101
|
Interspecies differences in the metabolism of methotrexate: An insight into the active site differences between human and rabbit aldehyde oxidase. Biochem Pharmacol 2015; 96:288-95. [PMID: 26032640 DOI: 10.1016/j.bcp.2015.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/21/2015] [Indexed: 12/27/2022]
Abstract
Several drug compounds have failed in clinical trials due to extensive biotransformation by aldehyde oxidase (AOX) (EC 1.2.3.1). One of the main reasons is the difficulty in scaling clearance for drugs metabolised by AOX, from preclinical species to human. Using methotrexate as a probe substrate, we evaluated AOX metabolism in liver cytosol from human and commonly used laboratory species namely guinea pig, monkey, rat and rabbit. We found that the metabolism of methotrexate in rabbit liver cytosol was several orders of magnitude higher than any of the other species tested. The results of protein quantitation revealed that the amount of AOX1 in human liver was similar to rabbit liver. To understand if the observed differences in activity were due to structural differences, we modelled rabbit AOX1 using the previously generated human AOX1 homology model. Molecular docking of methotrexate into the active site of the enzyme led to the identification of important residues that could potentially be involved in substrate binding and account for the observed differences. In order to study the impact of these residue changes on enzyme activity, we used site directed mutagenesis to construct mutant AOX1 cDNAs by substituting nucleotides of human AOX1 with relevant ones of rabbit AOX1. AOX1 mutant proteins were expressed in Escherichia coli. Differences in the kinetic properties of these mutants have been presented in this study.
Collapse
|
102
|
Jin F, Robeson M, Zhou H, Hisoire G, Ramanathan S. The pharmacokinetics and safety of idelalisib in subjects with moderate or severe hepatic impairment. J Clin Pharmacol 2015; 55:944-52. [PMID: 25821156 DOI: 10.1002/jcph.504] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/24/2015] [Indexed: 12/22/2022]
Abstract
Idelalisib, a phosphatidylinositol 3-kinase delta (PI3Kδ) inhibitor, is metabolized primarily by aldehyde oxidase to form GS-563117, an inactive metabolite, and is metabolized to a lesser extent by cytochrome P450 3A and uridine 5'-diphospho-glucuronosyltransferase 1A4. In a mass balance study, the orally administered idelalisib dose was recovered mainly in feces (∼78%). This study evaluated the pharmacokinetics and safety of a single 150-mg dose of idelalisib in subjects with moderate or severe hepatic impairment and in age-, sex-, and weight-matched, healthy controls. The idelalisib maximum observed plasma concentration was generally comparable in subjects with moderate or severe hepatic impairment versus healthy controls, whereas the mean area under the curve was higher (58% to 59%). GS-563117 exposures were lower in impaired versus healthy control subjects, likely because of lower formation in the setting of liver impairment. Exploratory analyses indicated no relevant relationships between idelalisib or GS-563117 plasma exposures and Child-Pugh-Turcotte scores. Single oral doses of idelalisib 150 mg were well tolerated, with most treatment-emergent adverse events (AEs) and laboratory abnormalities being grades 1 or 2 in severity. As such, no dose adjustment was required when initiating idelalisib treatment in patients with mild or moderate hepatic impairment, although close monitoring for potential AEs is recommended.
Collapse
Affiliation(s)
- Feng Jin
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | | | |
Collapse
|
103
|
Affiliation(s)
- Deepak Dalvie
- Pfizer Global Research and Development, LaJolla Laboratories San Diego
| | - Michael Zientek
- Pfizer Global Research and Development, LaJolla Laboratories San Diego
| |
Collapse
|
104
|
Sanoh S, Tayama Y, Sugihara K, Kitamura S, Ohta S. Significance of aldehyde oxidase during drug development: Effects on drug metabolism, pharmacokinetics, toxicity, and efficacy. Drug Metab Pharmacokinet 2015; 30:52-63. [DOI: 10.1016/j.dmpk.2014.10.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 12/28/2022]
|
105
|
Barsanti PA, Pan Y, Lu Y, Jain R, Cox M, Aversa RJ, Dillon MP, Elling R, Hu C, Jin X, Knapp M, Lan J, Ramurthy S, Rudewicz P, Setti L, Subramanian S, Mathur M, Taricani L, Thomas G, Xiao L, Yue Q. Structure-Based Drug Design of Novel, Potent, and Selective Azabenzimidazoles (ABI) as ATR Inhibitors. ACS Med Chem Lett 2015; 6:42-6. [PMID: 25589928 DOI: 10.1021/ml500352s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/30/2014] [Indexed: 12/15/2022] Open
Abstract
Compound 13 was discovered through morphing of the ATR biochemical HTS hit 1. The ABI series was potent and selective for ATR. Incorporation of a 6-azaindole afforded a marked increase in cellular potency but was associated with poor PK and hERG ion channel inhibition. DMPK experiments established that CYP P450 and AO metabolism in conjunction with Pgp and BCRP efflux were major causative mechanisms for the observed PK. The series also harbored the CYP3A4 TDI liability driven by the presence of both a morpholine and an indole moiety. Incorporation of an adjacent fluorine or nitrogen into the 6-azaindole addressed many of the various medicinal chemistry issues encountered.
Collapse
Affiliation(s)
- Paul A Barsanti
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Yue Pan
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Yipin Lu
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Rama Jain
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Matthew Cox
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Robert J. Aversa
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Michael P. Dillon
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Robert Elling
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Cheng Hu
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Xianming Jin
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Mark Knapp
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Jiong Lan
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Savithri Ramurthy
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Patrick Rudewicz
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Lina Setti
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Sharadha Subramanian
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Michelle Mathur
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Lorena Taricani
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - George Thomas
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Linda Xiao
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Qin Yue
- Global
Discovery Chemistry/Oncology, Novartis Institutes for Biomedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| |
Collapse
|
106
|
Barr JT, Jones JP, Oberlies NH, Paine MF. Inhibition of human aldehyde oxidase activity by diet-derived constituents: structural influence, enzyme-ligand interactions, and clinical relevance. Drug Metab Dispos 2015; 43:34-41. [PMID: 25326286 PMCID: PMC4279085 DOI: 10.1124/dmd.114.061192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/16/2014] [Indexed: 02/05/2023] Open
Abstract
The mechanistic understanding of interactions between diet-derived substances and conventional medications in humans is nascent. Most investigations have examined cytochrome P450-mediated interactions. Interactions mediated by other phase I enzymes are understudied. Aldehyde oxidase (AO) is a phase I hydroxylase that is gaining recognition in drug design and development programs. Taken together, a panel of structurally diverse phytoconstituents (n = 24) was screened for inhibitors of the AO-mediated oxidation of the probe substrate O(6)-benzylguanine. Based on the estimated IC50 (<100 μM), 17 constituents were advanced for Ki determination. Three constituents were described best by a competitive inhibition model, whereas 14 constituents were described best by a mixed-mode model. The latter model consists of two Ki terms, Kis and Kii, which ranged from 0.26-73 and 0.80-120 μM, respectively. Molecular modeling was used to glean mechanistic insight into AO inhibition. Docking studies indicated that the tested constituents bound within the AO active site and elucidated key enzyme-inhibitor interactions. Quantitative structure-activity relationship modeling identified three structural descriptors that correlated with inhibition potency (r(2) = 0.85), providing a framework for developing in silico models to predict the AO inhibitory activity of a xenobiotic based solely on chemical structure. Finally, a simple static model was used to assess potential clinically relevant AO-mediated dietary substance-drug interactions. Epicatechin gallate and epigallocatechin gallate, prominent constituents in green tea, were predicted to have moderate to high risk. Further characterization of this uncharted type of interaction is warranted, including dynamic modeling and, potentially, clinical evaluation.
