101
|
Thomas B, Mandir AS, West N, Liu Y, Andrabi SA, Stirling W, Dawson VL, Dawson TM, Lee MK. Resistance to MPTP-neurotoxicity in α-synuclein knockout mice is complemented by human α-synuclein and associated with increased β-synuclein and Akt activation. PLoS One 2011; 6:e16706. [PMID: 21304957 PMCID: PMC3031616 DOI: 10.1371/journal.pone.0016706] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/12/2011] [Indexed: 11/30/2022] Open
Abstract
Genetic and biochemical abnormalities of α-synuclein are associated with the pathogenesis of Parkinson's disease. In the present study we investigated the in vivo interaction of mouse and human α-synuclein with the potent parkinsonian neurotoxin, MPTP. We find that while lack of mouse α-synuclein in mice is associated with reduced vulnerability to MPTP, increased levels of human α-synuclein expression is not associated with obvious changes in the vulnerability of dopaminergic neurons to MPTP. However, expressing human α-synuclein variants (human wild type or A53T) in the α-synuclein null mice completely restores the vulnerability of nigral dopaminergic neurons to MPTP. These results indicate that human α-synuclein can functionally replace mouse α-synuclein in regard to vulnerability of dopaminergic neurons to MPTP-toxicity. Significantly, α-synuclein null mice and wild type mice were equally sensitive to neurodegeneration induced by 2′NH2-MPTP, a MPTP analog that is selective for serotoninergic and noradrenergic neurons. These results suggest that effects of α-synuclein on MPTP like compounds are selective for nigral dopaminergic neurons. Immunoblot analysis of β-synuclein and Akt levels in the mice reveals selective increases in β-synuclein and phosphorylated Akt levels in ventral midbrain, but not in other brain regions, of α-synuclein null mice, implicating the α-synuclein-level dependent regulation of β-synuclein expression in modulation of MPTP-toxicity by α-synuclein. Together these findings provide new mechanistic insights on the role α-synuclein in modulating neurodegenerative phenotypes by regulation of Akt-mediated cell survival signaling in vivo.
Collapse
Affiliation(s)
- Bobby Thomas
- Neuroregeneration and Stem Cell Programs, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Li B, Zhang Y, Yuan Y, Chen N. A new perspective in Parkinson's disease, chaperone-mediated autophagy. Parkinsonism Relat Disord 2011; 17:231-5. [PMID: 21215675 DOI: 10.1016/j.parkreldis.2010.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disease characterized by loss of dopaminergic neurons and aggregation of alpha-synuclein. Although the role of alpha-synuclein in the pathology of PD is still unclear, the fact that its aggregation contributes to the loss of dopaminergic neurons has been confirmed. Therefore, controlling the alpha-synuclein protein level may be critical for PD pathogenesis and may provide potential therapeutics. Wild-type alpha-synuclein is physiologically degraded by chaperone-mediated autophagy (CMA), and dysfunction of CMA results in alpha-synuclein aggregation and compensative macroautophagy activation which finally leads to cell death. Therefore, CMA may participate in PD pathogenesis as a very important factor, and up-regulating CMA activity could degrade overloaded alpha-synuclein. In view of potential compensative effects, maintenance of the balance of CMA activity will be another major challenge in the future development of the therapeutic strategy. Herein we review the current knowledge of the role of CMA in PD.
Collapse
Affiliation(s)
- Boyu Li
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization, Ministry of Education), Beijing, PR China
| | | | | | | |
Collapse
|
103
|
García-Macia M, Vega-Naredo I, De Gonzalo-Calvo D, Rodríguez-González SM, Camello PJ, Camello-Almaraz C, Martín-Cano FE, Rodríguez-Colunga MJ, Pozo MJ, Coto-Montes AM. Melatonin induces neural SOD2 expression independent of the NF-kappaB pathway and improves the mitochondrial population and function in old mice. J Pineal Res 2011; 50:54-63. [PMID: 21062349 DOI: 10.1111/j.1600-079x.2010.00809.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aging is commonly defined as a physiological phenomenon associated with morphological and functional deleterious changes in which oxidative stress has a fundamental impact; therefore, readjusting the oxidative balance should have beneficial effects. In our study, we tested the antioxidant melatonin in old mouse brains and showed positive effects at the cellular and mitochondrial levels. Melatonin attenuated β-amyloid protein expression and α-synuclein deposits in the brain compared to aged group. Furthermore, oxidative stress was increased by aging and induced the nuclear translocation of nuclear factor-kappa B (NF-κB), which was suppressed by melatonin treatment. The antioxidant mitochondrial expression, superoxide dismutase 2 (SOD2), was increased in both control and melatonin-treated old mice, despite the different activation states of the NF-κB pathway. The NF-κB pathway was activated in the old mice, which may be explained by this group's response to the increased oxidative insult; this insult was inhibited in melatonin-treated animals, showing this group an increase in active mitochondria population that was not observed in old group. We also report that melatonin is capable of restoring the mitochondrial potential of age-damaged neurons. In conclusion, melatonin's beneficial effects on brain aging are linked to the increase in mitochondrial membrane potential and SOD2 expression, which probably reduces the mitochondrial contribution to the oxidative stress imbalance.
Collapse
Affiliation(s)
- Marina García-Macia
- Department of Morphology and Cellular Biology, Medicine Faculty, Oviedo University, Oviedo, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
ER stress response plays an important role in aggregation of α-synuclein. Mol Neurodegener 2010; 5:56. [PMID: 21144044 PMCID: PMC3016345 DOI: 10.1186/1750-1326-5-56] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/13/2010] [Indexed: 01/04/2023] Open
Abstract
Background Accumulation of filamentous α-synuclein as Lewy bodies is a hallmark of Parkinson's disease. To identify the mechanisms involved in α-synuclein assembly and determine whether the assemblies are cytotoxic, we developed a cell model (3D5) that inducibly expresses wild-type human α-synuclein and forms inclusions that reproduce many morphological and biochemical characteristics of Lewy bodies. In the present study, we evaluated the effects of several histone deacetylase inhibitors on α-synuclein aggregation in 3D5 cells and primary neuronal cultures. These drugs have been demonstrated to protect cells transiently overexpressing α-synuclein from its toxicity. Results Contrary to transient transfectants, the drug treatment did not benefit 3D5 cells and primary cultures. The treated were less viable and contained more α-synuclein oligomers, active caspases 3 and 9, as well as ER stress markers than non-treated counterparts. The drug-treated, induced-3D5 cells, or primary cultures from transgenic mice overexpressing (<2 fold) α-synuclein, displayed more α-synuclein oligomers and ER stress markers than non-induced or non-transgenic counterparts. Similar effects were demonstrated in cultures treated with tunicamycin, an ER stressor. These effects were blocked by co-treatment with salubrinal, an ER stress inhibitor. In comparison, co-treatment with a pan caspase inhibitor protected cells from demise but did not reduce α-synuclein oligomer accumulation. Conclusions Our results indicate that an increase of wild-type α-synuclein can elicit ER stress response and sensitize cells to further insults. Most importantly, an increase of ER stress response can promote the aggregation of wild type α-synuclein.
Collapse
|
105
|
ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc Natl Acad Sci U S A 2010; 107:13318-23. [PMID: 20624952 DOI: 10.1073/pnas.1008227107] [Citation(s) in RCA: 352] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dominant mutations in two functionally related DNA/RNA-binding proteins, trans-activating response region (TAR) DNA-binding protein with a molecular mass of 43 KDa (TDP-43) and fused in sarcoma/translocation in liposarcoma (FUS/TLS), cause an inherited form of ALS that is accompanied by nuclear and cytoplasmic aggregates containing TDP-43 or FUS/TLS. Using isogenic cell lines expressing wild-type or ALS-linked TDP-43 mutants and fibroblasts from a human patient, pulse-chase radiolabeling of newly synthesized proteins is used to determine, surprisingly, that ALS-linked TDP-43 mutant polypeptides are more stable than wild-type TDP-43. Tandem-affinity purification and quantitative mass spectrometry are used to identify TDP-43 complexes not only with heterogeneous nuclear ribonucleoproteins family proteins, as expected, but also with components of Drosha microprocessor complexes, consistent with roles for TDP-43 in both mRNA processing and microRNA biogenesis. A fraction of TDP-43 is shown to be complexed with FUS/TLS, an interaction substantially enhanced by TDP-43 mutants. Taken together, abnormal stability of mutant TDP-43 and its enhanced binding to normal FUS/TLS imply a convergence of pathogenic pathways from mutant TDP-43 and FUS/TLS in ALS.
