101
|
van Dyck CH, Nygaard HB, Chen K, Donohue MC, Raman R, Rissman RA, Brewer JB, Koeppe RA, Chow TW, Rafii MS, Gessert D, Choi J, Turner RS, Kaye JA, Gale SA, Reiman EM, Aisen PS, Strittmatter SM. Effect of AZD0530 on Cerebral Metabolic Decline in Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol 2019; 76:1219-1229. [PMID: 31329216 PMCID: PMC6646979 DOI: 10.1001/jamaneurol.2019.2050] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE Oligomeric amyloid-β peptide binds to cellular prion protein on the neuronal cell surface, activating intracellular fyn kinase to mediate synaptotoxicity and tauopathy. AZD0530 is an investigational kinase inhibitor specific for the Src family, including fyn, that has been repurposed for the treatment of Alzheimer disease. OBJECTIVE To determine whether AZD0530 treatment slows the decline in cerebral metabolic rate for glucose (CMRgl) and is safe and well tolerated. DESIGN, SETTING, AND PARTICIPANTS This multicenter phase 2a randomized clinical trial enrolled participants between December 23, 2014, and November 30, 2016. Participants (n = 159) had mild Alzheimer dementia and positron emission tomography (PET) evidence of elevated levels of amyloid-β peptide. Efficacy analyses of all primary and secondary outcomes were conducted in a modified intention-to-treat population. Final analyses were conducted from February 9, 2018, to July 25, 2018. INTERVENTIONS AZD0530 (100 mg or 125 mg daily) vs placebo for 52 weeks. MAIN OUTCOMES AND MEASURES Primary outcome was the reduction in relative CMRgl, as measured by 18F-fluorodeoxyglucose (18F-FDG) PET, at 52 weeks in an Alzheimer disease-associated prespecified statistical region of interest. Secondary end points included change in cognition, function, and other biomarkers. RESULTS Among the 159 participants, 79 were randomized to receive AZD0530 and 80 to receive placebo. Of the 159 participants, 87 (54.7%) were male, with a mean (SD) age of 71.0 (7.7) years. Based on a week-2 plasma drug level (target = 180 ng/mL; 30nM free), 15 participants (19.2%) had their AZD0530 dose escalated from 100 mg to 125 mg. Mean plasma levels from weeks 13 to 52 were 220 ng/mL and 36nM free. More participants discontinued treatment with AZD0530 than with placebo (21 vs 11), most commonly because of adverse events. The most frequent adverse events were gastrointestinal disorders (primarily diarrhea), which occurred in 38 participants (48.1%) who received AZD0530 and in 23 (28.8%) who received placebo. In the primary outcome, the treatment groups did not differ in 52-week decline in relative CMRgl (mean difference: -0.006 units/y; 95% CI, -0.017 to 0.006; P = .34). The treatment groups also did not differ in the rate of change in Alzheimer's Disease Assessment Scale-Cognitive Subscale, Alzheimer's Disease Cooperative Study-Activities of Daily Living, Clinical Dementia Rating, Neuropsychiatric Inventory, or Mini-Mental State Examination scores. Secondary volumetric magnetic resonance imaging analyses revealed no treatment effect on total brain or ventricular volume but did show trends for slowing the reduction in hippocampal volume and entorhinal thickness. CONCLUSIONS AND RELEVANCE Statistically significant effects of AZD0530 treatment were not found on relative CMRgl reduction in an Alzheimer disease-associated region of interest or on secondary clinical or biomarker measures. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02167256.
Collapse
Affiliation(s)
| | - Haakon B. Nygaard
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, Arizona
| | - Michael C. Donohue
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego
| | - Rema Raman
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego
| | - Robert A. Rissman
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego,Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - James B. Brewer
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | | | - Tiffany W. Chow
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego
| | - Michael S. Rafii
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego
| | - Devon Gessert
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego
| | - Jiyoon Choi
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego
| | - R. Scott Turner
- Department of Neurology, Georgetown University, Washington, DC
| | - Jeffrey A. Kaye
- Department of Neurology, Oregon Health & Science University, Portland
| | - Seth A. Gale
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Paul S. Aisen
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego
| | | |
Collapse
|
102
|
Katsumoto A, Takeuchi H, Tanaka F. Tau Pathology in Chronic Traumatic Encephalopathy and Alzheimer's Disease: Similarities and Differences. Front Neurol 2019; 10:980. [PMID: 31551922 PMCID: PMC6748163 DOI: 10.3389/fneur.2019.00980] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) has been associated with the development of Alzheimer's disease (AD) because these conditions share common pathological hallmarks: amyloid-β and hyperphosphorylated tau accumulation. However, given recent data it is uncertain if a history of TBI leads to the development of AD. Moreover, chronic traumatic encephalopathy (CTE), caused by repetitive mild TBI and characterized by progressive neurodegeneration with hyperphosphorylated tau, has come to be recognized as distinct from AD. Therefore, it is important to elucidate the clinical outcomes and molecular mechanisms underlying tau pathology following TBI. We summarize the histopathological features and clinical course of TBI in CTE, comparing the tau pathology with that in AD. Following brain injury, diffuse axonal injury, and hyperphosphorylated tau aggregates are observed within a shorter period than in AD. Hyperphosphorylated tau deposition usually begins in the perivascular area of the sulci in the cerebral cortex, then spreads unevenly in the cortex in CTE, while AD shows diffuse distribution of hyperphosphorylated tau in the cortical areas. We also highlight the molecular profile of tau and the implications of tau progression throughout the brain in both diseases. Tau contains phosphorylation sites common to both conditions. In particular, phosphorylation at Thr231 triggers a conformational change to the toxic cis form of tau, which is suggested to drive neurodegeneration. Although the mechanism of rapid tau accumulation remains unknown, the structural diversity of tau might result in these different outcomes. Finally, future perspectives on CTE in terms of tau reduction are discussed.
