101
|
Zhou Z, Sun Y, Xu J, Tang X, Zhou L, Li Q, Lan T, Ma J. Swine Acute Diarrhea Syndrome Coronavirus Nucleocapsid Protein Antagonizes Interferon- β Production via Blocking the Interaction Between TRAF3 and TBK1. Front Immunol 2021; 12:573078. [PMID: 33692778 PMCID: PMC7937869 DOI: 10.3389/fimmu.2021.573078] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/15/2021] [Indexed: 01/19/2023] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV), first discovered in 2017, is a porcine enteric coronavirus that can cause acute diarrhea syndrome (SADS) in piglets. Here, we studied the role of SADS-CoV nucleocapsid (N) protein in innate immunity. Our results showed that SADS-CoV N protein could inhibit type I interferon (IFN) production mediated by Sendai virus (Sev) and could block the phosphorylation and nuclear translocation of interferon regulatory factor 3 (IRF3). Simultaneously, the IFN-β promoter activity mediated by TANK binding kinase 1 (TBK1) or its upstream molecules in the RLRs signal pathway was inhibited by SADS-CoV N protein. Further investigations revealed that SADS-CoV N protein could counteract interaction between TNF receptor-associated factor 3 (TRAF3) and TBK1, which led to reduced TBK1 activation and IFN-β production. Our study is the first report of the interaction between SADS-CoV N protein and the host antiviral innate immune responses, and the mechanism utilized by SADS-CoV N protein provides a new insight of coronaviruses evading host antiviral innate immunity.
Collapse
Affiliation(s)
- Zhihai Zhou
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| | - Yuan Sun
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| | - Jingya Xu
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| | - Xiaoyu Tang
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| | - Ling Zhou
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| | - Qianniu Li
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| | - Tian Lan
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| |
Collapse
|
102
|
When Rab GTPases meet innate immune signaling pathways. Cytokine Growth Factor Rev 2021; 59:95-100. [PMID: 33608190 DOI: 10.1016/j.cytogfr.2021.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Ras-related protein in brain (Rab) GTPases, the subfamily of small GTP-binding proteins superfamily, play a vital role in regulating and controlling vesicles' transport between different membrane-bound organelles. As the first-line defense against invading pathogens, the host's innate immune system recognizes various pathogen-associated molecular patterns through a series of membrane-bound or cytoplasmic pathogen recognition receptors to activate the downstream signaling pathway and induce the type I interferons (IFN-I). Numerous studies have demonstrated that Rab GTPases participate in innate immunity by regulating transmembrane signals' transduction and the transport, adhesion, anchoring, and fusion of vesicles. However, the underlying mechanism of Rab GTPases regulating innate immunity is not entirely understood. A comprehensive understanding of the interplay between the Rab GTPases and innate immunity will help develop novel therapeutics against microbial infections and chronic inflammations.
Collapse
|
103
|
Mou C, Pan S, Wu H, Chen Z. Disruption of interferon-β production by the N pro of atypical porcine pestivirus. Virulence 2021; 12:654-665. [PMID: 33538238 PMCID: PMC7872032 DOI: 10.1080/21505594.2021.1880773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Atypical porcine pestivirus (APPV) is an emerging porcine virus that threatens global swine production. Pestiviruses can prevent interferon (IFN) production to avoid the host innate immune response, and the Npro viral protein can play a critical role. Knowledge of the host immune response to APPV infection is limited. Here, we showed that the IFN-β production was suppressed by APPV-Npro and the IFN regulatory factor 3 (IRF3) promoter activity stimulated by adaptor molecules of the IFN-β signaling pathway was also inhibited in the APPV-Npro-expressed cells. The APPV-Npro was able to interact with IRF3 and interfere the phosphorylation of IRF3, indicated that the IFN-β antagonism of APPV-Npro mainly depended on blocking IRF3 activity. To identify the functional region of APPV-Npro, a panel of truncated APPV-Npro was constructed, and its influence on the IRF3 activation was investigated. The results showed that the N-terminal 31–51 amino acids of APPV-Npro were mainly associated with inhibition of the IFN-β response. Taken together, this is the first study focusing on elucidating the function of APPV protein by revealing a novel mechanism of Npro in disruption of host IFN-β production, which will enlighten future study in addressing APPV pathogenesis and immune evasion.
Collapse
Affiliation(s)
- Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China
| | - Shuonan Pan
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China
| | - Huiguang Wu
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
104
|
The Structure and Ubiquitin Binding Properties of TRAF RING Heterodimers. J Mol Biol 2021; 433:166844. [PMID: 33539883 DOI: 10.1016/j.jmb.2021.166844] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/30/2022]
Abstract
Tumour necrosis factor (TNF) receptor associated factor (TRAF) family members share a common domain architecture, but play non-redundant physiological roles in cell signalling. At the N terminus, most TRAFs have a RING domain, followed by a series of Zinc finger (ZF) domains. The RING domain of TRAF6 dimerizes, and the RING homodimer together with the first ZF assembles ubiquitin chains that form a platform which facilitates activation of downstream kinases. The RING dimer interface is conserved amongst TRAF proteins, suggesting that functional heterodimers could be possible. Here we report the structure of the TRAF5-TRAF6 RING heterodimer, which accounts for the stability of the heterodimer as well as its ability to assemble ubiquitin chains. We also show that the RING domain of TRAF6 heterodimerizes with TRAF3 and TRAF2, and demonstrate that the linker helix and first ZF of TRAF2 can cooperate with TRAF6 to promote chain assembly. Collectively our results suggest that TRAF RING homo- and hetero-dimers have the potential to bridge interaction of nearby TRAF trimers and modulate TRAF-mediated signalling.
Collapse
|
105
|
Wang Y, Song Q, Huang W, Lin Y, Wang X, Wang C, Willard B, Zhao C, Nan J, Holvey-Bates E, Wang Z, Taylor D, Yang J, Stark GR. A virus-induced conformational switch of STAT1-STAT2 dimers boosts antiviral defenses. Cell Res 2021; 31:206-218. [PMID: 32759968 PMCID: PMC7405385 DOI: 10.1038/s41422-020-0386-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/16/2020] [Indexed: 01/15/2023] Open
Abstract
Type I interferons (IFN-I) protect us from viral infections. Signal transducer and activator of transcription 2 (STAT2) is a key component of interferon-stimulated gene factor 3 (ISGF3), which drives gene expression in response to IFN-I. Using electron microscopy, we found that, in naive cells, U-STAT2, lacking the activating tyrosine phosphorylation, forms a heterodimer with U-STAT1 in an inactive, anti-parallel conformation. A novel phosphorylation of STAT2 on T404 promotes IFN-I signaling by disrupting the U-STAT1-U-STAT2 dimer, facilitating the tyrosine phosphorylation of STATs 1 and 2 and enhancing the DNA-binding ability of ISGF3. IKK-ε, activated by virus infection, phosphorylates T404 directly. Mice with a T-A mutation at the corresponding residue (T403) are highly susceptible to virus infections. We conclude that T404 phosphorylation drives a critical conformational switch that, by boosting the response to IFN-I in infected cells, enables a swift and efficient antiviral defense.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Qiaoling Song
- Marine Drug Screening and Evaluation Platform, Qingdao National Laboratory for Marine Science and Technology, Ocean University of China, Qingdao, Shandong, 266071, China
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yuxi Lin
- Institute of Cancer Biology and Drug Screening, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xin Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266071, China
| | - Chenyao Wang
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Belinda Willard
- Proteomics and Metabolomics Laboratory, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Chenyang Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266071, China
| | - Jing Nan
- Institute of Cancer Biology and Drug Screening, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Elise Holvey-Bates
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Zhuoya Wang
- Marine Drug Screening and Evaluation Platform, Qingdao National Laboratory for Marine Science and Technology, Ocean University of China, Qingdao, Shandong, 266071, China
| | - Derek Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jinbo Yang
- Marine Drug Screening and Evaluation Platform, Qingdao National Laboratory for Marine Science and Technology, Ocean University of China, Qingdao, Shandong, 266071, China.
| | - George R Stark
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, 44195, USA.
| |
Collapse
|
106
|
Miller B, Silverstein A, Flores M, Cao K, Kumagai H, Mehta HH, Yen K, Kim SJ, Cohen P. Host mitochondrial transcriptome response to SARS-CoV-2 in multiple cell models and clinical samples. Sci Rep 2021; 11:3. [PMID: 33420163 PMCID: PMC7794290 DOI: 10.1038/s41598-020-79552-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
SARS-CoV-2 induces a muted innate immune response compared to other respiratory viruses. Mitochondrial dynamics might partially mediate this effect of SARS-CoV-2 on innate immunity. Polypeptides encoded by open reading frames of SARS-CoV and SARS-CoV-2 have been shown to localize to mitochondria and disrupt Mitochondrial Antiviral Signaling (MAVS) protein signaling. Therefore, we hypothesized that SARS-CoV-2 would distinctly regulate the mitochondrial transcriptome. We analyzed multiple publicly available RNASeq data derived from primary cells, cell lines, and clinical samples (i.e., BALF and lung). We report that SARS-CoV-2 did not dramatically regulate (1) mtDNA-encoded gene expression or (2) MAVS expression, and (3) SARS-CoV-2 downregulated nuclear-encoded mitochondrial (NEM) genes related to cellular respiration and Complex I.