Collapse
|
106
|
Huang C, Xia PY, Zhou H. Sustained expression of TDP-43 and FUS in motor neurons in rodent's lifetime. Int J Biol Sci 2010; 6:396-406. [PMID: 20616880 PMCID: PMC2899457 DOI: 10.7150/ijbs.6.396] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 07/03/2010] [Indexed: 12/12/2022] Open
Abstract
TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS) are two highly conserved ribonucleoproteins. Pathogenic mutations of the TDP-43 or the FUS gene are all linked to amyotrophic lateral sclerosis (ALS) that is characterized by progressive degeneration of motor neurons. To better understand the correlation of ALS disease genes with the selectivity of chronic motor neuron degeneration, we examined the longitudinal expression of the TDP-43 and the FUS genes in C57BL6 mice and in Sprague-Dawley rats. TDP-43 and FUS were robustly and ubiquitously expressed in the postnatal mice and rats, but were markedly decreased in the adult rodents. In adulthood, TDP-43 and FUS proteins were even undetectable in peripheral organs including skeletal muscles, liver, and kidney, but were constantly expressed at substantial levels in the central nervous system. Motor neurons expressed the TDP-43 and the FUS genes at robust levels throughout rodent's lifetime. Moreover, TDP-43 and FUS were accumulated in the cytoplasm of motor neurons in aged animals. Our findings suggest that TDP-43 and FUS play an important role in development and that constant and robust expression of the genes in motor neurons may render the neurons vulnerable to pathogenic mutation of the TDP-43 or the FUS gene. To faithfully model the pathology of TDP-43- or FUS gene mutations in rodents, we must replicate the expression patterns of the TDP-43 and the FUS gene in animals.
Collapse
Affiliation(s)
- Cao Huang
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
107
|
George JL, Mok S, Moses D, Wilkins S, Bush AI, Cherny RA, Finkelstein DI. Targeting the progression of Parkinson's disease. Curr Neuropharmacol 2010; 7:9-36. [PMID: 19721815 PMCID: PMC2724666 DOI: 10.2174/157015909787602814] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/15/2008] [Accepted: 09/09/2008] [Indexed: 02/07/2023] Open
Abstract
By the time a patient first presents with symptoms of Parkinson's disease at the clinic, a significant proportion (50-70%) of the cells in the substantia nigra (SN) has already been destroyed. This degeneration progresses until, within a few years, most of the cells have died. Except for rare cases of familial PD, the initial trigger for cell loss is unknown. However, we do have some clues as to why the damage, once initiated, progresses unabated. It would represent a major advance in therapy to arrest cell loss at the stage when the patient first presents at the clinic. Current therapies for Parkinson's disease focus on relieving the motor symptoms of the disease, these unfortunately lose their effectiveness as the neurodegeneration and symptoms progress. Many experimental approaches are currently being investigated attempting to alter the progression of the disease. These range from replacement of the lost neurons to neuroprotective therapies; each of these will be briefly discussed in this review. The main thrust of this review is to explore the interactions between dopamine, alpha synuclein and redox-active metals. There is abundant evidence suggesting that destruction of SN cells occurs as a result of a self-propagating series of reactions involving dopamine, alpha synuclein and redox-active metals. A potent reducing agent, the neurotransmitter dopamine has a central role in this scheme, acting through redox metallo-chemistry to catalyze the formation of toxic oligomers of alpha-synuclein and neurotoxic metabolites including 6-hydroxydopamine. It has been hypothesized that these feed the cycle of neurodegeneration by generating further oxidative stress. The goal of dissecting and understanding the observed pathological changes is to identify therapeutic targets to mitigate the progression of this debilitating disease.
Collapse
Affiliation(s)
- J L George
- The Mental Health Research Institute of Victoria , 155 Oak Street, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
108
|
Schneider L, Zhang J. Lysosomal function in macromolecular homeostasis and bioenergetics in Parkinson's disease. Mol Neurodegener 2010; 5:14. [PMID: 20388210 PMCID: PMC2867960 DOI: 10.1186/1750-1326-5-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 04/13/2010] [Indexed: 12/21/2022] Open
Abstract
The pathological changes occurring in Parkinson's and several other neurodegenerative diseases are complex and poorly understood, but all clearly involve protein aggregation. Also frequently appearing in neurodegeneration is mitochondrial dysfunction which may precede, coincide or follow protein aggregation. These observations led to the concept that protein aggregation and mitochondrial dysfunction either arise from the same etiological factors or are interactive. Understanding the mechanisms and regulation of processes that lead to protein aggregation or mitochondrial dysfunction may therefore contribute to the design of better therapeutics. Clearance of protein aggregates and dysfunctional organelles is dependent on macroautophagy which is the process through which aged or damaged proteins and organelles are first degraded by the lysosome and then recycled. The macroautophagy-lysosomal pathway is essential for maintaining protein and energy homeostasis. Not surprisingly, failure of the lysosomal system has been implicated in diseases that have features of protein aggregation and mitochondrial dysfunction. This review summarizes 3 major topics: 1) the current understanding of Parkinson's disease pathogenesis in terms of accumulation of damaged proteins and reduction of cellular bioenergetics; 2) evolving insights into lysosomal function and biogenesis and the accumulating evidence that lysosomal dysfunction may cause or exacerbate Parkinsonian pathology and finally 3) the possibility that enhancing lysosomal function may provide a disease modifying therapy.
Collapse
Affiliation(s)
- Lonnie Schneider
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA.
| | | |
Collapse
|
109
|
Lewis KA, Yaeger A, DeMartino GN, Thomas PJ. Accelerated formation of alpha-synuclein oligomers by concerted action of the 20S proteasome and familial Parkinson mutations. J Bioenerg Biomembr 2010; 42:85-95. [PMID: 20148295 PMCID: PMC3266686 DOI: 10.1007/s10863-009-9258-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/01/2009] [Indexed: 12/20/2022]
Abstract
A hallmark of Parkinson disease (PD) is the formation of intracellular protein inclusions called Lewy bodies that also contain mitochondria. alpha-Synuclein (alpha Syn) is a major protein component of Lewy bodies, where it is in an amyloid conformation and a significant fraction is truncated by poorly understood proteolytic events. Previously, we demonstrated that the 20S proteasome cleaves alpha Syn in vitro to produce fragments like those observed in Lewy bodies and that the fragments accelerate the formation of amyloid fibrils from full-length alpha Syn. Three point mutations in alpha Syn are associated with early-onset familial PD: A30P, E46K, and A53T. However, these mutations have very different effects on the amyloidogenicity and vesicle-binding activity of alpha Syn, suggesting neither of these processes directly correlate with neurodegeneration. Here, we evaluate the effect of the disease-associated mutations on the fragmentation, conformation, and association reactions of alpha Syn in the presence of the 20S proteasome and liposomes. The 20S proteasome produced the C-terminal fragments from both the mutant and wildtype alpha Syn. These truncations accelerated fibrillization of all alpha-synucleins, but again there was no clear correlation between the PD-associated mutations and amyloid formation in the presence of liposomes. Recent data suggests that cellular toxicity is caused by a soluble oligomeric species, which is a precursor to the amyloid form and is immunologically distinguishable from both soluble monomeric and amyloid forms of alpha Syn. Notably, the rate of formation of the soluble, presumptively cytotoxic oligomers correlated with the disease-associated mutations when both 20S proteasome and liposomes were present. Under these conditions, the wildtype protein was also cleaved and formed the oligomeric structures, albeit at a slower rate, suggesting that 20S-mediated truncation of alpha Syn may play a role in sporadic PD as well. Evaluation of the biochemical reactions of the PD-associated alpha-synuclein mutants in our in vitro system provides insight into the possible pathogenetic mechanism of both familial and sporadic PD.
Collapse
Affiliation(s)
- Karen A. Lewis
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390-9040, USA
| | - Arynn Yaeger
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390-9040, USA
| | - George N. DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390-9040, USA
| | - Philip J. Thomas
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390-9040, USA
| |
Collapse
|
110
|
Duran R, Barrero FJ, Morales B, Luna JD, Ramirez M, Vives F. Plasma α-synuclein in patients with Parkinson's disease with and without treatment. Mov Disord 2010; 25:489-93. [DOI: 10.1002/mds.22928] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
111
|
Loeb V, Yakunin E, Saada A, Sharon R. The transgenic overexpression of alpha-synuclein and not its related pathology associates with complex I inhibition. J Biol Chem 2010; 285:7334-43. [PMID: 20053987 DOI: 10.1074/jbc.m109.061051] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alpha-synuclein (alphaS) is a protein involved in the cytopathology and genetics of Parkinson disease and is thought to affect mitochondrial complex I activity. Previous studies have shown that mitochondrial toxins and specifically inhibitors of complex I activity enhance alphaS pathogenesis. Here we show that alphaS overexpression specifically inhibits complex I activity in dopaminergic cells and in A53T alphaS transgenic mouse brains. Importantly, our results indicate that the inhibitory effect on complex I activity is not associated with alphaS-related pathology. Specifically, complex I activity measured in purified mitochondria from A53T alphaS transgenic mouse brains was not affected by mouse age; Parkinson disease-like symptoms; levels of alphaS soluble oligomers; levels of insoluble, lipid-associated alphaS; or alphaS intraneuronal depositions in vivo. Likewise, no correlation was found between complex I activity and polyunsaturated fatty acid-induced alphaS depositions in Lewy body-like inclusions in cultured dopaminergic cells. We further show that the effect of alphaS on complex I activity is not due to altered mitochondrial protein levels or affected complex I assembly. Based on the results herein, we suggest that alphaS expression negatively regulates complex I activity as part of its normal, physiological role.