Collapse
Affiliation(s)
- Atsuko Katsumoto
- Department of Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
103
|
Temido-Ferreira M, Coelho JE, Pousinha PA, Lopes LV. Novel Players in the Aging Synapse: Impact on Cognition. J Caffeine Adenosine Res 2019; 9:104-127. [PMID: 31559391 PMCID: PMC6761599 DOI: 10.1089/caff.2019.0013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While neuronal loss has long been considered as the main contributor to age-related cognitive decline, these alterations are currently attributed to gradual synaptic dysfunction driven by calcium dyshomeostasis and alterations in ionotropic/metabotropic receptors. Given the key role of the hippocampus in encoding, storage, and retrieval of memory, the morpho- and electrophysiological alterations that occur in the major synapse of this network-the glutamatergic-deserve special attention. We guide you through the hippocampal anatomy, circuitry, and function in physiological context and focus on alterations in neuronal morphology, calcium dynamics, and plasticity induced by aging and Alzheimer's disease (AD). We provide state-of-the art knowledge on glutamatergic transmission and discuss implications of these novel players for intervention. A link between regular consumption of caffeine-an adenosine receptor blocker-to decreased risk of AD in humans is well established, while the mechanisms responsible have only now been uncovered. We review compelling evidence from humans and animal models that implicate adenosine A2A receptors (A2AR) upsurge as a crucial mediator of age-related synaptic dysfunction. The relevance of this mechanism in patients was very recently demonstrated in the form of a significant association of the A2AR-encoding gene with hippocampal volume (synaptic loss) in mild cognitive impairment and AD. Novel pathways implicate A2AR in the control of mGluR5-dependent NMDAR activation and subsequent Ca2+ dysfunction upon aging. The nature of this receptor makes it particularly suited for long-term therapies, as an alternative for regulating aberrant mGluR5/NMDAR signaling in aging and disease, without disrupting their crucial constitutive activity.
Collapse
Affiliation(s)
- Mariana Temido-Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana E. Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Paula A. Pousinha
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS UMR7275, Université Côte d'Azur, Valbonne, France
| | - Luísa V. Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
104
|
Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer's disease. Signal Transduct Target Ther 2019; 4:29. [PMID: 31637009 PMCID: PMC6799833 DOI: 10.1038/s41392-019-0063-8] [Citation(s) in RCA: 391] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory loss along with neuropsychiatric symptoms and a decline in activities of daily life. Its main pathological features are cerebral atrophy, amyloid plaques, and neurofibrillary tangles in the brains of patients. There are various descriptive hypotheses regarding the causes of AD, including the cholinergic hypothesis, amyloid hypothesis, tau propagation hypothesis, mitochondrial cascade hypothesis, calcium homeostasis hypothesis, neurovascular hypothesis, inflammatory hypothesis, metal ion hypothesis, and lymphatic system hypothesis. However, the ultimate etiology of AD remains obscure. In this review, we discuss the main hypotheses of AD and related clinical trials. Wealthy puzzles and lessons have made it possible to develop explanatory theories and identify potential strategies for therapeutic interventions for AD. The combination of hypometabolism and autophagy deficiency is likely to be a causative factor for AD. We further propose that fluoxetine, a selective serotonin reuptake inhibitor, has the potential to treat AD.
Collapse
Affiliation(s)
- Pei-Pei Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yi Xie
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Xiao-Yan Meng
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jian-Sheng Kang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
105
|
Beyond TCR Signaling: Emerging Functions of Lck in Cancer and Immunotherapy. Int J Mol Sci 2019; 20:ijms20143500. [PMID: 31315298 PMCID: PMC6679228 DOI: 10.3390/ijms20143500] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 01/10/2023] Open
Abstract
In recent years, the lymphocyte-specific protein tyrosine kinase (Lck) has emerged as one of the key molecules regulating T-cell functions. Studies using Lck knock-out mice or Lck-deficient T-cell lines have shown that Lck regulates the initiation of TCR signaling, T-cell development, and T-cell homeostasis. Because of the crucial role of Lck in T-cell responses, strategies have been employed to redirect Lck activity to improve the efficacy of chimeric antigen receptors (CARs) and to potentiate T-cell responses in cancer immunotherapy. In addition to the well-studied role of Lck in T cells, evidence has been accumulated suggesting that Lck is also expressed in the brain and in tumor cells, where it actively takes part in signaling processes regulating cellular functions like proliferation, survival and memory. Therefore, Lck has emerged as a novel druggable target molecule for the treatment of cancer and neuronal diseases. In this review, we will focus on these new functions of Lck.
