101
|
Siegenthaler MM, Berchtold NC, Cotman CW, Keirstead HS. Voluntary running attenuates age-related deficits following SCI. Exp Neurol 2008; 210:207-16. [PMID: 18164294 PMCID: PMC2387276 DOI: 10.1016/j.expneurol.2007.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/26/2007] [Accepted: 10/27/2007] [Indexed: 11/26/2022]
Abstract
Over the past few decades, the average age at time of spinal cord injury (SCI) has increased. Here we examined locomotor recovery and myelin pathology in both young and aged adult rats following contusion SCI. Our assessment indicates that the rate of locomotor recovery following SCI is significantly delayed in aged rats as compared to young rats, and is associated with a greater degree of pathology and demyelination. Additionally, we examined the effect of voluntary exercise, pre- and post-injury, on locomotor recovery and myelin pathology following contusion SCI. Our data indicate that exercise improves the locomotor recovery of injured aged rats such that it is comparable to the recovery rate of injured young rats, and is associated with a decreased area of pathology and amount of demyelination. Interestingly, the rate of locomotor recovery and myelin pathology in the aged exercised rats was similar to that of the young sedentary rats after injury, indicating that exercise attenuates the delayed recovery of function and associated histopathology in aged rats. These data indicate that there is an age-related delay in locomotor recovery following SCI, and an age-related increase in histopathology following SCI. Importantly, our data indicate that exercise attenuates these age-related deficits following SCI.
Collapse
Affiliation(s)
- Monica M. Siegenthaler
- Reeve-Irvine Research Center, Department of Anatomy & Neurobiology, School of Medicine, 2111 Gillespie Neuroscience Research Facility, University of California at Irvine, Irvine, CA, 92697-4292
| | - Nicole C. Berchtold
- Institute for Brain Ageing and Dementia, Gillespie Neuroscience Research Facility, University of California at Irvine, Irvine, CA, 92697-4292
| | - Carl W. Cotman
- Institute for Brain Ageing and Dementia, Gillespie Neuroscience Research Facility, University of California at Irvine, Irvine, CA, 92697-4292
| | - Hans S. Keirstead
- Reeve-Irvine Research Center, Department of Anatomy & Neurobiology, School of Medicine, 2111 Gillespie Neuroscience Research Facility, University of California at Irvine, Irvine, CA, 92697-4292
| |
Collapse
|
102
|
Insulin-like growth factor system regulates oligodendroglial cell behavior: therapeutic potential in CNS. J Mol Neurosci 2008; 35:81-90. [PMID: 18299999 DOI: 10.1007/s12031-008-9041-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 01/11/2008] [Accepted: 01/13/2008] [Indexed: 12/13/2022]
Abstract
Amongst the many soluble extracellular factors stimulating intracellular signal transduction pathways and driving cellular processes such as proliferation, differentiation and survival, insulin-like growth factors (IGFs) stand out as indispensable factors for proper oligodendrocyte differentiation and accompanying myelin production. Owing to its potent myelinogenic capacity and its neuroprotective properties, IGFs hold therapeutic potential in demyelinating and neurodengenerative diseases. However, the IGF system is comprised of a complex molecular network involving regulatory binding proteins, proteases, cell surface and extracellular matrix components which orchestrate IGF-specific functions. Thus, the complexity by which these factors are tightly regulated makes a simplistic therapeutic approach towards treating demyelinating conditions unfeasible. In the present review, we address these issues and consider current therapeutic prospects of oligodendrocyte-targeted IGF-based therapies.
Collapse
|
103
|
Abstract
Myelin repair (remyelination) following the demyelination of central nervous system (CNS) axons in diseases such as multiple sclerosis plays a critical role in determining the level of accompanying neurologic disability. While remyelination can be quite robust, in multiple sclerosis it often fails. Understanding and stimulating the remyelination process are therefore important goals in MS research. Remyelination is a complex cellular process that involves an intimate interplay between the myelin-producing cells of the CNS (oligodendrocytes), the axons to be myelinated, as well as CNS-infiltrating immune cells. Genetic analysis can be a powerful tool for the functional analysis of complex cellular processes and has recently been applied to the problem of remyelination failure during disease. This chapter reviews the recent use of genetic approaches for the study of CNS remyelination in mouse models of demyelinating disease.
Collapse
|
104
|
Chandran S, Hunt D, Joannides A, Zhao C, Compston A, Franklin RJM. Myelin repair: the role of stem and precursor cells in multiple sclerosis. Philos Trans R Soc Lond B Biol Sci 2008; 363:171-83. [PMID: 17282989 PMCID: PMC2605493 DOI: 10.1098/rstb.2006.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis is the most common potential cause of neurological disability in young adults. The disease has two distinct clinical phases, each reflecting a dominant role for separate pathological processes: inflammation drives activity during the relapsing-remitting stage and axon degeneration represents the principal substrate of progressive disability. Recent advances in disease-modifying treatments target only the inflammatory process. They are ineffective in the progressive stage, leaving the science of disease progression unsolved. Here, the requirement is for strategies that promote remyelination and prevent axonal loss. Pathological and experimental studies suggest that these processes are tightly linked, and that remyelination or myelin repair will both restore structure and protect axons. This review considers the basic and clinical biology of remyelination and the potential contribution of stem and precursor cells to enhance and supplement spontaneous remyelination.
Collapse
Affiliation(s)
- Siddharthan Chandran
- Cambridge Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge CB2 2PY, UK.
| | | | | | | | | | | |
Collapse
|
105
|
Duce JA, Podvin S, Hollander W, Kipling D, Rosene DL, Abraham CR. Gene profile analysis implicates Klotho as an important contributor to aging changes in brain white matter of the rhesus monkey. Glia 2008; 56:106-17. [PMID: 17963266 DOI: 10.1002/glia.20593] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional studies of brain changes in normal aging have concentrated on gray matter as the locus for cognitive dysfunction. However, there is accumulating evidence from studies of normal aging in the rhesus monkey that changes in white matter may be a more critical factor in cognitive decline. Such changes include ultrastructural and biochemical evidence of myelin breakdown with age, as well as more recent magnetic resonance imaging of global loss of forebrain white matter volume and magnetic resonance diffusion tension imaging evidence of increased diffusivity in white matter. Moreover, many of these white matter changes correlate with age-related cognitive dysfunction. Based on these diverse white matter findings, the present work utilized high-density oligonucleotide microarrays to assess gene profile changes associated with age in the white matter of the corpus callosum. This approach identified several classes of genes that were differentially expressed in aging. Broadly characterized, these genes were predominantly related to an increase in stress factors and a decrease in cell function. The cell function changes included increased cell cycle inhibition and proteolysis, as well as decreased mitochondrial function, signal transduction, and protein translation. While most of these categories have previously been reported in functional brain aging, this is the first time they have been associated directly with white matter. Microarray analysis has also enabled the identification of neuroprotective response pathways activated by age in white matter, as well as several genes implicated in lifespan. Of particular interest was the identification of Klotho, a multifunctional protein that regulates phosphate and calcium metabolism, as well as insulin resistance, and is known to defend against oxidative stress and apoptosis. Combining the findings from the microarray study enabled us to formulate a model of white matter aging where specific genes are suggested as primary factors in disrupting white matter function. In conclusion, the overall changes described in this study could provide an explanation for aging changes in white matter that might be initiated or enhanced by an altered expression of life span associated genes such as Klotho.
Collapse
Affiliation(s)
- James A Duce
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
106
|
Briggs DT, Martin CB, Ingersoll SA, Barnum SR, Martin BK. Astrocyte-specific expression of a soluble form of the murine complement control protein Crry confers demyelination protection in the cuprizone model. Glia 2007; 55:1405-15. [PMID: 17674370 DOI: 10.1002/glia.20551] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Complement has been implicated as a potential effector mechanism in neurodegeneration; yet the precise role of complement in this process remains elusive. In this report, we have utilized the cuprizone model of demyelination-remyelination to examine the contribution of complement to disease. C1q deposition was observed in the corpus callosum of C57BL/6 mice during demyelination, suggesting complement activation by apoptotic oligodendrocyte debris. Simultaneously, these mice lost expression of the rodent complement regulatory protein, Crry. A soluble CNS-specific form of the Crry protein (sCrry) expressed in a transgenic mouse under the control of an astrocyte-specific promoter was induced in the corpus callosum during cuprizone treatment. Expression of this protein completely protected the mice from demyelination. Interestingly, sCrry mice had low levels of demyelination at later times when control mice were remyelinating. Although the sCrry transgenic mice had lower levels of demyelination, there was no decrease in overall cellularity, however there were decreased numbers of microglia in the sCrry mice relative to controls. Strikingly, sCrry mice had early recovery of mature oligodendrocytes, although they later disappeared. TUNEL staining suggested that production of the sCrry protein in the transgenic mice protected from a late apoptosis event at 3 weeks of cuprizone treatment. Our data suggest complement provides some protection of mature oligodendrocytes during cuprizone treatment but may be critical for subsequent remyelination events. These data suggest that temporal restriction of complement inhibition may be required in some disease settings.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Astrocytes/immunology
- Astrocytes/metabolism
- Brain/immunology
- Brain/metabolism
- Brain/physiopathology
- Chelating Agents
- Complement System Proteins/immunology
- Complement System Proteins/metabolism
- Corpus Callosum/immunology
- Corpus Callosum/metabolism
- Corpus Callosum/physiopathology
- Cuprizone
- Cytoprotection/genetics
- Demyelinating Autoimmune Diseases, CNS/chemically induced
- Demyelinating Autoimmune Diseases, CNS/genetics
- Demyelinating Autoimmune Diseases, CNS/immunology
- Disease Models, Animal
- Glial Fibrillary Acidic Protein/genetics
- Gliosis/genetics
- Gliosis/immunology
- Gliosis/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Nerve Regeneration/genetics
- Oligodendroglia/immunology
- Receptors, Complement/genetics
- Receptors, Complement/immunology
- Receptors, Complement/metabolism
- Receptors, Complement 3b
- Time Factors
Collapse
Affiliation(s)
- Dustin T Briggs
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
107
|
Armstrong RC. Growth factor regulation of remyelination: behind the growing interest in endogenous cell repair of the CNS. FUTURE NEUROLOGY 2007; 2:689-697. [PMID: 19079759 PMCID: PMC2601644 DOI: 10.2217/14796708.2.6.689] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Remyelination facilitates recovery of saltatory conduction along demyelinated axons and may help prevent axon damage in patients with demyelinating diseases, such as multiple sclerosis. The extent of remyelination in multiple sclerosis lesions varies dramatically, indicating a capacity for repair that is not fulfilled in lesions with poor remyelination. In experimental models of demyelinating disease, remyelination is limited by chronic disease that depletes the oligodendrocyte progenitor (OP) population, inhibits OP differentiation into remyelinating oligodendrocytes and/or perturbs cell survival in the lesion environment. Manipulating the activity of growth factor signaling pathways significantly improves the ability of endogenous OP cells to accomplish extensive remyelination. Specifically, growth factors have been identified that can regulate OP proliferation, differentiation and survival in demyelinated lesions. Therefore, growth factors may be key signals for strategies to improve conditions with poor remyelination.