Collapse
Affiliation(s)
- John T Barr
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington (J.T.B., M.F.P.); Department of Chemistry, Washington State University, Pullman, Washington (J.P.J.); and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.H.O.)
| | - Jeffrey P Jones
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington (J.T.B., M.F.P.); Department of Chemistry, Washington State University, Pullman, Washington (J.P.J.); and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.H.O.)
| | - Nicholas H Oberlies
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington (J.T.B., M.F.P.); Department of Chemistry, Washington State University, Pullman, Washington (J.P.J.); and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.H.O.)
| | - Mary F Paine
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington (J.T.B., M.F.P.); Department of Chemistry, Washington State University, Pullman, Washington (J.P.J.); and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.H.O.)
| |
Collapse
|
107
|
Comparison of minipig, dog, monkey and human drug metabolism and disposition. J Pharmacol Toxicol Methods 2014; 74:80-92. [PMID: 25545337 DOI: 10.1016/j.vascn.2014.12.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/02/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023]
Abstract
INTRODUCTION This article gives an overview of the drug metabolism and disposition (ADME) characteristics of the most common non-rodent species used in toxicity testing of drugs (minipigs, dogs, and monkeys) and compares these to human characteristics with regard to enzymes mediating the metabolism of drugs and the transport proteins which contribute to the absorption, distribution and excretion of drugs. METHODS Literature on ADME and regulatory guidelines of relevance in drug development of small molecules has been gathered. RESULTS Non-human primates (monkeys) are the species that is closest to humans in terms of genetic homology. Dogs have an advantage due to the ready availability of comprehensive background data for toxicological safety assessment and dogs are easy to handle. Pigs have been used less than dogs and monkeys as a model in safety assessment of drug candidates. However, when a drug candidate is metabolised by aldehyde oxidase (AOX1), N-acetyltransferases (NAT1 and NAT2) or cytochrome (CYP2C9-like) enzymes which are not expressed in dogs, but are present in pigs, this species may be a better choice than dogs, provided that adequate exposure can be obtained in pigs. Conversely, pigs might not be the right choice if sulfation, involving 3-phospho-adenosyl-5-phosphosulphate sulphotransferase (PAPS) is an important pathway in the human metabolism of a drug candidate. DISCUSSION In general, the species selection should be based on comparison between in vitro studies with human cell-based systems and animal-cell-based systems. Results from pharmacokinetic studies are also important for decision-making by establishing the obtainable exposure level in the species. Access to genetically humanized mouse models and highly sensitive analytical methods (accelerator mass spectrometry) makes it possible to improve the chance of finding all metabolites relevant for humans before clinical trials have been initiated and, if necessary, to include another animal species before long term toxicity studies are initiated. In conclusion, safety testing can be optimized by applying knowledge about species ADME differences and utilising advanced analytical techniques.
Collapse
|
108
|
Cerqueira NMFSA, Coelho C, Brás NF, Fernandes PA, Garattini E, Terao M, Romão MJ, Ramos MJ. Insights into the structural determinants of substrate specificity and activity in mouse aldehyde oxidases. J Biol Inorg Chem 2014; 20:209-17. [PMID: 25287365 DOI: 10.1007/s00775-014-1198-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/19/2014] [Indexed: 01/07/2023]
Abstract
In this work, a combination of homology modeling and molecular dynamics (MD) simulations was used to investigate the factors that modulate substrate specificity and activity of the mouse AOX isoforms: mAOX1, mAOX2 (previously mAOX3l1), mAOX3 and mAOX4. The results indicate that the AOX isoform structures are highly preserved and even more conserved than the corresponding amino acid sequences. The only differences are at the protein surface and substrate-binding site region. The substrate-binding site of all isoforms consists of two regions: the active site, which is highly conserved among all isoforms, and a isoform-specific region located above. We predict that mAOX1 accepts a broader range of substrates of different shape, size and nature relative to the other isoforms. In contrast, mAOX4 appears to accept a more restricted range of substrates. Its narrow and hydrophobic binding site indicates that it only accepts small hydrophobic substrates. Although mAOX2 and mAOX3 are very similar to each other, we propose the following pairs of overlapping substrate specificities: mAOX2/mAOX4 and mAOX3/mAXO1. Based on these considerations, we propose that the catalytic activity between all isoforms should be similar but the differences observed in the binding site might influence the substrate specificity of each enzyme. These results also suggest that the presence of several AOX isoforms in mouse allows them to oxidize more efficiently a wider range of substrates. This contrasts with the same or other organisms that only express one isoform and are less efficient or incapable of oxidizing the same type of substrates.
Collapse
Affiliation(s)
- Nuno M F S A Cerqueira
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Hutzler JM, Cerny MA, Yang YS, Asher C, Wong D, Frederick K, Gilpin K. Cynomolgus monkey as a surrogate for human aldehyde oxidase metabolism of the EGFR inhibitor BIBX1382. Drug Metab Dispos 2014; 42:1751-60. [PMID: 25035284 DOI: 10.1124/dmd.114.059030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
BIBX1382 was an epidermal growth factor receptor inhibitor under clinical investigation for treatment of cancer. This candidate possessed an attractive preclinical absorption, distribution, metabolism, and excretion profile, yet failed in clinical studies due in part to poor oral exposure, resulting from extensive metabolism by aldehyde oxidase (AO). In vitro metabolism studies were performed in liver cytosol and cryopreserved hepatocytes from multiple species. In addition, a pharmacokinetic study was performed in cynomolgus monkey for comparison with the reported human pharmacokinetics of BIBX1382. Estimated hepatic clearance of BIBX1382 in rhesus (42 ml/min per kg) and cynomolgus monkey (43 ml/min per kg) liver cytosol was comparable to human (≥93% of liver blood flow). Metabolite identification after incubation of BIBX1382 in liver cytosol fortified with the AO inhibitor raloxifene confirmed that AO is involved in the formation of the predominant metabolite (BIBU1476, M1) in cynomolgus monkey. After intravenous and oral administration of BIBX1382 to cynomolgus monkeys, high plasma clearance (118 ml/min per kg) and low oral exposure (C(max) = 12.7 nM and 6% oral bioavailability) was observed, with the exposure of M1 exceeding BIBX1382 after oral dosing. This pharmacokinetic profile compared favorably with the human clinical data of BIBX1382 (plasma clearance 25-55 ml/min per kg and 5% oral bioavailability). Thus, it appears that cynomolgus monkey represents a suitable surrogate for the observed human AO metabolism of BIBX1382. To circumvent clinical failures due to uncharacterized metabolism by AO, in vitro studies in the appropriate subcellular fraction, followed by pharmacokinetic and toxicokinetic studies in the appropriately characterized surrogate species should be conducted for substrates of AO.