Collapse
|
106
|
Kim Y, Liu G, Leugers CJ, Mueller JD, Francis MB, Hefti MM, Schneider JA, Lee G. Tau interacts with SHP2 in neuronal systems and in Alzheimer's disease brains. J Cell Sci 2019; 132:jcs.229054. [PMID: 31201283 DOI: 10.1242/jcs.229054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/05/2019] [Indexed: 01/14/2023] Open
Abstract
Microtubule-associated protein tau, an integral component of neurofibrillary tangles, interacts with a variety of signaling molecules. Previously, our laboratory reported that nerve growth factor (NGF)-induced MAPK activation in a PC12-derived cell line was potentiated by tau, with phosphorylation at T231 being required. Therefore, we sought to identify a signaling molecule involved in the NGF-induced Ras-MAPK pathway that interacted with phospho-T231-tau. Here, we report that the protein tyrosine phosphatase SHP2 (also known as PTPN11) interacted with tau, with phospho-T231 significantly enhancing the interaction. By using proximity ligation assays, we found that endogenous tau-SHP2 complexes were present in neuronal cells, where the number of tau-SHP2 complexes significantly increased when the cells were treated with NGF, with phosphorylation at T231 being required for the increase. The interaction did not require microtubule association, and an association between tau and activated SHP2 was also found. Tau-SHP2 complexes were also found in both primary mouse hippocampal cultures and adult mouse brain. Finally, SHP2 levels were upregulated in samples from patients with mild and severe Alzheimer's disease (AD), and the level of tau-SHP2 complexes were increased in AD patient samples. These findings strongly suggest a role for the tau-SHP2 interaction in NGF-stimulated neuronal development and in AD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Guanghao Liu
- Interdisciplinary Program in Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Chad J Leugers
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Joseph D Mueller
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Meghan B Francis
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Julie A Schneider
- Department of Pathology, Rush Medical College, Chicago, IL 60612, USA
| | - Gloria Lee
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA .,Interdisciplinary Program in Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
107
|
Duggal P, Mehan S. Neuroprotective Approach of Anti-Cancer Microtubule Stabilizers Against Tauopathy Associated Dementia: Current Status of Clinical and Preclinical Findings. J Alzheimers Dis Rep 2019; 3:179-218. [PMID: 31435618 PMCID: PMC6700530 DOI: 10.3233/adr-190125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuronal microtubule (MT) tau protein provides cytoskeleton to neuronal cells and plays a vital role including maintenance of cell shape, intracellular transport, and cell division. Tau hyperphosphorylation mediates MT destabilization resulting in axonopathy and neurotransmitter deficit, and ultimately causing Alzheimer’s disease (AD), a dementing disorder affecting vast geriatric populations worldwide, characterized by the existence of extracellular amyloid plaques and intracellular neurofibrillary tangles in a hyperphosphorylated state. Pre-clinically, streptozotocin stereotaxically mimics the behavioral and biochemical alterations similar to AD associated with tau pathology resulting in MT assembly defects, which proceed neuropathological cascades. Accessible interventions like cholinesterase inhibitors and NMDA antagonist clinically provides only symptomatic relief. Involvement of microtubule stabilizers (MTS) prevents tauopathy particularly by targeting MT oriented cytoskeleton and promotes polymerization of tubulin protein. Multiple in vitro and in vivo research studies have shown that MTS can hold substantial potential for the treatment of AD-related tauopathy dementias through restoration of tau function and axonal transport. Moreover, anti-cancer taxane derivatives and epothiolones may have potential to ameliorate MT destabilization and prevent the neuronal structural and functional alterations associated with tauopathies. Therefore, this current review strictly focuses on exploration of various clinical and pre-clinical features available for AD to understand the neuropathological mechanisms as well as introduce pharmacological interventions associated with MT stabilization. MTS from diverse natural sources continue to be of value in the treatment of cancer, suggesting that these agents have potential to be of interest in the treatment of AD-related tauopathy dementia in the future.