Collapse
Affiliation(s)
- Virginie Loeb
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research, Israel-Canada, Hebrew University, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
112
|
Fox SH, Brotchie JM. The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future. PROGRESS IN BRAIN RESEARCH 2010; 184:133-57. [DOI: 10.1016/s0079-6123(10)84007-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
113
|
Mak SK, McCormack AL, Langston JW, Kordower JH, Di Monte DA. Decreased α-synuclein expression in the aging mouse substantia nigra. Exp Neurol 2009; 220:359-65. [DOI: 10.1016/j.expneurol.2009.09.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/09/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
|
114
|
Mladenovic Djordjevic A, Perovic M, Tesic V, Tanic N, Rakic L, Ruzdijic S, Kanazir S. Long-term dietary restriction modulates the level of presynaptic proteins in the cortex and hippocampus of the aging rat. Neurochem Int 2009; 56:250-5. [PMID: 19878701 DOI: 10.1016/j.neuint.2009.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/13/2009] [Accepted: 10/16/2009] [Indexed: 01/05/2023]
Abstract
Brain aging is related to the numerous structural and functional changes including decreased synaptic plasticity. The beneficial effects of dietary restriction (DR) are well known but insufficiently investigated at the level of plasticity-related markers. Therefore, the aim of this study was to examine the expression profiles of proteins structurally and functionally related to synapses-growth-associated protein 43 (GAP-43), synaptophysin (SPH) and alpha-synuclein (alpha-Syn), in the course of aging and in response to long-term DR. The mRNA and protein levels of three presynaptic proteins were assessed by Real Time RT-PCR and Western blotting in the cortex and hippocampus of young (6-month-old), middle-aged (12-month-old), aged (18-month-old) and old (24-month-old) male Wistar rats fed ad libitum and exposed to DR starting from 6 months of age. We observed that long-term DR modulated age-related transcriptional changes by maintaining stable mRNAs levels in the cortex. No major age-related changes of the protein levels were observed in the cortex, while the specific temporal decline was detected in the hippocampus for all three proteins. The SPH levels were decreased across lifespan (0.8-, 0.8- and 0.6-fold change at 12, 18 and 24 months), while the significant decrease of GAP-43 and alpha-Syn protein was detected at 24 months of age (0.6- and 0.7-fold decrease, respectively). Long-term DR eliminated this decline by increasing GAP-43, SPH and alpha-Syn protein levels (1.7-, 1.7- and 1.6-fold, respectively) thus reverting protein levels to the values measured in 6-month-old animals.Specific pattern of changes observed in the hippocampus identifies this structure as more vulnerable to the processes of aging and with a more pronounced response to the DR effects. The observed DR-induced stabilization of the levels of three presynaptic proteins indicates the beneficial effect of DR on age-related decline in the capacity for synaptic plasticity.
Collapse
|
115
|
Halliday G, Herrero MT, Murphy K, McCann H, Ros-Bernal F, Barcia C, Mori H, Blesa FJ, Obeso JA. No Lewy pathology in monkeys with over 10 years of severe MPTP Parkinsonism. Mov Disord 2009; 24:1519-23. [PMID: 19526568 DOI: 10.1002/mds.22481] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The recent knowledge that 10 years after transplantation surviving human fetal neurons adopt the histopathology of Parkinson's disease suggests that Lewy body formation takes a decade to achieve. To determine whether similar histopathology occurs in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-primate models over a similar timeframe, the brains of two adult monkeys made parkinsonian in their youth with intermittent injections of MPTP were studied. Despite substantial nigral degeneration and increased alpha-synuclein immunoreactivity within surviving neurons, there was no evidence of Lewy body formation. This suggests that MPTP-induced oxidative stress and inflammation per se are not sufficient for Lewy body formation, or Lewy bodies are human specific.
Collapse
Affiliation(s)
- Glenda Halliday
- Prince of Wales Medical Research Institute and School of Medical Sciences, Faculty of Medicine University of New South Wales, Sydney, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Reciprocal effects of alpha-synuclein overexpression and proteasome inhibition in neuronal cells and tissue. Neurotox Res 2009; 17:215-27. [PMID: 19653055 DOI: 10.1007/s12640-009-9094-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 07/08/2009] [Accepted: 07/17/2009] [Indexed: 12/20/2022]
Abstract
Defects in the 20S/26S proteasome and conformational changes in alpha-synuclein (alpha-syn) are implicated in the development of sporadic and familial cases of PD. The objective of this study was to evaluate whether alpha-syn affects proteolysis by the proteasome and, reciprocally, whether proteasome inhibition affects alpha-syn solubility and localization. Although alpha-syn directly inhibited purified 20S proteasomes reversibly in vitro, its overexpression in neuroblastoma (SH-SY5Y and SK-N-BE), embryonic kidney (HEK293) cells, or mouse brain did not affect proteasome activity. Proteasome inhibition with MG132 and epoxomicin in SH-SY5Y cells failed to induce alpha-syn aggregation, although it increased membrane bound forms of endogenous and overexpressed wild-type, but not mutant, alpha-syn. Concomitantly this treatment generated cytoplasmic alpha-syn inclusions devoid of polyubiquitin in a small percentage of cells. The combination of proteasome inhibition with serum deprivation, which induced oxidative stress and autophagy, caused the appearance of high molecular weight alpha-syn species, such as those found in Lewy bodies. Our data suggest that high concentrations of alpha-syn do not affect proteasome function in vivo, whereas proteasome inhibition can modify synuclein solubility, most prominently under conditions of cell stress which occur during aging. These results have implications for the convergence of age-related oxidative stress and impaired protein degradation in neurodegeneration.
Collapse
|
117
|
Song W, Patel A, Qureshi HY, Han D, Schipper HM, Paudel HK. The Parkinson disease-associated A30P mutation stabilizes alpha-synuclein against proteasomal degradation triggered by heme oxygenase-1 over-expression in human neuroblastoma cells. J Neurochem 2009; 110:719-33. [PMID: 19457084 DOI: 10.1111/j.1471-4159.2009.06165.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Proteosomal degradation of proteins is one of the major mechanisms of intracellular protein turnover. Failure of the proteosome to degrade misfolded protein is implicated in the accumulation of alpha-synuclein in Parkinson's disease (PD). Heme oxygenase-1 (HO-1), an enzyme that converts heme to free iron, carbon monoxide (CO) and biliverdin (bilirubin precursor) is expressed in response to various stressors. HO-1 is up-regulated in PD- and Alzheimer's disease-affected neural tissues. In this study, we found that HO-1 over-expression engenders dose-dependent decreases in alpha-synuclein protein levels in human neuroblastoma M17 cells. When over-expression of HO-1 was silenced in HO-1 transfected cells, level of alpha-synuclein was restored. Likewise, treatment of HO-1 over-expressing cells with the HO-1 inhibitor, tin mesoporphyrin, the iron chelator deferoxamine or antagonist of CO-dependent cGMP activation, methylene blue, mitigated the HO-1-induced reduction in alpha-synuclein levels. Furthermore, when HO-1 over-expressing cells were treated with the proteosome inhibitors, lactacystin and MG132, level of alpha-synuclein was almost completely restored. In contrast to the effect on alpha-synuclein [wild-type (WT)] levels, HO-1 over-expression did not significantly impact PD-associated alpha-synuclein (A30P) levels in these cells. HO-1 also significantly reduced aggregation of alpha-synuclein (WT) but not that of A30P. Our results suggest that HO-1, which is expressed when neurons are exposed to toxic stimuli capable of inducing protein misfolding, triggers proteosomal degradation of proteins and prevents intracellular accumulation of protein aggregates and inclusions. Resistance to HO-1 induced proteosomal degradation may render the familial PD-associated A30P mutation prone to toxic intracellular aggregation.
Collapse
Affiliation(s)
- Wei Song
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
118
|
Qiao L, Zhang J. Inhibition of lysosomal functions reduces proteasomal activity. Neurosci Lett 2009; 456:15-9. [PMID: 19429125 DOI: 10.1016/j.neulet.2009.03.085] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/09/2009] [Accepted: 03/24/2009] [Indexed: 10/20/2022]
Abstract
Protein accumulation and aggregation are signatures of several major neurodegenerative diseases. Proteasomal- and lysosomal-mediated protein degradation pathways are the two major pathways for intracellular protein degradation. Cross-regulation between these two pathways may be important for protein homeostasis. Pharmacological inhibition of proteasomal activities has been shown to up-regulate the levels of lysosomal enzymes. To determine whether the reverse regulatory mechanism also occurs in the cell, we investigated the effects of inhibition of lysosomal function on proteasomal activities. We found that rather than up-regulating proteasomal activities in response to lysosomal disruptors, reduced lysosomal function reduces proteasomal functions, indicating a lack of compensatory up-regulation of proteasomal functions. Inhibition of lysosomal or proteasomal activities led to higher levels of chaperone heat shock cognate protein Hsc70, suggesting an attempt to compensate protein degradation deficiency by enhancing chaperone-mediated autophagy.
