and TLR4 signaling. We detected activated MLKL in the lungs from mice and nonhuman primates experiencing Serratia marcescens and Streptococcus pneumoniae pneumonia, respectively. We subsequently identified calcium influx and potassium efflux as the key initiating signals responsible for necroptosis; also that mitochondrial damage was not required for necroptosis activation but was exacerbated by MLKL activation. PFT-induced necroptosis in respiratory epithelial cells did not involve CamKII or reactive oxygen species. KO mice deficient in MLKL or RIP3 had increased survival and reduced pulmonary injury during S. marcescens pneumonia. Our results establish necroptosis as a major cell death pathway active during bacterial pneumonia and that necroptosis can occur without death receptor signaling.
Collapse
Affiliation(s)
- Norberto González-Juarbe
- Department of Microbiology, The University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294-2170, USA
| | - Kelley Margaret Bradley
- Department of Microbiology, The University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294-2170, USA
| | - Anukul Taranath Shenoy
- Department of Microbiology, The University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294-2170, USA
| | - Ryan Paul Gilley
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Luis Felipe Reyes
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Cecilia Anahí Hinojosa
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Marcos Ignacio Restrepo
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Division of Pulmonary Diseases and Critical Care Medicine, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Peter Herman Dube
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Molly Ann Bergman
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Carlos Javier Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294-2170, USA
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
106
|
Marrie TJ, Tyrrell GJ, Majumdar SR, Eurich DT. Invasive Pneumococcal Disease: Still Lots to Learn and a Need for Standardized Data Collection Instruments. Can Respir J 2017; 2017:2397429. [PMID: 28424565 PMCID: PMC5382326 DOI: 10.1155/2017/2397429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/23/2017] [Accepted: 03/05/2017] [Indexed: 01/25/2023] Open
Abstract
Background. Large studies of invasive pneumococcal disease (IPD) are frequently lacking detailed clinical information. Methods. A population-based 15-year study of IPD in Northern Alberta. Results. 2435 patients with a mean age of 54.2 years formed the study group. Males outnumbered females and Aboriginal and homeless persons were overrepresented. High rates of smoking, excessive alcohol use, and illicit drug use were seen. Almost all (87%) had a major comorbidity and 15% had functional limitations prior to admission. Bacteremia, pneumonia, and meningitis were the most common major manifestations of IPD. Almost half of the patients had alteration of mental status at the time of admission and 22% required mechanical ventilation. Myocardial infarction, pulmonary embolism, and new onset stroke occurred in 1.7, 1.3, and 1.1% of the patients, respectively; of those who had echocardiograms, 35% had impaired ventricular function. The overall in-hospital mortality was 15.6%. Conclusions. IPD remains a serious infection in adults. In addition to immunization, preventative measures need to consider the sociodemographic features more carefully. A standard set of data need to be collected so that comparisons can be made from study to study. Future investigations should target cardiac function and pulmonary embolism prevention in this population.
Collapse
Affiliation(s)
- T. J. Marrie
- Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - G. J. Tyrrell
- The Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, University of Alberta and The Provincial Laboratory for Public Health, Edmonton, AB, Canada
| | - Sumit R. Majumdar
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Dean T. Eurich
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
107
|
Anderson R, Feldman C. Pneumolysin as a potential therapeutic target in severe pneumococcal disease. J Infect 2017; 74:527-544. [PMID: 28322888 DOI: 10.1016/j.jinf.2017.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/09/2017] [Accepted: 03/11/2017] [Indexed: 12/13/2022]
Abstract
Acute pulmonary and cardiac injury remain significant causes of morbidity and mortality in those afflicted with severe pneumococcal disease, with the risk for early mortality often persisting several years beyond clinical recovery. Although remaining to be firmly established in the clinical setting, a considerable body of evidence, mostly derived from murine models of experimental infection, has implicated the pneumococcal, cholesterol-binding, pore-forming toxin, pneumolysin (Ply), in the pathogenesis of lung and myocardial dysfunction. Topics covered in this review include the burden of pneumococcal disease, risk factors, virulence determinants of the pneumococcus, complications of severe disease, antibiotic and adjuvant therapies, as well as the structure of Ply and the role of the toxin in disease pathogenesis. Given the increasing recognition of the clinical potential of Ply-neutralisation strategies, the remaining sections of the review are focused on updates of the types, benefits and limitations of currently available therapies which may attenuate, directly and/or indirectly, the injurious actions of Ply. These include recently described experimental therapies such as various phytochemicals and lipids, and a second group of more conventional agents the members of which remain the subject of ongoing clinical evaluation. This latter group, which is covered more extensively, encompasses macrolides, statins, corticosteroids, and platelet-targeted therapies, particularly aspirin.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology and Institute of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
108
|
Nel JG, Durandt C, Theron AJ, Tintinger GR, Pool R, Richards GA, Mitchell TJ, Feldman C, Anderson R. Pneumolysin mediates heterotypic aggregation of neutrophils and platelets in vitro. J Infect 2017; 74:599-608. [PMID: 28267572 DOI: 10.1016/j.jinf.2017.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/17/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Platelets orchestrate the inflammatory activities of neutrophils, possibly contributing to pulmonary and myocardial damage during severe pneumococcal infection. This study tested the hypothesis that the pneumococcal toxin, pneumolysin (Ply), activates production of platelet-activating factor (PAF) and thromboxane A2 (TxA2) by neutrophils, these bioactive lipids being potential mediators of neutrophil:platelet (NP) networking. METHODS The effects of recombinant Ply (10-80 ng mL-1) on the production of PAF and TxA2 by isolated neutrophils were measured using ELISA procedures, and NP aggregation by flow cytometry. RESULTS Exposure of neutrophils to Ply induced production of PAF and, to a lesser extent, TxA2, achieving statistical significance at ≥20 ng mL-1 of the toxin. In the case of NP interactions, Ply promoted heterotypic aggregation which was dependent on upregulation of P-selectin (CD62P) and activation of protease-activated receptor 1 (PAR1), attaining statistical significance at ≥10 ng mL-1 of the toxin, but did not involve either PAF or TxA2. CONCLUSION Ply induces synthesis of PAF and TxA2, by human neutrophils, neither of which appears to contribute to the formation of NP heterotypic aggregates in vitro, a process which is seemingly dependent on CD62P and PAR1. These pro-inflammatory activities of Ply may contribute to the pathogenesis of pulmonary and myocardial injury during severe pneumococcal infection.