Collapse
Affiliation(s)
- Regina C Armstrong
- Uniformed Services University of the Health Sciences, Department of Anatomy, Physiology & Genetics, 4301 Jones Bridge Rd, Bethesda, MD 20814-4799, USA, Tel.: +1 301 295 3205; ;
| |
Collapse
|
108
|
Palacios N, Sánchez-Franco F, Fernández M, Sánchez I, Villuendas G, Cacicedo L. Opposite effects of two PKA inhibitors on cAMP inhibition of IGF-I-induced oligodendrocyte development: a problem of unspecificity? Brain Res 2007; 1178:1-11. [PMID: 17920050 DOI: 10.1016/j.brainres.2007.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/29/2007] [Accepted: 07/10/2007] [Indexed: 11/24/2022]
Abstract
The stimulatory effect of insulin-like growth factor I (IGF-I) on myelin basic protein (MBP) expression, a parameter for oligodendrocyte development, is mediated by the MAPK and PI3K signaling pathways. We have previously shown that the second messenger cAMP inhibits IGF-I-induced MAPK activation as well as MBP expression. We also showed that the PKA inhibitor Rp-cAMPS reverted the cAMP effect on IGF-I-induced MBP without affecting the cAMP effect on IGF-I-induced MAPK activation. Here we report that, in contrast to Rp-cAMPS, H89 (a PKA inhibitor structurally non-related to Rp-cAMPS) enhances both the inhibitory effect of cAMP on IGF-I-induced MBP expression and the inhibitory effect of cAMP on IGF-I-induced MAPK activation. Likewise, H89 is capable of inhibiting the IGF-I-induced MAPK activation in the absence of PKA stimulation. Thus, we hypothesize that an unspecific action of H89 on a target located upstream MAPK could account for the discrepancies between the effects elicited by Rp-cAMPS and H89.
Collapse
Affiliation(s)
- Nuria Palacios
- Endocrinology Department, Hospital Ramón y Cajal, Carretera de Colmenar, Km 9, 28034 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
109
|
Ye P, Kollias G, D'Ercole AJ. Insulin-like growth factor-I ameliorates demyelination induced by tumor necrosis factor-alpha in transgenic mice. J Neurosci Res 2007; 85:712-22. [PMID: 17279553 PMCID: PMC1832145 DOI: 10.1002/jnr.21181] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our groups have reported that tumor necrosis factor-alpha (TNF-alpha) causes myelin damage and apoptosis of oligodendrocytes and their precursors in vitro and in vivo. We also have reported that insulin-like growth factor-I (IGF-I) can protect cultured oligodendrocytes and their precursors from TNF-alpha-induced damage. In this study, we investigated whether IGF-I can protect oligodendrocytes and myelination from TNF-alpha-induced damage in vivo by cross-breeding TNF-alpha transgenic (Tg) mice with IGF-I Tg mice that overexpress IGF-I exclusively in brain. At 8 weeks of age, compared with those of wild-type (WT) mice, the brain weights of TNF-alpha Tg mice were decreased by approximately 20%, and those of IGF-I Tg mice were increased by approximately 20%. The brain weights of mice that carry both TNF-alpha and IGF-I transgenes (TNF-alpha/IGF-I Tg mice) did not differ from those of WT mice. As judged by histochemical staining and immunostaining, myelin content in the cerebellum of TNF-alpha/IGF-I Tg mice was similar to that in WT mice and much more than that in TNF-alpha Tg mice. Consistently, Western immunoblot analysis showed that myelin basic protein (MBP) abundance in the cerebellum of TNF-alpha/IGF-I Tg mice was double that in TNF-alpha Tg mice. In comparison with WT mice, the number of oligodendrocytes was decreased by approximately 36% in TNF-alpha Tg mice, whereas it was increased in IGF-I Tg mice by approximately 40%. Oligodendrocyte number in TNF-alpha/IGF-I Tg mice was almost twice that in TNF-alpha Tg mice. Furthermore, IGF-I overexpression significantly reduced TNF-alpha-induced increases in apoptotic cell number, active caspase-3 abundance, and degradaion of MBP. Our results indicate that IGF-I is capable of protecting myelin and oligodendrocytes from TNF-alpha-induced damage in vivo.
Collapse
Affiliation(s)
- Ping Ye
- Division of Endocrinology, Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7039, USA.
| | | | | |
Collapse
|
110
|
Insulin-like growth factor type I biology and targeting in malignant gliomas. Neuroscience 2007; 145:795-811. [DOI: 10.1016/j.neuroscience.2007.01.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 11/20/2022]
|
111
|
Franco-Pons N, Torrente M, Colomina MT, Vilella E. Behavioral deficits in the cuprizone-induced murine model of demyelination/remyelination. Toxicol Lett 2007; 169:205-13. [PMID: 17317045 DOI: 10.1016/j.toxlet.2007.01.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 01/17/2007] [Accepted: 01/18/2007] [Indexed: 01/18/2023]
Abstract
The neurotoxicant cuprizone has been used extensively to create a mouse model of demyelination. However, the effects on behavior of cuprizone treatment have not been previously reported. We have analyzed the behavioral changes of mice given a diet containing 0.2% cuprizone for 6 weeks followed by 6 weeks of recovery. Behavior was assessed using a range of tests: the functional observation battery, the open-field test and the rota-rod test. Concurrent with the start of demyelination, at 3 and 4 weeks of 0.2% cuprizone treatment, the animals exhibited an increase in central nervous system activity and an inhibited anxiogenic response to the novelty challenge test. At 5 weeks of treatment (the period of maximal demyelination) equilibrium was altered and sensorimotor reactivity was also affected. Further, rota-rod analysis demonstrated that the treated group had poorer motor co-ordination than control animals. This effect was not reversed 6 weeks after cuprizone withdrawal. The animals in the recovery period also exhibited difficulties in the rota-rod progressive learning task. Our results indicate that behavioral deficits follow the course of demyelination-remyelination induced by administration of 0.2% cuprizone, and that some of the changes persist even after 6 weeks on normal diet.
Collapse
Affiliation(s)
- Neus Franco-Pons
- Unitat de Psiquiatria i Psicologia Mèdica, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain
| | | | | | | |
Collapse
|
112
|
Zeger M, Popken G, Zhang J, Xuan S, Lu QR, Schwab MH, Nave KA, Rowitch D, D’Ercole AJ, Ye P. Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal in vivo oligodendrocyte development and myelination. Glia 2007; 55:400-11. [PMID: 17186502 PMCID: PMC1774584 DOI: 10.1002/glia.20469] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Insulin-like growth factor-I (IGF-I) has been shown to be a potent agent in promoting the growth and differentiation of oligodendrocyte precursors, and in stimulating myelination during development and following injury. To definitively determine whether IGF-I acts directly on the cells of oligodendrocyte lineage, we generated lines of mice in which the type 1 IGF receptor gene (igf1r) was conditionally ablated either in Olig1 or proteolipid protein expressing cells (termed IGF1R(pre-oligo-ko) and IGF1R(oligo-ko) mice, respectively). Compared with wild type mice, IGF1R(pre-oligo-ko) mice had a decreased volume (by 35-55%) and cell number (by 54-70%) in the corpus callosum (CC) and anterior commissure at 2 and 6 weeks of age, respectively. IGF1R(oligo-ko) mice by 25 weeks of age also showed reductions, albeit less marked, in CC volume and cell number. Unlike astrocytes, the percentage of NG2(+) oligodendrocyte precursors was decreased by approximately 13% in 2-week-old IGF1R(pre-oligo-ko) mice, while the percentage of CC1(+) mature oligodendrocytes was decreased by approximately 24% in 6-week-old IGF1R(pre-oligo-ko) mice and approximately 25% in 25-week-old IGF1R(oligo-ko) mice. The reduction in these cells is apparently a result of decreased proliferation and increased apoptosis. These results indicate that IGF-I directly affects oligodendrocytes and myelination in vivo via IGF1R, and that IGF1R signaling in the cells of oligodendrocyte lineage is required for normal oligodendrocyte development and myelination. These data also provide a fundamental basis for developing strategies with the potential to target IGF-IGF1R signaling pathways in oligodendrocyte lineage cells for the treatment of demyelinating disorders.