Collapse
Affiliation(s)
- Liyan Qiao
- Department of Pathology, 930 Sparks Center, 1530 3rd Ave S, University of Alabama at Birmingham, Birmingham, AL 35294-0017, United States
| | | |
Collapse
|
119
|
Vekrellis K, Xilouri M, Emmanouilidou E, Stefanis L. Inducible over-expression of wild type alpha-synuclein in human neuronal cells leads to caspase-dependent non-apoptotic death. J Neurochem 2009; 109:1348-62. [PMID: 19476547 DOI: 10.1111/j.1471-4159.2009.06054.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alpha-synuclein (ASYN) is central in Parkinson's disease pathogenesis. Converging pieces of evidence suggest that the levels of ASYN expression play a critical role in both familial and sporadic Parkinson's disease. To elucidate the mechanism underlying wild type (WT) ASYN-mediated neurotoxicity, we have generated a novel Tet-Off SHSY-5Y cell line, conditionally expressing WT ASYN. Induction of human WT ASYN in retinoic acid-differentiated SHSY-5Y cells leads to accumulation of soluble ASYN oligomers, in the absence of inclusions, and to gradual cellular degeneration. Morphologically, the death observed is non-apoptotic. Caspases other than caspase 3, including caspase 9, are activated and caspase inhibition diminishes death by acting at a point upstream of cytochrome c release. Application of Scyllo-inositol, an oligomer-stabilizing compound, prevents neuronal death in this model. These findings are consistent with a model in which oligomeric ASYN triggers the initial activation of the apoptotic pathway, which is however blocked downstream of the mitochondrial checkpoint, thus leading to a death combining in a unique fashion both apoptotic and non-apoptotic features. This novel inducible cell model system may prove valuable in the deciphering of WT ASYN-induced pathogenic effects and in the assessment and screening of potential therapeutic strategies.
Collapse
Affiliation(s)
- Kostas Vekrellis
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou, Athens, Greece.
| | | | | | | |
Collapse
|
120
|
Pandey AP, Haque F, Rochet JC, Hovis JS. Clustering of alpha-synuclein on supported lipid bilayers: role of anionic lipid, protein, and divalent ion concentration. Biophys J 2009; 96:540-51. [PMID: 19167303 DOI: 10.1016/j.bpj.2008.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022] Open
Abstract
Alpha-synuclein is the major component of Lewy body inclusions found in the brains of patients with Parkinson's disease. Several studies indicate that alpha-synuclein binds to negatively charged phospholipid bilayers. We examined the binding of alpha-synuclein to membranes containing different amounts of negatively charged lipids using supported lipid bilayers, epifluorescence microscopy, fluorescence recovery after photobleaching, and bulk fluorescence techniques. The membranes contained phosphatidylcholine and phosphatidylglycerol. In the absence of protein, these lipids mix uniformly. Our results show that the propensity of alpha-synuclein to cluster on the membrane increases as the concentration of anionic lipid and/or protein increases. Regions on the lipid bilayer where alpha-synuclein is clustered are enriched in phosphatidylglycerol. We also observe divalent metal ions stimulate protein cluster formation, primarily by promoting lipid demixing. The importance of protein structure, lipid demixing, and divalent ions, as well as the physiological implications, will be discussed. Because membrane-bound alpha-synuclein assemblies may play a role in neurotoxicity, it is of interest to determine how membranes can be used to tune the propensity of alpha-synuclein to aggregate.
Collapse
Affiliation(s)
- Anjan P Pandey
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | | | | | | |
Collapse
|
121
|
Yasuda T, Nihira T, Ren YR, Cao XQ, Wada K, Setsuie R, Kabuta T, Wada K, Hattori N, Mizuno Y, Mochizuki H. Effects of UCH-L1 on α-synuclein over-expression mouse model of Parkinson’s disease. J Neurochem 2009; 108:932-44. [DOI: 10.1111/j.1471-4159.2008.05827.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
122
|
Bras J, Singleton A, Cookson MR, Hardy J. Emerging pathways in genetic Parkinson's disease: Potential role of ceramide metabolism in Lewy body disease. FEBS J 2008; 275:5767-73. [PMID: 19021754 PMCID: PMC2646080 DOI: 10.1111/j.1742-4658.2008.06709.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heterozygous loss-of-function mutations at the glucosecerebrosidase locus have recently been shown to be a potent risk factor for Lewy body disease. Based on this observation, we have re-evaluated the likelihood that the different PARK loci (defined using clinical criteria for disease) may be misleading attempts to find common pathways to pathogenesis. Rather, we suggest, grouping the different loci which lead to different Lewy body disease may be more revealing. Doing this, we suggest that several of the genes involved in disparate Lewy body diseases impinge on ceramide metabolism and we suggest that this may be a common theme for pathogenesis.
Collapse
Affiliation(s)
- Jose Bras
- Molecular Genetics Unit, National Institutes on Aging, Bethesda, MD, USA
| | | | | | | |
Collapse
|
123
|
Caballero B, Vega-Naredo I, Sierra V, Huidobro-Fernández C, Soria-Valles C, De Gonzalo-Calvo D, Tolivia D, Gutierrez-Cuesta J, Pallas M, Camins A, Rodríguez-Colunga MJ, Coto-Montes A. Favorable effects of a prolonged treatment with melatonin on the level of oxidative damage and neurodegeneration in senescence-accelerated mice. J Pineal Res 2008; 45:302-11. [PMID: 18410310 DOI: 10.1111/j.1600-079x.2008.00591.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Senescence-accelerated mice (SAMP8) and senescence-accelerated resistant mice (SAMR1) were studied at 5 and 10 months of age, respectively. In the animals, neurodegenerative processes and how they were influenced by melatonin were examined. Melatonin (10 mg/kg) or vehicle (ethanol at 0.066%) treatments were administrated from the age of 1 to 9 months in the drinking water. Differences in the neurodegenerative markers examined were found between the two strains with a more damaged protein, phosphorylated Tau at Ser392, increased neurofibrillary tangles (NT) and higher alpha-synuclein expression in SAMP8 versus SAMR1 mice overall, when the mice were 10 months of age. Changes in density of receptors and oxidative stress-related signaling with age were found in the brains of SAM strains at 10 months as shown by a marked decrease in the level of MT-1 melatonin receptor and retinoic acid receptor-related orphan receptor (ROR)-alpha1. This diminution was earlier and more pronounced in SAMP8 mice. Likewise, the levels of nuclear factor-kappa B (NF-kB) transcriptional factor were higher in SAMP8 mice compared with SAMR1 mice regardless of age confirming the direct role of oxidative stress in the aging process. Treatment with melatonin in SAMP8 and SAMR1 mice reduced the neurodegenerative changes with an increase of ROR-alpha1 levels without an apparent influence in the levels of MT-1 receptor. However, different melatonin effects on NF-kB signaling were observed suggesting that NF-kB could trigger inflammatory processes in a different way, being SAM strain-dependent and associated with age-related oxidative stress levels. The effectiveness of melatonin in improving age-related neural impairments is corroborated.
Collapse
Affiliation(s)
- Beatriz Caballero
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disease with unknown etiology. Growing evidence from genetic, pathologic, animal modeling, and biochemical studies strongly support the theory that abnormal aggregation of alpha-synuclein plays a critical role in the pathogenesis of PD. Protein aggregation is an alternative folding process that competes with the native folding pathway. Whether or not a protein is subject to the aggregation process is determined by the concentration of the protein as well as thermodynamic properties inherent to each polypeptide. An increase in cellular concentration of alpha-synuclein has been associated with the disease in both familial and sporadic forms of PD. Thus, maintenance of the intraneuronal steady state levels of alpha-synuclein below the critical concentration is a key challenge neuronal cells are facing. Expression of the alpha-synuclein gene is under the control of environmental factors and aging, the two best-established risk factors for PD. Studies also suggest that the degradation of this protein is mediated by proteasomal and autophagic pathways, which are two mechanisms that are related to the pathogenesis of PD. Recently, vesicle-mediated exocytosis has been suggested as a novel mechanism for disposal of neuronal alpha-synuclein. Relocalization of the protein to specific compartments may be another method for increasing its local concentration. Regulation of the neuronal steady state levels of alpha-synuclein has significant implications in the development of PD, and understanding the mechanism may disclose potential therapeutic targets for PD and other related diseases.
Collapse
Affiliation(s)
- Changyoun Kim
- Department of Biomedical Science and Technology, Konkuk University, Seoul, Korea
| | | |
Collapse
|
125
|
McCormack AL, Mak SK, Shenasa M, Langston WJ, Forno LS, Di Monte DA. Pathologic modifications of alpha-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated squirrel monkeys. J Neuropathol Exp Neurol 2008; 67:793-802. [PMID: 18648323 PMCID: PMC2745435 DOI: 10.1097/nen.0b013e318180f0bd] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
alpha-Synuclein expression is increased in dopaminergic neurons challenged by toxic insults. Here, we assessed whether this upregulation is accompanied by pathologic accumulation of alpha-synuclein and protein modifications (i.e. nitration, phosphorylation, and aggregation) that are typically observed in Parkinson disease and in other synucleinopathies. A single injection of the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to squirrel monkeys caused a buildup of alpha-synuclein but not of beta-synuclein or synaptophysin within nigral dopaminergic cell bodies. Immunohistochemistry and immunoelectron microscopy also revealed large numbers of dystrophic axons labeled with alpha-synuclein. Antibodies that recognize nitrated and phosphorylated (at serine 129) alpha-synuclein stained neuronal cell bodies and dystrophic axons in the midbrain of MPTP-treated animals. After toxicant exposure, alpha-synuclein deposition occurred at the level of neuronal axons in which amorphous protein aggregates were observed by immunoelectron microscopy. In a subset of these axons, immunoreactivity for alpha-synuclein was still evident after tissue digestion with proteinase K, further indicating the accumulation of insoluble protein. These data indicate that toxic injury can induce alpha-synuclein modifications that have been implicated in the pathogenesis of human synucleinopathies. The findings are also consistent with a pattern of evolution of alpha-synuclein pathology that may begin with the accumulation and aggregation of the protein within damaged axons.