Collapse
Affiliation(s)
- Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Ana Silverstein
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Melanie Flores
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Kevin Cao
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Su- Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA.
| |
Collapse
|
107
|
Zhu H, Zheng C. The Race between Host Antiviral Innate Immunity and the Immune Evasion Strategies of Herpes Simplex Virus 1. Microbiol Mol Biol Rev 2020; 84:e00099-20. [PMID: 32998978 PMCID: PMC7528619 DOI: 10.1128/mmbr.00099-20] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is very successful in establishing acute and latent infections in humans by counteracting host antiviral innate immune responses. HSV-1 has evolved various strategies to evade host antiviral innate immunity and some cellular survival-associated pathways. Since there is still no vaccine available for HSV-1, a continuous update of information regarding the interaction between HSV-1 infection and the host antiviral innate immunity will provide novel insights to develop new therapeutic strategies for HSV-1 infection and its associated diseases. Here, we update recent studies about how HSV-1 evades the host antiviral innate immunity, specifically how HSV-1 proteins directly or indirectly target the adaptors in the antiviral innate immunity signaling pathways to downregulate the signal transduction. Additionally, some classical intracellular stress responses, which also play important roles in defense of viral invasion, will be discussed here. With a comprehensive review of evasion mechanisms of antiviral innate immunity by HSV-1, we will be able to develop potential new targets for therapies and a possible vaccine against HSV-1 infections.
Collapse
Affiliation(s)
- Huifang Zhu
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
108
|
Zhou W, Lin D, Zhong Z, Ye Q. Roles of TRAFs in Ischemia-Reperfusion Injury. Front Cell Dev Biol 2020; 8:586487. [PMID: 33224951 PMCID: PMC7674171 DOI: 10.3389/fcell.2020.586487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins are a family of signaling molecules that function downstream of multiple receptor signaling pathways, and they play a pivotal role in the regulation of intracellular biological progresses. These TRAF-dependent signaling pathways and physiological functions have been involved in the occurrence and progression of ischemia-reperfusion injury (IRI), which is a common pathophysiological process that occurs in a wide variety of clinical events, including ischemic shock, organ transplantation, and thrombolytic therapy, resulting in a poor prognosis and high mortality. IRI occurs in multiple organs, including liver, kidney, heart, lung, brain, intestine, and retina. In recent years, mounting compelling evidence has confirmed that the genetic alterations of TRAFs can cause subversive phenotype changes during IRI of those organs. In this review, based on current knowledge, we summarized and analyzed the regulatory effect of TRAFs on the IRI of various organs, providing clear direction and a firm theoretical basis for the development of treatment strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in IRI-related diseases.
Collapse
Affiliation(s)
- Wei Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Danni Lin
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| |
Collapse
|
109
|
Lawler C, Brady G. Poxviral Targeting of Interferon Regulatory Factor Activation. Viruses 2020; 12:v12101191. [PMID: 33092186 PMCID: PMC7590177 DOI: 10.3390/v12101191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
As viruses have a capacity to rapidly evolve and continually alter the coding of their protein repertoires, host cells have evolved pathways to sense viruses through the one invariable feature common to all these pathogens-their nucleic acids. These genomic and transcriptional pathogen-associated molecular patterns (PAMPs) trigger the activation of germline-encoded anti-viral pattern recognition receptors (PRRs) that can distinguish viral nucleic acids from host forms by their localization and subtle differences in their chemistry. A wide range of transmembrane and cytosolic PRRs continually probe the intracellular environment for these viral PAMPs, activating pathways leading to the activation of anti-viral gene expression. The activation of Nuclear Factor Kappa B (NFκB) and Interferon (IFN) Regulatory Factor (IRF) family transcription factors are of central importance in driving pro-inflammatory and type-I interferon (TI-IFN) gene expression required to effectively restrict spread and trigger adaptive responses leading to clearance. Poxviruses evolve complex arrays of inhibitors which target these pathways at a variety of levels. This review will focus on how poxviruses target and inhibit PRR pathways leading to the activation of IRF family transcription factors.
Collapse
|
110
|
Lin S, Zhao XL, Wang Z. TANK-binding kinase 1 mediates osteoclast differentiation by regulating NF-κB, MAPK and Akt signaling pathways. Immunol Cell Biol 2020; 99:223-233. [PMID: 32896936 DOI: 10.1111/imcb.12401] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/02/2019] [Accepted: 09/06/2020] [Indexed: 12/16/2022]
Abstract
TANK-binding kinase 1 (TBK1) belongs to the noncanonical IκB kinase (IKK) family. The ubiquitously expressed protein is well known to play a pivotal role in innate immune response and inflammation. Although excessive inflammatory activities have been shown to affect osteoclast (OC) differentiation and function, direct relevance of TBK1 in bone turnover is not known. In this work, we specifically altered the TBK1 protein level by knocking down or overexpressing it without affecting its homologous protein IKKε expression, and demonstrated the effect of TBK1 on OC differentiation in bone marrow macrophages (BMMs) and RAW264.7 cells upon induction by receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL). TBK1 knockdown was found to markedly inhibit the OC differentiation and function, while TBK1 overexpression enhanced OC formation. Downregulation of TBK1 greatly suppressed RANKL-induced gene expression of Mmp9, Atp6v0d2, Acp5, Ctsk andNfatc1 involved in the regulation of OC formation and function in both BMM and RAW264.7 cells. Mechanistic studies indicated that TBK1 affected the NF-κB signaling pathway as well as mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt) activation during OC differentiation. Moreover, the protein level of TNF receptor-associated factor 6 (TRAF6) was increased, and the interaction of TRAF6 with TBK1 was potentiated, by RANKL. Collectively, we provide direct evidence showing that TBK1 effectively mediates OC differentiation and function by regulating NF-κB, MAPKs and Akt signals. A TBK1-targeted therapeutic strategy may be useful for the treatment of bone-related disorders.
Collapse
Affiliation(s)
- Shuai Lin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Li Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
111
|
NF-κB signaling induces inductive expression of the downstream molecules and IgD gene in the freshwater carp, Catla catla. 3 Biotech 2020; 10:445. [PMID: 33014688 DOI: 10.1007/s13205-020-02435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022] Open
Abstract
Toll-like receptors (TLRs) in innate immune system act as primary sensors in detecting the microbial components and activate their signaling cascades to induce NF-κB (nuclear factor NF-κB) towards the augmentation of immunoglobulin (Ig) synthesis. To gain insights into the efficacy of NF-κB pathway in immunoglobulin D (IgD) synthesis in the Indian Major Carp Catla catla, cloning and sequencing of TLR-signaling downstream molecules [TRAF3 (TNF receptor-associated factor 3), NEMO (nuclear factor-kappa B essential modulator), NF-κB and BAFF (B cell activating factor)] were performed by infecting the fish with pathogens. mRNA expression analysis of the downstream molecules and IgD showed significant up-regulation of these genes in kidney (P ≤ 0.001) as compared to spleen (P ≤ 0.05). To ascertain the role of NF-κB pathway in IgD synthesis, the primary cell culture of kidney and spleen in monolayer cell suspension was treated with NF-κB inhibitor (BAY 11-7082) and down-regulation of BAFF, NEMO, NF-κB, and IgD gene was observed. These results highlight the importance of NF-κB signaling pathway in augmenting the IgD gene expression in the freshwater carp, Catla catla.
Collapse
|
112
|
Abstract
Chemical modifications of viral RNA are an integral part of the viral life cycle and are present in most classes of viruses. To date, more than 170 RNA modifications have been discovered in all types of cellular RNA. Only a few, however, have been found in viral RNA, and the function of most of these has yet to be elucidated. Those few we have discovered and whose functions we understand have a varied effect on each virus. They facilitate RNA export from the nucleus, aid in viral protein synthesis, recruit host enzymes, and even interact with the host immune machinery. The most common methods for their study are mass spectrometry and antibody assays linked to next-generation sequencing. However, given that the actual amount of modified RNA can be very small, it is important to pair meticulous scientific methodology with the appropriate detection methods and to interpret the results with a grain of salt. Once discovered, RNA modifications enhance our understanding of viruses and present a potential target in combating them. This review provides a summary of the currently known chemical modifications of viral RNA, the effects they have on viral machinery, and the methods used to detect them.