Collapse
Affiliation(s)
- Jan G Nel
- Department of Haematology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, South African Medical Research Council Unit for Stem Cell Research, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Annette J Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Gregory R Tintinger
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Roger Pool
- Department of Haematology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa
| | - Guy A Richards
- Department of Critical Care, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Timothy J Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Institute for Cellular and Molecular Medicine, South African Medical Research Council Unit for Stem Cell Research, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
109
|
Prise en charge des infections à Streptococcus pneumoniae : ce qui a changé en 15 ans. MEDECINE INTENSIVE REANIMATION 2017. [DOI: 10.1007/s13546-017-1265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
110
|
Reyes LF, Restrepo MI, Hinojosa CA, Soni NJ, Shenoy AT, Gilley RP, Gonzalez-Juarbe N, Noda JR, Winter VT, de la Garza MA, Shade RE, Coalson JJ, Giavedoni LD, Anzueto A, Orihuela CJ. A Non-Human Primate Model of Severe Pneumococcal Pneumonia. PLoS One 2016; 11:e0166092. [PMID: 27855182 PMCID: PMC5113940 DOI: 10.1371/journal.pone.0166092] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/22/2016] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and infectious death in adults worldwide. A non-human primate model is needed to study the molecular mechanisms that underlie the development of severe pneumonia, identify diagnostic tools, explore potential therapeutic targets, and test clinical interventions during pneumococcal pneumonia. OBJECTIVE To develop a non-human primate model of pneumococcal pneumonia. METHODS Seven adult baboons (Papio cynocephalus) were surgically tethered to a continuous monitoring system that recorded heart rate, temperature, and electrocardiography. Animals were inoculated with 109 colony-forming units of S. pneumoniae using bronchoscopy. Three baboons were rescued with intravenous ampicillin therapy. Pneumonia was diagnosed using lung ultrasonography and ex vivo confirmation by histopathology and immunodetection of pneumococcal capsule. Organ failure, using serum biomarkers and quantification of bacteremia, was assessed daily. RESULTS Challenged animals developed signs and symptoms of pneumonia 4 days after infection. Infection was characterized by the presence of cough, tachypnea, dyspnea, tachycardia and fever. All animals developed leukocytosis and bacteremia 24 hours after infection. A severe inflammatory reaction was detected by elevation of serum cytokines, including Interleukin (IL)1Ra, IL-6, and IL-8, after infection. Lung ultrasonography precisely detected the lobes with pneumonia that were later confirmed by pathological analysis. Lung pathology positively correlated with disease severity. Antimicrobial therapy rapidly reversed symptomology and reduced serum cytokines. CONCLUSIONS We have developed a novel animal model for severe pneumococcal pneumonia that mimics the clinical presentation, inflammatory response, and infection kinetics seen in humans. This is a novel model to test vaccines and treatments, measure biomarkers to diagnose pneumonia, and predict outcomes.
Collapse
Affiliation(s)
- Luis F. Reyes
- Division of Pulmonary Diseases & Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Division of Pulmonary Diseases & Critical Care Medicine, South Texas Veterans Health Care System, San Antonio, TX, United States of America
| | - Marcos I. Restrepo
- Division of Pulmonary Diseases & Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Division of Pulmonary Diseases & Critical Care Medicine, South Texas Veterans Health Care System, San Antonio, TX, United States of America
- * E-mail:
| | - Cecilia A. Hinojosa
- Division of Pulmonary Diseases & Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Division of Pulmonary Diseases & Critical Care Medicine, South Texas Veterans Health Care System, San Antonio, TX, United States of America
| | - Nilam J. Soni
- Division of Pulmonary Diseases & Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Division of Pulmonary Diseases & Critical Care Medicine, South Texas Veterans Health Care System, San Antonio, TX, United States of America
| | - Anukul T. Shenoy
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Ryan P. Gilley
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Norberto Gonzalez-Juarbe
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Julio R. Noda
- Division of Pulmonary Diseases & Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Division of Pulmonary Diseases & Critical Care Medicine, South Texas Veterans Health Care System, San Antonio, TX, United States of America
| | - Vicki T. Winter
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | | | - Robert E. Shade
- Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Jacqueline J. Coalson
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Luis D. Giavedoni
- Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Antonio Anzueto
- Division of Pulmonary Diseases & Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Division of Pulmonary Diseases & Critical Care Medicine, South Texas Veterans Health Care System, San Antonio, TX, United States of America
| | - Carlos J. Orihuela
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
111
|
Redondo E, Rivero I, Vargas D, Mascarós E, Díaz-Maroto J, Linares M, Valdepérez J, Gil A, Molina J, Jimeno I, Ocaña D, Martinón-Torres F. Vacunación frente a la neumonía adquirida en la comunidad del adulto. Posicionamiento del Grupo de Neumoexpertos en Prevención. Semergen 2016; 42:464-475. [DOI: 10.1016/j.semerg.2016.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
|
112
|
Abstract
PURPOSE OF REVIEW Here, we review the incidence, prognosis, potential mechanisms and therapeutic implications of cardiovascular disease in community-acquired pneumonia (CAP). RECENT FINDINGS Recent evidence suggests that a large proportion of deaths from CAP are attributable to cardiovascular disease, including sudden cardiac death, acute myocardial infarction (MI), arrhythmias and cardiac failure. Up to one-third of patients with CAP may experience cardiovascular complications within 30 days of hospital admission, while data also suggest that CAP managed in the community is associated with increased risk of acute MI. The risk is maximal within a few days of hospitalization with CAP and reduces over time. Most studies suggest that risk is still increased at 1 year, and some suggest risk continues to be increased at 10 years post-CAP. This clearly contributes to the well-recognized increased long-term mortality associated with CAP. The mechanism is not entirely clear, but recent published data have better defined the impact of the host response, including systemic inflammation and platelet activation. The contribution of Streptococcus pneumoniae has also been recently investigated, with animal studies suggesting a direct effect of S. pneumoniae on the myocardium, forming microlesions that heal with resulting myocardial fibrosis. Several studies suggest a key role for the pore-forming toxin pneumolysin in S. pneumoniae-induced cardiac toxicity. SUMMARY Several therapies have been shown to improve the outcomes in cardiovascular disease, but whether these would be effective in improving outcomes in CAP is unknown. In this review, we argue that cardioprotective treatments may hold the greatest promise in terms of reducing long-term mortality in patients with CAP.