Collapse
|
126
|
Winner B, Rockenstein E, Lie DC, Aigner R, Mante M, Bogdahn U, Couillard-Despres S, Masliah E, Winkler J. Mutant alpha-synuclein exacerbates age-related decrease of neurogenesis. Neurobiol Aging 2008; 29:913-25. [PMID: 17275140 PMCID: PMC2896275 DOI: 10.1016/j.neurobiolaging.2006.12.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 12/21/2006] [Accepted: 12/28/2006] [Indexed: 01/05/2023]
Abstract
In Parkinson disease, wild-type alpha-synuclein accumulates during aging, whereas alpha-synuclein mutations lead to an early onset and accelerated course of the disease. The generation of new neurons is decreased in regions of neurogenesis in adult mice overexpressing wild-type human alpha-synuclein. We examined the subventricular zone/olfactory bulb neurogenesis in aged mice expressing either wild-type human or A53T mutant alpha-synuclein. Aging wild-type and mutant alpha-synuclein-expressing animals generated significantly fewer new neurons than their non-transgenic littermates. This decreased neurogenesis was caused by a reduction in cell proliferation within the subventricular zone of mutant alpha-synuclein mice. In contrast, no difference was detected in mice overexpressing the wild-type allele. Also, more TUNEL-positive profiles were detected in the subventricular zone, following mutant alpha-synuclein expression and in the olfactory bulb, following wild-type and mutant alpha-synuclein expression. The impaired neurogenesis in the olfactory bulb of different transgenic alpha-synuclein mice during aging highlights the need to further explore the interplay between olfactory dysfunction and neurogenesis in Parkinson disease.
Collapse
Affiliation(s)
- Beate Winner
- Department of Neurology, University of Regensburg, Universitaetsstr. 84, 93053 Regensburg, Germany
| | - Edward Rockenstein
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0662, USA
| | - D. Chichung Lie
- GSF-National Research Center for Environment and Health, Institute for Developmental Genetics, Ingolsstaedter Landstrasse 1, 85764 Munich, Neuherberg, Germany
| | - Robert Aigner
- Department of Neurology, University of Regensburg, Universitaetsstr. 84, 93053 Regensburg, Germany
| | - Michael Mante
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0662, USA
| | - Ulrich Bogdahn
- Department of Neurology, University of Regensburg, Universitaetsstr. 84, 93053 Regensburg, Germany
| | | | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0662, USA
| | - Jürgen Winkler
- Department of Neurology, University of Regensburg, Universitaetsstr. 84, 93053 Regensburg, Germany
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0662, USA
| |
Collapse
|
127
|
Abstract
After nearly 20 years of preclinical experimentation with various gene delivery approaches in animal models of Parkinson's disease (PD), clinical trials are finally underway. The risk/benefit ratio for these procedures is now generally considered acceptable under approved protocols. The current vehicle for gene delivery to the human brain is recombinant adeno-associated viral vector, which is nonpathogenic and non-self-amplifying. Candidate genes tested in PD patients encode 1) glutamic acid decarboxylase, which is injected into the subthalamic nucleus to catalyze biosynthesis of the inhibitory neurotransmitter gamma-aminobutyric acid and so essentially mimic deep brain stimulation of this nucleus; 2) aromatic l-amino acid decarboxylase, which converts l-dopa to dopamine; and 3) neurturin, a member of the glial cell line-derived neurotrophic factor family. Unraveling the genetic underpinnings of PD could allow gene therapy to go beyond modulating neurotransmission or providing trophic effects to dopaminergic neurons by delivering a specific missing or defective gene. For example, the parkin gene (PARK2) is linked to recessively inherited PD due to loss of function mutations; it prevents alpha-synuclein-induced degeneration of nigral dopaminergic neurons in rats and nonhuman primates. On the other hand, for dominantly inherited Huntington's disease (HD), in which an expanded polyglutamine tract imparts to the protein huntingtin a toxic gain of function, repressing expression of the mutant allele in the striatum using RNA interference technology mitigates pathology and delays the phenotype in a mouse model. Here we review the current state of preclinical and clinical gene therapy studies conducted in PD and HD.
Collapse
Affiliation(s)
- Hideki Mochizuki
- grid.258269.20000000417622738Research Institute for Diseases of Old Age, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyoku, 113-8421 Tokyo, Japan
- grid.258269.20000000417622738Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyoku, 113-8421 Tokyo, Japan
| | - Toru Yasuda
- grid.258269.20000000417622738Research Institute for Diseases of Old Age, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyoku, 113-8421 Tokyo, Japan
| | - M. Maral Mouradian
- grid.430387.b0000000419368796Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 08854 Piscataway, New Jersey
| |
Collapse
|
128
|
Mladenovic A, Perovic M, Tanic N, Petanceska S, Ruzdijic S, Kanazir S. Dietary restriction modulates alpha-synuclein expression in the aging rat cortex and hippocampus. Synapse 2007; 61:790-4. [PMID: 17568432 DOI: 10.1002/syn.20427] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dietary restriction (DR) is one of the promising environmental interventions known to attenuate aging and decrease risk of age-related neurodegenerative disorders. The aim of this study was to assess the effects of DR on expression of alpha-synuclein, a presynaptic protein involved in pathogenesis of Parkinson's and some other neurodegenerative diseases, in the cortex and hippocampus of adult, middle-aged, late middle-aged, and aged rats. Using Real Time RT-PCR, the authors report that aging regulates the expression of alpha-synuclein in a tissue-specific manner and that long-term DR reverts the late age-related changes of alpha-synuclein expression.
Collapse
|
129
|
Fjorback AW, Varming K, Jensen PH. Determination of alpha-synuclein concentration in human plasma using ELISA. Scandinavian Journal of Clinical and Laboratory Investigation 2007; 67:431-5. [PMID: 17558898 DOI: 10.1080/00365510601161497] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The nerve cell protein alpha-synuclein is important in Parkinson's disease and dementia with Lewy bodies, and its expression levels are directly linked to development of the diseases. Quantification of the plasma level of alpha-synuclein may therefore be important as a biomarker for disease susceptibility. We present a quantitative measurement of alpha-synuclein in the plasma of healthy control subjects in relation to their age using a novel enzyme-linked immunosorbent assay (ELISA). The plasma concentration among the 44 blood donors displayed a median of 5.6 microg/L (range 2.1-19.4 microg/L) with a narrow distribution (25 % and 75 % percentiles, 4.0 and 7.2 microg/L) and there was no correlation with age and gender. This narrow concentration range and the ease of measuring the quantitative ELISA support future investigations of plasma alpha-synuclein in relation to neurodegenerative diseases.
Collapse
|
130
|
Mazzulli JR, Armakola M, Dumoulin M, Parastatidis I, Ischiropoulos H. Cellular oligomerization of alpha-synuclein is determined by the interaction of oxidized catechols with a C-terminal sequence. J Biol Chem 2007; 282:31621-30. [PMID: 17785456 DOI: 10.1074/jbc.m704737200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mechanisms that govern the formation of alpha-synuclein (alpha-syn) aggregates are not well understood but are considered a central event in the pathogenesis of Parkinson's disease (PD). A critically important modulator of alpha-syn aggregation in vitro is dopamine and other catechols, which can prevent the formation of alpha-syn aggregates in cell-free and cellular model systems. Despite the profound importance of this interaction for the pathogenesis of PD, the processes by which catechols alter alpha-syn aggregation are unclear. Molecular and biochemical approaches were employed to evaluate the mechanism of catechol-alpha-syn interactions and the effect on inclusion formation. The data show that the intracellular inhibition of alpha-syn aggregation requires the oxidation of catechols and the specific noncovalent interaction of the oxidized catechols with residues (125)YEMPS(129) in the C-terminal region of the protein. Cell-free studies using novel near infrared fluorescence methodology for the detection of covalent protein-ortho-quinone adducts showed that although covalent modification of alpha-syn occurs, this does not affect alpha-syn fibril formation. In addition, oxidized catechols are unable to prevent both thermal and acid-induced protein aggregation as well as fibrils formed from a protein that lacks a YEMPS amino acid sequence, suggesting a specific effect for alpha-syn. These results suggest that inappropriate C-terminal cleavage of alpha-syn, which is known to occur in vivo in PD brain or a decline of intracellular catechol levels might affect disease progression, resulting in accelerated alpha-syn inclusion formation and dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Joseph R Mazzulli
- Joseph Stokes Jr. Research Institute, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
131
|
Martin LJ. Transgenic mice with human mutant genes causing Parkinson's disease and amyotrophic lateral sclerosis provide common insight into mechanisms of motor neuron selective vulnerability to degeneration. Rev Neurosci 2007; 18:115-36. [PMID: 17593875 DOI: 10.1515/revneuro.2007.18.2.115] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A variety of gene mutations can cause familial forms of Parkinson's disease (PD) or amyotrophic lateral sclerosis (ALS). Mutations in the synaptic protein alpha-synuclein (alpha-Syn) cause PD. Mutations in the antioxidant enzyme superoxide dismutase-1 (SOD1) cause ALS. The mechanisms of human mutant a-Syn and SOD1 toxicity to neurons are not known. Transgenic (tg) mice expressing human mutant alpha-Syn or SOD1 develop profound fatal neurologic disease characterized by progressive motor deficits, paralysis, and neurodegeneration. Ala-53-->Thr (A53T)-mutant alpha-Syn and Gly-93-->Ala (G93A)-mutant SOD1 tg mice develop prominent mitochondrial abnormalities. Interestingly, although nigral neurons in A53T mice are relatively preserved, spinal motor neurons (MNs) undergo profound degeneration. In A53T mice, mitochondria degenerate in neurons, and complex IV activity is reduced. Furthermore, mitochondria in neurons develop DNA breaks and have p53 targeted to the outer membrane. Nitrated a-Syn accumulates in degenerating MNs in A53T mice. mSOD1 mouse MNs accumulate mitochondria from the axon terminals and generate higher levels of reactive oxygen/nitrogen species than MNs in control mice. mSOD1 mouse MNs accumulate DNA single-strand breaks prior to double-strand breaks occurring in nuclear and mitochondrial DNA. Nitrated and aggregated cytochrome c oxidase subunit-I and nitrated SOD2 accumulate in mSOD1 mouse spinal cord. Mitochondria in mSOD1 mouse MNs accumulate NADPH diaphorase and inducible NOS (iNOS)-like immunoreactivity, and iNOS gene deletion significantly extends the lifespan of G93A-mSOD1 mice. Mitochondrial changes develop long before symptoms emerge. These experiments reveal that mitochondrial nitrative stress and perturbations in mitochondrial trafficking may be antecedents of neuronal cell death in animal models of PD and ALS.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, Department of Neuroscience, Johns Hopkins University School ofMedicine, Baltimore, MD 21205-2196, USA.