Collapse
Affiliation(s)
- Jiří František Potužník
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Cahová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
113
|
Liu L, Lalaoui N. 25 years of research put RIPK1 in the clinic. Semin Cell Dev Biol 2020; 109:86-95. [PMID: 32938551 DOI: 10.1016/j.semcdb.2020.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
Abstract
Receptor Interacting Protein Kinase 1 (RIPK1) is a key regulator of inflammation. To warrant cell survival and appropriate immune responses, RIPK1 is post-translationally regulated by ubiquitylations, phosphorylations and caspase-8-mediated cleavage. Dysregulations of these post-translational modifications switch on the pro-death function of RIPK1 and can cause inflammatory diseases in humans. Conversely, activation of RIPK1 cytotoxicity can be advantageous for cancer treatment. Small molecules targeting RIPK1 are under development for the treatment of cancer, inflammatory and neurogenerative disorders. We will discuss the molecular mechanisms controlling the functions of RIPK1, its pathologic role in humans and the therapeutic opportunities in targeting RIPK1, specifically in the context of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Lin Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| |
Collapse
|
114
|
Banerjee M, Middya S, Shrivastava R, Basu S, Ghosh R, Pryde DC, Yadav DB, Surya A. G10 is a direct activator of human STING. PLoS One 2020; 15:e0237743. [PMID: 32911484 PMCID: PMC7482845 DOI: 10.1371/journal.pone.0237743] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
The cGAS/STING pathway initiates an innate immune response when DNA is detected in the cytosol. DNA bound cGAS synthesizes cyclic dinucleotides which bind and activate the adaptor STING, leading to downstream secretion of Type I interferons and other pro-inflammatory NFκB pathway cytokines. In the mouse, the STING driven innate immune response is central to immune based clearance of various tumors and this has triggered a significant effort focused on the discovery of human STING agonists for the treatment of cancer. This report uses an in vitro kinase assay to show that G10, a previously identified STING pathway activator is actually a weak but direct STING agonist and identifies other more potent leads.
Collapse
Affiliation(s)
| | - Sandip Middya
- Curadev Pharma Pvt. Ltd., Noida, Uttar Pradesh, India
| | | | - Sourav Basu
- Curadev Pharma Pvt. Ltd., Noida, Uttar Pradesh, India
| | - Rajib Ghosh
- Curadev Pharma Pvt. Ltd., Noida, Uttar Pradesh, India
| | | | | | - Arjun Surya
- Curadev Pharma Pvt. Ltd., Noida, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
115
|
Bai L, Li W, Zheng W, Xu D, Chen N, Cui J. Promising targets based on pattern recognition receptors for cancer immunotherapy. Pharmacol Res 2020; 159:105017. [DOI: 10.1016/j.phrs.2020.105017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
|
116
|
Li Z, Sun J, Liu W, Wu J, Peng H, Zhao Y, Qiao H, Fang Y. Changes in the circRNA expression profile of PC12 cells induced by TDCIPP exposure may regulate the downstream NF-κB pathway via the Traf2 gene. CHEMOSPHERE 2020; 254:126834. [PMID: 32339792 DOI: 10.1016/j.chemosphere.2020.126834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
As a commonly used organophosphorus flame retardant (OPFR), tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) has become an environmental pollutant. Studies have shown that TDCIPP exposure has many toxic effects, such as neurotoxicity, reproductive development toxicity and endocrine disturbance. CircRNAs are circular noncoding RNAs that have been found to play important roles in the occurrence of a variety of diseases. However, it is unclear whether circRNAs play a role in the cytotoxicity induced by TDCIPP exposure. In this study, we analysed the circRNA microarray results of a control group and a TDCIPP exposure group of PC12 cells and detected 3432 differentially expressed circRNAs (P < 0.05), of which 1682 were upregulated and 1750 were downregulated in the TDCIPP-exposure group. The expression levels of 2 upregulated and 3 downregulated circRNAs were verified by real-time quantitative PCR, and the results were consistent with the microarray results. Then, ceRNA analysis was performed on several kinds of circRNAs to predict the possible binding miRNAs and binding sites. The target genes were analysed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Through predictive analysis, it was found that rno_circRNA_013845, rno-miR-361-3p, and rno-miR-702-3p may be involved in the regulation of Traf2 expression, thereby affecting the expression of the downstream NF-κB signalling pathway and causing apoptosis.
Collapse
Affiliation(s)
- Zhenxin Li
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China; Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Jingran Sun
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Weili Liu
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Jin Wu
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Hui Peng
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Youquan Zhao
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 300072, China
| | - Haixuan Qiao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China.
| | - Yanjun Fang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China.
| |
Collapse
|
117
|
Spatiotemporal dynamics of innate immune signaling via RIG-I-like receptors. Proc Natl Acad Sci U S A 2020; 117:15778-15788. [PMID: 32571931 DOI: 10.1073/pnas.1921861117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RIG-I, MDA5, and LGP2 comprise the RIG-I-like receptors (RLRs). RIG-I and MDA5 are essential pathogen recognition receptors sensing viral infections while LGP2 has been described as both RLR cofactor and negative regulator. After sensing and binding to viral RNA, including double-stranded RNA (dsRNA), RIG-I and MDA5 undergo cytosol-to-membrane relocalization to bind and signal through the MAVS adaptor protein on intracellular membranes, thus directing downstream activation of IRF3 and innate immunity. Here, we report examination of the dynamic subcellular localization of all three RLRs within the intracellular response to dsRNA and RNA virus infection. Observations from high resolution biochemical fractionation and electron microscopy, coupled with analysis of protein interactions and IRF3 activation, show that, in resting cells, microsome but not mitochondrial fractions harbor the central components to initiate innate immune signaling. LGP2 interacts with MAVS in microsomes, blocking the RIG-I/MAVS interaction. Remarkably, in response to dsRNA treatment or RNA virus infection, LGP2 is rapidly released from MAVS and redistributed to mitochondria, temporally correlating with IRF3 activation. We reveal that IRF3 activation does not take place on mitochondria but instead occurs at endoplasmic reticulum (ER)-derived membranes. Our observations suggest ER-derived membranes as key RLR signaling platforms controlled through inhibitory actions of LGP2 binding to MAVS wherein LGP2 translocation to mitochondria releases MAVS inhibition to facilitate RLR-mediated signaling of innate immunity.
Collapse
|
118
|
Fang P, Fang L, Xia S, Ren J, Zhang J, Bai D, Zhou Y, Peng G, Zhao S, Xiao S. Porcine Deltacoronavirus Accessory Protein NS7a Antagonizes IFN-β Production by Competing With TRAF3 and IRF3 for Binding to IKKε. Front Cell Infect Microbiol 2020; 10:257. [PMID: 32656094 PMCID: PMC7326017 DOI: 10.3389/fcimb.2020.00257] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
As an emerging swine enteropathogenic coronavirus, porcine deltacoronavirus (PDCoV) not only causes serious diarrhea in suckling piglets but also possesses the potential for cross-species transmission, which has sparked growing interest when studying this emerging virus. We previously identified a novel accessory protein NS7a encoded by PDCoV; however, the function of NS7a was not resolved. In this study, we demonstrated that PDCoV NS7a is an interferon antagonist. Overexpression of NS7a notably inhibited Sendai virus (SeV)-induced interferon-β (IFN-β) production and the activation of IRF3 rather than NF-κB. NS7a also inhibited IFN-β promoter activity induced by RIG-I, MDA5, MAVS, TBK1, and IKKε, which are key components of the RIG-I-like receptor (RLR) signaling pathway but not IRF3, the transcription factor downstream of TBK1/IKKε. Surprisingly, NS7a specifically interacts with IKKε but not with the closely related TBK1. Furthermore, NS7a interacts simultaneously with the kinase domain (KD) and the scaffold dimerization domain (SDD) of IKKε, competing with TRAF3, and IRF3 for binding to IKKε, leading to the reduction of RLR-mediated IFN-β production. The interactions of TRAF3-IKKε and IKKε-IRF3 are also attenuated in PDCoV-infected cells. Taken together, our results demonstrate that PDCoV NS7a inhibits IFN-β production by disrupting the association of IKKε with both TRAF3 and IRF3, revealing a new mechanism utilized by a PDCoV accessory protein to evade the host antiviral innate immune response.
Collapse
Affiliation(s)
- Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jie Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiansong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dongcheng Bai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
119
|
Cheung PHH, Lee TWT, Kew C, Chen H, Yuen KY, Chan CP, Jin DY. Virus subtype-specific suppression of MAVS aggregation and activation by PB1-F2 protein of influenza A (H7N9) virus. PLoS Pathog 2020; 16:e1008611. [PMID: 32511263 PMCID: PMC7302872 DOI: 10.1371/journal.ppat.1008611] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/18/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Human infection with avian influenza A (H5N1) and (H7N9) viruses causes severe respiratory diseases. PB1-F2 protein is a critical virulence factor that suppresses early type I interferon response, but the mechanism of its action in relation to high pathogenicity is not well understood. Here we show that PB1-F2 protein of H7N9 virus is a particularly potent suppressor of antiviral signaling through formation of protein aggregates on mitochondria and inhibition of TRIM31-MAVS interaction, leading to prevention of K63-polyubiquitination and aggregation of MAVS. Unaggregated MAVS accumulated on fragmented mitochondria is prone to degradation by both proteasomal and lysosomal pathways. These properties are proprietary to PB1-F2 of H7N9 virus but not shared by its counterpart in WSN virus. A recombinant virus deficient of PB1-F2 of H7N9 induces more interferon β in infected cells. Our findings reveal a subtype-specific mechanism for destabilization of MAVS and suppression of interferon response by PB1-F2 of H7N9 virus. Exactly why avian influenza A (H5N1) and (H7N9) viruses cause severe diseases in humans remains unclear. PB1-F2 protein encoded by influenza A virus is one virulence factor that might make a difference. In this study we show that PB1-F2 protein of H7N9 virus is particularly strong in the suppression of host antiviral defense. This was achieved by inhibiting a key protein in cell signaling named MAVS. PB1-F2 directs MAVS for degradation and prevents MAVS from forming protein aggregates required for full activation. A recombinant virus in which PB1-F2 of H7N9 has been deleted can activate host antiviral response robustly. Our findings reveal a novel mechanism by which PB1-F2 protein of H7N9 virus prevents MAVS aggregation and promotes MAVS degradation, leading to the suppression of host antiviral defense.