Collapse
Affiliation(s)
- Martha Zeger
- Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Greg Popken
- Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jihui Zhang
- Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shouhong Xuan
- Dept of Genetics and Development, Columbia University, New York, New York
| | - Q. Richard Lu
- Dana-Farber Cancer Institute, Harvard University, Boston, MA
| | - Markus H. Schwab
- Dept of Neurogenetics, Max Planck Institute of Experimental Medicine, Germany
| | - Klaus-Armin Nave
- Dept of Neurogenetics, Max Planck Institute of Experimental Medicine, Germany
| | - David Rowitch
- Dana-Farber Cancer Institute, Harvard University, Boston, MA
| | - A. Joseph D’Ercole
- Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ping Ye
- Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Correspondence should be addressed to Dr. Ping Ye, Department of Pediatrics, CB# 7039, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7039, Tel: (919) 966-4435, Fax: (919) 966-2423, E-mail:
| |
Collapse
|
113
|
Kumar S, Biancotti JC, Yamaguchi M, de Vellis J. Combination of growth factors enhances remyelination in a cuprizone-induced demyelination mouse model. Neurochem Res 2006; 32:783-97. [PMID: 17186374 DOI: 10.1007/s11064-006-9208-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 10/16/2006] [Indexed: 10/23/2022]
Abstract
Loss of oligodendrocytes (OLs) is often associated with demyelination. PDGF-AA, bFGF, NT3 and IGF-1 are known to regulate OL proliferation, survival and/or differentiation. Following cuprizone-induced demyelination in mice a combination of above four growth factors (GF) was intracranially injected to stimulate remyelination in vivo. Activation of cell signaling and transcription factors involved in cell proliferation, survival and differentiation was observed in response to GF. Increased cell proliferation and migration occurred in corpus callosum, lateral ventricles, rostral migratory stream and cerebri at 2-5 days post injection (dpi) of GF cocktail. The fate of these newly formed nestin or bromodeoxyuridine (BrdU) positive progenitors was traced to proteoglycan NG2 and glutathione transferase (GST) pi positive cells, early and mature OL lineage markers, respectively. Immunostaining for myelin showed the presence of more myelinated fibers in GF-injected brains at 21 dpi. Remyelination in response to GF was confirmed by electron microscopy. In conclusion, this combination of GF is a promising tool to consider for remyelination strategies.
Collapse
Affiliation(s)
- Shalini Kumar
- Department of Neurobiology, Mental Retardation Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California-Los Angeles, 635 Charles E. Young Drive South, Los Angeles, CA 90095-7332, USA
| | | | | | | |
Collapse
|
114
|
Emery B, Cate HS, Marriott M, Merson T, Binder MD, Snell C, Soo PY, Murray S, Croker B, Zhang JG, Alexander WS, Cooper H, Butzkueven H, Kilpatrick TJ. Suppressor of cytokine signaling 3 limits protection of leukemia inhibitory factor receptor signaling against central demyelination. Proc Natl Acad Sci U S A 2006; 103:7859-64. [PMID: 16682639 PMCID: PMC1472535 DOI: 10.1073/pnas.0602574103] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enhancement of oligodendrocyte survival through activation of leukemia inhibitory factor receptor (LIFR) signaling is a candidate therapeutic strategy for demyelinating disease. However, in other cell types, LIFR signaling is under tight negative regulation by the intracellular protein suppressor of cytokine signaling 3 (SOCS3). We, therefore, postulated that deletion of the SOCS3 gene in oligodendrocytes would promote the beneficial effects of LIFR signaling in limiting demyelination. By studying wild-type and LIF-knockout mice, we established that SOCS3 expression by oligodendrocytes was induced by the demyelinative insult, that this induction depended on LIF, and that endogenously produced LIF was likely to be a key determinant of the CNS response to oligodendrocyte loss. Compared with wild-type controls, oligodendrocyte-specific SOCS3 conditional-knockout mice displayed enhanced c-fos activation and exogenous LIF-induced phosphorylation of signal transducer and activator of transcription 3. Moreover, these SOCS3-deficient mice were protected against cuprizone-induced oligodendrocyte loss relative to wild-type animals. These results indicate that modulation of SOCS3 expression could facilitate the endogenous response to CNS injury.
Collapse
Affiliation(s)
- Ben Emery
- *Department of Neurobiology, Stanford University, Stanford, CA 94305
| | | | | | | | | | | | | | | | - Ben Croker
- The Walter and Eliza Hall Institute, Parkville, Victoria 3150, Australia; and
| | - Jian-Guo Zhang
- The Walter and Eliza Hall Institute, Parkville, Victoria 3150, Australia; and
| | - Warren S. Alexander
- The Walter and Eliza Hall Institute, Parkville, Victoria 3150, Australia; and
| | - Helen Cooper
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Trevor J. Kilpatrick
- Howard Florey Institute and
- Centre for Neuroscience, University of Melbourne, Victoria 3010, Australia
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
115
|
Maña P, Liñares D, Fordham S, Staykova M, Willenborg D. Deleterious role of IFNgamma in a toxic model of central nervous system demyelination. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1464-73. [PMID: 16651614 PMCID: PMC1606575 DOI: 10.2353/ajpath.2006.050799] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/17/2006] [Indexed: 11/20/2022]
Abstract
Interferon-gamma (IFNgamma) is a pleiotropic cytokine that plays an important role in many inflammatory processes, including autoimmune diseases such as multiple sclerosis (MS). Demyelination is a hallmark of MS and a prominent pathological feature of several other inflammatory diseases of the central nervous system, including experimental autoimmune encephalomyelitis, an animal model of MS. Accordingly, in this study we followed the effect of IFNgamma in the demyelination and remyelination process by using an experimental autoimmune encephalomyelitis model of demyelination/remyelination after exposure of mice to the neurotoxic agent cuprizone. We show that demyelination in response to cuprizone is delayed in mice lacking the binding chain of IFNgamma receptor. In addition, IFNgammaR(-/-) mice exhibited an accelerated remyelination process after cuprizone was removed from the diet. Our results also indicate that the levels of IFNgamma were able to modulate the microglia/macrophage recruitment to the demyelinating areas. Moreover, the accelerated regenerative response showed by the IFNgammaR(-/-) mice was associated with a more efficient recruitment of oligodendrocyte precursor cells in the demyelinated areas. In conclusion, this study suggests that IFNgamma regulates the development and resolution of the demyelinating syndrome and may be associated with toxic effects on both mature oligodendrocytes and oligodendrocyte precursor cells.
Collapse
Affiliation(s)
- Paula Maña
- Neurosciences Research Unit, The Canberra Hospital, Australian National University Medical School, The Canberra Hospital, PO Box 11, Woden, 2601, Canberra, Australia
| | | | | | | | | |
Collapse
|
116
|
Settivari RS, Bhusari S, Evans T, Eichen PA, Hearne LB, Antoniou E, Spiers DE. Genomic analysis of the impact of fescue toxicosis on hepatic function1. J Anim Sci 2006; 84:1279-94. [PMID: 16612033 DOI: 10.2527/2006.8451279x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fescue toxicosis is caused by consumption of toxins produced by an endophytic fungus, Neotyphodium coenophialum, in tall fescue [Lolium arundinaceum (Schreb.) Darbysh]. Microarray analysis was used to identify shifts in genetic expression associated with the affected physiological processes to identify potential targets for future pharmacological/toxicological intervention. Male rats (n = 24) were implanted with temperature transmitters, which measure core temperature every 5 min. After an 8-d recovery, the rats were fed an endophyte-free diet for 5 d. During the following 5-d treatment period, rats were fed either an endophyte-free or an endophyte-infected (91.5 microg of ergovaline.kg of BW(-1).d(-1)) diet. At the end of treatment, rats were euthanized and a sample of the liver was obtained. Feed conversion efficiency was calculated for both treatment groups. Serum prolactin concentrations were measured using ELISA. Liver tissue RNA was reverse transcribed and hybridized to an oligonucleotide microarray chip. Microarray data were analyzed using a 2-step ANOVA model and validated by quantitative real-time PCR. Significant reductions in mean core temperature, feed intake, feed conversion efficiency, BW, liver weight per unit of BW, and serum prolactin concentrations were observed in endophyte-infected rats. There was downregulation (P < 0.05) of various genes associated with energy metabolism, growth and development, and antioxidant protection, as well as an upregulation of genes associated with gluconeogenesis, detoxification, and biotransformation. This study demonstrated that even short-term exposure of rats to tall fescue endophytic toxins under thermoneutral conditions can result in physiological responses associated with altered gene expression within the liver.
Collapse
Affiliation(s)
- R S Settivari
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Matsushima GK, Morell P. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 2006; 11:107-16. [PMID: 11145196 PMCID: PMC8098267 DOI: 10.1111/j.1750-3639.2001.tb00385.x] [Citation(s) in RCA: 735] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Myelin of the adult CNS is vulnerable to a variety of metabolic, toxic, and autoimmune insults. That remyelination can ensue, following demyelinating insult, has been well demonstrated. Details of the process of remyelination are, however difficult to ascertain since in most experimental models of demyelination/remyelination the severity, localization of lesion site, or time course of the pathophysiology is variable from animal to animal. In contrast, an experimental model in which massive demyelination can be reproducibly induced in large areas of mouse brain is exposure to the copper chelator, cuprizone, in the diet. We review work from several laboratories over the past 3 decades, with emphasis on our own recent studies, which suggest an overall picture of cellular events involved in demyelination/remyelination. When 8 week old C57BL/6 mice are fed 0.2% cuprizone in the diet, mature olidgodendroglia are specifically insulted (cannot fulfill the metabolic demand of support of vast amounts of myelin) and go through apoptosis. This is closely followed by recruitment of microglia and phagoctytosis of myelin. Studies of myelin gene expression, coordinated with morphological studies, indicate that even in the face of continued metabolic challenge, oligodendroglial progenitor cells proliferate and invade demyelinated areas. If the cuprizone challenge is terminated, an almost complete remyelination takes place in a matter of weeks. Communication between different cell types by soluble factors may be inferred. This material is presented in the context of a model compatible with present data -- and which can be tested more rigorously with the cuprizone model. The reproducibility of the model indicates that it may allow for testing of manipulations (e.g. available knockouts or transgenics on the common genetic background, or pharmacological treatments) which may accelerate or repress the process of demyelination and or remyelination.