Collapse
Affiliation(s)
- Pallavi Duggal
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
108
|
Gibbons GS, Banks RA, Kim B, Changolkar L, Riddle DM, Leight SN, Irwin DJ, Trojanowski JQ, Lee VMY. Detection of Alzheimer Disease (AD)-Specific Tau Pathology in AD and NonAD Tauopathies by Immunohistochemistry With Novel Conformation-Selective Tau Antibodies. J Neuropathol Exp Neurol 2019; 77:216-228. [PMID: 29415231 DOI: 10.1093/jnen/nly010] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aggregation of tau into fibrillar structures within the CNS is a pathological hallmark of a clinically heterogeneous set of neurodegenerative diseases termed tauopathies. Unique misfolded conformations of tau, referred to as strains, are hypothesized to underlie the distinct neuroanatomical and cellular distribution of pathological tau aggregates. Here, we report the identification of novel tau monoclonal antibodies (mAbs) that selectively bind to an Alzheimer disease (AD)-specific conformation of pathological tau. Immunohistochemical analysis of tissue from various AD and nonAD tauopathies demonstrate selective binding of mAbs GT-7 and GT-38 to AD tau pathologies and absence of immunoreactivity for tau aggregates that are diagnostic of corticobasal degenerations (CBD), progressive supranuclear palsy (PSP), and Pick's disease (PiD). In cases with co-occurring AD tauopathy, GT-7 and GT-38 distinguish comorbid AD tau from pathological tau in frontotemporal lobar degeneration characterized by tau inclusions (FTLD-Tau), as confirmed by the presence of both 3 versus 4 microtubule-binding repeat isoforms (3R and 4R tau isoforms, respectively), in AD neurofibrillary tangles but not in the tau aggregates of CBD, PSP, or PiD. These findings support the concept of an AD-specific tau strain. The mAbs described here enable the selective detection of AD tau pathology in nonAD tauopathies.
Collapse
Affiliation(s)
- Garrett S Gibbons
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Rachel A Banks
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Bumjin Kim
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Lakshmi Changolkar
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Dawn M Riddle
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Susan N Leight
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - David J Irwin
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
109
|
Li C, Götz J. Pyk2 is a Novel Tau Tyrosine Kinase that is Regulated by the Tyrosine Kinase Fyn. J Alzheimers Dis 2019; 64:205-221. [PMID: 29782321 PMCID: PMC6004899 DOI: 10.3233/jad-180054] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The protein tyrosine kinase Pyk2 is encoded by PTK2B, a novel Alzheimer’s disease (AD) susceptibility variant, with the PTK2B risk allele being associated with increased mRNA levels, suggestive of increased Pyk2 levels. However, the role of Pyk2, a member of the focal adhesion kinase (FAK) family, in AD pathology and its regulation are largely unknown. To address this, we generated mice with neuronal expression of human Pyk2. Because we had previously reported an association of Pyk2 and hyperphosphorylated tau (a hallmark feature of AD) in human tau transgenic pR5 mice, we also generated Pyk2/tau double-transgenic mice, which exhibit increased tyrosine phosphorylation and accumulation of tau. We further demonstrated that Pyk2 colocalizes, interacts with, and phosphorylates tau in vivo and in vitro. Importantly, although Pyk2 interacts with the established tyrosine-directed tau kinase Fyn, we identified an increased Pyk2 activity in mice which constitutively overexpress Fyn (FynCA), and a decreased activity in mice lacking Fyn (FynKO). Together, our study reveals a novel role for Pyk2 as a direct tyrosine kinase of tau that is active downstream of Fyn. Our analysis may enhance the understanding of how the PTK2B risk allele contributes to tauopathy.
Collapse
Affiliation(s)
- Chuanzhou Li
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus (Brisbane), QLD, Australia.,Department of Medical Genetics, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus (Brisbane), QLD, Australia
| |
Collapse
|
110
|
Padmanabhan P, Martínez-Mármol R, Xia D, Götz J, Meunier FA. Frontotemporal dementia mutant Tau promotes aberrant Fyn nanoclustering in hippocampal dendritic spines. eLife 2019; 8:45040. [PMID: 31237563 PMCID: PMC6592683 DOI: 10.7554/elife.45040] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
The Src kinase Fyn plays critical roles in memory formation and Alzheimer’s disease. Its targeting to neuronal dendrites is regulated by Tau via an unknown mechanism. As nanoclustering is essential for efficient signaling, we used single-molecule tracking to characterize the nanoscale distribution of Fyn in mouse hippocampal neurons, and manipulated the expression of Tau to test whether it controls Fyn nanoscale organization. We found that dendritic Fyn exhibits at least three distinct motion states, two of them associated with nanodomains. Fyn mobility decreases in dendrites during neuronal maturation, suggesting a dynamic synaptic reorganization. Removing Tau increases Fyn mobility in dendritic shafts, an effect that is rescued by re-expressing wildtype Tau. By contrast, expression of frontotemporal dementia P301L mutant Tau immobilizes Fyn in dendritic spines, affecting its motion state distribution and nanoclustering. Tau therefore controls the nanoscale organization of Fyn in dendrites, with the pathological Tau P301L mutation potentially contributing to synaptic dysfunction by promoting aberrant Fyn nanoclustering in spines.