Collapse
|
113
|
Abstract
Pneumococcal infections continue to cause significant morbidity and mortality in patients throughout the world. This microorganism remains the most common bacterial cause of community-acquired pneumonia and is associated with a considerable burden of disease and health-care costs in both developed and developing countries. Emerging antibiotic resistance has been a concern because of its potential negative impact on the outcome of patients who receive standard antibiotic therapy. However, there have been substantial changes in the epidemiology of this pathogen in recent years, not least of which has been due to the use of pneumococcal conjugate vaccines in children, with subsequent herd protection in unvaccinated adults and children. Furthermore, much recent research has led to a better understanding of the virulence factors of this pathogen and their role in the pathogenesis of severe pneumococcal disease, including the cardiac complications, as well as the potential role of adjunctive therapy in the management of severely ill cases. This review will describe recent advances in our understanding of the epidemiology, virulence factors, and management of pneumococcal community-acquired pneumonia.
Collapse
Affiliation(s)
- Charles Feldman
- Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand Medical School, Johannesburg, South Africa
| | - Ronald Anderson
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
114
|
Makara MA, Hoang KV, Ganesan LP, Crouser ED, Gunn JS, Turner J, Schlesinger LS, Mohler PJ, Rajaram MVS. Cardiac Electrical and Structural Changes During Bacterial Infection: An Instructive Model to Study Cardiac Dysfunction in Sepsis. J Am Heart Assoc 2016; 5:e003820. [PMID: 27620887 PMCID: PMC5079037 DOI: 10.1161/jaha.116.003820] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/18/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Sepsis patients with cardiac dysfunction have significantly higher mortality. Although several pathways are associated with myocardial damage in sepsis, the precise cause(s) remains unclear and treatment options are limited. This study was designed to develop a new model to investigate the early events of cardiac damage during sepsis progression. METHODS AND RESULTS Francisella tularensis subspecies novicida (Ft.n) is a Gram-negative intracellular pathogen causing severe sepsis syndrome in mice. BALB/c mice (N=12) were sham treated or infected with Ft.n through the intranasal route. Serial electrocardiograms were recorded at multiple time points until 96 hours. Hearts were then harvested for histology and gene expression studies. Similar to septic patients, we illustrate both cardiac electrical and structural phenotypes in our murine Ft.n infection model, including prominent R' wave formation, prolonged QRS intervals, and significant left ventricular dysfunction. Notably, in infected animals, we detected numerous microlesions in the myocardium, previously observed following nosocomial Streptococcus infection and in sepsis patients. We show that Ft.n-mediated microlesions are attributed to cardiomyocyte apoptosis, increased immune cell infiltration, and expression of inflammatory mediators (tumor necrosis factor, interleukin [IL]-1β, IL-8, and superoxide dismutase 2). Finally, we identify increased expression of microRNA-155 and rapid degradation of heat shock factor 1 following cardiac Ft.n infection as a primary cause of myocardial inflammation and apoptosis. CONCLUSIONS We have developed and characterized an Ft.n infection model to understand the pathogenesis of cardiac dysregulation in sepsis. Our findings illustrate novel in vivo phenotypes underlying cardiac dysfunction during Ft.n infection with significant translational impact on our understanding of sepsis pathophysiology.
Collapse
Affiliation(s)
- Michael A Makara
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Institute, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH
| | - Ky V Hoang
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH
| | - Latha P Ganesan
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Institute, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH
| | - Elliot D Crouser
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH
| | - John S Gunn
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH
| | - Joanne Turner
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH
| | - Peter J Mohler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Institute, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
115
|
Wada H, Ogita M, Miyauchi K, Suwa S, Yamano M, Daida H. Case report: Fulminant myocarditis associated with overwhelming pneumococcal infection. Int J Cardiol 2016; 223:706-707. [PMID: 27568994 DOI: 10.1016/j.ijcard.2016.08.282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/14/2016] [Accepted: 08/17/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Hideki Wada
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Manabu Ogita
- Department of Cardiology, Juntendo University Shizuoka Hospital, 1129 Nagaoka, Izunokuni, Shizuoka, 410-2295, Japan.
| | - Katsumi Miyauchi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoru Suwa
- Department of Cardiology, Juntendo University Shizuoka Hospital, 1129 Nagaoka, Izunokuni, Shizuoka, 410-2295, Japan
| | - Miki Yamano
- Digestive Disease Center, Showa University, Northern Yokohama Hospital, 35-1 Chigasakityuo, Tsuzuki-ku, Yokohama, Kanagawa, 224-0032, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
116
|
|
117
|
Feldman C, Anderson R. Prevalence, pathogenesis, therapy, and prevention of cardiovascular events in patients with community-acquired pneumonia. Pneumonia (Nathan) 2016; 8:11. [PMID: 28702290 PMCID: PMC5471702 DOI: 10.1186/s41479-016-0011-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 07/04/2016] [Indexed: 12/11/2022] Open
Abstract
It is now well recognised that cardiac events occur relatively commonly in patients with acute community-acquired pneumonia. While these events are more frequent in patients with underlying risk factors—such as those with underlying chronic cardiovascular and respiratory comorbidities, the elderly, and in nursing home residents—they also occur in patients with no underlying risks other than severe pneumonia. Recent research elucidating the underlying pathogenic mechanisms related to these cardiac events has indicated a probable role for platelet activation, which is possibly exacerbated by pneumolysin in the case of pneumococcal infections. This, in turn, has resulted in the identification of possible therapeutic strategies targeting platelet activation, as well as the cardio-toxic activity of pneumolysin. These issues represent the primary focus of the current review.
Collapse
Affiliation(s)
- Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Internal Medicine, University of the Witwatersrand Medical School, 7 York Road, Parktown, 2193 Johannesburg, South Africa
| | - Ronald Anderson
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
118
|
Abstract
Streptococcus pneumoniae is an opportunistic pathogen globally associated with significant morbidity and mortality. It is capable of causing a wide range of diseases including sinusitis, conjunctivitis, otitis media, pneumonia, bacteraemia, sepsis, and meningitis. While its capsular polysaccharide is indispensible for invasive disease, and opsonising antibodies against the capsule are the basis for the current vaccines, a long history of biomedical research indicates that other components of this Gram-positive bacterium are also critical for virulence. Herein we review the contribution of pneumococcal virulence determinants to survival and persistence in the context of distinct anatomical sites. We discuss how these determinants allow the pneumococcus to evade mucociliary clearance during colonisation, establish lower respiratory tract infection, resist complement deposition and opsonophagocytosis in the bloodstream, and invade secondary tissues such as the central nervous system leading to meningitis. We do so in a manner that highlights both the critical role of the capsular polysaccharide and the accompanying and necessary protein determinants. Understanding the complex interplay between host and pathogen is necessary to find new ways to prevent pneumococcal infection. This review is an attempt to do so with consideration for the latest research findings.