Collapse
Affiliation(s)
- G K Matsushima
- UNC Neuroscience Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 27599, USA.
| | | |
Collapse
|
118
|
Stidworthy MF, Genoud S, Suter U, Mantei N, Franklin RJM. Quantifying the early stages of remyelination following cuprizone-induced demyelination. Brain Pathol 2006; 13:329-39. [PMID: 12946022 PMCID: PMC8095752 DOI: 10.1111/j.1750-3639.2003.tb00032.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The demyelinating toxin cuprizone is used increasingly in mouse studies of central nervous system remyelination. The value of this model for such studies depends on an accurate description of its quantifiable features. We therefore investigated histology and ultrastructure during the early oligodendrocyte differentiation phase of remyelination in mice given cuprizone and allowed to recover for 2 weeks. Limiting the dose of cuprizone to 0.2% overcame significant mouse morbidity and weight loss seen with a 0.4% dose, but the distribution of cuprizone-induced demyelination was anatomically variable. The caudal corpus callosum and dorsal hippocampal commissure mostly demyelinated at this dose, but the rostral corpus callosum and rostral cerebellar peduncles did not. This variable response, together with small axon diameters and hence thin myelin sheaths, hindered analysis of the progress of early remyelination. The proportion of myelinated and unmyelinated axons in defined regions followed expected trends, but there was pronounced variation between animals. Furthermore, group mean G ratios did not change as expected during the early stages of remyelination, and regression analysis revealed a complex relationship between axon diameter and myelin sheath thickness during this period. We also noted axonal pathology that persisted for at least 2 weeks after cuprizone withdrawal.
Collapse
Affiliation(s)
- Mark F Stidworthy
- Department of Clinical Veterinary Medicine and Cambridge Centre for Brain Repair, University of Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
119
|
Palacios N, Sánchez-Franco F, Fernández M, Sánchez I, Cacicedo L. Intracellular events mediating insulin-like growth factor I-induced oligodendrocyte development: modulation by cyclic AMP. J Neurochem 2006; 95:1091-107. [PMID: 16271046 DOI: 10.1111/j.1471-4159.2005.03419.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Insulin-like growth factor I (IGF-I) is a potent inducer of oligodendrocyte development and myelination. Although IGF-I intracellular signaling has been well described in several cell types, intracellular mechanisms for IGF-I-induced oligodendrocyte development have not been defined. By using specific inhibitors of intracellular signaling pathways, we report here that the MAPK and phosphatidylinositol 3-kinase signaling pathways are required for the full effect of IGF-I on oligodendrocyte development in primary mixed rat cerebrocortical cell cultures. The MAPK activation, but not the phosphatidylinositol 3-kinase activation, leads to phosphorylation of the cAMP response element-binding protein, which is necessary for IGF-I to induce oligodendrocyte development. cAMP, although it does not show any effect on oligodendrocyte development, has an inhibitory effect on IGF-I-induced oligodendrocyte development that is mediated by the cAMP-dependent protein kinase. Furthermore, cAMP also has an inhibitory effect on IGF-I-dependent MAPK activation. This is a cAMP-dependent protein kinase-independent effect and probably contributes to the cAMP action on IGF-I-induced oligodendrocyte development.
Collapse
Affiliation(s)
- Nuria Palacios
- Servicio de Endocrinología, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | |
Collapse
|
120
|
Popken GJ, Dechert-Zeger M, Ye P, D'Ercole AJ. Brain Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 567:187-220. [PMID: 16372399 DOI: 10.1007/0-387-26274-1_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Gregory J Popken
- Division Pediatric Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, NC 27599-7039, USA
| | | | | | | |
Collapse
|
121
|
Russo VC, Gluckman PD, Feldman EL, Werther GA. The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 2005; 26:916-43. [PMID: 16131630 DOI: 10.1210/er.2004-0024] [Citation(s) in RCA: 366] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, much interest has been devoted to defining the role of the IGF system in the nervous system. The ubiquitous IGFs, their cell membrane receptors, and their carrier binding proteins, the IGFBPs, are expressed early in the development of the nervous system and are therefore considered to play a key role in these processes. In vitro studies have demonstrated that the IGF system promotes differentiation and proliferation and sustains survival, preventing apoptosis of neuronal and brain derived cells. Furthermore, studies of transgenic mice overexpressing components of the IGF system or mice with disruptions of the same genes have clearly shown that the IGF system plays a key role in vivo.
Collapse
Affiliation(s)
- V C Russo
- Centre for Hormone Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.
| | | | | | | |
Collapse
|
122
|
Lin S, Fan LW, Pang Y, Rhodes PG, Mitchell HJ, Cai Z. IGF-1 protects oligodendrocyte progenitor cells and improves neurological functions following cerebral hypoxia-ischemia in the neonatal rat. Brain Res 2005; 1063:15-26. [PMID: 16259966 DOI: 10.1016/j.brainres.2005.09.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 09/16/2005] [Accepted: 09/25/2005] [Indexed: 12/11/2022]
Abstract
To investigate if insulin-like growth factor-1 (IGF-1) provides neuroprotection to oligodendrocyte progenitor cells (OPCs) following cerebral hypoxia-ischemia, a previously developed neonatal rat model of white matter damage was used in this study. Postnatal day 4 (P4) SD rat pups were subjected to bilateral common carotid artery ligation, followed by exposure to 8% oxygen for 10 min. IGF-1 (0.5 microg) or vehicle was injected into the left ventricle after artery ligation and before the hypoxic exposure. Cerebral hypoxia-ischemia caused death of O4+ late OPCs in the P5 rat brain and impaired myelination in the P9 and P21 rat brain. Caspase-3 activation was involved in the death of OPCs. Moreover, cerebral hypoxia-ischemia impaired neurobehavioral performance in juvenile rats. IGF-1 treatment attenuated damages to OPCs and improved neurological functions after cerebral hypoxia-ischemia. It reduced death of O4+ OPCs by 39% on P5 and enhanced myelination on P9 and P21. Bromodeoxyuridine uptake assay showed that cerebral hypoxia-ischemia inhibited proliferation of stem/progenitor cells in the subventricular zone and NG2+ early OPCs in the white matter area. IGF-1 treatment increased cell proliferation in the subventricular zone by 31% 1 day following hypoxic-ischemic insult. Proliferation of early and late OPCs in the IGF-1-treated group was 1.5- and 2.4-fold of that in the vehicle-treated group, respectively. In conclusion, IGF-1 provided potent neuroprotection to OPCs and improved neurological functions following cerebral hypoxia-ischemia in the neonatal rat. The neuroprotection of IGF-1 was associated with its antiapoptotic and mitogenic effects.
Collapse
Affiliation(s)
- Shuying Lin
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | | | |
Collapse
|
123
|
Zaka M, Rafi MA, Rao HZ, Luzi P, Wenger DA. Insulin-like growth factor-1 provides protection against psychosine-induced apoptosis in cultured mouse oligodendrocyte progenitor cells using primarily the PI3K/Akt pathway. Mol Cell Neurosci 2005; 30:398-407. [PMID: 16169744 DOI: 10.1016/j.mcn.2005.08.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 07/28/2005] [Accepted: 08/12/2005] [Indexed: 10/25/2022] Open
Abstract
Psychosine (galactosylsphingosine) is a toxic metabolite that accumulates in globoid cell leukodystrophy (GLD) due to the deficiency of galactocerebrosidase (GALC) activity. This results in subsequent programmed cell death of oligodendrocytes and demyelination in human patients and animal models. We investigated the potential role of insulin-like growth factor-1 (IGF-1) in modifying the apoptotic effect of psychosine in cultured mouse oligodendrocyte progenitor cells (OLP-II). We show that psychosine inhibits the phosphorylation of Akt and Erk1/Erk2 (Erk1/2), which are the main anti-apoptotic pathways of the IGF-1 receptor (IGF-1R). Although IGF-1 sustained phosphorylation of both of these pathways, it provided maximum protection to OLP-II cells from psychosine-induced cell death in a PI3K/Akt-dependent manner. The effects of IGF-1 were dose-dependent and resulted in increased IGF-1R autophosphorylation levels. Although relatively high concentrations of IGF-1 also resulted in the activation of the insulin receptor (IR), its effect was more significant on the IGF-1R.
Collapse
Affiliation(s)
- Mariam Zaka
- Department of Neurology, 1020 Locust Street, Room 394, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
124
|
Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M. Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci 2005; 29:381-93. [PMID: 15890528 DOI: 10.1016/j.mcn.2005.03.005] [Citation(s) in RCA: 274] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2004] [Revised: 03/13/2005] [Accepted: 03/15/2005] [Indexed: 11/23/2022] Open
Abstract
'Protective autoimmunity' refers to a well-controlled anti-self response that helps the body resist neurodegeneration. The response is mediated by autoimmune T cells, which produce cytokines and growth factors. Using an in vitro assay of hippocampal slices, we show that the cytokines interferon-gamma and (especially) interleukin-4, characteristic of pro-inflammatory and anti-inflammatory T cells, respectively, can make microglia neuroprotective. Aggregated beta-amyloid, like bacterial cell wall-derived lipopolysaccharide, rendered the microglia cytotoxic. Cytotoxicity was correlated with a signal transduction pathway that down-regulates expression of class-II major histocompatibility proteins (MHC-II) through the MHC-II-transactivator and the invariant chain. Protection by interleukin-4 was attributed to down-regulation of tumor necrosis factor-alpha and up-regulation of insulin-like growth factor I. These findings suggest that beneficial or harmful expression of the local immune response in the damaged CNS depends on how microglia interpret the threat, and that a well-regulated T-cell-mediated response enables microglia to alleviate rather than exacerbate stressful situations in the CNS.
Collapse
Affiliation(s)
- Oleg Butovsky
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | |
Collapse
|
125
|
Kerr BJ, Patterson PH. Leukemia inhibitory factor promotes oligodendrocyte survival after spinal cord injury. Glia 2005; 51:73-9. [PMID: 15779090 DOI: 10.1002/glia.20177] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Injury to the mammalian spinal cord is accompanied by a delayed, secondary wave of oligodendrocyte apoptosis that arises several days after the initial injury. A strong candidate to support oligodendrocyte survival after spinal cord injury is the pleiotropic cytokine, leukemia inhibitory factor (LIF). In vitro, LIF potentiates the differentiation and survival of oligodendrocyte precursors. LIF can also prevent oligodendrocyte apoptosis in response to either growth factor removal or cytotoxic challenge. More recently, in vivo studies have demonstrated that LIF is effective in preventing oligodendrocyte death in a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). We therefore asked whether systemic delivery of LIF could ameliorate oligodendrocyte death in a mouse model of spinal cord injury. We have found that daily administration of LIF (25 microg/kg/day) promotes oligodendrocyte survival after spinal cord injury. Interestingly however, this effect does not appear to be mediated by a direct action of LIF on the oligodendrocyte but rather via an ancillary cell type, which results in augmented expression of another trophic factor capable of supporting oligodendrocyte survival, insulin-like growth factor 1 (IGF-1).