Collapse
Affiliation(s)
- Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), University of Queensland, Brisbane, Australia
| | - Ramón Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), University of Queensland, Brisbane, Australia
| | - Di Xia
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), University of Queensland, Brisbane, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), University of Queensland, Brisbane, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), University of Queensland, Brisbane, Australia
| |
Collapse
|
111
|
Rösler TW, Tayaranian Marvian A, Brendel M, Nykänen NP, Höllerhage M, Schwarz SC, Hopfner F, Koeglsperger T, Respondek G, Schweyer K, Levin J, Villemagne VL, Barthel H, Sabri O, Müller U, Meissner WG, Kovacs GG, Höglinger GU. Four-repeat tauopathies. Prog Neurobiol 2019; 180:101644. [PMID: 31238088 DOI: 10.1016/j.pneurobio.2019.101644] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.
Collapse
Affiliation(s)
- Thomas W Rösler
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Amir Tayaranian Marvian
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Matthias Brendel
- Dept. of Nuclear Medicine, University of Munich, 81377 Munich, Germany
| | - Niko-Petteri Nykänen
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Matthias Höllerhage
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Sigrid C Schwarz
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | - Thomas Koeglsperger
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Gesine Respondek
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Kerstin Schweyer
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Johannes Levin
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Victor L Villemagne
- Dept. of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, 3084, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia; Dept. of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Henryk Barthel
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Osama Sabri
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Ulrich Müller
- Institute for Human Genetics, University of Giessen, 35392 Giessen, Germany
| | - Wassilios G Meissner
- Service de Neurologie, CHU Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Dept. of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, 1090 Vienna, Austria; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, Laboratory Medicine Program, University Health Network, Toronto, Canada; Tanz Centre for Research in Neurodegenerative Disease, Krembil Brain Institute, Toronto, Canada
| | - Günter U Höglinger
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; Dept. of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
112
|
Cline EN, Bicca MA, Viola KL, Klein WL. The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade. J Alzheimers Dis 2019; 64:S567-S610. [PMID: 29843241 PMCID: PMC6004937 DOI: 10.3233/jad-179941] [Citation(s) in RCA: 593] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amyloid-β oligomer (AβO) hypothesis was introduced in 1998. It proposed that the brain damage leading to Alzheimer’s disease (AD) was instigated by soluble, ligand-like AβOs. This hypothesis was based on the discovery that fibril-free synthetic preparations of AβOs were potent CNS neurotoxins that rapidly inhibited long-term potentiation and, with time, caused selective nerve cell death (Lambert et al., 1998). The mechanism was attributed to disrupted signaling involving the tyrosine-protein kinase Fyn, mediated by an unknown toxin receptor. Over 4,000 articles concerning AβOs have been published since then, including more than 400 reviews. AβOs have been shown to accumulate in an AD-dependent manner in human and animal model brain tissue and, experimentally, to impair learning and memory and instigate major facets of AD neuropathology, including tau pathology, synapse deterioration and loss, inflammation, and oxidative damage. As reviewed by Hayden and Teplow in 2013, the AβO hypothesis “has all but supplanted the amyloid cascade.” Despite the emerging understanding of the role played by AβOs in AD pathogenesis, AβOs have not yet received the clinical attention given to amyloid plaques, which have been at the core of major attempts at therapeutics and diagnostics but are no longer regarded as the most pathogenic form of Aβ. However, if the momentum of AβO research continues, particularly efforts to elucidate key aspects of structure, a clear path to a successful disease modifying therapy can be envisioned. Ensuring that lessons learned from recent, late-stage clinical failures are applied appropriately throughout therapeutic development will further enable the likelihood of a successful therapy in the near-term.
Collapse
Affiliation(s)
- Erika N Cline
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Maíra Assunção Bicca
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Kirsten L Viola
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - William L Klein
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| |
Collapse
|
113
|
Trujillo‐Estrada L, Nguyen C, da Cunha C, Cai L, Forner S, Martini AC, Ager RR, Prieto GA, Cotman CW, Baglietto‐Vargas D, LaFerla FM. Tau underlies synaptic and cognitive deficits for type 1, but not type 2 diabetes mouse models. Aging Cell 2019; 18:e12919. [PMID: 30809950 PMCID: PMC6516168 DOI: 10.1111/acel.12919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/25/2018] [Accepted: 01/13/2019] [Indexed: 01/07/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most devastating diseases that currently affects the aging population. Recent evidence indicates that DM is a risk factor for many brain disorders, due to its direct effects on cognition. New findings have shown that the microtubule-associated protein tau is pathologically processed in DM; however, it remains unknown whether pathological tau modifications play a central role in the cognitive deficits associated with DM. To address this question, we used a gain-of-function and loss-of-function approach to modulate tau levels in type 1 diabetes (T1DM) and type 2 diabetes (T2DM) mouse models. Our study demonstrates that tau differentially contributes to cognitive and synaptic deficits induced by DM. On one hand, overexpressing wild-type human tau further exacerbates cognitive and synaptic impairments induced by T1DM, as human tau mice treated under T1DM conditions show robust deficits in learning and memory processes. On the other hand, neither a reduction nor increase in tau levels affects cognition in T2DM mice. Together, these results shine new light onto the different molecular mechanisms that underlie the cognitive and synaptic impairments associated with T1DM and T2DM.