| |
Collapse
|
132
|
Hodaie M, Neimat JS, Lozano AM. THE DOPAMINERGIC NIGROSTRIATAL SYSTEMAND PARKINSON'S DISEASE. Neurosurgery 2007; 60:17-28; discussion 28-30. [PMID: 17228250 DOI: 10.1227/01.neu.0000249209.11967.cb] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For several decades, the clinical study of Parkinson's disease has driven an increasingly sophisticated understanding of the dopaminergic system and its complex role in modulating motor behavior. This article reviews salient areas of research in this field, commencing with the molecular biology of the development of the mesencephalic dopaminergic system. We then discuss events thought to be crucial in the cellular and molecular pathology of Parkinson's disease, proposed mechanisms of cell death, and relevant toxin models. These advancements are used as a template to review emerging therapeutic techniques, including neuroprotection strategies, surgical treatment of trophic factors, gene therapy, and neural transplantation.
Collapse
Affiliation(s)
- Mojgan Hodaie
- Division of Neurosurgery, Toronto Western Hospital, University Health Network and University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
133
|
Attems J, Quass M, Jellinger KA. Tau and alpha-synuclein brainstem pathology in Alzheimer disease: relation with extrapyramidal signs. Acta Neuropathol 2007; 113:53-62. [PMID: 17031655 DOI: 10.1007/s00401-006-0146-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 09/05/2006] [Accepted: 09/05/2006] [Indexed: 11/26/2022]
Abstract
Extrapyramidal symptoms (EPS) in Alzheimer disease (AD) often increase with disease severity. Their neuropathological substrate is a matter of discussion. We investigated tau and alpha-synuclein (AS) pathologies in brainstem in AD patients with and without EPS. Among 160 elderly subjects with autopsy-proven AD (110 female, 50 male, aged 61-102, mean 84.1 +/- 8.3 SD years), 151 (94.4%) being demented, 35 (21.9%) had clinically reported EPS (rigidity, bradykinesia, gait impairment). Neuropathological examination included standardized classification of AD according to current criteria, and semiquantitative assessment of neuronal loss in substantia nigra (SN), locus coeruleus (LC), and of tau and AS lesions in brainstem, and, in addition, of cerebrovascular lesions. The prevalence of EPS was only slightly more frequent in higher Braak stages. Tau pathology in brainstem significantly increased with increasing Braak stages, while AS lesions did not. EPS correlated best with SN cell loss (P < 0.001) and much less with AS pathology in several brain areas (P < 0.05), except in medulla oblongata (P < 0.001). Although both pathologies in substantia nigra correlated with neuron loss (P < 0.001), nigral tau lesions, present in 88.5% of EPS positive cases (without AS lesions in 55.6%), did not correlate with EPS. Additional cerebrovascular changes apparently did not influence the development of EPS symptoms in fully developed AD. With other recent data, these results suggest that neuronal loss in SN, partly related to tau lesions, is a major pathological substrate of EPS in AD, but some cases with and without EPS may show no or only minimal nigral changes. However, often associated with nigral tau lesions and higher Braak stages, EPS in elderly patients may be a surrogate marker for severe neuritic AD pathology.
Collapse
Affiliation(s)
- Johannes Attems
- Institute of Pathology, Otto Wagner Hospital, Vienna, Austria
| | | | | |
Collapse
|
134
|
Abstract
Alpha-synuclein is an abundant neuronal protein that has been linked to both normal synaptic function and neurodegeneration--in particular, Parkinson's disease (PD). Uncovering mechanisms that control alpha-synuclein transcription is therefore critical for PD pathogenesis and synaptic function. We previously reported that in PC12 cells and primary neurons, alpha-synuclein is transcriptionally up-regulated after application of growth factors. In the current work we have characterized the pathway involved in this regulation in PC12 cells. The MAP/ERK pathway, and in particular Ras, is both sufficient and necessary for the NGF and basic fibroblast growth factor (bFGF) -mediated response. Significantly, response elements for this pathway, including a putative occult promoter, lie within intron 1, a hitherto unappreciated regulatory region of the gene that may be utilized in this or other settings. The PI3 kinase pathway is also involved in alpha-synuclein regulation, but response elements for this pathway appear to lie primarily outside of intron 1. These findings indicate that NGF- and bFGF-mediated signal transduction via the MAP/ERK and PI3 kinase pathways, and in part via regulatory regions within intron 1, may be involved in alpha-synuclein transcriptional regulation. Targeting of these pathways may serve to modulate alpha-synuclein so that it achieves desirable levels within neuronal cells.
Collapse
Affiliation(s)
- R Lee Clough
- Division of Basic Neurosciences, Foundation for Biomedical Research of the Academy of Athens (IIBEAA), 11527 Athens, Greece
| | | |
Collapse
|
135
|
Mazzulli JR, Mishizen AJ, Giasson BI, Lynch DR, Thomas SA, Nakashima A, Nagatsu T, Ota A, Ischiropoulos H. Cytosolic catechols inhibit alpha-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates. J Neurosci 2006; 26:10068-78. [PMID: 17005870 PMCID: PMC6674486 DOI: 10.1523/jneurosci.0896-06.2006] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aberrant aggregation of alpha-synuclein (alpha-syn) to form fibrils and insoluble aggregates has been implicated in the pathogenic processes of many neurodegenerative diseases. Despite the dramatic effects of dopamine in inhibiting the formation of alpha-syn fibrils by stabilization of oligomeric intermediates in cell-free systems, no studies have examined the effects of intracellular dopamine on alpha-syn aggregation. To study this process and its association with neurodegeneration, intracellular catechol levels were increased to various levels by expressing different forms of tyrosine hydroxylase, in cells induced to form alpha-syn aggregates. The increase in the steady-state dopamine levels inhibited the formation of alpha-syn aggregates and induced the formation of innocuous oligomeric intermediates. Analysis of transgenic mice expressing the disease-associated A53T mutant alpha-syn revealed the presence of oligomeric alpha-syn in nondegenerating dopaminergic neurons that do contain insoluble alpha-syn. These data indicate that intraneuronal dopamine levels can be a major modulator of alpha-syn aggregation and inclusion formation, with important implications on the selective degeneration of these neurons in Parkinson's disease.
Collapse
Affiliation(s)
| | - Amanda J. Mishizen
- The Joseph Stokes Jr. Research Institute and
- Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | | | - David R. Lynch
- The Joseph Stokes Jr. Research Institute and
- Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | | | | | - Toshiharu Nagatsu
- Pharmacology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | | | - Harry Ischiropoulos
- The Joseph Stokes Jr. Research Institute and
- Departments of Pharmacology and
- Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| |
Collapse
|
136
|
Yasuda T, Miyachi S, Kitagawa R, Wada K, Nihira T, Ren YR, Hirai Y, Ageyama N, Terao K, Shimada T, Takada M, Mizuno Y, Mochizuki H. Neuronal specificity of alpha-synuclein toxicity and effect of Parkin co-expression in primates. Neuroscience 2006; 144:743-53. [PMID: 17101231 DOI: 10.1016/j.neuroscience.2006.09.052] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 08/21/2006] [Accepted: 09/21/2006] [Indexed: 11/19/2022]
Abstract
Recombinant adeno-associated viral (rAAV) vector-mediated overexpression of alpha-synuclein (alphaSyn) protein has been shown to cause neurodegeneration of the nigrostriatal dopaminergic pathway in rodents and primates. Using serotype-2 rAAV vectors, we recently reported the protective effect of Parkin on alphaSyn-induced nigral dopaminergic neurodegeneration in a rat model. Here we investigated the neuronal specificity of alphaSyn toxicity and the effect of Parkin co-expression in a primate model. We used another serotype (type-1) of AAV vector that was confirmed to deliver genes of interest anterogradely and retrogradely to neurons in rats. The serotype-1 rAAV (rAAV1) carrying alphaSyn cDNA (rAAV1-alphaSyn), and a cocktail of rAAV1-alphaSyn and rAAV1 carrying parkin cDNA (rAAV1-parkin) were unilaterally injected into the striatum of macaque monkeys, resulting in protein expression in striatonigral GABAergic and nigrostriatal dopaminergic neurons. Injection of rAAV1-alphaSyn alone decreased tyrosine hydroxylase immunoreactivity in the striatum compared with the contralateral side injected with a cocktail of rAAV1-alphaSyn and rAAV1-parkin. Immunostaining of striatonigral GABAergic neurons was similar on both sides. Overexpression of Parkin in GABAergic neurons was associated with less accumulation of alphaSyn protein and/or phosphorylation at Ser129 residue. Our results suggest that the toxicity of accumulated alphaSyn is not induced in non-dopaminergic neurons and that the alphaSyn-ablating effect of Parkin is exerted in virtually all neurons in primates.