Collapse
|
119
|
Pneumolysin Mediates Platelet Activation In Vitro. Lung 2016; 194:589-93. [PMID: 27192991 DOI: 10.1007/s00408-016-9900-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022]
Abstract
This study has explored the role of the pneumococcal toxin, pneumolysin (Ply), in activating human platelets. Following exposure to Ply (10-80 ng/ml), platelet activation and cytosolic Ca(2+) concentrations were measured flow cytometrically according to the level of expression of CD62P (P-selectin) and spectrofluorimetrically, respectively. Exposure to Ply resulted in marked upregulation of expression of platelet CD62P, achieving statistical significance at concentrations of 40 ng/ml and higher (P < 0.05), in the setting of increased influx of Ca(2+). These potentially pro-thrombotic actions of Ply were attenuated by depletion of Ca(2+) from the extracellular medium or by exposure of the cells to a pneumolysoid devoid of pore-forming activity. These findings are consistent with a mechanism of Ply-mediated platelet activation involving sub-lytic pore formation, Ca(2+) influx, and mobilization of CD62P-expressing α-granules, which, if operative in vivo, may contribute to the pathogenesis of associated acute lung and myocardial injury during invasive pneumococcal disease.
Collapse
|
120
|
Cigarette Smoke Attenuates the Nasal Host Response to Streptococcus pneumoniae and Predisposes to Invasive Pneumococcal Disease in Mice. Infect Immun 2016; 84:1536-1547. [PMID: 26930709 DOI: 10.1128/iai.01504-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/25/2016] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of invasive bacterial infections, with nasal colonization an important first step in disease. While cigarette smoking is a strong risk factor for invasive pneumococcal disease, the underlying mechanisms remain unknown. This is partly due to a lack of clinically relevant animal models investigating nasal pneumococcal colonization in the context of cigarette smoke exposure. We present a model of nasal pneumococcal colonization in cigarette smoke-exposed mice and document, for the first time, that cigarette smoke predisposes to invasive pneumococcal infection and mortality in an animal model. Cigarette smoke increased the risk of bacteremia and meningitis without prior lung infection. Mechanistically, deficiency in interleukin 1α (IL-1α) or platelet-activating factor receptor (PAFR), an important host receptor thought to bind and facilitate pneumococcal invasiveness, did not rescue cigarette smoke-exposed mice from invasive pneumococcal disease. Importantly, we observed cigarette smoke to attenuate nasal inflammatory mediator expression, particularly that of neutrophil-recruiting chemokines, normally elicited by pneumococcal colonization. Smoking cessation during nasal pneumococcal colonization rescued nasal neutrophil recruitment and prevented invasive disease in mice. We propose that cigarette smoke predisposes to invasive pneumococcal disease by suppressing inflammatory processes of the upper respiratory tract. Given that smoking prevalence remains high worldwide, these findings are relevant to the continued efforts to reduce the invasive pneumococcal disease burden.
Collapse
|
121
|
Infiltrated Macrophages Die of Pneumolysin-Mediated Necroptosis following Pneumococcal Myocardial Invasion. Infect Immun 2016; 84:1457-69. [PMID: 26930705 DOI: 10.1128/iai.00007-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/20/2016] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is capable of invading the heart. Herein we observed that pneumococcal invasion of the myocardium occurred soon after development of bacteremia and was continuous thereafter. Using immunofluorescence microscopy (IFM), we observed that S. pneumoniae replication within the heart preceded visual signs of tissue damage in cardiac tissue sections stained with hematoxylin and eosin. Different S. pneumoniae strains caused distinct cardiac pathologies: strain TIGR4, a serotype 4 isolate, caused discrete pneumococcus-filled microscopic lesions (microlesions), whereas strain D39, a serotype 2 isolate, was, in most instances, detectable only using IFM and was associated with foci of cardiomyocyte hydropic degeneration and immune cell infiltration. Both strains efficiently invaded the myocardium, but cardiac damage was entirely dependent on the pore-forming toxin pneumolysin only for D39. Early microlesions caused by TIGR4 and microlesions formed by a TIGR4 pneumolysin-deficient mutant were infiltrated with CD11b(+) and Ly6G-positive neutrophils and CD11b(+) and F4/80-positive (F4/80(+)) macrophages. We subsequently demonstrated that macrophages in TIGR4-infected hearts died as a result of pneumolysin-induced necroptosis. The effector of necroptosis, phosphorylated mixed-lineage kinase domain-like protein (MLKL), was detected in CD11b(+) and F4/80(+) cells associated with microlesions. Likewise, treatment of infected mice and THP-1 macrophages in vitro with the receptor-interacting protein 1 kinase (RIP1) inhibitor necrostatin-5 promoted the formation of purulent microlesions and blocked cell death, respectively. We conclude that pneumococci that have invaded the myocardium are an important cause of cardiac damage, pneumolysin contributes to cardiac damage in a bacterial strain-specific manner, and pneumolysin kills infiltrated macrophages via necroptosis, which alters the immune response.