Collapse
Affiliation(s)
- Laura Trujillo‐Estrada
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCalifornia
| | - Cassidy Nguyen
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCalifornia
| | - Celia da Cunha
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCalifornia
| | - Lena Cai
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCalifornia
| | - Stefania Forner
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCalifornia
| | - Alessandra C. Martini
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCalifornia
| | - Rahasson R. Ager
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCalifornia
| | - Gilberto Aleph Prieto
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCalifornia
| | - Carl W. Cotman
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCalifornia
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCalifornia
- Department of NeurologyUniversity of CaliforniaIrvineCalifornia
| | - David Baglietto‐Vargas
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCalifornia
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCalifornia
| | - Frank M. LaFerla
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCalifornia
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCalifornia
| |
Collapse
|
114
|
Pore-former enabled seeding of tau in rats: Alleviation by memantine and lithium chloride. J Neurosci Methods 2019; 319:47-59. [DOI: 10.1016/j.jneumeth.2018.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022]
|
115
|
Melková K, Zapletal V, Narasimhan S, Jansen S, Hritz J, Škrabana R, Zweckstetter M, Ringkjøbing Jensen M, Blackledge M, Žídek L. Structure and Functions of Microtubule Associated Proteins Tau and MAP2c: Similarities and Differences. Biomolecules 2019; 9:biom9030105. [PMID: 30884818 PMCID: PMC6468450 DOI: 10.3390/biom9030105] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022] Open
Abstract
The stability and dynamics of cytoskeleton in brain nerve cells are regulated by microtubule associated proteins (MAPs), tau and MAP2. Both proteins are intrinsically disordered and involved in multiple molecular interactions important for normal physiology and pathology of chronic neurodegenerative diseases. Nuclear magnetic resonance and cryo-electron microscopy recently revealed propensities of MAPs to form transient local structures and long-range contacts in the free state, and conformations adopted in complexes with microtubules and filamentous actin, as well as in pathological aggregates. In this paper, we compare the longest, 441-residue brain isoform of tau (tau40), and a 467-residue isoform of MAP2, known as MAP2c. For both molecules, we present transient structural motifs revealed by conformational analysis of experimental data obtained for free soluble forms of the proteins. We show that many of the short sequence motifs that exhibit transient structural features are linked to functional properties, manifested by specific interactions. The transient structural motifs can be therefore classified as molecular recognition elements of tau40 and MAP2c. Their interactions are further regulated by post-translational modifications, in particular phosphorylation. The structure-function analysis also explains differences between biological activities of tau40 and MAP2c.
Collapse
Affiliation(s)
- Kateřina Melková
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Vojtěch Zapletal
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Subhash Narasimhan
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Séverine Jansen
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Jozef Hritz
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Rostislav Škrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia.
- Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, 811 02 Bratislava, Slovakia.
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany.
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | | | | | - Lukáš Žídek
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
116
|
Patel AA, Ganepola GA, Rutledge JR, Chang DH. The Potential Role of Dysregulated miRNAs in Alzheimer’s Disease Pathogenesis and Progression. J Alzheimers Dis 2019; 67:1123-1145. [DOI: 10.3233/jad-181078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ankur A. Patel
- Department of Research, Center for Cancer Research and Genomic Medicine, The Valley Hospital, Paramus, NJ, USA
| | - Ganepola A.P. Ganepola
- Department of Research, Center for Cancer Research and Genomic Medicine, The Valley Hospital, Paramus, NJ, USA
| | - John R. Rutledge
- Department of Oncology Special Program, The Daniel and Gloria Blumenthal Cancer Center, The Valley Hospital, Paramus, NJ, USA
| | - David H. Chang
- Department of Research, Center for Cancer Research and Genomic Medicine, The Valley Hospital, Paramus, NJ, USA
| |
Collapse
|
117
|
Liu J, Chang L, Song Y, Li H, Wu Y. The Role of NMDA Receptors in Alzheimer's Disease. Front Neurosci 2019; 13:43. [PMID: 30800052 PMCID: PMC6375899 DOI: 10.3389/fnins.2019.00043] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
In Alzheimer’s disease (AD), early synaptic dysfunction is associated with the increased oligomeric amyloid-beta peptide, which causes NMDAR-dependent synaptic depression and spine elimination. Memantine, low-affinity NMDAR channel blocker, has been used in the treatment of moderate to severe AD. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between NMDARs dysfunction and AD. This review focuses on not only changes in expression of different NMDAR subunits, but also some unconventional modes of NMDAR action.