Collapse
Affiliation(s)
| | | | - Chun Kew
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- * E-mail: (CPC); (DYJ)
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- * E-mail: (CPC); (DYJ)
| |
Collapse
|
120
|
Liu X, Zhu C, Zha H, Tang J, Rong F, Chen X, Fan S, Xu C, Du J, Zhu J, Wang J, Ouyang G, Yu G, Cai X, Chen Z, Xiao W. SIRT5 impairs aggregation and activation of the signaling adaptor MAVS through catalyzing lysine desuccinylation. EMBO J 2020; 39:e103285. [PMID: 32301534 PMCID: PMC7265249 DOI: 10.15252/embj.2019103285] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
RLR-mediated type I IFN production plays a pivotal role in innate antiviral immune responses, where the signaling adaptor MAVS is a critical determinant. Here, we show that MAVS is a physiological substrate of SIRT5. Moreover, MAVS is succinylated upon viral challenge, and SIRT5 catalyzes desuccinylation of MAVS. Mass spectrometric analysis indicated that Lysine 7 of MAVS is succinylated. SIRT5-catalyzed desuccinylation of MAVS at Lysine 7 diminishes the formation of MAVS aggregation after viral infection, resulting in the inhibition of MAVS activation and leading to the impairment of type I IFN production and antiviral gene expression. However, the enzyme-deficient mutant of SIRT5 (SIRT5-H158Y) loses its suppressive role on MAVS activation. Furthermore, we show that Sirt5-deficient mice are resistant to viral infection. Our study reveals the critical role of SIRT5 in limiting RLR signaling through desuccinylating MAVS.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huangyuan Zha
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Jinhua Tang
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Sijia Fan
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chenxi Xu
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Juan Du
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Junji Zhu
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Guangqing Yu
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Zhu Chen
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
- The Key Laboratory of Aquaculture Disease ControlMinistry of AgricultureWuhanChina
- The Key Laboratory of Aquatic Biodiversity and ConservationInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- The Innovation Academy of Seed DesignChinese Academy of SciencesWuhanChina
| |
Collapse
|
121
|
Ren Z, Ding T, Zuo Z, Xu Z, Deng J, Wei Z. Regulation of MAVS Expression and Signaling Function in the Antiviral Innate Immune Response. Front Immunol 2020; 11:1030. [PMID: 32536927 PMCID: PMC7267026 DOI: 10.3389/fimmu.2020.01030] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Viral infection is controlled by host innate immune cells that express specialized receptors for viral components. Engagement of these pattern recognition receptors triggers a series of signaling pathways that culminate in the production of antiviral mediators such as type I interferons. Mitochondrial antiviral-signaling protein (MAVS) acts as a central hub for signal transduction initiated by RIG-I-like receptors, which predominantly recognize viral RNA. MAVS expression and function are regulated by both post-transcriptional and post-translational mechanisms, of which ubiquitination and phosphorylation play the most important roles in modulating MAVS function. Increasing evidence indicates that viruses can escape the host antiviral response by interfering at multiple points in the MAVS signaling pathways, thereby maintaining viral survival and replication. This review summarizes recent studies on the mechanisms by which MAVS expression and signaling are normally regulated and on the various strategies employed by viruses to antagonize MAVS activity, which may provide new insights into the design of novel antiviral agents.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ting Ding
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhanyong Wei
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
122
|
Porcine Epidemic Diarrhea Virus and the Host Innate Immune Response. Pathogens 2020; 9:pathogens9050367. [PMID: 32403318 PMCID: PMC7281546 DOI: 10.3390/pathogens9050367] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus (CoV), is the causative agent of porcine epidemic diarrhea (PED). PED causes lethal watery diarrhea in piglets, which has led to substantial economic losses in many countries and is a great threat to the global swine industry. Interferons (IFNs) are major cytokines involved in host innate immune defense, which induce the expression of a broad range of antiviral effectors that help host to control and antagonize viral infections. PEDV infection does not elicit a robust IFN response, and some of the mechanisms used by the virus to counteract the host innate immune response have been unraveled. PEDV evades the host innate immune response by two main strategies including: (1) encoding IFN antagonists to disrupt innate immune pathway, and (2) hiding its viral RNA to avoid the exposure of viral RNA to immune sensors. This review highlights the immune evasion mechanisms employed by PEDV, which provides insights for the better understanding of PEDV-host interactions and developing effective vaccines and antivirals against CoVs.
Collapse
|
123
|
Influenza A virus PB1‐F2 protein: An ambivalent innate immune modulator and virulence factor. J Leukoc Biol 2020; 107:763-771. [DOI: 10.1002/jlb.4mr0320-206r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
|
124
|
Marineau A, Khan KA, Servant MJ. Roles of GSK-3 and β-Catenin in Antiviral Innate Immune Sensing of Nucleic Acids. Cells 2020; 9:cells9040897. [PMID: 32272583 PMCID: PMC7226782 DOI: 10.3390/cells9040897] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/23/2022] Open
Abstract
The rapid activation of the type I interferon (IFN) antiviral innate immune response relies on ubiquitously expressed RNA and DNA sensors. Once engaged, these nucleotide-sensing receptors use distinct signaling modules for the rapid and robust activation of mitogen-activated protein kinases (MAPKs), the IκB kinase (IKK) complex, and the IKK-related kinases IKKε and TANK-binding kinase 1 (TBK1), leading to the subsequent activation of the activator protein 1 (AP1), nuclear factor-kappa B (NF-κB), and IFN regulatory factor 3 (IRF3) transcription factors, respectively. They, in turn, induce immunomodulatory genes, allowing for a rapid antiviral cellular response. Unlike the MAPKs, the IKK complex and the IKK-related kinases, ubiquitously expressed glycogen synthase kinase 3 (GSK-3) α and β isoforms are active in unstimulated resting cells and are involved in the constitutive turnover of β-catenin, a transcriptional coactivator involved in cell proliferation, differentiation, and lineage commitment. Interestingly, studies have demonstrated the regulatory roles of both GSK-3 and β-catenin in type I IFN antiviral innate immune response, particularly affecting the activation of IRF3. In this review, we summarize current knowledge on the mechanisms by which GSK-3 and β-catenin control the antiviral innate immune response to RNA and DNA virus infections.
Collapse
Affiliation(s)
- Alexandre Marineau
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C3J7, Canada;
| | - Kashif Aziz Khan
- Department of Biology, York University, Toronto, ON M3J1P3, Canada;
| | - Marc J. Servant
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C3J7, Canada;
- Réseau Québécois de Recherche sur les Médicaments (RQRM), Montréal, QC H3T1C5, Canada
- Correspondence: ; Tel.: +1-514-343-7966
| |
Collapse
|
125
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
126
|
Lee AK, Pan D, Bao X, Hu M, Li F, Li CY. Endogenous Retrovirus Activation as a Key Mechanism of Anti-Tumor Immune Response in Radiotherapy. Radiat Res 2020; 193:305-317. [PMID: 32074012 DOI: 10.1667/rade-20-00013] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The generation of DNA double-strand breaks has historically been taught as the mechanism through which radiotherapy kills cancer cells. Recently, radiation-induced cytosolic DNA release and activation of the cGAS/STING pathway, with ensuing induction of interferon secretion and immune activation, have been recognized as important mechanisms for radiation-mediated anti-tumor efficacy. Here we demonstrate that radiation-induced activation of endogenous retroviruses (ERVs) also plays a major role in regulating the anti-tumor immune response during irradiation. Radiation-induced ERV-associated dsRNA transcription and subsequent activation of the innate antiviral MDA5/MAVS/TBK1 pathway led to downstream transcription of interferon-stimulated genes. Additionally, genetic knockout of KAP1, a chromatin modulator responsible for suppressing ERV transcription sites within the genome, enhanced the effect of radiation-induced anti-tumor response in vivo in two different tumor models. This anti-tumor response was immune-mediated and required an intact host immune system. Our findings indicate that radiation-induced ERV-dsRNA expression and subsequent immune response play critical roles in clinical radiotherapy, and manipulation of epigenetic regulators and the dsRNA-sensing innate immunity pathway could be promising targets to enhance the efficacy of radiotherapy and cancer immunotherapy.