Collapse
|
122
|
Streptococcus pneumoniae Cell-Wall-Localized Phosphoenolpyruvate Protein Phosphotransferase Can Function as an Adhesin: Identification of Its Host Target Molecules and Evaluation of Its Potential as a Vaccine. PLoS One 2016; 11:e0150320. [PMID: 26990554 PMCID: PMC4798226 DOI: 10.1371/journal.pone.0150320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/11/2016] [Indexed: 11/23/2022] Open
Abstract
In Streptococcus pneumonia, phosphoenolpyruvate protein phosphotransferase (PtsA) is an intracellular protein of the monosaccharide phosphotransferase systems. Biochemical and immunostaining methods were applied to show that PtsA also localizes to the bacterial cell-wall. Thus, it was suspected that PtsA has functions other than its main cytoplasmic enzymatic role. Indeed, recombinant PtsA and anti-rPtsA antiserum were shown to inhibit adhesion of S. pneumoniae to cultured human lung adenocarcinoma A549 cells. Screening of a combinatorial peptide library expressed in a filamentous phage with rPtsA identified epitopes that were capable of inhibiting S. pneumoniae adhesion to A549 cells. The insert peptides in the phages were sequenced, and homologous sequences were found in human BMPER, multimerin1, protocadherin19, integrinβ4, epsin1 and collagen type VIIα1 proteins, all of which can be found in A549 cells except the latter. Six peptides, synthesized according to the homologous sequences in the human proteins, specifically bound rPtsA in the micromolar range and significantly inhibited pneumococcal adhesion in vitro to lung- and tracheal-derived cell lines. In addition, the tested peptides inhibited lung colonization after intranasal inoculation of mice with S. pneumoniae. Immunization with rPtsA protected the mice against a sublethal intranasal and a lethal intravenous pneumococcal challenge. In addition, mouse anti rPtsA antiserum reduced bacterial virulence in the intravenous inoculation mouse model. These findings showed that the surface-localized PtsA functions as an adhesin, PtsA binding peptides derived from its putative target molecules can be considered for future development of therapeutics, and rPtsA should be regarded as a candidate for vaccine development.
Collapse
|
123
|
Nel JG, Theron AJ, Durandt C, Tintinger GR, Pool R, Mitchell TJ, Feldman C, Anderson R. Pneumolysin activates neutrophil extracellular trap formation. Clin Exp Immunol 2016; 184:358-67. [PMID: 26749379 DOI: 10.1111/cei.12766] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/14/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023] Open
Abstract
The primary objective of the current study was to investigate the potential of the pneumococcal toxin, pneumolysin (Ply), to activate neutrophil extracellular trap (NET) formation in vitro. Isolated human blood neutrophils were exposed to recombinant Ply (5-20 ng ml(-1) ) for 30-90 min at 37°C and NET formation measured using the following procedures to detect extracellular DNA: (i) flow cytometry using Vybrant® DyeCycle™ Ruby; (ii) spectrofluorimetry using the fluorophore, Sytox(®) Orange (5 μM); and (iii) NanoDrop(®) technology. These procedures were complemented by fluorescence microscopy using 4', 6-diamino-2-phenylindole (DAPI) (nuclear stain) in combination with anti-citrullinated histone monoclonal antibodies to visualize nets. Exposure of neutrophils to Ply resulted in relatively rapid (detected within 30-60 min), statistically significant (P < 0·05) dose- and time-related increases in the release of cellular DNA impregnated with both citrullinated histone and myeloperoxidase. Microscopy revealed that NETosis appeared to be restricted to a subpopulation of neutrophils, the numbers of NET-forming cells in the control and Ply-treated systems (10 and 20 ng ml(-1) ) were 4·3 (4·2), 14.3 (9·9) and 16·5 (7·5), respectively (n = 4, P < 0·0001 for comparison of the control with both Ply-treated systems). Ply-induced NETosis occurred in the setting of retention of cell viability, and apparent lack of involvement of reactive oxygen species and Toll-like receptor 4. In conclusion, Ply induces vital NETosis in human neutrophils, a process which may either contribute to host defence or worsen disease severity, depending on the intensity of the inflammatory response during pneumococcal infection.
Collapse
Affiliation(s)
| | - A J Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service.,South African Medical Research Council Unit for Stem Cell Research, Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria
| | - C Durandt
- South African Medical Research Council Unit for Stem Cell Research, Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria
| | - G R Tintinger
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - R Pool
- Department of Haematology
| | - T J Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - C Feldman
- Division of Pulmonology, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg and Charlotte Maxeke Academic Hospital, Johannesburg, South Africa
| | - R Anderson
- South African Medical Research Council Unit for Stem Cell Research, Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria
| |
Collapse
|
124
|
Statt S, Ruan JW, Hung LY, Chang CY, Huang CT, Lim JH, Li JD, Wu R, Kao CY. Statin-conferred enhanced cellular resistance against bacterial pore-forming toxins in airway epithelial cells. Am J Respir Cell Mol Biol 2016; 53:689-702. [PMID: 25874372 DOI: 10.1165/rcmb.2014-0391oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Statins are widely used to prevent cardiovascular disease. In addition to their inhibitory effects on cholesterol synthesis, statins have beneficial effects in patients with sepsis and pneumonia, although molecular mechanisms have mostly remained unclear. Using human airway epithelial cells as a proper in vitro model, we show that prior exposure to physiological nanomolar serum concentrations of simvastatin (ranging from 10-1,000 nM) confers significant cellular resistance to the cytotoxicity of pneumolysin, a pore-forming toxin and the main virulence factor of Streptococcus pneumoniae. This protection could be demonstrated with a different statin, pravastatin, or on a different toxin, α-hemolysin. Furthermore, through the use of gene silencing, pharmacological inhibitors, immunofluorescence microscopy, and biochemical and metabolic rescue approaches, we demonstrate that the mechanism of protection conferred by simvastatin at physiological nanomolar concentrations could be different from the canonical mevalonate pathways seen in most other mechanistic studies conducted with statins at micromolar levels. All of these data are integrated into a protein synthesis-dependent, calcium-dependent model showing the interconnected pathways used by statins in airway epithelial cells to elicit an increased resistance to pore-forming toxins. This research fills large gaps in our understanding of how statins may confer host cellular protection against bacterial infections in the context of airway epithelial cells without the confounding effect from the presence of immune cells. In addition, our discovery could be potentially developed into a host-centric strategy for the adjuvant treatment of pore-forming toxin associated bacterial infections.