Collapse
Affiliation(s)
- J Matthew Hutzler
- Boehringer-Ingelheim Pharmaceuticals Inc., Medicinal Chemistry, Drug Discovery Support (DMPK), Ridgefield, Connecticut
| | - Matthew A Cerny
- Boehringer-Ingelheim Pharmaceuticals Inc., Medicinal Chemistry, Drug Discovery Support (DMPK), Ridgefield, Connecticut
| | - Young-Sun Yang
- Boehringer-Ingelheim Pharmaceuticals Inc., Medicinal Chemistry, Drug Discovery Support (DMPK), Ridgefield, Connecticut
| | - Constance Asher
- Boehringer-Ingelheim Pharmaceuticals Inc., Medicinal Chemistry, Drug Discovery Support (DMPK), Ridgefield, Connecticut
| | - Diane Wong
- Boehringer-Ingelheim Pharmaceuticals Inc., Medicinal Chemistry, Drug Discovery Support (DMPK), Ridgefield, Connecticut
| | - Kosea Frederick
- Boehringer-Ingelheim Pharmaceuticals Inc., Medicinal Chemistry, Drug Discovery Support (DMPK), Ridgefield, Connecticut
| | - Kyle Gilpin
- Boehringer-Ingelheim Pharmaceuticals Inc., Medicinal Chemistry, Drug Discovery Support (DMPK), Ridgefield, Connecticut
| |
Collapse
|
110
|
Choughule KV, Barnaba C, Joswig-Jones CA, Jones JP. In vitro oxidative metabolism of 6-mercaptopurine in human liver: insights into the role of the molybdoflavoenzymes aldehyde oxidase, xanthine oxidase, and xanthine dehydrogenase. Drug Metab Dispos 2014; 42:1334-40. [PMID: 24824603 PMCID: PMC4109211 DOI: 10.1124/dmd.114.058107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/13/2014] [Indexed: 12/20/2022] Open
Abstract
Anticancer agent 6-mercaptopurine (6MP) has been in use since 1953 for the treatment of childhood acute lymphoblastic leukemia (ALL) and inflammatory bowel disease. Despite being available for 60 years, several aspects of 6MP drug metabolism and pharmacokinetics in humans are unknown. Molybdoflavoenzymes such as aldehyde oxidase (AO) and xanthine oxidase (XO) have previously been implicated in the metabolism of this drug. In this study, we investigated the in vitro metabolism of 6MP to 6-thiouric acid (6TUA) in pooled human liver cytosol. We discovered that 6MP is metabolized to 6TUA through sequential metabolism via the 6-thioxanthine (6TX) intermediate. The role of human AO and XO in the metabolism of 6MP was established using the specific inhibitors raloxifene and febuxostat. Both AO and XO were involved in the metabolism of the 6TX intermediate, whereas only XO was responsible for the conversion of 6TX to 6TUA. These findings were further confirmed using purified human AO and Escherichia coli lysate containing expressed recombinant human XO. Xanthine dehydrogenase (XDH), which belongs to the family of xanthine oxidoreductases and preferentially reduces nicotinamide adenine dinucleotide (NAD(+)), was shown to contribute to the overall production of the 6TX intermediate as well as the final product 6TUA in the presence of NAD(+) in human liver cytosol. In conclusion, we present evidence that three enzymes, AO, XO, and XDH, contribute to the production of 6TX intermediate, whereas only XO and XDH are involved in the conversion of 6TX to 6TUA in pooled HLC.
Collapse
Affiliation(s)
- Kanika V Choughule
- Department of Chemistry, Washington State University, Pullman, Washington
| | - Carlo Barnaba
- Department of Chemistry, Washington State University, Pullman, Washington
| | | | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, Washington
| |
Collapse
|
111
|
Kamli MR, Kim J, Pokharel S, Jan AT, Lee EJ, Choi I. Expressional studies of the aldehyde oxidase (AOX1) gene during myogenic differentiation in C2C12 cells. Biochem Biophys Res Commun 2014; 450:1291-6. [DOI: 10.1016/j.bbrc.2014.06.126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 02/05/2023]
|
112
|
Hutzler JM, Yang YS, Brown C, Heyward S, Moeller T. Aldehyde oxidase activity in donor-matched fresh and cryopreserved human hepatocytes and assessment of variability in 75 donors. Drug Metab Dispos 2014; 42:1090-7. [PMID: 24713130 DOI: 10.1124/dmd.114.057984] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Studies were conducted to evaluate the impact of time and cryopreservation on aldehyde oxidase (AO) activity in human hepatocytes isolated from 10 donor livers, using O(6)-benzylguanine as a probe substrate. In addition, variability in activity was assessed using cryopreserved hepatocytes from 75 donors. Substantial donor-dependent loss in AO activity within 24 hours after isolation of hepatocytes was observed (average loss of 42%, range 15%-81%). Meanwhile, AO activity in cryopreserved hepatocytes more closely represented the activity observed in fresh hepatocytes that were incubated immediately after isolation for the same donors (within 81% of fresh, range 48%-100%). Activity of AO in cryopreserved hepatocytes from 75 donors varied by at least 17-fold (≤ 5.4 to 90 ml/minute per kilogram of body weight), with 63% of the donors having higher activity than a pooled 19-donor lot (34.2 ml/minute per kilogram). Comparison of demographics such as gender, body mass index, age, and ethnicity showed no statistically significant correlations with activity. Evaluation of medical histories revealed that three of the five donors with no measurable activity had immediate histories of extensive alcohol abuse. Meanwhile, two single nucleotide polymorphisms (SNPs) for AOX1 (rs3731772 and rs55754655) were detected in our donor pool and showed allelic frequencies similar to those reported from other cohort studies. However, these SNPs did not correlate with a statistically significant difference in intrinsic clearance compared with wild-type donors. With a general lack of clarity about what causes highly variable AO activity, prescreening donors for AO activity and creating a custom high-activity pooled lot of cryopreserved hepatocytes are advised to minimize underpredictions of clearance.