Collapse
Affiliation(s)
- Andrew K Lee
- Department of Pharmacology and Cancer Biology, Duke University Graduate School, Durham, North Carolina
| | | | | | | | | | - Chuan-Yuan Li
- Department of Pharmacology and Cancer Biology, Duke University Graduate School, Durham, North Carolina.,Department of Dermatology.,Department of Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
127
|
Zhang Z, Wang D, Wang P, Zhao Y, You F. OTUD1 Negatively Regulates Type I IFN Induction by Disrupting Noncanonical Ubiquitination of IRF3. THE JOURNAL OF IMMUNOLOGY 2020; 204:1904-1918. [DOI: 10.4049/jimmunol.1900305] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022]
|
128
|
Tong Y, Lear TB, Evankovich J, Chen Y, Londino JD, Myerburg MM, Zhang Y, Popescu ID, McDyer JF, McVerry BJ, Lockwood KC, Jurczak MJ, Liu Y, Chen BB. The RNFT2/IL-3Rα axis regulates IL-3 signaling and innate immunity. JCI Insight 2020; 5:133652. [PMID: 31990690 DOI: 10.1172/jci.insight.133652] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
Interleukin-3 (IL-3) receptor α (IL-3Rα) is the α subunit of the ligand-specific IL-3R and initiates intracellular signaling in response to IL-3. IL-3 amplifies proinflammatory signaling and cytokine storm in murine sepsis models. Here we found that RNFT2 (RING finger transmembrane-domain containing protein 2, also TMEM118), a previously uncharacterized RING finger ubiquitin E3 ligase, negatively regulated IL-3-dependent cellular responses through IL-3Rα ubiquitination and degradation in the proteasome. In vitro, IL-3 stimulation promoted IL-3Rα proteasomal degradation dependent on RNFT2, and we identified IL-3Rα lysine 357 as a ubiquitin acceptor site. We determined that LPS priming reduces RNFT2 abundance, extends IL-3Rα half-life, and sensitizes cells to the effects of IL-3, acting synergistically to increase proinflammatory signaling. In vivo, IL-3 synergized with LPS to exacerbate lung inflammation in LPS and Pseudomonas aeruginosa-challenged mice; conversely, IL-3 neutralization reduced LPS-induced lung injury. Further, RNFT2 overexpression reduced lung inflammation and injury, whereas Rnft2 knockdown exacerbated inflammatory responses in LPS-induced murine lung injury. Last, we examined RNFT2 and IL-3Rα in human lung explants from patients with cystic fibrosis and also showed that IL-3 is elevated in mechanically ventilated critically ill humans at risk for acute respiratory distress syndrome. These results identify RNFT2 as a negative regulator of IL-3Rα and show a potential role for the RNFT2/IL-3Rα/IL-3 axis in regulating innate immune responses in the lung.
Collapse
Affiliation(s)
- Yao Tong
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Travis B Lear
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Environmental and Occupational Health, School of Public Health, and.,Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Evankovich
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yanwen Chen
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - James D Londino
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Michael M Myerburg
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Iulia D Popescu
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John F McDyer
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bryan J McVerry
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Environmental and Occupational Health, School of Public Health, and
| | - Karina C Lockwood
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine
| | - Yuan Liu
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, and
| | - Bill B Chen
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
129
|
Ablasser A, Hur S. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat Immunol 2020; 21:17-29. [PMID: 31819255 DOI: 10.1038/s41590-019-0556-1] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Abstract
Pathogen-derived nucleic acids are crucial signals for innate immunity. Despite the structural similarity between those and host nucleic acids, mammalian cells have been able to evolve powerful innate immune signaling pathways that originate from the detection of cytosolic nucleic acid species, one of the most prominent being the cGAS-STING pathway for DNA and the RLR-MAVS pathway for RNA, respectively. Recent advances have revealed a plethora of regulatory mechanisms that are crucial for balancing the activity of nucleic acid sensors for the maintenance of overall cellular homeostasis. Elucidation of the various mechanisms that enable cells to maintain control over the activity of cytosolic nucleic acid sensors has provided new insight into the pathology of human diseases and, at the same time, offers a rich and largely unexplored source for new therapeutic targets. This Review addresses the emerging literature on regulation of the sensing of cytosolic DNA and RNA via cGAS and RLRs.
Collapse
Affiliation(s)
- Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland.
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
130
|
Abstract
The innate immune system represents the first defense line of the host following viral infection. The infection triggers the recognition of pathogen-associated molecular patterns (PAMPs) from the viruses by pattern recognition receptors (PRRs) of the host cell. The interaction between viral PAMPs and PRRs evokes a sophisticated signal transduction system and eventually promotes the expression of type I interferons (IFNs) and proinflammatory cytokines. Ubiquitination plays an indispensable role in fine-tuning almost every single step of this signaling cascade given on its versatile functions. Ubiquitin ligases and deubiquitinases (DUBs), which cooperatively and accurately regulate the dynamic and reversible ubiquitination process, are the master regulators of antiviral signaling. In this review, we concentrate on summarizing the ubiquitin ligases and DUBs that modulate the central signaling molecules in antiviral innate immunity. Especially, we emphasize the ones that were identified by the immunologists from China.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of Microbial Technology, Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, the School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Chengjiang Gao
- State Key Laboratory of Microbial Technology, Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, the School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
131
|
Zhu L, Li Y, Xie X, Zhou X, Gu M, Jie Z, Ko CJ, Gao T, Hernandez BE, Cheng X, Sun SC. TBKBP1 and TBK1 form a growth factor signalling axis mediating immunosuppression and tumourigenesis. Nat Cell Biol 2019; 21:1604-1614. [PMID: 31792381 PMCID: PMC6901116 DOI: 10.1038/s41556-019-0429-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
The kinase TBK1 responds to microbial stimuli and mediates type I interferon (IFN-I) induction. We show that TBK1 is also a central mediator of growth factor signaling; this function relies on a specific adaptor, TBK-binding protein 1 (TBKBP1). TBKBP1 recruits TBK1 to PKCθ via a scaffold protein, Card10, which allows PKCθ to phosphorylate TBK1 at serine-716, a crucial step for TBK1 activation by growth factors but not by innate immune stimuli. While the TBK1/TBKBP1 signaling axis is dispensable for IFN-I induction, it mediates mTORC1 activation and oncogenesis. Lung epithelial cell-conditional deletion of either TBK1 or TBKBP1 inhibits tumorigenesis in a mouse model of lung cancer. In addition to promoting tumor growth, the TBK1/TBKBP1 axis facilitates tumor-mediated immunosuppression by a mechanism involving induction of the checkpoint molecule PD-L1 and stimulation of glycolysis. These findings suggest a PKCθ-TBKBP1-TBK1 growth factor signaling axis mediating both tumor growth and immunosuppression.
Collapse
Affiliation(s)
- Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tianxiao Gao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Blanca E Hernandez
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
132
|
The Capsid Protein of Hepatitis E Virus Inhibits Interferon Induction via Its N-terminal Arginine-Rich Motif. Viruses 2019; 11:v11111050. [PMID: 31717991 PMCID: PMC6928999 DOI: 10.3390/v11111050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/07/2019] [Indexed: 12/28/2022] Open
Abstract
Hepatitis E virus (HEV) causes predominantly acute and self-limiting hepatitis. However, in HEV-infected pregnant women, the case fatality rate because of fulminant hepatitis can be up to 30%. HEV infection is zoonotic for some genotypes. The HEV genome contains three open reading frames: ORF1 encodes the non-structural polyprotein involved in viral RNA replication; ORF2 encodes the capsid protein; ORF3 encodes a small multifunctional protein. Interferons (IFNs) play a significant role in the early stage of the host antiviral response. In this study, we discovered that the capsid protein antagonizes IFN induction. Mechanistically, the capsid protein blocked the phosphorylation of IFN regulatory factor 3 (IRF3) via interaction with the multiprotein complex consisting of mitochondrial antiviral-signaling protein (MAVS), TANK-binding kinase 1 (TBK1), and IRF3. The N-terminal domain of the capsid protein was found to be responsible for the inhibition of IRF3 activation. Further study showed that the arginine-rich-motif in the N-terminal domain is indispensable for the inhibition as mutations of any of the arginine residues abolished the blockage of IRF3 phosphorylation. These results provide further insight into HEV interference with the host innate immunity.
Collapse
|
133
|
Yang C, Liu L, Liu J, Ye Z, Wu H, Feng P, Feng H. Black carp IRF5 interacts with TBK1 to trigger cell death following viral infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 100:103426. [PMID: 31260698 DOI: 10.1016/j.dci.2019.103426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Interferon regulated factor 5 (IRF5) is a key regulator of inflammatory responses in human and mammals; however, its role in teleost remains largely unknown. In this study, IRF5 homologue of black carp (Mylopharyngodon piceus) has been cloned and characterized, which possesses conservation in structure and sequence to its mammalian counterparts. Black carp IRF5 (bcIRF5) was characterized as a predominantly cytosolic protein by immunofluorescent staining and showed little IFN promoter-inducing ability in reporter assay. The direct association between bcIRF5 and black carp TBK1 (bcTBK1) were identified through co-immunoprecipitation assay, and co-expressed bcIRF5 in EPC cells suppressed bcTBK1-mediated IFN promoter transcription in reporter assay. Surprisingly, the titer of grass carp reovirus (GCRV) in the media of EPC cells co-expressing bcIRF5 and bcTBK1 was obviously lower than that of EPC cells expressing bcTBK1 alone. It was interesting that expression of bcIRF5 and/or bcTBK1 in EPC cells showed little effect on cell growth; however, the survival ratio of EPC cells co-expressing bcTBK1 and bcIRF5 post GCRV infection was much lower than that of EPC cells expressing bcIRF5 or bcTBK1 alone. These results indicate that bcIRF5 negatively regulates bcTBK1-mediated IFN signaling in healthy cells; however, it correlates with bcTBK1 and triggers cell death to inhibit the virus replication during the innate immune activation.