Collapse
Affiliation(s)
- Jinping Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
118
|
Ouyang M, Wan R, Qin Q, Peng Q, Wang P, Wu J, Allen M, Shi Y, Laub S, Deng L, Lu S, Wang Y. Sensitive FRET Biosensor Reveals Fyn Kinase Regulation by Submembrane Localization. ACS Sens 2019; 4:76-86. [PMID: 30588803 DOI: 10.1021/acssensors.8b00896] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fyn kinase plays crucial roles in hematology and T cell signaling; however, there are currently limited tools to visualize the dynamic Fyn activity in live cells. Here we developed and characterized a highly sensitive Fyn biosensor based on fluorescence resonance energy transfer (FRET) to monitor Fyn kinase activity in live cells. Our results show that Fyn kinase activity can be induced in both mouse embryonic fibroblasts (MEFs) and T cells by ligand engagement. Two different motifs were further introduced to target the biosensor at the cellular membrane microdomains in MEFs, revealing that the Fyn-tagged biosensor had 70% greater response to growth factor stimulation than the Lyn-tagged version. This suggests that the plasma membrane microdomains can be categorized into different functional subdomains. Further experiments show that while the membrane accessibility is necessary for Fyn activation, the localization of Fyn outside of its microdomains causes its hyperactivity, indicating that membrane microdomains provide a suppressive microenvironment for Fyn regulation in MEFs. Interestingly, a relatively high Fyn activity can be observed at perinuclear regions, further supporting the notion that the membrane microenvironment has a significant impact on the local molecular functions. Our work hence highlights a novel Fyn FRET biosensor for live cell imaging and its application in revealing an intricate submembrane regulation of Fyn in live MEFs.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Rongxue Wan
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qin Qin
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Qin Peng
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Pengzhi Wang
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Jenny Wu
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Molly Allen
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Yiwen Shi
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Shannon Laub
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Shaoying Lu
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| | - Yingxiao Wang
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, United States
| |
Collapse
|
119
|
Asiatic Acid Attenuated Aluminum Chloride-Induced Tau Pathology, Oxidative Stress and Apoptosis Via AKT/GSK-3β Signaling Pathway in Wistar Rats. Neurotox Res 2019; 35:955-968. [PMID: 30671870 DOI: 10.1007/s12640-019-9999-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
Asiatic acid (AA), a triterpenoid present in Centella asiatica, possesses the ability to cross blood brain barrier and received considerable attention for its neuroprotective role. We have reported the benefit of AA against aluminum chloride (AlCl3)-induced amyloid pathology, enhanced acetylcholine esterase (AChE) activity, and inflammation in Alzheimer's disease (AD) like model rats. Based on that, to find the exact mechanism of action of AA, the present study was designed to evaluate the oxidative stress, tau pathology, apoptosis, and Akt/GSK3β signaling pathway on AlCl3-induced neurotoxicity in Wistar rats. AD-like pathology was induced by oral administration of AlCl3 (100 mg/kg b.w.) for 6 weeks, which demonstrated a significant reduction in spatial memory performance, anxiety, and motor dysfunction and diminished the expression of cyclin-dependent kinase 5 (CDK 5-enzyme implicated in the phosphorylation of tau proteins), pTau, oxidative stress, and apoptosis, whereas oral ingestion of AA (75 mg/kg b.w.) for 7 weeks attenuated the above-said indices, which could be by activating Akt/GSK3β pathway. Current results suggested that AA could be able to modulate various pathological features of AD and could hold promise in AD treatment.
Collapse
|
120
|
Saha P, Sen N. Tauopathy: A common mechanism for neurodegeneration and brain aging. Mech Ageing Dev 2019; 178:72-79. [PMID: 30668956 DOI: 10.1016/j.mad.2019.01.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/09/2019] [Accepted: 01/18/2019] [Indexed: 01/07/2023]
Abstract
Tau, a microtubule-associated protein promotes assembly and stability of microtubules which is related to axoplasmic flow and critical neuronal activities upon physiological conditions. Under neurodegenerative condition such as in Alzheimer's Disease (AD), tau-microtubule binding dynamics and equilibrium are severely affected due to its aberrant post-translational modifications including acetylation and hyperphosphorylation. This event results in its conformational changes to form neurofibrillary tangles (NFT) after aggregation in the cytosol. The formation of NFT is more strongly correlated with cognitive decline than the distribution of senile plaque, which is formed by polymorphous beta-amyloid (Aβ) protein deposits, another pathological hallmark of AD. In neurodegenerative conditions, other than AD, the disease manifestation is correlated with mutations of the MAPT gene. In Primary age-related tauopathy (PART), which is commonly observed in the brains of aged individuals, tau deposition is directly correlated with cognitive deficits even in the absence of Aβ deposition. Thus, tauopathy has been considered as an essential hallmark in neurodegeneration and normal brain aging. In this review, we highlighted the recent progress about the tauopathies in the light of its posttranslational modifications and its implication in AD and the aged brain.