Collapse
Affiliation(s)
- J Matthew Hutzler
- Boehringer-Ingelheim Pharmaceuticals Inc. Medicinal Chemistry, Drug Discovery Support (DMPK), Ridgefield, Connecticut (J.M.H., Y.S.Y.), BioreclamationIVT, Baltimore, Maryland (C.B., S.H., T.M.)
| | | | | | | | | |
Collapse
|
113
|
Ok CY, Li L, Xu-Monette ZY, Visco C, Tzankov A, Manyam GC, Montes-Moreno S, Dybkær K, Chiu A, Orazi A, Zu Y, Bhagat G, Chen J, Richards KL, Hsi ED, Choi WWL, van Krieken JH, Huh J, Ai W, Ponzoni M, Ferreri AJM, Farnen JP, Møller MB, Bueso-Ramos CE, Miranda RN, Winter JN, Piris MA, Medeiros LJ, Young KH. Prevalence and clinical implications of epstein-barr virus infection in de novo diffuse large B-cell lymphoma in Western countries. Clin Cancer Res 2014; 20:2338-2349. [PMID: 24583797 PMCID: PMC4014309 DOI: 10.1158/1078-0432.ccr-13-3157] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Epstein-Barr virus-positive (EBV(+)) diffuse large B-cell lymphoma (DLBCL) of the elderly is a variant of DLBCL with worse outcome that occurs most often in East-Asian countries and is uncommon in the Western hemisphere. We studied the largest cohort of EBV(+) DLBCL, independent of age, treated with rituximab combined with CHOP (R-CHOP) in developed Western countries. EXPERIMENTAL DESIGN A large cohort (n = 732) of patients with DLBCL treated with R-CHOP chemotherapy is included from the multicenter consortium. This study group has been studied for expression of different biomarkers by immunohistochemistry, genetic abnormalities by FISH and mutation analysis, genomic information by gene expression profiling (GEP), and gene set enrichment analysis (GSEA). RESULTS Twenty-eight patients (4.0%) were positive for EBV with a median age of 60.5 years. No clinical characteristics distinguished patients with EBV(+) DLBCL from patients with EBV-negative (EBV(-)) DLBCL. Genetic aberrations were rarely seen. NF-κB p50, phosphorylated STAT-3, and CD30 were more commonly expressed in EBV(+) DLBCLs (P < 0.05). Significant differences in survival were not observed in patients with EBV(+) DLBCL versus EBV(-) DLBCL. However, CD30 expression combined with EBV conferred an inferior outcome. GEP showed a unique expression signature in EBV(+) DLBCL. GSEA revealed enhanced activity of the NF-κB and JAK/STAT pathways independent of molecular subtype. CONCLUSIONS The clinical characteristics of patients with EBV(+) versus EBV(-) DLBCL are similar and EBV infection does not predict a worse outcome. EBV(+) DLBCL, however, has a unique genetic signature. CD30 expression is more common in EBV(+) DLBCL and, consistent CD30 and EBV is associated with an adverse outcome. Clin Cancer Res; 20(9); 2338-49. ©2014 AACR.
Collapse
MESH Headings
- Adult
- Aged
- Antibodies, Monoclonal, Murine-Derived/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cluster Analysis
- Cyclophosphamide/therapeutic use
- Developed Countries/statistics & numerical data
- Doxorubicin/therapeutic use
- Epstein-Barr Virus Infections/complications
- Female
- Gene Expression Profiling
- Humans
- Ki-1 Antigen/metabolism
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/epidemiology
- Lymphoma, Large B-Cell, Diffuse/etiology
- Male
- Middle Aged
- NF-kappa B/metabolism
- Neoplasm Staging
- Phosphorylation
- Prednisone/therapeutic use
- Prevalence
- Rituximab
- Survival Analysis
- Treatment Outcome
- Tumor Burden
- Vincristine/therapeutic use
Collapse
Affiliation(s)
- Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ling Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zijun Y. Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Ganiraju C. Manyam
- Department of Biostatistics and Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - April Chiu
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Attilio Orazi
- Weill Medical College of Cornell University, New York, NY, USA
| | - Youli Zu
- The Methodist Hospital, Houston, TX, USA
| | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Jiayu Chen
- Medical School of Taizhou University, Taizhou, Zhejiang, China
| | | | | | - William W. L. Choi
- University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | | | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Weiyun Ai
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | | | | | | | | | - Carlo E. Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto N. Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jane N. Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Miguel A. Piris
- Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
114
|
Marelja Z, Dambowsky M, Bolis M, Georgiou ML, Garattini E, Missirlis F, Leimkühler S. The four aldehyde oxidases of Drosophila melanogaster have different gene expression patterns and enzyme substrate specificities. ACTA ACUST UNITED AC 2014; 217:2201-11. [PMID: 24737760 DOI: 10.1242/jeb.102129] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the genome of Drosophila melanogaster, four genes coding for aldehyde oxidases (AOX1-4) were identified on chromosome 3. Phylogenetic analysis showed that the AOX gene cluster evolved via independent duplication events in the vertebrate and invertebrate lineages. The functional role and the substrate specificity of the distinct Drosophila AOX enzymes is unknown. Two loss-of-function mutant alleles in this gene region, low pyridoxal oxidase (Po(lpo)) and aldehyde oxidase-1 (Aldox-1(n1)) are associated with a phenotype characterized by undetectable AOX enzymatic activity. However, the genes involved and the corresponding mutations have not yet been identified. In this study we characterized the activities, substrate specificities and expression profiles of the four AOX enzymes in D. melanogaster. We show that the Po(lpo)-associated phenotype is the consequence of a structural alteration of the AOX1 gene. We identified an 11-bp deletion in the Po(lpo) allele, resulting in a frame-shift event, which removes the molybdenum cofactor domain of the encoded enzyme. Furthermore, we show that AOX2 activity is detectable only during metamorphosis and characterize a Minos-AOX2 insertion in this developmental gene that disrupts its activity. We demonstrate that the Aldox-1(n1) phenotype maps to the AOX3 gene and AOX4 activity is not detectable in our assays.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, 14476 Potsdam, Germany
| | - Miriam Dambowsky
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, 14476 Potsdam, Germany
| | - Marco Bolis
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20157 Milan, Italy
| | - Marina L Georgiou
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, 14476 Potsdam, Germany
| | - Enrico Garattini
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20157 Milan, Italy
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, CP 07360 Mexico City, Mexico
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
115
|
Mu P, Zheng M, Xu M, Zheng Y, Tang X, Wang Y, Wu K, Chen Q, Wang L, Deng Y. N-oxide reduction of quinoxaline-1,4-dioxides catalyzed by porcine aldehyde oxidase SsAOX1. Drug Metab Dispos 2014; 42:511-9. [PMID: 24440959 DOI: 10.1124/dmd.113.055418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Quinoxaline-1,4-dioxides (QdNOs) are a class of quinoxaline derivatives that are widely used in humans or animals as drugs or feed additives. However, the metabolic mechanism, especially the involved enzymes, has not been reported in detail. In this study, the N-oxide reduction enzyme, porcine aldehyde oxidase SsAOX1 was identified and characterized. The SsAOX1 gene was cloned from pig liver through reverse-transcription polymerase chain reaction using degenerate primers, which encode a 147-kDa protein with typical aldehyde oxidase motifs, two [2Fe-2S] centers, a flavin adenine dinucleotide (FAD) binding domain, and a molybdenum cofactor domain. After heterologous expression in a prokaryote, purified SsAOX1 formed a functional homodimer under native conditions. Importantly, the SsAOX1 catalyzed the N-oxide reduction at the N1 position of three representative QdNOs (quinocetone, mequindox, and cyadox), which are commonly used as animal feed additives. SsAOX1 has the highest activity toward quinocetone, followed by mequindox and cyadox, with kcat/K(m) values of 1.94 ± 0.04, 1.27 ± 0.15, and 0.43 ± 0.09 minute(-1) μM(-1), respectively. However, SsAOX1 has the lowest substrate affinity for quinocetone, followed by the cyadox and mequindox, with K(m) values of 4.36 ± 0.56, 3.16 ± 0.48, and 2.96 ± 0.51 μM, respectively. In addition, using site-directed mutagenesis, we found that substitution of glycine 1019 with threonine endows SsAOX1 with N-oxide reductive activity at the N4 position. The goal of this study was to identify and characterize the N-oxide reduction enzyme for a class of veterinary drugs, QdNOs, which will aid in the elucidation of the metabolic pathways of QdNOs and will provide a theoretical basis for their administration and new veterinary drug design.