Collapse
Affiliation(s)
- Bradley J Kerr
- Biology Division, California Institute of Technology, Pasadena, California, USA.
| | | |
Collapse
|
126
|
Murtie JC, Zhou YX, Le TQ, Vana AC, Armstrong RC. PDGF and FGF2 pathways regulate distinct oligodendrocyte lineage responses in experimental demyelination with spontaneous remyelination. Neurobiol Dis 2005; 19:171-82. [PMID: 15837572 DOI: 10.1016/j.nbd.2004.12.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 10/28/2004] [Accepted: 12/10/2004] [Indexed: 11/15/2022] Open
Abstract
Repair of myelin damage in the adult CNS requires oligodendrocyte progenitor (OP) proliferation and subsequent differentiation into remyelinating oligodendrocytes. Platelet-derived growth factor (PDGF) and fibroblast growth factor-2 (FGF2) have been predicted to act individually and/or cooperatively to generate remyelinating oligodendrocytes. Analysis of PDGF alpha receptor (PDGF alpha R) heterozygous (+/-) mice indicates that PDGF alpha R expression modulates oligodendrocyte density in non-lesioned adult CNS. Analysis of cuprizone demyelination and recovery in PDGF alpha R+/- mice, FGF2 knockout (-/-) mice, and PDGF alpha R+/- FGF2-/- mice demonstrated that: (1) OP proliferation and oligodendrocyte regeneration is impaired in PDGF alpha R heterozygotes, (2) PDGF alpha R+/- and FGF2-/- deletions do not act cooperatively to impair OP amplification, (3) oligodendrocyte differentiation is more frequent in FGF2-/- mice, and (4) FGF2 deletion in combination with the PDGF alpha R+/- genotype rescues impaired oligodendrocyte regeneration of PDGF alpha R heterozygotes. These findings demonstrate distinct roles for PDGF and FGF2 in vivo in the context of a demyelinating disease with spontaneous remyelination.
Collapse
Affiliation(s)
- Joshua C Murtie
- Program in Molecular and Cell Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA
| | | | | | | | | |
Collapse
|
127
|
Kotter MR, Zhao C, van Rooijen N, Franklin RJM. Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol Dis 2005; 18:166-75. [PMID: 15649707 DOI: 10.1016/j.nbd.2004.09.019] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 09/23/2004] [Accepted: 09/28/2004] [Indexed: 11/23/2022] Open
Abstract
Although macrophages are mediators of CNS demyelination, they are also implicated in remyelination. To examine the role of macrophages in CNS remyelination, adult rats were depleted of monocytes using clodronate liposomes and demyelination induced in the spinal cord white matter using lysolecithin. In situ hybridization for scavenger receptor-B and myelin basic protein (MBP) revealed a transiently impaired macrophage response associated with delayed remyelination in liposome-treated animals. Macrophage reduction corresponded with delayed recruitment of PDGFRalpha+ oligodendrocyte progenitor cells (OPCs), which preceded changes in myelin phagocytosis, indicating a macrophage effect on OPCs independent of myelin debris clearance. Macrophage-depletion induced changes in the mRNA expression of insulin-like growth factor-1 and transforming growth factor beta1, but not platelet-derived growth factor-A and fibroblast growth factor-2. These data suggest that the macrophage response to toxin-induced demyelination influences the growth factor environment, thereby affecting the behavior of OPCs and hence the efficiency of remyelination.
Collapse
Affiliation(s)
- Mark R Kotter
- Cambridge Centre for Brain Repair, and Neuroregeneration Laboratory, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | | | | | | |
Collapse
|
128
|
Deloulme JC, Raponi E, Gentil BJ, Bertacchi N, Marks A, Labourdette G, Baudier J. Nuclear expression of S100B in oligodendrocyte progenitor cells correlates with differentiation toward the oligodendroglial lineage and modulates oligodendrocytes maturation. Mol Cell Neurosci 2005; 27:453-65. [PMID: 15555923 DOI: 10.1016/j.mcn.2004.07.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 07/10/2004] [Accepted: 07/27/2004] [Indexed: 11/28/2022] Open
Abstract
The S100B protein belongs to the S100 family of EF-hand calcium binding proteins implicated in cell growth and differentiation. Here, we show that in the developing and the adult mouse brain, S100B is expressed in oligodendroglial progenitor cells (OPC) committed to differentiate into the oligodendrocyte (OL) lineage. Nuclear S100B accumulation in OPC correlates with the transition from the fast dividing multipotent stage to the morphological differentiated, slow proliferating, pro-OL differentiation stage. In the adult, S100B expression is down-regulated in mature OLs that have established contacts with their axonal targets, suggesting a nuclear S100B function during oligodendroglial cells maturation. In vitro, the morphological transformation and maturation of pro-OL cells are delayed in the absence of S100B. Moreover, mice lacking S100B show an apparent delay in OPC maturation in response to demyelinating insult. We propose that nuclear S100B participates in the regulation of oligodendroglial cell maturation.
Collapse
Affiliation(s)
- Jean Christophe Deloulme
- Laboratoire de Transduction du Signal, INSERM EMI-0104, DRDC CEA-Grenoble, 38054 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
Multiple sclerosis (MS) is the most common cause of neurological disability in young adults. The pathological hallmark is multifocal demyelination and inflammation in the CNS. In addition, there is also a variable extent of axonal damage. Remyelination has been seen in up to 70% of lesions but repair is generally incomplete. The demonstration of neuropathological heterogeneity of MS lesions suggests different pathophysiological subtypes and it is therefore unlikely that there is a uniform cause of incomplete remyelination in MS. In recent years, a great body of knowledge has accumulated in order to better understand the regulatory mechanisms of remyelination. This has led to a number of approaches to promote repair mechanisms, most of which have been successful in animal experiments. Unfortunately, the translation of these experimental data into clinical treatments has proven difficult. More information on the pathogenesis of MS, the reason why repair mechanisms fail in MS and a better understanding of the regulation of remyelination are required. This will ultimately lead to a specific treatment tailored for the individual patient and will probably involve a combination of immunomodulation, remyelination and neuroprotection.
Collapse
Affiliation(s)
- Martin Stangel
- Department of Neurology, Medical School Hannover, Germany.
| |
Collapse
|
130
|
Abstract
The adult CNS has the capacity to remyelinate following metabolic, toxic and autoimmune demyelinating insults. In cuprizone-induced demyelination, spontaneous remyelination occurs after the cessation of cuprizone diet. We used the cuprizone model to investigate the role of glial K(+) channels in oligodendroglial (OLG) regeneration and remyelination in vivo. We found that treatment with 4-aminopyridine (4-AP), a broad-spectrum K(+) channel antagonist, results in: (1) decreased number of oligodendroglial progenitors (OP) and OLGs; (2) diminished astrogliosis; and (3) decreased remyelination in the corpus callosum based on the immunoreactivity to myelin basic protein (MBP), Rip monoclonal antibody, and by electron microscopy. Our findings support the concept that glial K(+) channels play an important role during OLG regeneration and remyelination, a crucial factor to be considered during the development of therapeutic strategies to facilitate recovery in demyelinating diseases and spinal cord injury.
Collapse
Affiliation(s)
- Andrzej Bacia
- Department of Neurology and Committee on Neurobiology, Brain Research Institute, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
131
|
Ye P, Popken GJ, Kemper A, McCarthy K, Popko B, D'Ercole AJ. Astrocyte-specific overexpression of insulin-like growth factor-I promotes brain overgrowth and glial fibrillary acidic protein expression. J Neurosci Res 2005; 78:472-84. [PMID: 15468174 DOI: 10.1002/jnr.20288] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Insulin-like growth factor-I (IGF-I) is widely expressed in the central nervous system (CNS). Whereas during normal development IGF-I is expressed predominantly by neurons and to a much lesser degree by glial cells, its expression in astrocytes, and often in microglia, is increased during and/or after variety of CNS injuries. Recently we have generated a new line of IGF-I Tg mice, called IGF-I(Ast/Tet-Off) Tg mice, in which IGF-I transgene is expressed specifically in astrocytes and is tightly controlled by the tetracycline analog doxycycline. In this study we examined whether IGF-I derived from astrocytes is capable of promoting neural cell growth during development. When the IGF-I transgene is allowed to be expressed, IGF-I(Ast/Tet-Off) Tg mice exhibit markedly increases in 1) brain weight; 2) brain DNA and protein abundance; and 3) number of neurons, oligodendrocytes, and astrocytes, as well as myelination, findings similar to those observed in our other lines of Tg mice that express IGF-I transgene predominantly in neurons. Unlike Tg mice with neuron-specific IGF-I expression, which manifest marked increases in the concentrations of oligodendrocyte/myelin-specific proteins, however, IGF-I(Ast/Tet-Off) Tg mice exhibit an increase in the concentration of glial fibrillary acidic protein, an astrocyte-specific protein. Furthermore, when transgene expression is blunted, brain overgrowth in IGF-I(Ast/Tet-Off) Tg mice ceases. Our data indicate that astrocyte-derived IGF-I is capable of promoting neural cells growth in vivo. Our data also suggest that IGF-I's actions in CNS depend in part on the location of its expression and cellular microenvironment and that continuous presence of IGF-I expression is necessary for brain overgrowth.