Collapse
Affiliation(s)
- T Yasuda
- Research Institute for Diseases of Old Ages, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Chu Y, Kordower JH. Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: Is this the target for Parkinson's disease? Neurobiol Dis 2006; 25:134-49. [PMID: 17055279 DOI: 10.1016/j.nbd.2006.08.021] [Citation(s) in RCA: 328] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 08/31/2006] [Accepted: 08/31/2006] [Indexed: 01/12/2023] Open
Abstract
alpha-Synuclein is a synaptic protein that has been directly linked to both the etiology and pathogenesis of Parkinson's disease. We have previously shown that only nigral neurons in PD expressing alpha-synuclein inclusions display a loss dopaminergic phenotype. The present study tested the hypothesis that normal aging contributes to this effect. The relative abundance of alpha-synuclein protein within individual nigral neurons was quantified in eighteen normal humans between the age of 18 and 102 and twenty four rhesus monkeys between the age of 2 and 34. Optical densitometry revealed a robust age-related increase in alpha-synuclein protein within individual nigral neurons in both species. This effect was specific for nigral alpha-synuclein as no age-related changes were found in the ventral tegmental area nor were there changes in the nigra for non-pathogenic beta-synuclein. The age-related increases in nigral alpha-synuclein were non-aggregated and strongly associated with age-related decreases in tyrosine hydroxylase (TH), the rate limiting enzyme for dopamine production. In fact, only cells expressing alpha-synuclein displayed reductions in TH. We hypothesize that age-related increases in alpha-synuclein result in a subthreshold degeneration of nigrostriatal dopamine which, in PD, becomes symptomatic due to lysosomal failure resulting in protein misfolding and inclusion formation. We further hypothesize that preventing the age-related accumulation of non-aggregated alpha-synuclein might be a simple and potent therapeutic target for patients with PD.
Collapse
Affiliation(s)
- Yaping Chu
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL 60612, USA
| | | |
Collapse
|
138
|
Beyer K. Alpha-synuclein structure, posttranslational modification and alternative splicing as aggregation enhancers. Acta Neuropathol 2006; 112:237-51. [PMID: 16845533 DOI: 10.1007/s00401-006-0104-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2006] [Revised: 06/20/2006] [Accepted: 06/21/2006] [Indexed: 11/26/2022]
Abstract
Alpha-synuclein aggregation is thought to be a key event in the pathogenesis of synucleinopathies. Although different alpha-synuclein alterations and modifications have been proposed to be responsible for early aggregation steps, the mechanisms underlying these events remain unclarified. Alpha-synuclein is a small protein localized to synaptic terminals and its intrinsic structure has been claimed to be an important factor for self-oligomerization and self-aggregation. Alpha-synuclein expression studies in cell cultures have demonstrated that posttranslational modifications, such as phosphorylation, oxidation, and sumoylation, are primarily involved in alpha-synuclein aggregation. Furthermore, in the last few years accumulating evidence has pointed to alternative splicing as a crucial mechanism in the development of neurodegenerative disorders. At least three different alpha-synuclein isoforms have been described as products of alternative splicing. Two of these isoforms (alpha-synuclein 112 and alpha-synuclein 126) are shorter proteins with probably altered functions and aggregation propensity. The present review attempts to summarize the data so far available on alpha-synuclein structure, posttranslational modifications, and alternative splicing as possible enhancers of aggregation.
Collapse
Affiliation(s)
- Katrin Beyer
- Department of Pathology, Hospital Universitari Germans Trias i Pujol, Autonomous University of Barcelona, 08916 Badalona, Barcelona, Spain.
| |
Collapse
|
139
|
Galvin JE. Interaction of alpha-synuclein and dopamine metabolites in the pathogenesis of Parkinson's disease: a case for the selective vulnerability of the substantia nigra. Acta Neuropathol 2006; 112:115-26. [PMID: 16791599 DOI: 10.1007/s00401-006-0096-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 06/05/2006] [Accepted: 06/05/2006] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is the most common movement disorder. Major disease symptoms are due to the loss of dopaminergic (DA) neurons in substantia nigra (SN). The pathologic hallmark of PD is Lewy bodies (LBs) in the SN and the major protein in LBs is alpha-synuclein (AS). A plethora of evidence points towards the culpability of AS in the pathogenesis of PD including: (1) linkage of AS mutations to familial forms of PD, (2) triplication of the AS locus causing PD, and (3) overexpression of AS in transgenic mice and Drosophila leads to PD-like phenotypes. Studies of purified AS have revealed its ability to interact with diverse molecules including monoamines. Monoamine metabolism is associated with oxidative stress conditions that may contribute to DA-AS interactions promoting aggregation and neuronal damage. However, in order to explain the selective vulnerability of DA neurons there needs to be a link between DA metabolism and AS aggregation. Since only the DA neurons contain significant amounts of DA, this has been hypothesized to account for the selective vulnerability of SN neurons. However, DA itself may not be toxic at physiologic relevant doses, so it is probable that other DA metabolites may play a major role in AS aggregation. In this review, we discuss the role of the DA metabolite 3,4-dihydroxyphenylacetaldehyde to provide a plausible link between DA production and metabolism, AS aggregation and the pathogenesis of PD.
Collapse
Affiliation(s)
- James E Galvin
- Departments of Neurology, Anatomy and Neurobiology, Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
140
|
Vartiainen S, Aarnio V, Lakso M, Wong G. Increased lifespan in transgenic Caenorhabditis elegans overexpressing human alpha-synuclein. Exp Gerontol 2006; 41:871-6. [PMID: 16782295 DOI: 10.1016/j.exger.2006.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 05/02/2006] [Accepted: 05/09/2006] [Indexed: 11/23/2022]
Abstract
alpha-Synuclein is a short 14-kDa protein found in pathological lesions of age-related neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and multiple system atrophy. Its overexpression in transgenic mice, rats, Drosophila melanogaster, and Caenorhabditis elegans recapitulates many of the pathologic features observed in human Parkinson's disease including loss of dopaminergic neurons and motor deficits. Integrated transgenic C. elegans lines were generated that overexpress either human wildtype (WT) or mutant (A53T) forms. These transgenic lines demonstrated approximately 25% increase in lifespan (p<0.0001) compared to controls. When the transgenes were crossed into long-lived daf-2 (m577) or daf-2 (e1370) genetic backgrounds, the lifespan increase was also approximately 25% in comparison to the corresponding daf-2 strains (p<0.05). Pharyngeal pumping and egg laying were significantly decreased in the overexpressing transgenic lines, and lifespan increases were attenuated when lines were grown on thick bacterial lawns, suggesting that caloric restriction may explain some of the effects on lifespan. These studies provide initial evidence for a beneficial role of human alpha-synuclein in influencing lifespan.
Collapse
Affiliation(s)
- Suvi Vartiainen
- Department of Neurobiology, A.I. Virtanen Institute, Kuopio University, Kuopio 70211, Finland
| | | | | | | |
Collapse
|
141
|
Ding ZT, Wang Y, Jiang YP, Hashizume Y, Yoshida M, Mimuro M, Inagaki T, Iwase T. Characteristics of alpha-synucleinopathy in centenarians. Acta Neuropathol 2006; 111:450-8. [PMID: 16520971 DOI: 10.1007/s00401-005-0015-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 10/04/2005] [Accepted: 10/04/2005] [Indexed: 10/24/2022]
Abstract
To investigate the characteristics of alpha-synucleinopathy in the brains of centenarians, the autopsied brains and spinal cords from 23 cases were studied. Coronal slices were prepared from a section of the cerebral hemisphere, following the guidelines of the Consortium to Establish a Registry for Alzheimer's Disease (AD) (CERAD) and the consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB). Spinal cord specimens were prepared at each segment from the third cervical to the third sacral segment. In all cases, we performed standard stainings of hematoxylin-eosin, Klüver-Barrera, and Gallyas-Braak combined with Luxol fast blue/cresyl violet, and alpha-synuclein (AS), phosphorylated tau (AT8) and beta-amyloid protein immunostainings. One-way ANOVA analysis, Chi-square or Fisher exact test were used for statistical analysis. Overall, AS-positive structures were found in 8 (34.8%) of our 23 centenarians, 6 (35.3%) of 17 demented patients, and four (40%) out of ten AD patients. The frequencies of AS lesions in the brains with senile plaque (SP) stage 0-A, B, and C were 27.7, 33, and 50%, respectively. No statistical differences were found among the frequencies of AS lesions in the subgroups of NFT stages I-II, III-IV, and V-VI (P=0.478). Most cases showed a widespread distribution of AS-positive structures except for one patient, in whose brain only the medulla was involved. The distribution pattern of AS-positive lesions was similar to that in Parkinson's disease or DLB, but the pigmented neurons in substantia nigra were relatively well preserved. Our findings indicate that there is a high frequency of alpha-synucleinopathy in centenarians, SP-positive and AS-positive lesions may involve a synergistic interaction.