Collapse
Affiliation(s)
- Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Barr JT, Choughule KV, Nepal S, Wong T, Chaudhry AS, Joswig-Jones CA, Zientek M, Strom SC, Schuetz EG, Thummel KE, Jones JP. Why do most human liver cytosol preparations lack xanthine oxidase activity? Drug Metab Dispos 2014; 42:695-9. [PMID: 24430612 PMCID: PMC3965898 DOI: 10.1124/dmd.113.056374] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/14/2014] [Indexed: 02/03/2023] Open
Abstract
When investigating the potential for xanthine oxidase (XO)-mediated metabolism of a new chemical entity in vitro, selective chemical inhibition experiments are typically used. Most commonly, these inhibition experiments are performed using the inhibitor allopurinol (AP) and commercially prepared human liver cytosol (HLC) as the enzyme source. For reasons detailed herein, it is also a common practice to perfuse livers with solutions containing AP prior to liver harvest. The exposure to AP in HLC preparations could obviously pose a problem for measuring in vitro XO activity. To investigate this potential problem, an HPLC-MS/MS assay was developed to determine whether AP and its primary metabolite, oxypurinol, are retained within the cytosol for livers that were treated with AP during liver harvest. Differences in enzymatic activity for XO and aldehyde oxidase (AO) in human cytosol that can be ascribed to AP exposure were also evaluated. The results confirmed the presence of residual AP (some) and oxypurinol (all) human liver cytosol preparations that had been perfused with an AP-containing solution. In every case where oxypurinol was detected, XO activity was not observed. In contrast, the presence of AP and oxypurinol did not appear to have an impact on AO activity. Pooled HLC that was purchased from a commercial source also contained residual oxypurinol and did not show any XO activity. In the future, it is recommended that each HLC batch is screened for oxypurinol and/or XO activity prior to testing for XO-mediated metabolism of a new chemical entity.
Collapse
Affiliation(s)
- John T Barr
- Department of Chemistry, Washington State University, Pullman, Washington (J.T.B., K.V.C., S.N., C.A.J.-J., J.P.J.); Department of Pharmaceutics, University of Washington, Seattle, Washington (K.E.T., T.W.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden (S.C.S.); and Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., La Jolla, California (M.Z.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
O'Hara F, Burns AC, Collins MR, Dalvie D, Ornelas MA, Vaz ADN, Fujiwara Y, Baran PS. A simple litmus test for aldehyde oxidase metabolism of heteroarenes. J Med Chem 2014; 57:1616-20. [PMID: 24472070 PMCID: PMC3983350 DOI: 10.1021/jm4017976] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
bioavailability of aromatic azaheterocyclic drugs can be affected
by the activity of aldehyde oxidase (AO). Susceptibility to AO metabolism
is difficult to predict computationally and can be complicated in
vivo by differences between species. Here we report the use of bis(((difluoromethyl)sulfinyl)oxy)zinc
(DFMS) as a source of CF2H radical for a rapid and inexpensive
chemical “litmus test” for the early identification
of heteroaromatic drug candidates that have a high probability of
metabolism by AO.
Collapse
Affiliation(s)
- Fionn O'Hara
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
INTRODUCTION Metabolism is one of the most important clearance pathways representing the major clearance route of 75% drugs. The four most common drug metabolizing enzymes (DME) that contribute significantly to elimination pathways of new chemical entities are cytochrome P450s, UDP-glucuronosyltransferases, aldehyde oxidase and sulfotransferases. Accurate prediction of human in vivo clearance by these enzymes, using both in vitro and in vivo tools, is critical for the success of drug candidates in human translation. AREAS COVERED Important recent advances of key DME are reviewed and highlighted in the following areas: major isoforms, tissue distribution, generic polymorphism, substrate specificity, species differences, mechanism of catalysis, in vitro-in vivo extrapolation and the importance of using optimal assay conditions and relevant animal models. EXPERT OPINION Understanding the clearance mechanism of a compound is the first step toward successful prediction of human clearance. It is critical to apply appropriate in vitro and in vivo methodologies and physiologically based models in human translation. While high-confidence prediction for P450-mediated clearance has been achieved, the accuracy of human clearance prediction is significantly lower for other enzyme classes. More accurate predictive methods and models are being developed to address these challenges.
Collapse
Affiliation(s)
- Li Di
- Pfizer, Inc., Pharmacokinetics, Dynamics and Metabolism , Groton, CT 06340 , USA +1 860 715 6172 ;
| |
Collapse
|
119
|
Barr JT, Choughule K, Jones JP. Enzyme kinetics, inhibition, and regioselectivity of aldehyde oxidase. Methods Mol Biol 2014; 1113:167-186. [PMID: 24523113 DOI: 10.1007/978-1-62703-758-7_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aldehyde oxidase (AO) enzyme family plays an increasing role in drug development. However, a number of compounds that are AO substrates have failed in the clinic because the clearance or toxicity is underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. While AOs normally make non-reactive metabolites such as lactams, the metabolic products often have much lower solubility that can lead to renal failure. While an endogenous substrate for the oxidation reaction is not known, electron acceptors for the reductive part of the reaction include oxygen and nitrites. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion, and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. To date, no clinically important drug-drug interactions (DDIs) have been observed for AOs. However, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.