Collapse
Affiliation(s)
- Ping Ye
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | |
Collapse
|
132
|
Cui QL, Zheng WH, Quirion R, Almazan G. Inhibition of Src-like kinases reveals Akt-dependent and -independent pathways in insulin-like growth factor I-mediated oligodendrocyte progenitor survival. J Biol Chem 2005; 280:8918-28. [PMID: 15632127 DOI: 10.1074/jbc.m414267200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) has been previously shown to promote survival of oligodendrocyte progenitors; however, the underlying mechanisms are not fully understood. Our aim was to investigate the involvement of phosphatidylinositol 3-kinase (PI3K), MEK1, and Src family tyrosine kinases in IGF-I-mediated oligodendrocyte progenitor survival. In agreement with previous studies, IGF-I promoted cell survival. We show that IGF-I prevented apoptosis induced by growth factor deprivation in a PI3K-dependent and MEK/ERK-independent manner. In addition, IGF-I activated Akt while inhibiting caspase-3 activation, and these effects were reversed by the PI3K inhibitors LY 294002 and wortmannin, but not by the MEK1 inhibitor PD 98059. Interestingly, PP2, a specific Src-like kinase inhibitor, blocked the tyrosine phosphorylation of Src, Fyn, and Lyn and IGF-I-stimulated Akt activation, yet had no significant effects on caspase-3 activation or progenitor survival. To further determine whether Akt is required for IGF-I-mediated survival, oligodendrocyte progenitors were transduced with defective Akt mutants or treated with an Akt inhibitor. Although the Akt mutants and inhibitor decreased Akt activity and reduced basal cell survival, IGF-I could partially rescue oligodendrocyte progenitors by decreasing caspase-3 activation. These results suggest that 1) PI3K is essential for IGF-I-promoted cell survival, 2) downstream activation of Akt-dependent and -independent pathways is involved, and 3) Src-like tyrosine kinases participate in IGF-I-induced Akt activation. Therefore, an unidentified effector(s) of PI3K appears to be involved in conferring complete IGF-I-mediated protection of oligodendrocyte progenitors.
Collapse
Affiliation(s)
- Qiao-Ling Cui
- Department of Pharmacology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
133
|
Lai MYH, Brimble MA, Callis DJ, Harris PWR, Levi MS, Sieg F. Synthesis and pharmacological evaluation of glycine-modified analogues of the neuroprotective agent glycyl-l-prolyl-l-glutamic acid (GPE). Bioorg Med Chem 2005; 13:533-48. [PMID: 15598574 DOI: 10.1016/j.bmc.2004.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 10/01/2004] [Accepted: 10/04/2004] [Indexed: 11/18/2022]
Abstract
The synthesis of 10 G*PE analogues, wherein the glycine residue has been modified, is described by coupling readily accessible dibenzyl-L-prolyl-L-glutamate 2 with various analogues of glycine. Pharmacological evaluation of the novel compounds was undertaken to further understand the role of the glycine residue on the observed neuroprotective properties of the endogenous tripeptide GPE.
Collapse
Affiliation(s)
- Michelle Y H Lai
- Neuren Pharmaceuticals Medicinal Chemistry Group, Department of Chemistry, University of Auckland, 23 Symonds Street, Auckland 1000, New Zealand
| | | | | | | | | | | |
Collapse
|
134
|
Trotter NS, Brimble MA, Harris PWR, Callis DJ, Sieg F. Synthesis and neuroprotective activity of analogues of glycyl-l-prolyl-l-glutamic acid (GPE) modified at the α-carboxylic acid. Bioorg Med Chem 2005; 13:501-17. [PMID: 15598572 DOI: 10.1016/j.bmc.2004.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 10/01/2004] [Accepted: 10/04/2004] [Indexed: 11/16/2022]
Abstract
The synthesis of nine GPE* analogues, wherein the alpha-carboxylic acid group of glutamic acid has been modified, is described by coupling readily accessible N-benzyloxycarbonyl-glycyl-L-proline 2 with various analogues of glutamic acid. Pharmacological evaluation of the novel compounds was undertaken to further understand the role of the glutamate residue on the observed neuroprotective properties of the endogenous tripeptide GPE.
Collapse
Affiliation(s)
- Nicholas S Trotter
- Neuren Pharmaceuticals Medicinal Chemistry Group, Department of Chemistry, University of Auckland, 23 Symonds Street, Auckland 1000, New Zealand
| | | | | | | | | |
Collapse
|
135
|
Brimble MA, Trotter NS, Harris PWR, Sieg F. Synthesis and pharmacological evaluation of side chain modified glutamic acid analogues of the neuroprotective agent glycyl-l-prolyl-l-glutamic acid (GPE). Bioorg Med Chem 2005; 13:519-32. [PMID: 15598573 DOI: 10.1016/j.bmc.2004.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 10/01/2004] [Accepted: 10/04/2004] [Indexed: 11/16/2022]
Abstract
The synthesis of eight GPE* analogues, wherein the gamma-carboxylic moiety of the glutamic residue has been modified, is described by coupling readily accessible N-benzyloxycarbonyl-glycyl-L-proline with various analogues of glutamic acid. Pharmacological evaluation of the novel compounds was undertaken to further understand the role of the glutamate residue on the observed neuroprotective properties of the endogenous tripeptide GPE.
Collapse
Affiliation(s)
- Margaret A Brimble
- Neuren Pharmaceuticals, Medicinal Chemistry Group, Department of Chemistry, University of Auckland, 23 Symonds Street, Auckland 1000, New Zealand.
| | | | | | | |
Collapse
|
136
|
Fushimi S, Shirabe T. Expression of insulin-like growth factors in remyelination following ethidium bromide-induced demyelination in the mouse spinal cord. Neuropathology 2004; 24:208-18. [PMID: 15484699 DOI: 10.1111/j.1440-1789.2004.00561.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insulin-like growth factors, IGF-I and IGF-II, play important roles in development and myelination in the CNS, but little is known about the response of IGF after demyelination. The present study investigated the expression of IGF and their cognitive receptors in the process of remyelination following ethidium bromide (EBr)-induced demyelination in the adult mouse spinal cord. The present results, in a quantitative real-time PCR, showed significant increases in the levels of the mRNA for both IGF-I and IGF-II during both the demyelination and remyelination stages. The levels of IGF-I receptor (IGF-IR) mRNA increased from 10 days to 4 weeks after the EBr injection. The levels of IGF-II receptor (IGF-IIR) mRNA decreased for 6 days and then increased 10 days after the EBr injection. In situ hybridization studies showed the cells expressing IGF-I mRNA to be mainly macrophage-like cells, while those expressing IGF-II mRNA were predominantly Schwann cell-like cells invading the demyelinating lesion. The immunoreactivity for the IGF-IR and IGF-IIR increased in various kinds of cells within and around the demyelinating lesions from 6 days to 4 weeks after the EBr injection. These results suggest that locally produced IGF could partly be involved in some mechanisms underlying remyelination processes following the EBr-induced demyelination in the mouse spinal cord.
Collapse
Affiliation(s)
- Shigeko Fushimi
- Division of Neuropathology, Kawasaki Medical School, Kurashiki, Japan.
| | | |
Collapse
|
137
|
Fancy SPJ, Zhao C, Franklin RJM. Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol Cell Neurosci 2004; 27:247-54. [PMID: 15519240 DOI: 10.1016/j.mcn.2004.06.015] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 06/18/2004] [Accepted: 06/29/2004] [Indexed: 11/17/2022] Open
Abstract
Within the adult CNS, a quiescent population of oligodendrocyte progenitor cells (OPCs) become activated in response to demyelination and give rise to remyelinating oligodendrocytes. During development, OPC differentiation is controlled by several transcription factors including Olig1 and Olig2, and Nkx2.2. We hypothesized that these genes may serve similar functions in activated adult OPCs allowing them to become remyelinating oligodendrocytes and tested this hypothesis by examining their expression during the remyelination of a toxin-induced rodent model of demyelination. During the acute phase of demyelination, OPCs within the lesion increased their expression of Nkx2.2 and Olig2, two transcription factors that in combination are critical for oligodendrocyte differentiation during developmental myelination. This activation was not associated with increases in Sonic hedgehog (Shh) expression, which does not appear essential for CNS remyelination. Consistent with a role in the activation and differentiation of OPCs, these increases were delayed in old adult animals where the rate of remyelination is slowed. Our data suggest the hypothesis that increased expression of Nkx2.2 and Olig2 plays a critically important role in the differentiation of adult OPCs into remyelinating oligodendrocytes and that these genes may present novel targets for therapeutic manipulation in cases where remyelination is impaired.
Collapse
Affiliation(s)
- Stephen P J Fancy
- Cambridge Centre for Brain Repair and Centre for Veterinary Sciences, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | | | | |
Collapse
|
138
|
Roelfsema V, Bennet L, George S, Wu D, Guan J, Veerman M, Gunn AJ. Window of opportunity of cerebral hypothermia for postischemic white matter injury in the near-term fetal sheep. J Cereb Blood Flow Metab 2004; 24:877-86. [PMID: 15362718 DOI: 10.1097/01.wcb.0000123904.17746.92] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Postresuscitation cerebral hypothermia is consistently neuroprotective in experimental preparations; however, its effects on white matter injury are poorly understood. Using a model of reversible cerebral ischemia in unanesthetized near-term fetal sheep, we examined the effects of cerebral hypothermia (fetal extradural temperature reduced from 39.4 +/- 0.1 degrees C to between 30 and 33 degrees C), induced at different times after reperfusion and continued for 72 hours after ischemia, on injury in the parasagittal white matter 5 days after ischemia. Cooling started within 90 minutes of reperfusion was associated with a significant increase in bioactive oligodendrocytes in the intragyral white matter compared with sham cooling (41 +/- 20 vs 18 +/- 11 per field, P < 0.05), increased myelin basic protein density and reduced expression of activated caspase-3 (14 +/- 12 vs 91 +/- 51, P < 0.05). Reactive microglia were profoundly suppressed compared with sham cooling (4 +/- 6 vs 38 +/- 18 per field, P < 0.05) with no effect on numbers of astrocytes. When cooling was delayed until 5.5 hours after reperfusion there was no significant effect on loss of oligodendrocytes (24 +/- 12 per field). In conclusion, hypothermia can effectively protect white matter after ischemia, but only if initiated early after the insult. Protection was closely associated with reduced expression of both activated caspase-3 and of reactive microglia.