Collapse
Affiliation(s)
- Can Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ji Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zi Ye
- Yali High School of Changsha, No.428 Laodong West Road, 410007, Hunan, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Pinghui Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
134
|
Rao Y, Ji J, Liao Z, Su H, Su J. GCRV hijacks TBK1 to evade IRF7-mediated antiviral immune responses in grass carp Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2019; 93:492-499. [PMID: 31381973 DOI: 10.1016/j.fsi.2019.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
TANK-binding kinase 1 (TBK1) is an important kinase that regulates the activation of interferon regulatory factor 3/7 (IRF3/7) to induce type I interferon (IFN-I) production in antiviral immune responses. However, in long-term virus-host crosstalk, viruses have evolved elaborate strategies to evade host immune defense mechanisms. In the present study, we found that grass carp (Ctenopharyngodon idella) reovirus (GCRV) hijacks TBK1 to escape IRF7-IFN-Is signaling activation. In brief, GCRV inhibited TBK1 activation by restaining K63-linked ubiquitination of TBK1 and promoting its K48-linked ubiquitination. This regulation resulted in that under low titer of GCRV infection, TBK1 overexpression specifically supressed promoter activity and phosphorylation of IRF7 and induction of downstream IFN1and IFN3. qRT-PCR data uncovered that TBK1 negatively regulated IRF7, IFN1 and IFN3 transcription levels under low viral titer infection. Along with enhancement of GCRV titers, TBK1 swiched its function to up-regulate IRF7, IFN1 and IFN3 mRNA levels. Accordingly, TBK1 promoted GCRV replication at low infected titer, but inhibited GCRV replication at high infected titer. All these results revealed a viral evasion strategy that GCRV utilizes TBK1 to block cellular IFN responses at low titers or early stages in fish species, which will lay a foundation for further researching on host-virus interactions and developing novel antiviral strategies in lower vertebrates.
Collapse
Affiliation(s)
- Youliang Rao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Jianfei Ji
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiwei Liao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hang Su
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
135
|
Beachboard DC, Park M, Vijayan M, Snider DL, Fernando DJ, Williams GD, Stanley S, McFadden MJ, Horner SM. The small GTPase RAB1B promotes antiviral innate immunity by interacting with TNF receptor-associated factor 3 (TRAF3). J Biol Chem 2019; 294:14231-14240. [PMID: 31375559 PMCID: PMC6768648 DOI: 10.1074/jbc.ra119.007917] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Innate immune detection of viral nucleic acids during viral infection activates a signaling cascade that induces type I and type III IFNs as well as other cytokines, to generate an antiviral response. This signaling is initiated by pattern recognition receptors, such as the RNA helicase retinoic acid-inducible gene I (RIG-I), that sense viral RNA. These sensors then interact with the adaptor protein mitochondrial antiviral signaling protein (MAVS), which recruits additional signaling proteins, including TNF receptor-associated factor 3 (TRAF3) and TANK-binding kinase 1 (TBK1), to form a signaling complex that activates IFN regulatory factor 3 (IRF3) for transcriptional induction of type I IFNs. Here, using several immunological and biochemical approaches in multiple human cell types, we show that the GTPase-trafficking protein RAB1B up-regulates RIG-I pathway signaling and thereby promotes IFN-β induction and the antiviral response. We observed that RAB1B overexpression increases RIG-I-mediated signaling to IFN-β and that RAB1B deletion reduces signaling of this pathway. Additionally, loss of RAB1B dampened the antiviral response, indicated by enhanced Zika virus infection of cells depleted of RAB1B. Importantly, we identified the mechanism of RAB1B action in the antiviral response, finding that it forms a protein complex with TRAF3 to facilitate the interaction of TRAF3 with mitochondrial antiviral signaling protein. We conclude that RAB1B regulates TRAF3 and promotes the formation of innate immune signaling complexes in response to nucleic acid sensing during RNA virus infection.
Collapse
Affiliation(s)
- Dia C Beachboard
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Moonhee Park
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Madhuvanthi Vijayan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Daltry L Snider
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Dillon J Fernando
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Graham D Williams
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Sydney Stanley
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Michael J McFadden
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
136
|
Peng SJ, Yao RR, Yu SS, Chen HY, Pang X, Zhang Y, Zhang J. UBL4A Augments Innate Immunity by Promoting the K63-Linked Ubiquitination of TRAF6. THE JOURNAL OF IMMUNOLOGY 2019; 203:1943-1951. [PMID: 31451677 DOI: 10.4049/jimmunol.1800750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/24/2019] [Indexed: 12/25/2022]
Abstract
Human UBL4A/GdX, encoding an ubiquitin-like protein, was shown in this study to be upregulated by viral infection and IFN stimulation. Then the functions of UBL4A in antiviral immune response were characterized. Overexpression of UBL4A promoted RNA virus-induced ISRE or IFN-β or NF-κB activation, leading to enhanced type I IFN transcription and reduced virus replication. Consistently, knockdown of UBL4A resulted in reduced type I IFN transcription and enhanced virus replication. Additionally, overexpression of UBL4A promoted virus-induced phosphorylation of TBK1, IRF3, and IKKα/β. Knockdown of UBL4A inhibited virus-induced phosphorylation of TBK1, IRF3, and IKKα/β. Coimmunoprecipitation showed that UBL4A interacted with TRAF6, and this interaction was enhanced upon viral infection. Ubiquitination assays showed that UBL4A promoted the K63-linked ubiquitination of TRAF6. Therefore, we reveal a novel positive feedback regulation of UBL4A in innate immune response combating virus invasion by enhancing the K63-linked ubiquitination of TRAF6.
Collapse
Affiliation(s)
- Shu-Jie Peng
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Ran-Ran Yao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Shuang-Shuang Yu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Hong-Yan Chen
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Xuewen Pang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
137
|
Zhu W, Li J, Zhang R, Cai Y, Wang C, Qi S, Chen S, Liang X, Qi N, Hou F. TRAF3IP3 mediates the recruitment of TRAF3 to MAVS for antiviral innate immunity. EMBO J 2019; 38:e102075. [PMID: 31390091 DOI: 10.15252/embj.2019102075] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
RIG-I-MAVS antiviral signaling represents an important pathway to stimulate interferon production and confer innate immunity to the host. Upon binding to viral RNA and Riplet-mediated polyubiquitination, RIG-I promotes prion-like aggregation and activation of MAVS. MAVS subsequently induces interferon production by activating two signaling pathways mediated by TBK1-IRF3 and IKK-NF-κB respectively. However, the mechanism underlying the activation of MAVS downstream pathways remains elusive. Here, we demonstrated that activation of TBK1-IRF3 by MAVS-Region III depends on its multimerization state and identified TRAF3IP3 as a critical regulator for the downstream signaling. In response to virus infection, TRAF3IP3 is accumulated on mitochondria and thereby facilitates the recruitment of TRAF3 to MAVS for TBK1-IRF3 activation. Traf3ip3-deficient mice demonstrated a severely compromised potential to induce interferon production and were vulnerable to RNA virus infection. Our findings uncover that TRAF3IP3 is an important regulator for RIG-I-MAVS signaling, which bridges MAVS and TRAF3 for an effective antiviral innate immune response.
Collapse
Affiliation(s)
- Wenting Zhu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiaxin Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Rui Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yixiang Cai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Changwan Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shishi Qi
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Xiaozhen Liang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Nan Qi
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Fajian Hou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
138
|
Saul VV, Seibert M, Krüger M, Jeratsch S, Kracht M, Schmitz ML. ULK1/2 Restricts the Formation of Inducible SINT-Speckles, Membraneless Organelles Controlling the Threshold of TBK1 Activation. iScience 2019; 19:527-544. [PMID: 31442668 PMCID: PMC6710720 DOI: 10.1016/j.isci.2019.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/08/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Membraneless organelles (MLOs) are liquid-like subcellular compartments providing spatiotemporal control to biological processes. This study reveals that cellular stress leads to the incorporation of the adaptor protein SINTBAD (TBKBP1) into membraneless, cytosolic speckles. Determination of the interactome identified >100 proteins forming constitutive and stress-inducible members of an MLO that we termed SINT-speckles. SINT-speckles partially colocalize with activated TBK1, and deletion of SINTBAD and the SINT-speckle component AZI2 leads to impaired TBK1 phosphorylation. Dynamic formation of SINT-speckles is positively controlled by the acetyltransferase KAT2A (GCN5) and antagonized by heat shock protein-mediated chaperone activity. SINT-speckle formation is also inhibited by the autophagy-initiating kinases ULK1/2, and knockdown of these kinases prevented focal TBK1 phosphorylation in a pathway-specific manner. The phlebovirus-encoded non-structural protein S enhances ULK1-mediated TBK1 phosphorylation and shows a stress-induced translocation to SINT-speckles, raising the possibility that viruses can also target this signaling hub to manipulate host cell functions.