Collapse
Affiliation(s)
- John T Barr
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | | | | |
Collapse
|
120
|
Fan J, de Lannoy IA. Pharmacokinetics. Biochem Pharmacol 2014; 87:93-120. [DOI: 10.1016/j.bcp.2013.09.007] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 11/29/2022]
|
121
|
Nirogi R, Kandikere V, Palacharla RC, Bhyrapuneni G, Kanamarlapudi VB, Ponnamaneni RK, Manoharan AK. Identification of a suitable and selective inhibitor towards aldehyde oxidase catalyzed reactions. Xenobiotica 2013; 44:197-204. [DOI: 10.3109/00498254.2013.819594] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
122
|
Choughule KV, Barr JT, Jones JP. Evaluation of rhesus monkey and guinea pig hepatic cytosol fractions as models for human aldehyde oxidase. Drug Metab Dispos 2013; 41:1852-8. [PMID: 23918666 PMCID: PMC3781378 DOI: 10.1124/dmd.113.052985] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/05/2013] [Indexed: 01/18/2023] Open
Abstract
Aldehyde oxidase (AOX) is a cytosolic enzyme expressed across a wide range of species, including guinea pig and rhesus monkey. These species are believed to be the best preclinical models for studying human AOX-mediated metabolism. We compared AOX activity in rhesus monkeys, guinea pigs, and humans using phthalazine and N-[2-(dimethylamino)ethyl]acridone-4-carboxamide (DACA) as substrates and raloxifene as an inhibitor. Michaelis-Menten kinetics was observed for phthalazine oxidation in rhesus monkey, guinea pig, and human liver cytosol, whereas substrate inhibition was seen with DACA oxidase activity in all three livers. Raloxifene inhibited phthalazine and DACA oxidase activity uncompetitively in guinea pig, whereas mixed-mode inhibition was seen in rhesus monkey. Our analysis of the primary sequence alignment of rhesus monkey, guinea pig, and human aldehyde oxidase isoform 1 (AOX1) along with homology modeling has led to the identification of several amino acid residue differences within the active site and substrate entrance channel of AOX1. We speculate that some of these residues might be responsible for the differences observed in activity. Overall, our data indicate that rhesus monkeys and guinea pigs would overestimate intrinsic clearance in humans and would be unsuitable to use as animal models. Our study also showed that AOX metabolism in species is substrate-dependent and no single animal model can be reliably used to predict every drug response in humans.
Collapse
Affiliation(s)
- Kanika V Choughule
- Department of Chemistry, Washington State University, Pullman, Washington
| | | | | |
Collapse
|
123
|
Zdunek-Zastocka E, Sobczak M. Expression of Pisum sativum PsAO3 gene, which encodes an aldehyde oxidase utilizing abscisic aldehyde, is induced under progressively but not rapidly imposed drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:57-66. [PMID: 23876699 DOI: 10.1016/j.plaphy.2013.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 06/29/2013] [Indexed: 06/02/2023]
Abstract
Aldehyde oxidase (AO; EC 1.2.3.1) catalyzes the final step of abscisic acid (ABA) biosynthesis, which is the oxidation of abscisic aldehyde (ABAld) to ABA. Gene expression analyses indicate that the stress-induced Pisum sativum PsAOγ isoform, which effectively uses ABAld as a substrate, is encoded by the PsAO3 gene. PsAO3 was heterologously expressed in Pichia pastoris and the recombinant PsAO3 protein revealed substrate preferences highly similar to the native PsAOγ protein present in the pea leaves and roots. Both proteins prefer indole-3-aldehyde and naphthaldehyde as substrates, although high activities against abscisic aldehyde and citral were also observed. The Km values of PsAO3 for naphthaldehyde and abscisic aldehyde (4.6 and 5.1 μM, respectively) were the lowest among the substrates tested. PsAO3 activity was almost completely inhibited by potassium cyanide, diphenyleneiodonium, and methanol. Rapidly imposed drought stress did not increase the level of PsAO3 mRNA or activity of any AO isoform, although an enhanced ABA accumulation and induction of PsNCED2 and -3 (9-cis-epoxycarotenoid dioxygenase; EC 1.13.11.51) expression, both in the pea roots and leaves, was observed. During a progressively induced drought, the level of PsAO3 transcript and PsAOγ activity increased significantly in the roots and leaves, whereas ABA accumulation occurred only in the leaves where it was accompanied by induction of the PsNCED3 expression. Therefore, we suppose that next to NCED, also AO (mainly PsAOγ) might be involved in regulation of the drought-induced ABA synthesis. However, while the "constitutive activity" of PsAOγ is sufficient for the fast generation of ABA under rapid drought stress, the enhanced PsAOγ activity is required for the progressive and long-term ABA accumulation in the leaves under progressive drought stress.
Collapse
Affiliation(s)
- Edyta Zdunek-Zastocka
- Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | | |
Collapse
|
124
|
Kurosaki M, Bolis M, Fratelli M, Barzago MM, Pattini L, Perretta G, Terao M, Garattini E. Structure and evolution of vertebrate aldehyde oxidases: from gene duplication to gene suppression. Cell Mol Life Sci 2013; 70:1807-30. [PMID: 23263164 PMCID: PMC11113236 DOI: 10.1007/s00018-012-1229-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 12/20/2022]
Abstract
Aldehyde oxidases (AOXs) and xanthine dehydrogenases (XDHs) belong to the family of molybdo-flavoenzymes. Although AOXs are not identifiable in fungi, these enzymes are represented in certain protists and the majority of plants and vertebrates. The physiological functions and substrates of AOXs are unknown. Nevertheless, AOXs are major drug metabolizing enzymes, oxidizing a wide range of aromatic aldehydes and heterocyclic compounds of medical/toxicological importance. Using genome sequencing data, we predict the structures of AOX genes and pseudogenes, reconstructing their evolution. Fishes are the most primitive organisms with an AOX gene (AOXα), originating from the duplication of an ancestral XDH. Further evolution of fishes resulted in the duplication of AOXα into AOXβ and successive pseudogenization of AOXα. AOXβ is maintained in amphibians and it is the likely precursors of reptilian, avian, and mammalian AOX1. Amphibian AOXγ is a duplication of AOXβ and the likely ancestor of reptilian and avian AOX2, which, in turn, gave rise to mammalian AOX3L1. Subsequent gene duplications generated the two mammalian genes, AOX3 and AOX4. The evolution of mammalian AOX genes is dominated by pseudogenization and deletion events. Our analysis is relevant from a structural point of view, as it provides information on the residues characterizing the three domains of each mammalian AOX isoenzyme. We cloned the cDNAs encoding the AOX proteins of guinea pig and cynomolgus monkeys, two unique species as to the evolution of this enzyme family. We identify chimeric RNAs from the human AOX3 and AOX3L1 pseudogenes with potential to encode a novel microRNA.