Collapse
Affiliation(s)
- Vincent Roelfsema
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
139
|
Kazanis I, Giannakopoulou M, Philippidis H, Stylianopoulou F. Alterations in IGF-I, BDNF and NT-3 levels following experimental brain trauma and the effect of IGF-I administration. Exp Neurol 2004; 186:221-34. [PMID: 15026258 DOI: 10.1016/j.expneurol.2003.12.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 11/27/2003] [Accepted: 12/10/2003] [Indexed: 11/24/2022]
Abstract
The effects of a unilateral, penetrating brain trauma on IGF-I, BDNF and NT-3 were studied immunocytochemically in the rat. BDNF and NT-3 were decreased in the peritraumatic area, but increased in the adjacent region, 4 and 12 h post-injury. One week following the trauma, BDNF remained low in the peritraumatic area, but was restored to normal levels in the adjacent, while no effect of injury on NT-3 levels was detected in either area. Injury resulted in an increase in IGF-I levels in the peritraumatic area, which was most pronounced 1 week following the trauma, indicating that IGF-I could participate in endogenous repair processes. We thus administered IGF-I immediately following the trauma and investigated its effects on injury-induced changes in neurotrophin levels. Administration of IGF-I partially reversed the injury-induced decrease in BDNF and NT-3 in the peritraumatic area observed 4 and 12 h post-injury, while at the same time-points, it completely cancelled the effects of injury in the adjacent region. One week after the trauma, BDNF levels were dramatically increased in both the peritraumatic and adjacent area, reaching levels even higher than those of the sham-operated animals, following IGF-I administration. Our results showing that IGF-I not only counteracts injury-induced changes in neurotrophins, but can also further increase their levels, indicate that this growth factor could mediate repair and/or protective processes, following brain trauma.
Collapse
Affiliation(s)
- Ilias Kazanis
- Laboratory of Biology-Biochemistry, Faculty of Nursing, University of Athens, Athens 11527, Greece
| | | | | | | |
Collapse
|
140
|
Selvaraju R, Bernasconi L, Losberger C, Graber P, Kadi L, Avellana-Adalid V, Picard-Riera N, Baron Van Evercooren A, Cirillo R, Kosco-Vilbois M, Feger G, Papoian R, Boschert U. Osteopontin is upregulated during in vivo demyelination and remyelination and enhances myelin formation in vitro. Mol Cell Neurosci 2004; 25:707-21. [PMID: 15080898 DOI: 10.1016/j.mcn.2003.12.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 12/11/2003] [Accepted: 12/18/2003] [Indexed: 11/22/2022] Open
Abstract
We have used in vitro oligodendrocyte differentiation and the in vivo remyelination model, the cuprizone model, to identify genes regulating oligodendrocyte function and remyelination. One of the genes we identified, osteopontin (opn), is a secreted glycoprotein with cytokine-like, chemotactic, and anti-apoptotic properties that contains an Arg-Gly-Asp (RGD) cell adhesion motif-mediating interactions with several integrins. Both microglia and astrocytes in demyelinating brain regions of cuprizone-fed mice expressed OPN protein. Recombinant OPN protein produced in a baculovirus expression system induced proliferation of both the rat CG-4 and the mouse Oli-neu oligodendrocyte precursor (OLP)-like cell lines in a dose-dependent manner. In addition, recombinant OPN treatment stimulated both myelin basic protein (MBP) synthesis and myelin sheath formation in mixed cortical cultures from embryonic mouse brain, an in vitro primary culture model of myelination. Interestingly, myelinating mixed cultures prepared from OPN(-/-) mice contained significantly less MBP compared to wild-type cultures after 17 days in culture. We propose that in the central nervous system, OPN may act as a novel regulator of myelination and remyelination.
Collapse
Affiliation(s)
- Raghuram Selvaraju
- Department of Immunology, Serono Pharmaceutical Research Institute, Ares-Serono International SA, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Bartzokis G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer's disease. Neurobiol Aging 2004; 25:5-18; author reply 49-62. [PMID: 14675724 DOI: 10.1016/j.neurobiolaging.2003.03.001] [Citation(s) in RCA: 685] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A hypothetical model of Alzheimer's disease (AD) as a uniquely human brain disorder rooted in its exceptional process of myelination is presented. Cortical regions with the most protracted development are most vulnerable to AD pathology, and this protracted development is driven by oligodendrocytes, which continue to differentiate into myelin producing cells late into the fifth decade of life. The unique metabolic demands of producing and maintaining their vast myelin sheaths and synthesizing the brain's cholesterol supply make oligodendrocytes especially susceptible to a variety of insults. Their vulnerability increases with increasing age at differentiation as later-differentiating cells myelinate increasing numbers of axonal segments. These vulnerable late-differentiating cells drive the protracted process of intracortical myelination and by increasing local cholesterol and iron levels, progressively increase the toxicity of the intracortical environment forming the basis for the age risk factor for AD. At older ages, the roughly bilaterally symmetrical continuum of oligodendrocyte vulnerability manifests as a progressive pattern of myelin breakdown that recapitulates the developmental process of myelination in reverse. The ensuing homeostatic responses to myelin breakdown further increase intracortical toxicity and results in the relentless progression and non-random anatomical distribution of AD lesions that eventually cause neuronal dysfunction and degeneration. This process causes a slowly progressive disruption of neural impulse transmission that degrades the temporal synchrony of widely distributed neural networks underlying normal brain function. The resulting network "disconnections" first impact functions that are most dependent on large-scale synchronization including higher cognitive functions and formation of new memories. Multiple genetic and environmental risk factors (e.g. amyloid beta-peptide and free radical toxicity, head trauma, anoxia, cholesterol levels, etc.) can contribute to the cognitive deficits observed in aging and AD through their impact on the life-long trajectory of myelin development and breakdown. This development-to-degeneration model is testable through imaging and post mortem methods and highlights the vital role of myelin in impulse transmission and synchronous brain function. The model offers a framework that explains the anatomical distribution and progressive course of AD pathology, some of the failures of promising therapeutic interventions, and suggests further testable hypotheses as well as novel approaches for intervention efforts.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Neurology, UCLA Alzheimer's Disease Center, Los Angeles, CA 90095, USA.
| |
Collapse
|
142
|
Li YQ, Chen P, Jain V, Reilly RM, Wong CS. Early Radiation-Induced Endothelial Cell Loss and Blood–Spinal Cord Barrier Breakdown in the Rat Spinal Cord. Radiat Res 2004; 161:143-52. [PMID: 14731076 DOI: 10.1667/rr3117] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Using a rat spinal cord model, this study was designed to characterize radiation-induced vascular endothelial cell loss and its relationship to early blood-brain barrier disruption in the central nervous system. Adult rats were given a single dose of 0, 2, 8, 19.5, 22, 30 or 50 Gy to the cervical spinal cord. At various times up to 2 weeks after irradiation, the spinal cord was processed for histological and immunohistochemical analysis. Radiation-induced apoptosis was assessed by morphology and TdT-mediated dUTP nick end labeling combined with immunohistochemical markers for endothelial and glial cells. Image analysis was performed to determine endothelial cell and microvessel density using immunohistochemistry with endothelial markers, namely endothelial barrier antigen, glucose transporter isoform 1, laminin and zonula occludens 1. Blood-spinal cord barrier permeability was assessed using immunohistochemistry for albumin and (99m)Tc-diethylenetriamine pentaacetic acid as a vascular tracer. Endothelial cell proliferation was assessed using in vivo BrdU labeling. During the first 24 h after irradiation, apoptotic endothelial cells were observed in the rat spinal cord. The decrease in endothelial cell density at 24 h after irradiation was associated with an increase in albumin immunostaining around microvessels. The decrease in the number of endothelial cells persisted for 7 days and recovery of endothelial density was apparent by day 14. A similar pattern of blood-spinal cord barrier disruption and recovery of permeability was observed over the 2 weeks, and an increase in BrdU-labeled endothelial cells was seen at day 3. These results are consistent with an association between endothelial cell death and acute blood-spinal cord barrier disruption in the rat spinal cord after irradiation.
Collapse
Affiliation(s)
- Yu-Qing Li
- Department of Radiation Oncology, Sunnybrook and Women's College Health Sciences Center, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | |
Collapse
|
143
|
Althaus HH. Remyelination in multiple sclerosis: a new role for neurotrophins? PROGRESS IN BRAIN RESEARCH 2004; 146:415-32. [PMID: 14699977 DOI: 10.1016/s0079-6123(03)46026-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multiple sclerosis (MS) is a common neurological disease, which affects young adults. Its course is unpredictable and runs over decades. It is considered as an autoimmune disease, and is neuropathologically characterized by demyelination, variable loss of oligodendroglial cells, and axonal degeneration. Demyelination provides a permitting condition for axonal degeneration, which seems to be causative of permanent neurological deficits. Hence, the current treatment, which works preferentially immunmodulatory, should be complemented by therapeutics, which improves remyelination not only for restoring conduction velocity but also for preventing an irreversible axonal damage. One strategy to achieve this aim would be to promote remyelination by stimulating oligodendroglial cells remaining in MS lesions. While central nervous system neurons were already known to respond to neurotrophins (NT), interactions with glial cells became apparent more recently. In vitro and in vivo studies have shown that NT influence proliferation, differentiation, survival, and regeneration of mature oligodendrocytes and oligodendroglial precursors in favor of a myelin repair. Two in vivo models provided direct evidence that NT can improve remyelination. In addition, their neuroprotective and anti-inflammatory role would support a repair. Hence, a wealth of data point to NT as promising therapeutical candidates.