Collapse
Affiliation(s)
- Sarah Statt
- 1 Center for Comparative Respiratory Biology and Medicine, University of California at Davis, Davis, California
| | - Jhen-Wei Ruan
- 2 Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Li-Yin Hung
- 1 Center for Comparative Respiratory Biology and Medicine, University of California at Davis, Davis, California
| | - Ching-Yun Chang
- 1 Center for Comparative Respiratory Biology and Medicine, University of California at Davis, Davis, California
| | - Chih-Ting Huang
- 2 Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Jae Hyang Lim
- 3 Department of Microbiology, Ewha Womans University School of Medicine, Seoul, Korea; and
| | - Jian-Dong Li
- 4 Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Reen Wu
- 1 Center for Comparative Respiratory Biology and Medicine, University of California at Davis, Davis, California
| | - Cheng-Yuan Kao
- 1 Center for Comparative Respiratory Biology and Medicine, University of California at Davis, Davis, California.,2 Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| |
Collapse
|
125
|
Pore-Forming Toxins Induce Macrophage Necroptosis during Acute Bacterial Pneumonia. PLoS Pathog 2015; 11:e1005337. [PMID: 26659062 PMCID: PMC4676650 DOI: 10.1371/journal.ppat.1005337] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022] Open
Abstract
Necroptosis is a highly pro-inflammatory mode of cell death regulated by RIP (or RIPK)1 and RIP3 kinases and mediated by the effector MLKL. We report that diverse bacterial pathogens that produce a pore-forming toxin (PFT) induce necroptosis of macrophages and this can be blocked for protection against Serratia marcescens hemorrhagic pneumonia. Following challenge with S. marcescens, Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, uropathogenic Escherichia coli (UPEC), and purified recombinant pneumolysin, macrophages pretreated with inhibitors of RIP1, RIP3, and MLKL were protected against death. Alveolar macrophages in MLKL KO mice were also protected during S. marcescens pneumonia. Inhibition of caspases had no impact on macrophage death and caspase-1 and -3/7 were determined to be inactive following challenge despite the detection of IL-1β in supernatants. Bone marrow-derived macrophages from RIP3 KO, but not caspase-1/11 KO or caspase-3 KO mice, were resistant to PFT-induced death. We explored the mechanisms for PFT-induced necroptosis and determined that loss of ion homeostasis at the plasma membrane, mitochondrial damage, ATP depletion, and the generation of reactive oxygen species were together responsible. Treatment of mice with necrostatin-5, an inhibitor of RIP1; GW806742X, an inhibitor of MLKL; and necrostatin-5 along with co-enzyme Q10 (N5/C10), which enhances ATP production; reduced the severity of S. marcescens pneumonia in a mouse intratracheal challenge model. N5/C10 protected alveolar macrophages, reduced bacterial burden, and lessened hemorrhage in the lungs. We conclude that necroptosis is the major cell death pathway evoked by PFTs in macrophages and the necroptosis pathway can be targeted for disease intervention. Necroptosis is a pro-inflammatory mode of programmed cell death that is marked by the intentional disruption of host membranes and the release of pro-inflammatory cytosolic components into the milieu. Until just recently necroptosis was not appreciated to play a role during infectious disease. Herein, we demonstrate that alveolar macrophages exposed to the nosocomial pathogen Serratia marcescens undergo necroptosis and this leads to enhanced disease severity. We subsequently demonstrate that necroptosis is the principle mode of cell death experienced by macrophages following their exposure to bacteria that produce pore-forming toxins (PFTs). We dissect the molecular mechanisms by which PFTs induce necroptosis and demonstrate that loss of ion homeostasis at the cell membrane and mitochondrial damage result in ATP depletion and ROS generation that together are responsible. Finally, we demonstrate that inhibition of necroptosis by various means is protective against hemorrhagic pneumonia caused by S. marcescens.
Collapse
|
126
|
Disentangling competence for genetic transformation and virulence in Streptococcus pneumoniae. Curr Genet 2015; 62:97-103. [PMID: 26403231 DOI: 10.1007/s00294-015-0520-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
Horizontal gene transfer mediated by the competence regulon is a major driver of genome plasticity in Streptococcus pneumoniae. When pneumococcal cells enter the competent state, about 6% of the genes in the genome are up-regulated. Among these, some genes are essential for genetic transformation while others are dispensable for the process. Exhaustive deletion analyses show that some up-regulated genes dispensable for genetic transformation contribute to pneumococcal-mediated pneumonia and bacteremia infections. Interestingly, virulence functions of such genes are either dependent or independent of the competent state. Among the competent-state-dependent genes are those mediating allolysis, a process where small fraction of non-competent cells within the pneumococcal population are lysed by their competent counterparts, releasing DNA presumably for transformation. Inadvertently, the pore-forming toxin pneumolysin is also released during allolysis, contributing to virulence. In this review, we discuss recent advances in our understanding of pneumococcal virulence processes mediated by the competence regulon. We proposed that coupling of competence induction and bacterial fitness drives the natural selection to favor an intact competence regulon, which in turn, provides the long-term benefits of genetic plasticity.