Collapse
Affiliation(s)
- Mami Kurosaki
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Marco Bolis
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Maria Monica Barzago
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Linda Pattini
- Department of Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Gemma Perretta
- Istututo di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche, via Anguillarese 301, 00123 Rome, Italy
| | - Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| |
Collapse
|
125
|
Lindgren A, Eklund G, Turek D, Malmquist J, Swahn BM, Holenz J, von Berg S, Karlström S, Bueters T. Biotransformation of two β-secretase inhibitors including ring opening and contraction of a pyrimidine ring. Drug Metab Dispos 2013; 41:1134-47. [PMID: 23474650 DOI: 10.1124/dmd.112.050351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Recently, the discovery of the aminoisoindoles as potent and selective inhibitors of β-secretase was reported, including the close structural analogs compound (S)-1-pyridin-4-yl-4-fluoro-1-(3-(pyrimidin-5-yl)phenyl)-1H-isoindol-3-amine [(S)-25] and (S)-1-(2-(difluoromethyl)pyridin-4-yl)-4-fluoro-1-(3-(pyrimidin-5-yl)phenyl)-1H-isoindol-3-amine hemifumarate (AZD3839), the latter being recently progressed to the clinic. The biotransformation of (S)-25 was investigated in vitro and in vivo in rat, rabbit, and human and compared with AZD3839 to further understand the metabolic fate of these compounds. In vitro, CYP3A4 was the major responsible enzyme and metabolized both compounds to a large extent in the commonly shared pyridine and pyrimidine rings. The main proposed metabolic pathways in various in vitro systems were N-oxidation of the pyridine and/or pyrimidine ring and conversion to 4-pyrimidone and pyrimidine-2,4-dione. Both compounds were extensively metabolized, and more than 90% was excreted in feces after intravenous administration of radiolabeled compound to the rat. Here, the main pathways were N-oxidation of the pyridine and/or pyrimidine ring and a ring contraction of the pyrimidine ring into an imidazole ring. Ring-contracted metabolites accounted for 25% of the total metabolism in the rat for (S)-25, whereas the contribution was much smaller for AZD3839. This metabolic pathway was not foreseen on the basis of the obtained in vitro data. In conclusion, we discovered an unusual metabolic pathway of aryl-pyrimidine-containing compounds by a ring-opening reaction followed by elimination of a carbon atom and a ring closure to form an imidazole ring.
Collapse
Affiliation(s)
- Anders Lindgren
- Drug Metabolism and Pharmacokinetics, AstraZeneca R&D, Södertälje, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Garattini E, Terao M. Aldehyde oxidase and its importance in novel drug discovery: present and future challenges. Expert Opin Drug Discov 2013; 8:641-54. [DOI: 10.1517/17460441.2013.788497] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
127
|
Hamzeh-Mivehroud M, Rahmani S, Rashidi MR, Hosseinpour Feizi MA, Dastmalchi S. Structure-based investigation of rat aldehyde oxidase inhibition by flavonoids. Xenobiotica 2013; 43:661-70. [DOI: 10.3109/00498254.2012.755228] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
128
|
Barr JT, Jones JP. Evidence for substrate-dependent inhibition profiles for human liver aldehyde oxidase. Drug Metab Dispos 2013; 41:24-9. [PMID: 22996261 PMCID: PMC3533431 DOI: 10.1124/dmd.112.048546] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/20/2012] [Indexed: 02/03/2023] Open
Abstract
The goal of this study was to provide a reasonable assessment of how probe substrate selection may impact the results of in vitro aldehyde oxidase (AO) inhibition experiments. Here, we used a previously studied set of seven known AO inhibitors to probe the inhibition profile of a pharmacologically relevant substrate N-[(2-dimethylamino)ethyl]acridine-4-carboxamide (DACA). DACA oxidation in human liver cytosol was characterized with a measured V(max) of 2.3 ± 0.08 nmol product · min(-1) · mg(-1) and a K(m) of 6.3 ± 0.8 µM. The K(ii) and K(is) values describing the inhibition of DACA oxidation by the panel of seven inhibitors were tabulated and compared with previous findings with phthalazine as the substrate. In every case, the inhibition profile shifted to a much less uncompetitive mode of inhibition for DACA relative to phthalazine. With the exception of one inhibitor, raloxifene, this change in inhibition profile seems to be a result of a decrease in the uncompetitive mode of inhibition (an affected K(ii) value), whereas the competitive mode (K(is)) seems to be relatively consistent between substrates. Raloxifene was found to inhibit competitively when using DACA as a probe, and a previous report showed that raloxifene inhibited uncompetitively with other substrates. The relevance of these data to the mechanistic understanding of aldehyde oxidase inhibition and potential implications on drug-drug interactions is discussed. Overall, it appears that the choice in substrate may be critical when conducting mechanistic inhibition or in vitro drug-drug interactions prediction studies with AO.
Collapse
Affiliation(s)
- John T Barr
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
| | | |
Collapse
|
129
|
Hutzler JM, Obach RS, Dalvie D, Zientek MA. Strategies for a comprehensive understanding of metabolism by aldehyde oxidase. Expert Opin Drug Metab Toxicol 2012; 9:153-68. [DOI: 10.1517/17425255.2013.738668] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
130
|
Mutations associated with functional disorder of xanthine oxidoreductase and hereditary xanthinuria in humans. Int J Mol Sci 2012. [PMID: 23203137 PMCID: PMC3509653 DOI: 10.3390/ijms131115475] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Xanthine oxidoreductase (XOR) catalyzes the conversion of hypoxanthine to xanthine and xanthine to uric acid with concomitant reduction of either NAD+ or O2. The enzyme is a target of drugs to treat hyperuricemia, gout and reactive oxygen-related diseases. Human diseases associated with genetically determined dysfunction of XOR are termed xanthinuria, because of the excretion of xanthine in urine. Xanthinuria is classified into two subtypes, type I and type II. Type I xanthinuria involves XOR deficiency due to genetic defect of XOR, whereas type II xanthinuria involves dual deficiency of XOR and aldehyde oxidase (AO, a molybdoflavo enzyme similar to XOR) due to genetic defect in the molybdenum cofactor sulfurase. Molybdenum cofactor deficiency is associated with triple deficiency of XOR, AO and sulfite oxidase, due to defective synthesis of molybdopterin, which is a precursor of molybdenum cofactor for all three enzymes. The present review focuses on mutation or chemical modification studies of mammalian XOR, as well as on XOR mutations identified in humans, aimed at understanding the reaction mechanism of XOR and the relevance of mutated XORs as models to estimate the possible side effects of clinical application of XOR inhibitors.
Collapse
|
131
|
Potential implication of the chemical properties and bioactivity of nitrone spin traps for therapeutics. Future Med Chem 2012; 4:1171-207. [PMID: 22709256 DOI: 10.4155/fmc.12.74] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nitrone therapeutics has been employed in the treatment of oxidative stress-related diseases such as neurodegeneration, cardiovascular disease and cancer. The nitrone-based compound NXY-059, which is the first drug to reach clinical trials for the treatment of acute ischemic stroke, has provided promise for the development of more robust pharmacological agents. However, the specific mechanism of nitrone bioactivity remains unclear. In this review, we present a variety of nitrone chemistry and biological activity that could be implicated for the nitrone's pharmacological activity. The chemistries of spin trapping and spin adduct reveal insights on the possible roles of nitrones for altering cellular redox status through radical scavenging or nitric oxide donation, and their biological effects are presented. An interdisciplinary approach towards the development of novel synthetic antioxidants with improved pharmacological properties encompassing theoretical, synthetic, biochemical and in vitro/in vivo studies is covered.