Collapse
Affiliation(s)
- Vera Vivian Saul
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Justus-Liebig-University, D-35392 Giessen, Germany, Member of the German Center for Lung Research
| | - Markus Seibert
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Justus-Liebig-University, D-35392 Giessen, Germany, Member of the German Center for Lung Research
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Sylvia Jeratsch
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University, D-35392 Giessen, Germany, Member of the German Center for Lung Research
| | - Michael Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Justus-Liebig-University, D-35392 Giessen, Germany, Member of the German Center for Lung Research.
| |
Collapse
|
139
|
Wu S, Zhang Q, Zhang F, Meng F, Liu S, Zhou R, Wu Q, Li X, Shen L, Huang J, Qin J, Ouyang S, Xia Z, Song H, Feng XH, Zou J, Xu P. HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity. Nat Cell Biol 2019; 21:1027-1040. [DOI: 10.1038/s41556-019-0352-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/03/2019] [Indexed: 12/19/2022]
|
140
|
Chen J, Wang D, Sun Z, Gao L, Zhu X, Guo J, Xu S, Fang L, Li K, Xiao S. Arterivirus nsp4 Antagonizes Interferon Beta Production by Proteolytically Cleaving NEMO at Multiple Sites. J Virol 2019; 93:e00385-19. [PMID: 30944180 PMCID: PMC6613749 DOI: 10.1128/jvi.00385-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/30/2019] [Indexed: 12/24/2022] Open
Abstract
Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) represent two members of the family Arteriviridae and pose major threats for the horse- and swine-breeding industries worldwide. A previous study suggested that PRRSV nsp4, a 3C-like protease, antagonizes interferon beta (IFN-β) production by cleaving the NF-κB essential modulator (NEMO) at a single site, glutamate 349 (E349). Here, we demonstrated that EAV nsp4 also inhibited virus-induced IFN-β production by targeting NEMO for proteolytic cleavage and that the scission occurred at four sites: E166, E171, glutamine 205 (Q205), and E349. Additionally, we found that, besides the previously reported cleavage site E349 in NEMO, scission by PRRSV nsp4 took place at two additional sites, E166 and E171. These results imply that while cleaving NEMO is a common strategy utilized by EAV and PRRSV nsp4 to antagonize IFN induction, EAV nsp4 adopts a more complex substrate recognition mechanism to target NEMO. By analyzing the abilities of the eight different NEMO fragments resulting from EAV or PRRSV nsp4 scission to induce IFN-β production, we serendipitously found that a NEMO fragment (residues 1 to 349) could activate IFN-β transcription more robustly than full-length NEMO, whereas all other NEMO cleavage products were abrogated for the IFN-β-inducing capacity. Thus, NEMO cleavage at E349 alone may not be sufficient to completely inactivate the IFN response via this signaling adaptor. Altogether, our findings suggest that EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is critical for disarming the innate immune response for viral survival.IMPORTANCE The arterivirus nsp4-encoded 3C-like protease (3CLpro) plays an important role in virus replication and immune evasion, making it an attractive target for antiviral therapeutics. Previous work suggested that PRRSV nsp4 suppresses type I IFN production by cleaving NEMO at a single site. In contrast, the present study demonstrates that both EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is essential for disruption of type I IFN production. Moreover, we reveal that EAV nsp4 also cleaves NEMO at glutamine 205 (Q205), which is not targeted by PRRSV nsp4. Notably, targeting a glutamine in NEMO for cleavage has been observed only with picornavirus 3C proteases (3Cpro) and coronavirus 3CLpro In aggregate, our work expands knowledge of the innate immune evasion mechanisms associated with NEMO cleavage by arterivirus nsp4 and describes a novel substrate recognition characteristic of EAV nsp4.
Collapse
Affiliation(s)
- Jiyao Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zheng Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Li Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xinyu Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiahui Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shangen Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
141
|
Chen J, Li ZC, Lu LF, Li P, Li XY, Li S. Functional Characterization of Dark Sleeper ( Odontobutis obscura) TBK1 on IFN Regulation. Front Immunol 2019; 10:985. [PMID: 31130963 PMCID: PMC6510163 DOI: 10.3389/fimmu.2019.00985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/16/2019] [Indexed: 11/17/2022] Open
Abstract
In East Asia, the dark sleeper, Odontobutis obscura (O. obscura) is a crucial commercial species of freshwater fish; however, its molecular biology research is still undeveloped, including its innate immune system, which is pivotal to antiviral responses. In this study, we cloned and identified the characterization and kinase function of dark sleeper TANK-binding kinase 1 (TBK1), supplementing the evidence of the conservation of this classical factor in fish. First, the ORF of Odontobutis obscurus (O. obscura) TBK1 (OdTBK1) was cloned from liver tissue by RACE-PCR. Subsequent nucleic acid and amino acid sequence analysis suggested that OdTBK1 is homologous with other fish TBK1, and the N-terminal Serine/Threonine protein kinases catalytic domain (S_TKc) and C-terminal coiled coil domain (CCD) are conserved. Subsequently, the cellular distribution demonstrated that OdTBK1 was located in the cytoplasm region. With regard to the identification of functions, OdTBK1 activated several interferon (IFN) promoters' activity and induced downstream IFN-stimulated genes (ISGs) expression. In a canonical manner, wild-type OdTBK1 significantly phosphorylated interferon regulatory factor 3 (IRF3) but failed when the N-terminal region was truncated. Furthermore, overexpression of OdTBK1 decreased viral proliferation remarkably. Collectively, these data systematically analyzed the characterization and function of OdTBK1, initiating the study of the innate antiviral response of dark sleeper.
Collapse
Affiliation(s)
- Jian Chen
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Zhuo Cong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Long Feng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pei Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
142
|
De Martini W, Coutu J, Bugert J, Iversen T, Cottrell J, Nichols DB. The molluscum contagiosum virus protein MC163 inhibits TNF-α-induced NF-κB activation. Future Virol 2019. [DOI: 10.2217/fvl-2019-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The molluscum contagiosum virus (MCV) expresses several immune evasion molecules that inhibit activation of NF-κB. Presumably, inhibition of inflammatory responses mediated by NF-κB allows MCV to cause persistent infections. Materials & methods: MC163-IKK-α interactions were detected by immunoprecipitations. Results: Here, we identify a novel MCV inhibitor of NF-κB. Ectopic expression of the MC163 protein resulted in a significant decrease in TNF-α-induced NF-κB activation. However, MC163 had no detectable effect on mitochondrial antiviral-signaling protein-induced activation of the IFN-β-promoter. MC163 dampened NF-κB activation induced via the overexpression of either IKK-α or IKK-β suggesting MC163 targets the IKK complex. Conclusion: Our data highlight a previously unknown function for the MC163 protein and may represent an additional strategy used by MCV to subvert host immune responses.
Collapse
Affiliation(s)
- William De Martini
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
| | - Jesse Coutu
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
- Department of Microbiology, Oregon State University, Dryden Hall 106A, Corvallis, OR 97333, USA
| | - Joachim Bugert
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 München, Germany
| | - Timothy Iversen
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
| | - Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
| |
Collapse
|
143
|
Zheng Y, Gao C. E3 ubiquitin ligases, the powerful modulator of innate antiviral immunity. Cell Immunol 2019; 340:103915. [PMID: 31054776 DOI: 10.1016/j.cellimm.2019.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/26/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022]
Abstract
During viral infection, the innate immune system represents the first defense line of the human body. The pathogen associated molecular patterns (PAMPs) from the viruses are recognized by pattern recognition receptors (PRRs) of the host cell, especially from those of the immune cells. Sensing of PAMPs by PRRs elicits an elegant signal transduction system, ultimately leading to the production of type I interferons (IFNs) and proinflammatory cytokines. Ubiquitination, with its versatile functions, plays a central role in modulating almost every single step of this signaling cascade. Ubiquitin ligases, which catalyze different types of ubiquitination correlating with multiple functions, are the key participant in fine-tuning antiviral signal transduction. In this review, we focus on summarizing the ubiquitin ligases that regulate the key signaling molecules in antiviral innate immunity.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of Microbial Technology, Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, The School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Chengjiang Gao
- State Key Laboratory of Microbial Technology, Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, The School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
144
|
Cao L, Yang G, Gao S, Jing C, Montgomery RR, Yin Y, Wang P, Fikrig E, You F. HIPK2 is necessary for type I interferon-mediated antiviral immunity. Sci Signal 2019; 12:12/573/eaau4604. [PMID: 30890658 DOI: 10.1126/scisignal.aau4604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Precise control of interferons (IFNs) is crucial to maintain immune homeostasis. Here, we demonstrated that homeodomain-interacting protein kinase 2 (HIPK2) was required for the production of type I IFNs in response to RNA virus infection. HIPK2 deficiency markedly impaired IFN production in macrophages after vesicular stomatitis virus (VSV) infection, and HIPK2-deficient mice were more susceptible to lethal VSV disease than were wild-type mice. After VSV infection, HIPK2 was cleaved by active caspases, which released a hyperactive, N-terminal fragment that translocated to the nucleus and further augmented antiviral responses. In part, HIPK2 interacted with ELF4 and promoted its phosphorylation at Ser369, which enabled Ifn-b transcription. In addition, HIPK2 production was stimulated by type I IFNs to further enhance antiviral immunity. These data suggest that the kinase activity and nuclear localization of HIPK2 are essential for the production of type I IFNs.