Collapse
Affiliation(s)
- Zheng-Tong Ding
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Mukaetova-Ladinska EB, McKeith IG. Pathophysiology of synuclein aggregation in Lewy body disease. Mech Ageing Dev 2006; 127:188-202. [PMID: 16297436 DOI: 10.1016/j.mad.2005.09.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 03/15/2005] [Accepted: 09/15/2005] [Indexed: 10/25/2022]
Abstract
We provide an overview of synaptic pathology in dementia with Lewy bodies (DLB) and related neurodegenerative disorders that are characterised by intraneuronal accumulation of alpha-synuclein aggregates. The review addresses the clinico-neuropathological correlates of synaptic pathology in Lewy body disease, and concentrates on: altered alpha-synuclein metabolism, mechanisms leading to alpha-synuclein fibril formation (self-polymerisation, alpha-synuclein mutations and post-translational modifications) and how these influence the axonal transport and synaptic network in ageing and disease process. Understanding the mechanisms leading to intraneuronal alpha-synuclein accumulation are crucial for the development of novel therapies for treatment of Lewy body disease.
Collapse
Affiliation(s)
- Elizabeta B Mukaetova-Ladinska
- Institute for Ageing and Health, University of Newcastle, Newcastle General Hospital, Westgate Road, Newcastle upon Tyne NE4 6BE, UK.
| | | |
Collapse
|
143
|
Yavich L, Oksman M, Tanila H, Kerokoski P, Hiltunen M, van Groen T, Puoliväli J, Männistö PT, García-Horsman A, MacDonald E, Beyreuther K, Hartmann T, Jäkälä P. Locomotor activity and evoked dopamine release are reduced in mice overexpressing A30P-mutated human alpha-synuclein. Neurobiol Dis 2006; 20:303-13. [PMID: 16242637 DOI: 10.1016/j.nbd.2005.03.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2004] [Revised: 02/16/2005] [Accepted: 03/15/2005] [Indexed: 11/29/2022] Open
Abstract
We have generated a transgenic mouse line overexpressing mutated human A30P alpha-synuclein under the control of the prion-related protein promoter. Immunohistology revealed mutated human A30P alpha-synuclein protein in numerous brain areas, but no gross morphological changes, Lewy bodies, or loss of dopaminergic cell bodies. The transgenic mice displayed decreased locomotion, impaired motor coordination, and balance. In vivo voltammetry showed that A30P mice responded to longer stimulation of the ascending dopaminergic pathways with less dopamine release in striatum and had a slower rate of dopamine decline after repeated stimulations or after alpha-methyl-p-tyrosine-HCl treatment. However, dopamine re-uptake or transporter levels were similar in transgenic and control mice. Our data provide evidence that overexpression of mutated human A30P alpha-synuclein in mice leads to a reduced size of the dopamine storage pool. This is in agreement with the previously postulated involvement of alpha-synuclein in the turnover of transmitter vesicles and may explain the observed motor deficits in A30P mice.
Collapse
Affiliation(s)
- Leonid Yavich
- Department of Pharmacology and Toxicology, University of Kuopio, FIN-70211 Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA, Price DL, Lee MK. Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 2006; 26:41-50. [PMID: 16399671 PMCID: PMC6381830 DOI: 10.1523/jneurosci.4308-05.2006] [Citation(s) in RCA: 518] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 11/03/2005] [Indexed: 11/21/2022] Open
Abstract
Alpha-synuclein (alpha-Syn) is enriched in nerve terminals. Two mutations in the alpha-Syn gene (Ala53--> Thr and Ala30--> Pro) occur in autosomal dominant familial Parkinson's disease. Mice overexpressing the human A53T mutant alpha-Syn develop a severe movement disorder, paralysis, and synucleinopathy, but the mechanisms are not understood. We examined whether transgenic mice expressing human wild-type or familial Parkinson's disease-linked A53T or A30P mutant alpha-syn develop neuronal degeneration and cell death. Mutant mice were examined at early- to mid-stage disease and at near end-stage disease. Age-matched nontransgenic littermates were controls. In A53T mice, neurons in brainstem and spinal cord exhibited large axonal swellings, somal chromatolytic changes, and nuclear condensation. Spheroid eosinophilic Lewy body-like inclusions were present in the cytoplasm of cortical neurons and spinal motor neurons. These inclusions contained human alpha-syn and nitrated synuclein. Motor neurons were depleted (approximately 75%) in A53T mice but were affected less in A30P mice. Axonal degeneration was present in many regions. Electron microscopy confirmed the cell and axonal degeneration and revealed cytoplasmic inclusions in dendrites and axons. Some inclusions were degenerating mitochondria and were positive for humanalpha-syn. Mitochondrial complex IV and V proteins were at control levels, but complex IV activity was reduced significantly in spinal cord. Subsets of neurons in neocortex, brainstem, and spinal cord ventral horn were positive for terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling, cleaved caspase-3, and p53. Mitochondria in neurons had terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling-positive matrices and p53 at the outer membrane. Thus, A53T mutant mice develop intraneuronal inclusions, mitochondrial DNA damage and degeneration, and apoptotic-like death of neocortical, brainstem, and motor neurons.
Collapse
Affiliation(s)
- Lee J Martin
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA.
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
The etiologies of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, polyglutamine diseases, or prion diseases may be diverse; however, aberrations in protein folding, processing, and/or degradation are common features of these entities, implying a role of quality control systems, such as molecular chaperones and the ubiquitin-proteasome pathway. There is substantial evidence for a causal role of protein misfolding in the pathogenic process coming from neuropathology, genetics, animal modeling, and biophysics. The presence of protein aggregates in all neurodegenerative diseases gave rise to the hypothesis that protein aggregates, be it intracellular or extracellular deposits, may perturb the cellular homeostasis and disintegrate neuronal function (Table 1). More recently, however, an increasing number of studies have indicated that protein aggregates are not toxic per se and might even serve a protective role by sequestering misfolded proteins. Specifically, experimental models of polyglutamine diseases, Alzheimer's disease, and Parkinson's disease revealed that the appearance of aggregates can be dissociated from neuronal toxicity, while misfolded monomers or oligomeric intermediates seem to be the toxic species. The unique features of molecular chaperones to assist in the folding of nascent proteins and to prevent stress-induced misfolding was the rationale to exploit their effects in different models of neurodegenerative diseases. This chapter concentrates on two neurodegenerative diseases, Parkinson's disease and prion diseases, with a special focus on protein misfolding and a possible role of molecular chaperones.
Collapse
Affiliation(s)
- K F Winklhofer
- Department of Cellular Biochemistry, Max-Planck-Institute for Biochemistry, Martinsried, Germany.
| | | |
Collapse
|
146
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder that results primarily from the death of dopaminergic neurons in the substantia nigra. Although the etiology of PD is incompletely understood, the recent discovery of genes associated with rare monogenic forms of the disease, together with earlier studies and new experimental animal models, has provided important and novel insight into the molecular pathways involved in disease pathogenesis. Increasing evidence indicates that deficits in mitochondrial function, oxidative and nitrosative stress, the accumulation of aberrant or misfolded proteins, and ubiquitin-proteasome system dysfunction may represent the principal molecular pathways or events that commonly underlie the pathogenesis of sporadic and familial forms of PD .
Collapse
Affiliation(s)
- Darren J Moore
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
147
|
Li W, Lee MK. Antiapoptotic property of human α-synuclein in neuronal cell lines is associated with the inhibition of caspase-3 but not caspase-9 activity. J Neurochem 2005; 93:1542-50. [PMID: 15935070 DOI: 10.1111/j.1471-4159.2005.03146.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abnormalities of alpha-synuclein (alpha-Syn) are mechanistically linked to Parkinson's disease (PD) and other alpha-synucleinopathies. To gain additional insights into the relationships between alpha-Syn expression and cell death, we examined the effects of expressing human alpha-Syn (Hualpha-Syn) variants on the cellular vulnerability to apoptotic stimuli. We show that the expression of wild-type (WT) and A30P mutant, but not A53T mutant, Hualpha-Syn leads to the protection of neuronal cell lines from apoptosis but not necrosis. Significantly, Hualpha-Syn did not protect non-neuronal cell lines from apoptosis. We also show that A53T mutant is a loss of function in regards to the antiapoptotic property since the expression of WT Hualpha-Syn with an excess of A53T mutant Hualpha-Syn leads to protection of the cells from apoptosis. The antiapoptotic property is specific to human alpha-Syn as neither beta-Syn nor mouse alpha-Syn protected cells from apoptosis, and the carboxy-terminal 20 amino acids are required for the antiapoptotic property. Analyses of capase-3 and caspase-9 activation reveal that the antiapoptotic property of Hualpha-Syn in neuronal cell lines is associated with the attenuation of caspase-3 activity without affecting the caspase-9 activity or the levels of cleaved, active caspase-3. We conclude that Hualpha-Syn modulates the activity of cleaved caspase-3 product in neuronal cell lines.
Collapse
Affiliation(s)
- Wenxue Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|