Collapse
|
132
|
Dalvie D, Xiang C, Kang P, Zhou S. Interspecies variation in the metabolism of zoniporide by aldehyde oxidase. Xenobiotica 2012; 43:399-408. [DOI: 10.3109/00498254.2012.727499] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
133
|
Morrison RD, Blobaum AL, Byers FW, Santomango TS, Bridges TM, Stec D, Brewer KA, Sanchez-Ponce R, Corlew MM, Rush R, Felts AS, Manka J, Bates BS, Venable DF, Rodriguez AL, Jones CK, Niswender CM, Conn PJ, Lindsley CW, Emmitte KA, Daniels JS. The role of aldehyde oxidase and xanthine oxidase in the biotransformation of a novel negative allosteric modulator of metabotropic glutamate receptor subtype 5. Drug Metab Dispos 2012; 40:1834-45. [PMID: 22711749 PMCID: PMC3422546 DOI: 10.1124/dmd.112.046136] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/18/2012] [Indexed: 02/06/2023] Open
Abstract
Negative allosteric modulation (NAM) of metabotropic glutamate receptor subtype 5 (mGlu₅) represents a therapeutic strategy for the treatment of childhood developmental disorders, such as fragile X syndrome and autism. VU0409106 emerged as a lead compound within a biaryl ether series, displaying potent and selective inhibition of mGlu₅. Despite its high clearance and short half-life, VU0409106 demonstrated efficacy in rodent models of anxiety after extravascular administration. However, lack of a consistent correlation in rat between in vitro hepatic clearance and in vivo plasma clearance for the biaryl ether series prompted an investigation into the biotransformation of VU0409106 using hepatic subcellular fractions. An in vitro appraisal in rat, monkey, and human liver S9 fractions indicated that the principal pathway was NADPH-independent oxidation to metabolite M1 (+16 Da). Both raloxifene (aldehyde oxidase inhibitor) and allopurinol (xanthine oxidase inhibitor) attenuated the formation of M1, thus implicating the contribution of both molybdenum hydroxylases in the biotransformation of VU0409106. The use of ¹⁸O-labeled water in the S9 experiments confirmed the hydroxylase mechanism proposed, because ¹⁸O was incorporated into M1 (+18 Da) as well as in a secondary metabolite (M2; +36 Da), the formation of which was exclusively xanthine oxidase-mediated. This unusual dual and sequential hydroxylase metabolism was confirmed in liver S9 and hepatocytes of multiple species and correlated with in vivo data because M1 and M2 were the principal metabolites detected in rats administered VU0409106. An in vitro-in vivo correlation of predicted hepatic and plasma clearance was subsequently established for VU0409106 in rats and nonhuman primates.
Collapse
Affiliation(s)
- Ryan D Morrison
- Drug Metabolism and Pharmacokinetics, Vanderbilt Center for Neurosciences Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Dalvie D, Sun H, Xiang C, Hu Q, Jiang Y, Kang P. Effect of structural variation on aldehyde oxidase-catalyzed oxidation of zoniporide. Drug Metab Dispos 2012; 40:1575-87. [PMID: 22587988 DOI: 10.1124/dmd.112.045823] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Current studies explored the effect of structural changes on the aldehyde oxidase (AO)-mediated metabolism of zoniporide (1). Zoniporide analogs with modifications of the acylguanidine moiety, the cyclopropyl group on the pyrazole ring, and the quinoline ring were studied for their AO-catalyzed metabolism using the human S9 fraction. Analysis of the half-lives suggested that subtle changes in the structure of 1 influenced its metabolism and that the guanidine and the quinoline moieties were prerequisites for AO-catalyzed oxidation to 2-oxozoniporide (M1). In contrast, replacement of the cyclopropyl group with other alkyl groups was tolerated. The effect of structural variation on AO properties was rationalized by docking 1 and its analogs into the human AO homology model. These studies indicated the importance of electrostatic, π-π stacking and hydrophobic interactions of the three motifs with residues in the active site. Differences in substrate properties were also rationalized by comparing their half-lives with cLogD, electrophilicity parameters [electrostatic potential (ESP) charges and energy of lowest unoccupied molecular orbitals (E(LUMO))], and the energies of formation of tetrahedral intermediates (J Med Chem 50:4642-4647, 2007). Whereas the success of energetics in predicting the AO substrate properties of analogs was 87%, the predictive ability of other descriptors was none (cLogD) to 60% (ESP charges and E(LUMO)). Overall, the structure-metabolism relationship could be rationalized using a combination of both the energy calculations and docking studies. This combination method can be incorporated into a strategy for mitigating AO liabilities observed in the lead candidate or studying structure-metabolism relationships of other AO substrates.
Collapse
Affiliation(s)
- Deepak Dalvie
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, San Diego, CA 92121, USA.
| | | | | | | | | | | |
Collapse
|
135
|
Strelevitz TJ, Orozco CC, Obach RS. Hydralazine as a selective probe inactivator of aldehyde oxidase in human hepatocytes: estimation of the contribution of aldehyde oxidase to metabolic clearance. Drug Metab Dispos 2012; 40:1441-8. [PMID: 22522748 DOI: 10.1124/dmd.112.045195] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Aldehyde oxidase (AO) metabolism could lead to significant underestimation of clearance in prediction of human pharmacokinetics as well as unanticipated exposure to AO-generated metabolites, if not accounted for early in drug research. We report a method using cryopreserved human hepatocytes and the time-dependent AO inhibitor hydralazine (K(I) = 83 ± 27 μM, k(inact) = 0.063 ± 0.007 min(-1)), which estimates the contribution of AO metabolism relative to total hepatic clearance. Using zaleplon as a probe substrate and simultaneously monitoring the AO-catalyzed formation of oxozaleplon and the CYP3A-catalyzed formation of desethyzaleplon in the presence of a range of hydralazine concentrations, it was determined that >90% inhibition of the AO activity with minimal effect on the CYP3A activity could be achieved with 25 to 50 μM hydralazine. This method was used to estimate the fraction metabolized due to AO [f(m(AO))] for six compounds with clearance attributed to AO along with four other drugs not metabolized by AO. The f(m(AO)) values for the AO substrates ranged between 0.49 and 0.83. Differences in estimated f(m(AO)) between two batches of pooled human hepatocytes suggest that sensitivity to hydralazine varies slightly with hepatocyte preparations. Substrates with a CYP2D6 contribution to clearance were affected by hydralazine to a minor extent, because of weak inhibition of this enzyme. Overall, these findings demonstrate that hydralazine, at a concentration of 25 to 50 μM, can be used in human hepatocyte incubations to estimate the contribution of AO to the hepatic clearance of drugs and other compounds.
Collapse
Affiliation(s)
- Timothy J Strelevitz
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Pont Rd., Groton, CT 06340, USA.
| | | | | |
Collapse
|
136
|
Obach RS, Prakash C, Kamel AM. Reduction and methylation of ziprasidone by glutathione, aldehyde oxidase, and thiol s-methyltransferase in humans: anin vitrostudy. Xenobiotica 2012; 42:1049-57. [DOI: 10.3109/00498254.2012.683203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|