Collapse
Affiliation(s)
- Lili Cao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Guang Yang
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 208022, USA.,Department of Parasitology, Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Shandian Gao
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 208022, USA
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ruth R Montgomery
- Section of Rheumatology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Penghua Wang
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 208022, USA.,Department of Immunology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 208022, USA. .,Howard Hughes Medical Institute, Chevy Chase, MA 20815, USA
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
145
|
Apoptotic Caspases Suppress Type I Interferon Production via the Cleavage of cGAS, MAVS, and IRF3. Mol Cell 2019; 74:19-31.e7. [PMID: 30878284 DOI: 10.1016/j.molcel.2019.02.013] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/13/2018] [Accepted: 02/08/2019] [Indexed: 01/12/2023]
Abstract
Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the infected cells. Inflammasome-activated caspases are known to cleave cyclic GMP-AMP synthase (cGAS). Here, we found that apoptotic caspases are critically involved in regulating both DNA and RNA virus-triggered host defenses, in which activated caspase-3 cleaved cGAS, MAVS, and IRF3 to prevent cytokine overproduction. Caspase-3 was exclusively required in human cells, whereas caspase-7 was involved only in murine cells to inactivate cGAS, reflecting distinct regulatory mechanisms in different species. Caspase-mediated cGAS cleavage was enhanced in the presence of dsDNA. Alternative MAVS cleavage sites were used to ensure the inactivation of this critical protein. Elevated type I IFNs were detected in caspase-3-deficient cells without any infection. Casp3-/- mice consistently showed increased resistance to viral infection and experimental autoimmune encephalomyelitis. Our results demonstrate that apoptotic caspases control innate immunity and maintain immune homeostasis against viral infection.
Collapse
|
146
|
Guo CJ, He J, He JG. The immune evasion strategies of fish viruses. FISH & SHELLFISH IMMUNOLOGY 2019; 86:772-784. [PMID: 30543936 DOI: 10.1016/j.fsi.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Viral infection of a host rapidly triggers intracellular signaling events that induce interferon production and a cellular antiviral state. Viral diseases are important concerns in fish aquaculture. The major mechanisms of the fish antiviral immune response are suggested to be similar to those of mammals, although the specific details of the process require further studies. Throughout the process of pathogen-host coevolution, fish viruses have developed a battery of distinct strategies to overcome the biochemical and immunological defenses of the host. Such strategies include signaling interference, effector modulation, and manipulation of host apoptosis. This review provide an overview of the different mechanisms that fish viruses use to evade host immune responses. The basic mechanisms of immune evasion of fish virus are discussed, and some examples are provided to illustrate particular points.
Collapse
Affiliation(s)
- C J Guo
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - J He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - J G He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
147
|
Perčulija V, Ouyang S. Diverse Roles of DEAD/DEAH-Box Helicases in Innate Immunity and Diseases. HELICASES FROM ALL DOMAINS OF LIFE 2019. [PMCID: PMC7158350 DOI: 10.1016/b978-0-12-814685-9.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
DEAD/DEAH-box helicases are enzymes that belong to the DEAD/H-box family of SF2 helicase superfamily. These enzymes are essential in RNA metabolism, where they are involved in a number of processes that require manipulation of RNA structure. Recent studies have found that some DEAD/DEAH-box helicases play important roles in innate immunity, where they act as sensors of cytosolic DNA/RNA, as adaptor proteins, or as regulators of signaling and gene expression. In spite of their function in immunity, DEAD/DEAH-box helicases can also be hijacked and exploited by viruses to circumvent detection and aid in viral replication. These findings not only imply that DEAD/DEAH-box helicases have a broader function than previously thought, but also give us a much better understanding of immune mechanisms and diseases that arise due to the dysregulation or evasion thereof. In this chapter, we demonstrate the known scope of activities of human DEAD/DEAH-box helicases in innate immunity and interaction with viruses or other pathogens. Additionally, we give an outline of diseases in which they are, or may be, involved in the context of immunity.
Collapse
|
148
|
Lin S, Yang S, He J, Guest JD, Ma Z, Yang L, Pierce BG, Tang Q, Zhang YJ. Zika virus NS5 protein antagonizes type I interferon production via blocking TBK1 activation. Virology 2018; 527:180-187. [PMID: 30530224 DOI: 10.1016/j.virol.2018.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne positive-sense single-stranded RNA virus in the family of Flaviviridae. Unlike other flaviviruses, ZIKV infection of pregnant women may result in birth defects in their newborns, such as microcephaly or vision problem. ZIKV is known to antagonize the interferon (IFN) production in infected cells. However, the exact mechanism of this interference is not fully understood. Here, we demonstrate that NS5 protein of ZIKV MR766 strain antagonizes IFN production through inhibiting the activation of TANK-binding kinase 1 (TBK1), which phosphorylates the transcription activator IFN regulatory factor 3 (IRF3). Mechanistically, NS5 interacts with the ubiquitin-like domain of TBK1 and results in less complex of TBK1 and TNF (tumor necrosis factor) receptor-associated factor 6 (TRAF6), leading to dampened TBK1 activation and IRF3 phosphorylation. Our study provides insights into the mechanism of ZIKV evasion of IFN-mediated innate immunity.
Collapse
Affiliation(s)
- Shaoli Lin
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Shixing Yang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA; School of Medicine, Jiangsu University, Jiangsu, China
| | - Jia He
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Johnathan D Guest
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Zexu Ma
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Liping Yang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington DC, USA
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.
| |
Collapse
|
149
|
Yuan C, Qu ZL, Tang XL, Liu Q, Luo W, Huang C, Pan Q, Zhang XL. Mycobacterium tuberculosis Mannose-Capped Lipoarabinomannan Induces IL-10-Producing B Cells and Hinders CD4 +Th1 Immunity. iScience 2018; 11:13-30. [PMID: 30572206 PMCID: PMC6299163 DOI: 10.1016/j.isci.2018.11.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022] Open
Abstract
The importance of Th1/interferon (IFN)-γ-mediated responses in mycobacterial infection has been well established. However, little is known about B cell-mediated immunity during Mycobacterium tuberculosis (Mtb) infection. Interleukin (IL)-10-producing B cells (B10 cells), a subset of B regulatory cells (Bregs), are implicated in modulating the immune response. Herein, we found that B10 cells were significantly increased in patients with tuberculosis. Furthermore, mannose-capped lipoarabinomannan (ManLAM), a major surface lipoglycan component from Mtb, induced a significant increase in B10 cells, which enriched in CD5+ B1a B cells. ManLAM induced IL-10 production mainly by activating MyD88/PI3K/AKT/Ap-1 and K63-linked ubiquitination of NF-κB essential modulator/nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathways in B cells via Toll-like receptor 2. IL-10 production by ManLAM-treated B cells further inhibited CD4+ Th1 polarization, leading to increased susceptibility to mycobacterial infection compared with ManLAM-treated IL-10−/− B group. Thus, we report a new immunoregulation mechanism in which Mtb ManLAM-induced B10 cells negatively regulate host anti-TB cellular immunity. Mtb mannose-capped lipoarabinomannan (ManLAM) induces IL-10 production in B cells ManLAM-induced B10 cells enrich in CD5+ B1a B cells ManLAM binding with TLR2 triggers MyD88 signaling pathways of B cells ManLAM-induced B10 cells hinder CD4+Th1 immunity during Mtb infection in mice
Collapse
Affiliation(s)
- Chunhui Yuan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China; Department of Laboratory Medicine, Wuhan Children's Hospital, Huazhong University of Science and Technology, Jiangan, Wuhan 430015, China
| | - Zi-Lu Qu
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Xiao-Lei Tang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Qi Liu
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Wei Luo
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Chun Huang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Qin Pan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China.
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China.
| |
Collapse
|
150
|
Liuyu T, Yu K, Ye L, Zhang Z, Zhang M, Ren Y, Cai Z, Zhu Q, Lin D, Zhong B. Induction of OTUD4 by viral infection promotes antiviral responses through deubiquitinating and stabilizing MAVS. Cell Res 2018; 29:67-79. [PMID: 30410068 DOI: 10.1038/s41422-018-0107-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022] Open
Abstract
The activity and stability of the adapter protein MAVS (also known as VISA, Cardif and IPS-1), which critically mediates cellular antiviral responses, are extensively regulated by ubiquitination. However, the process whereby MAVS is deubiquitinated is unclear. Here, we report that the ovarian tumor family deubiquitinase 4 (OTUD4) targets MAVS for deubiquitination. Viral infection leads to the IRF3/7-dependent upregulation of OTUD4 which interacts with MAVS to remove K48-linked polyubiquitin chains, thereby maintaining MAVS stability and promoting innate antiviral signaling. Knockout or knockdown of OTUD4 impairs RNA virus-triggered activation of IRF3 and NF-κB, expression of their downstream target genes, and potentiates VSV replication in vitro and in vivo. Consistently, Cre-ER Otud4fl/fl or Lyz2-Cre Otud4fl/fl mice produce decreased levels of type I interferons and proinflammatory cytokines and exhibit increased sensitivity to VSV infection compared to their control littermates. In addition, reconstitution of MAVS into OTUD4-deficient cells restores virus-induced expression of downstream genes and cellular antiviral responses. Together, our findings uncover an essential role of OTUD4 in virus-triggered signaling and contribute to the understanding of deubiquitination-mediated regulation of innate antiviral responses.
Collapse
Affiliation(s)
- Tianzi Liuyu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Keying Yu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Liya Ye
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Zhidong Zhang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Man Zhang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yujie Ren
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Zeng Cai
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Zhong
- College of Life Sciences, Wuhan University, Wuhan, 430072, China. .,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|