Collapse
|
127
|
Aliberti S, Ramirez J, Cosentini R, Valenti V, Voza A, Rossi P, Stolz D, Legnani D, Pesci A, Richeldi L, Peyrani P, Massari FM, Blasi F. Acute myocardial infarction versus other cardiovascular events in community-acquired pneumonia. ERJ Open Res 2015; 1:00020-2015. [PMID: 27730139 PMCID: PMC5005139 DOI: 10.1183/23120541.00020-2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/21/2015] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to define the prevalence, characteristics, risk factors and impact on clinical outcomes of acute myocardial infarction (AMI) versus other cardiovascular events (CVEs) in patients with community-acquired pneumonia (CAP). This was an international, multicentre, observational, prospective study of CAP patients hospitalised in eight hospitals in Italy and Switzerland. Three groups were identified: those without CVEs, those with AMI and those with other CVEs. Among 905 patients, 21 (2.3%) patients experienced at least one AMI, while 107 (11.7%) patients experienced at least one other CVE. Patients with CAP and either AMI or other CVEs showed a higher severity of the disease than patients with CAP alone. Female sex, liver disease and the presence of severe sepsis were independent predictors for the occurrence of AMI, while female sex, age >65 years, neurological disease and the presence of pleural effusion predicted other CVEs. In-hospital mortality was significantly higher among those who experienced AMI in comparison to those experiencing other CVEs (43% versus 21%, p=0.039). The presence of AMI showed an adjusted odds ratio for in-hospital mortality of 3.57 (p=0.012) and for other CVEs of 2.63 (p=0.002). These findings on AMI versus other CVEs as complications of CAP may be important when planning interventional studies on cardioprotective medications. Acute myocardial infarction is associated with specific risk factors and accounts for worse outcomes in CAP patientshttp://ow.ly/QhT2t
Collapse
Affiliation(s)
- Stefano Aliberti
- Health Science Department, University of Milan Bicocca, Respiratory Unit, AO San Gerardo, Monza, Italy
| | - Julio Ramirez
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Roberto Cosentini
- Emergency Medicine Unit, IRCCS Fondazione Ospedale Maggiore Policlinico Cà Granda, Milan, Italy
| | - Vincenzo Valenti
- Pulmonary Unit, University of Milan, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Antonio Voza
- Emergency Department, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Paolo Rossi
- Internal Medicine Department, Azienda Ospedaliero-Universitaria "S. Maria della Misericordia", Udine, Italy
| | - Daiana Stolz
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
| | - Delfino Legnani
- Department of Biomedical and Clinical Sciences, University of Milan, Luigi Sacco Hospital, Milan, Italy
| | - Alberto Pesci
- Health Science Department, University of Milan Bicocca, Respiratory Unit, AO San Gerardo, Monza, Italy
| | - Luca Richeldi
- National Institute for Health Research Respiratory Biomedical Research Unit, Southampton, UK; Centre for Rare Lung Disease, University of Modena and Reggio Emilia, AO Policlinico, Modena, Italy
| | - Paula Peyrani
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Fernando Maria Massari
- UOC Malattie Cardiovascolari, Università degli Studi di Milano, IRCCS Fondazione Ospedale Maggiore Policlinico Cà Granda, Milan, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, IRCCS Fondazione Ospedale Maggiore Policlinico Cà Granda, Milan, Italy
| |
Collapse
|
128
|
Hergott CB, Roche AM, Naidu NA, Mesaros C, Blair IA, Weiser JN. Bacterial exploitation of phosphorylcholine mimicry suppresses inflammation to promote airway infection. J Clin Invest 2015; 125:3878-90. [PMID: 26426079 DOI: 10.1172/jci81888] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/23/2015] [Indexed: 12/22/2022] Open
Abstract
Regulation of neutrophil activity is critical for immune evasion among extracellular pathogens, yet the mechanisms by which many bacteria disrupt phagocyte function remain unclear. Here, we have shown that the respiratory pathogen Streptococcus pneumoniae disables neutrophils by exploiting molecular mimicry to degrade platelet-activating factor (PAF), a host-derived inflammatory phospholipid. Using mass spectrometry and murine upper airway infection models, we demonstrated that phosphorylcholine (ChoP) moieties that are shared by PAF and the bacterial cell wall allow S. pneumoniae to leverage a ChoP-remodeling enzyme (Pce) to remove PAF from the airway. S. pneumoniae-mediated PAF deprivation impaired viability, activation, and bactericidal capacity among responding neutrophils. In the absence of Pce, neutrophils rapidly cleared S. pneumoniae from the airway and impeded invasive disease and transmission between mice. Abrogation of PAF signaling rendered Pce dispensable for S. pneumoniae persistence, reinforcing that this enzyme deprives neutrophils of essential PAF-mediated stimulation. Accordingly, exogenous activation of neutrophils overwhelmed Pce-mediated phagocyte disruption. Haemophilus influenzae also uses an enzyme, GlpQ, to hydrolyze ChoP and subvert PAF function, suggesting that mimicry-driven immune evasion is a common paradigm among respiratory pathogens. These results identify a mechanism by which shared molecular structures enable microbial enzymes to subvert host lipid signaling, suppress inflammation, and ensure bacterial persistence at the mucosa.
Collapse
|
129
|
|
130
|
Corrales-Medina VF, Taljaard M, Yende S, Kronmal R, Dwivedi G, Newman AB, Elkind MSV, Lyles MF, Chirinos JA. Intermediate and long-term risk of new-onset heart failure after hospitalization for pneumonia in elderly adults. Am Heart J 2015; 170:306-12. [PMID: 26299228 PMCID: PMC4548825 DOI: 10.1016/j.ahj.2015.04.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/25/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Pneumonia is associated with high risk of heart failure (HF) in the short term (30 days) postinfection. Whether this association persists beyond this period is unknown. METHODS We studied 5,613 elderly (≥65 years) adults enrolled in the Cardiovascular Health Study between 1989 and 1994 at 4 US communities. Participants had no clinical diagnosis of HF at enrollment, and they were followed up through December 2010. Hospitalizations for pneumonia were identified using validated International Classification of Disease Ninth Revision codes. A centralized committee adjudicated new-onset HF events. Using Cox regression, we estimated adjusted hazard ratios (HRs) of new-onset HF at different time intervals after hospitalization for pneumonia. RESULTS A total of 652 participants hospitalized for pneumonia during follow-up were still alive and free of clinical diagnosis of HF by day 30 posthospitalization. Relative to the time of their hospitalization, new-onset HF occurred in 22 cases between 31 and 90 days (HR 6.9, 95% CI 4.46-10.63, P < .001), 14 cases between 91 days and 6 months (HR 3.2, 95% CI 1.88-5.50, P < .001), 20 cases between 6 months and 1 year (HR 2.6, 95% CI 1.64-4.04, P < .001), 76 cases between 1 and 5 years (HR 1.7, 95% CI 1.30-2.12, P < .001), and 71 cases after 5 years (HR 2.0, 95% CI 1.56-2.58, P < .001). Results were robust to sensitivity analyses using stringent definitions of pneumonia and extreme assumptions for potential informative censoring. CONCLUSION Hospitalization for pneumonia is associated with increased risk of new-onset HF in the intermediate and long term. Studies should characterize the mechanisms of this association in order to prevent HF in elderly pneumonia survivors.