Collapse
Affiliation(s)
- Hans H Althaus
- Max-Planck-Institute for Experimental Medicine, RU Neural Regeneration, H.-Reinstr. 3, D-37075 Göttingen, Germany.
| |
Collapse
|
144
|
Kim DH, Vaccaro AR, Henderson FC, Benzel EC. Molecular biology of cervical myelopathy and spinal cord injury: role of oligodendrocyte apoptosis. Spine J 2003; 3:510-9. [PMID: 14609697 DOI: 10.1016/s1529-9430(03)00117-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Rational design of treatment strategies for cervical myelopathy and spinal cord injury requires a working knowledge of the molecular biology underlying these pathological processes. The cellular process of apoptosis is an important component of tissue and organ development as well as the natural response to disease and injury. Recent studies have convincingly demonstrated that apoptosis also plays a pivotal role in numerous pathological processes, contributing to the adverse effects of various diseases and traumatic conditions. A growing body of evidence has implicated apoptosis as a key determinant of the extent of neurological damage and dysfunction after acute spinal cord injury and in chronic cervical myelopathy. PURPOSE To provide clinicians and research investigators interested in spinal cord injury and myelopathy with a practical and up-to-date basic science review of cellular apoptosis in the context of spinal cord pathology. STUDY DESIGN/SETTING A review of recently published or presented data from molecular biological, animal model and human clinical studies. METHODS A computer-based comprehensive review of the English-language scientific and medical literature was performed in order to identify relevant publications with emphasis given to more recent studies. RESULTS Investigation into the role of apoptosis in spinal cord injury and myelopathy has drawn the interest of an increasing number of researchers and has yielded a substantial amount of new information. CONCLUSIONS Apoptosis is a fundamental biological process that contributes to preservation of health as well as development of disease. There is now strong evidence to support a significant role for apoptosis in secondary injury mechanisms after acute spinal cord injury as well in the progressive neurological deficits observed in such conditions as spondylotic cervical myelopathy.
Collapse
Affiliation(s)
- David H Kim
- The Boston Spine Group, New England Baptist Hospital, Boston, MA 02120, USA
| | | | | | | |
Collapse
|
145
|
O'Kusky JR, Ye P, D'Ercole AJ. Increased expression of insulin-like growth factor I augments the progressive phase of synaptogenesis without preventing synapse elimination in the hypoglossal nucleus. J Comp Neurol 2003; 464:382-91. [PMID: 12900931 DOI: 10.1002/cne.10794] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The in vivo actions of insulin-like growth factor I (IGF-I) on synaptogenesis in the hypoglossal nucleus were investigated in transgenic mice that overexpress IGF-I in the brain postnatally and in normal nontransgenic littermate controls. In a previous study using these mice, we found that IGF-I increases the total volume of the hypoglossal nucleus by increasing the volume of neuropil rather than by increasing total neuron number; therefore, the progressive and regressive phases of synaptogenesis could be evaluated without the confounding effects of altered neuron number. The volume of the hypoglossal nucleus was significantly increased by 28% to 59% in transgenic mice after postnatal day (P) 7, whereas the total number of hypoglossal neurons did not differ significantly from controls. The numerical density of neurons was significantly decreased by 21% to 38% after P7, and the density of myelinated axons was significantly increased by 19%. Although the numerical density of synapses did not differ between groups at any age, the total number of synapses in transgenic mice was increased by 42% to 52% after P14. Total synapse number in controls increased from P7 (7.9 million) to peak values at P21 (36.0 million), followed by a significant decrease (33%) at P130 (24.2 million). In transgenic mice, total synapses increased from 8.2 million on P7 to 51.1 million on P21, followed by a significant decrease (28%) to 36.7 million at P130. Our results demonstrated that IGF-I can stimulate a persistent increase in the number of hypoglossal synapses, thereby augmenting the progressive phase of synaptogenesis without preventing synapse elimination during the regressive phase.
Collapse
Affiliation(s)
- John Robert O'Kusky
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada.
| | | | | |
Collapse
|
146
|
Mason JL, Xuan S, Dragatsis I, Efstratiadis A, Goldman JE. Insulin-like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination. J Neurosci 2003; 23:7710-8. [PMID: 12930811 PMCID: PMC6740767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
We examined the role of IGF signaling in the remyelination process by disrupting the gene encoding the type 1 IGF receptor (IGF1R) specifically in the mouse brain by Cre-mediated recombination and then exposing these mutants and normal siblings to cuprizone. This neurotoxicant induces a demyelinating lesion in the corpus callosum that is reversible on termination of the insult. Acute demyelination and oligodendrocyte depletion were the same in mutants and controls, but the mutants did not remyelinate adequately. We observed that oligodendrocyte progenitors did not accumulate, proliferate, or survive within the mutant mice, compared with wild type, indicating that signaling through the IGF1R plays a critical role in remyelination via effects on oligodendrocyte progenitors.
Collapse
Affiliation(s)
- Jeffrey L Mason
- Department of Pathology and The Center for Neurobiology and Behavior, Columbia University, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
147
|
Abstract
Insulin-like growth factor-1 (IGF-1) is a naturally occurring neurotrophic factor that plays an important role in promoting cell proliferation and differentiation during normal brain development and maturation. The present review examines recent evidence that endogenous IGF-1 also plays a significant role in recovery from insults such as hypoxia-ischemia and that giving additional exogenous IGF-1 can actively ameliorate damage. It is now well established that neurons and other cell types die many hours or even days after initial injury due to activation of programmed cell death pathways. IGF-1 and its binding proteins and receptors are intensely induced within damaged brain regions following brain injury, suggesting a possible a role for IGF-1 in brain recovery. Exogenous administration of IGF-1 within a few hours after brain injury is now known to be protective in both gray and white matter and leads to improved somatic function. In contrast, pre-treatment is ineffective, likely reflecting limited intracerebral penetration of IGF-1 into the uninjured brain. The neuroprotective effects of IGF-1 are mediated by IGF-1 receptors and its binding proteins and are specific to particular cellular phenotypes and brain regions. The window of opportunity for treatment with IGF-1 is limited to a few hours after normothermic brain injury, reflecting its specific actions on early, intracellular events in the apoptotic cascade. However, injury-associated mild post-hypoxic hypothermia, which delays the development of cell death, can shift and dramatically extend the window of opportunity for delayed treatment with IGF-1. Such a combined approach is likely to be essential for any clinical treatment.
Collapse
Affiliation(s)
- J Guan
- Faculty of Medicine and Health Sciences, The Liggins Institute, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | |
Collapse
|
148
|
Cao Y, Gunn AJ, Bennet L, Wu D, George S, Gluckman PD, Shao XM, Guan J. Insulin-like growth factor (IGF)-1 suppresses oligodendrocyte caspase-3 activation and increases glial proliferation after ischemia in near-term fetal sheep. J Cereb Blood Flow Metab 2003; 23:739-47. [PMID: 12796722 DOI: 10.1097/01.wcb.0000067720.12805.6f] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Insulin-like growth factor (IGF-1) markedly increases myelination and glial numbers in white matter after ischemia in near-term fetal sheep; however, it is unclear whether this is due to reduced cell loss or increased secondary proliferation. Brain injury was induced in near-term fetal sheep by 30 minutes of bilateral carotid artery occlusion. Ninety minutes after the occlusion, fetuses were given, intracerebroventricularly, either a single dose of IGF-1 (either 3 or 30 micro g), or 3 micro g followed by 3 micro g over 24 hours (3 + 3 micro g). White matter was assessed 4 days after reperfusion. Three micrograms, but not 30 micro g of IGF-1 prevented loss of oligodendrocytes and myelin basic protein density (P < 0.001) compared to the vehicle-treated ischemia controls. No additional effect was observed in the 3 + 3 micro g group. IGF-1 treatment was associated with reduced caspase-3 activation and increased glial proliferation in a similar dose-dependent manner. Caspase-3 was only expressed in oligodendrocytes that showed apoptotic morphology. Proliferating cell nuclear antigen co-localized with both oligodendrocytes and astrocytes and microglia. Thus, increased oligodendrocyte numbers after IGF-1 treatment is partly due to suppression of apoptosis, and partly to increased proliferation. In contrast, the increase in reactive glia was related only to proliferation. Speculatively, reactive glia may partly mediate IGF-1 white matter protection.
Collapse
Affiliation(s)
- Yun Cao
- The Liggins Institute, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Ye P, Bagnell R, D'Ercole AJ. Mouse NG2+ oligodendrocyte precursors express mRNA for proteolipid protein but not its DM-20 variant: a study of laser microdissection-captured NG2+ cells. J Neurosci 2003; 23:4401-5. [PMID: 12805279 PMCID: PMC6740786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Despite recent advances in our understanding of lineage of oligodendrocytes, detailed molecular characterization of this lineage in vivo is limited, primarily because of our inability to obtain a pure population of cells in situ. To define the molecular characteristics of oligodendrocyte lineage cells during development and their response to injury, we developed a strategy that uses laser capture microdissection (LCM) to isolate cells from sections and reverse transcription-PCR to determine mRNA expression. As a first step, we examined the expression of myelin-specific protein genes in NG2+ cells in cerebral cortex. We demonstrate that NG2+ cells in both developing and adult mice express NG2 mRNA but not mRNA for proteins specific for astrocytes, neurons, or microglia, indicating that a highly pure population of antigen-specific cells of the oligodendrocyte lineage can be obtained using LCM. Furthermore, we show that NG2+ cells express mRNAs for proteolipid protein (PLP), myelin basic protein, and 2',3'-cyclic nucleotide 3'-phosphodiesterase, but they dot not express DM-20 mRNA, a PLP mRNA splicing variant. Our data demonstrate that antigen-specific cells of oligodendrocyte lineage differentially express mRNA for myelin-specific proteins and their variants in vivo, partly define the gene expression in NG2+ cells, and raise questions about the cellular sites of DM-20 expression. This work also shows that LCM is a valuable tool to define and analyze gene expression in the cells of the oligodendrocyte lineage.
Collapse
Affiliation(s)
- Ping Ye
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7220, USA.
| | | | | |
Collapse
|
150
|
Casaccia-Bonnefil P, Liu A. Relationship between cell cycle molecules and onset of oligodendrocyte differentiation. J Neurosci Res 2003; 72:1-11. [PMID: 12645074 DOI: 10.1002/jnr.10565] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Patrizia Casaccia-Bonnefil
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|