Collapse
Affiliation(s)
- Vicente F Corrales-Medina
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Monica Taljaard
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sachin Yende
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Richard Kronmal
- Department of Statistics. University of Washington, Seattle, WA
| | - Girish Dwivedi
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | - Mitchell S V Elkind
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Mary F Lyles
- Department of Medicine, Wake Forest University, Winston-Salem, NC
| | - Julio A Chirinos
- University of Pennsylvania, Philadelphia, PA; Philadelphia VA Medical Center, Philadelphia, PA
| |
Collapse
|
131
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 PMCID: PMC4642849 DOI: 10.12688/f1000research.6709.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
132
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 DOI: 10.12688/f1000research.6709.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
133
|
Alhamdi Y, Neill DR, Abrams ST, Malak HA, Yahya R, Barrett-Jolley R, Wang G, Kadioglu A, Toh CH. Circulating Pneumolysin Is a Potent Inducer of Cardiac Injury during Pneumococcal Infection. PLoS Pathog 2015; 11:e1004836. [PMID: 25973949 PMCID: PMC4431880 DOI: 10.1371/journal.ppat.1004836] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/26/2015] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pneumoniae accounts for more deaths worldwide than any other single pathogen through diverse disease manifestations including pneumonia, sepsis and meningitis. Life-threatening acute cardiac complications are more common in pneumococcal infection compared to other bacterial infections. Distinctively, these arise despite effective antibiotic therapy. Here, we describe a novel mechanism of myocardial injury, which is triggered and sustained by circulating pneumolysin (PLY). Using a mouse model of invasive pneumococcal disease (IPD), we demonstrate that wild type PLY-expressing pneumococci but not PLY-deficient mutants induced elevation of circulating cardiac troponins (cTns), well-recognized biomarkers of cardiac injury. Furthermore, elevated cTn levels linearly correlated with pneumococcal blood counts (r=0.688, p=0.001) and levels were significantly higher in non-surviving than in surviving mice. These cTn levels were significantly reduced by administration of PLY-sequestering liposomes. Intravenous injection of purified PLY, but not a non-pore forming mutant (PdB), induced substantial increase in cardiac troponins to suggest that the pore-forming activity of circulating PLY is essential for myocardial injury in vivo. Purified PLY and PLY-expressing pneumococci also caused myocardial inflammatory changes but apoptosis was not detected. Exposure of cultured cardiomyocytes to PLY-expressing pneumococci caused dose-dependent cardiomyocyte contractile dysfunction and death, which was exacerbated by further PLY release following antibiotic treatment. We found that high PLY doses induced extensive cardiomyocyte lysis, but more interestingly, sub-lytic PLY concentrations triggered profound calcium influx and overload with subsequent membrane depolarization and progressive reduction in intracellular calcium transient amplitude, a key determinant of contractile force. This was coupled to activation of signalling pathways commonly associated with cardiac dysfunction in clinical and experimental sepsis and ultimately resulted in depressed cardiomyocyte contractile performance along with rhythm disturbance. Our study proposes a detailed molecular mechanism of pneumococcal toxin-induced cardiac injury and highlights the major translational potential of targeting circulating PLY to protect against cardiac complications during pneumococcal infections.
Collapse
Affiliation(s)
- Yasir Alhamdi
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Daniel R. Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Simon T. Abrams
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Hesham A. Malak
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Reham Yahya
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Diseases, University of Liverpool, Liverpool, United Kingdom
| | - Guozheng Wang
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Roald Dahl Haemostasis & Thrombosis Centre, Royal Liverpool University Hospital, Liverpool, United Kingdom
| |
Collapse
|
134
|
Brown AO, Orihuela CJ. Visualization of Streptococcus pneumoniae within Cardiac Microlesions and Subsequent Cardiac Remodeling. J Vis Exp 2015:52590. [PMID: 25939051 PMCID: PMC4541479 DOI: 10.3791/52590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During bacteremia Streptococcus pneumoniae can translocate across the vascular endothelium into the myocardium and form discrete bacteria-filled microscopic lesions (microlesions) that are remarkable due to the absence of infiltrating immune cells. Due to their release of cardiotoxic products, S. pneumoniae within microlesions are thought to contribute to the heart failure that is frequently observed during fulminate invasive pneumococcal disease in adults. Herein is demonstrated a protocol for experimental mouse infection that leads to reproducible cardiac microlesion formation within 30 hr. Instruction is provided on microlesion identification in hematoxylin & eosin stained heart sections and the morphological distinctions between early and late microlesions are highlighted. Instruction is provided on a protocol for verification of S. pneumoniae within microlesions using antibodies against pneumococcal capsular polysaccharide and immunofluorescent microscopy. Last, a protocol for antibiotic intervention that rescues infected mice and for the detection and assessment of scar formation in the hearts of convalescent mice is provided. Together, these protocols will facilitate the investigation of the molecular mechanisms underlying pneumococcal cardiac invasion, cardiomyocyte death, cardiac remodeling as a result of exposure to S. pneumoniae, and the immune response to the pneumococci in the heart.
Collapse
Affiliation(s)
- Armand O Brown
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio
| | - Carlos J Orihuela
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio;
| |
Collapse
|
135
|
Brown AO, Millett ERC, Quint JK, Orihuela CJ. Cardiotoxicity during invasive pneumococcal disease. Am J Respir Crit Care Med 2015; 191:739-45. [PMID: 25629643 PMCID: PMC4407487 DOI: 10.1164/rccm.201411-1951pp] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/19/2015] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and sepsis, with adult hospitalization linked to approximately 19% incidence of an adverse cardiac event (e.g., heart failure, arrhythmia, infarction). Herein, we review the specific host-pathogen interactions that contribute to cardiac dysfunction during invasive pneumococcal disease: (1) cell wall-mediated inhibition of cardiomyocyte contractility; (2) the new observation that S. pneumoniae is capable of translocation into the myocardium and within the heart, forming discrete, nonpurulent, microscopic lesions that are filled with pneumococci; and (3) the bacterial virulence determinants, pneumolysin and hydrogen peroxide, that are most likely responsible for cardiomyocyte cell death. Pneumococcal invasion of heart tissue is dependent on the bacterial adhesin choline-binding protein A that binds to laminin receptor on vascular endothelial cells and binding of phosphorylcholine residues on pneumococcal cell wall to platelet-activating factor receptor. These are the same interactions responsible for pneumococcal translocation across the blood-brain barrier during the development of meningitis. We discuss these interactions and how their neutralization, either with antibody or therapeutic agents that modulate platelet-activating factor receptor expression, may confer protection against cardiac damage and meningitis. Considerable collagen deposition was observed in hearts of mice that had recovered from invasive pneumococcal disease. We discuss the possibility that cardiac scar formation after severe pneumococcal infection may explain why individuals who are hospitalized for pneumonia are at greater risk for sudden death up to 1 year after infection.
Collapse
Affiliation(s)
- Armand O. Brown
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - Elizabeth R. C. Millett
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jennifer K. Quint
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carlos J. Orihuela
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| |
Collapse
|
136
|
Toit AD. A pneumococcal heart-breaker. Nat Rev Microbiol 2014. [DOI: 10.1038/nrmicro3374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|