Collapse
Affiliation(s)
- Pampa Saha
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, United States
| | - Nilkantha Sen
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, United States.
| |
Collapse
|
121
|
Experimental Models of Tauopathy - From Mechanisms to Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:381-391. [PMID: 32096051 DOI: 10.1007/978-981-32-9358-8_28] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Animal models have been instrumental in reproducing key aspects of human tauopathy. In pursuing these efforts, the mouse continues to have a prominent role. In this chapter, we focus on models that overexpress wild-type or mutant forms of tau, the latter being based on mutations found in familial cases of frontotemporal dementia. We review some of these models in more detail and discuss what they have revealed about the underlying pathomechanisms, as well as highlighting new developments that exploit gene editing tools such as TALEN and CRISPR. Interestingly, when investigating the role of tau in impairing cellular functions, common themes emerge. Because tau is a scaffolding protein that aggregates in the somatodendritic domain under pathological conditions, it traps proteins such as parkin and JIP1, preventing them from executing their normal function in mitophagy and axonal transport, respectively. Another aspect is the emerging role of tau in the translational machinery and the finding that the somatodendritic accumulation of tau in Alzheimer's disease may in part be due to the induction of the de novo synthesis of tau by amyloid-β via the Fyn/ERK/S6 pathway. We further discuss treatment strategies such as tau-based vaccinations and therapeutic ultrasound and conclude by discussing whether there is a future for animal models of tauopathies.
Collapse
|
122
|
Götz J, Halliday G, Nisbet RM. Molecular Pathogenesis of the Tauopathies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:239-261. [PMID: 30355155 DOI: 10.1146/annurev-pathmechdis-012418-012936] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tauopathies constitute a group of diseases that have Tau inclusions in neurons or glia as their common denominator. In this review, we describe the biochemical and histological differences in Tau pathology that are characteristic of the spectrum of frontotemporal lobar degeneration as primary tauopathies and of Alzheimer's disease as a secondary tauopathy, as well as the commonalities and differences between the familial and sporadic forms. Furthermore, we discuss selected advances in transgenic animal models in delineating the different pathomechanisms of Tau.
Collapse
Affiliation(s)
- Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St. Lucia Campus, Brisbane, Queensland 4072, Australia;
| | - Glenda Halliday
- Brain and Mind Centre and Central Clinical School, Sydney Medical School, University of Sydney, New South Wales 2006, Australia
| | - Rebecca M Nisbet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St. Lucia Campus, Brisbane, Queensland 4072, Australia;
| |
Collapse
|
123
|
Paul S, Haskali MB, Liow JS, Zoghbi SS, Barth VN, Kolodrubetz MC, Bond MR, Morse CL, Gladding RL, Frankland MP, Kant N, Slieker L, Shcherbinin S, Nuthall HN, Zanotti-Fregonara P, Hanover JA, Jesudason C, Pike VW, Innis RB. Evaluation of a PET Radioligand to Image O-GlcNAcase in Brain and Periphery of Rhesus Monkey and Knock-Out Mouse. J Nucl Med 2018; 60:129-134. [PMID: 30213846 DOI: 10.2967/jnumed.118.213231] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
Accumulation of hyperphosphorylated tau, a microtubule-associated protein, plays an important role in the progression of Alzheimer disease. Animal studies suggest that one strategy for treating Alzheimer disease and related tauopathies may be inhibition of O-GlcNAcase (OGA), which may subsequently decrease pathologic tau phosphorylation. Here, we report the pharmacokinetics of a novel PET radioligand, 18F-LSN3316612, which binds with high affinity and selectivity to OGA. Methods: PET imaging was performed on rhesus monkeys at baseline and after administration of either thiamet-G, a potent OGA inhibitor, or nonradioactive LSN3316612. The density of the enzyme was calculated as distribution volume using a 2-tissue-compartment model and serial concentrations of parent radioligand in arterial plasma. The radiation burden for future studies was based on whole-body imaging of monkeys. Oga ∆Br, a mouse brain-specific knockout of Oga, was also scanned to assess the specificity of the radioligand for its target enzyme. Results: Uptake of radioactivity in monkey brain was high (∼5 SUV) and followed by slow washout. The highest uptake was in the amygdala, followed by striatum and hippocampus. Pretreatment with thiamet-G or nonradioactive LSN3316612 reduced brain uptake to a low and uniform concentration in all regions, corresponding to an approximately 90% decrease in distribution volume. Whole-body imaging of rhesus monkeys showed high uptake in kidney, spleen, liver, and testes. In Oga ∆Br mice, brain uptake of 18F-LSN3316612 was reduced by 82% compared with control mice. Peripheral organs were unaffected in Oga ∆Br mice, consistent with loss of OGA expression exclusively in the brain. The effective dose of 18F-LSN3316612 in humans was calculated to be 22 μSv/MBq, which is typical for 18F-labeled radioligands. Conclusion: These results show that 18F-LSN3316612 is an excellent radioligand for imaging and quantifying OGA in rhesus monkeys and mice. On the basis of these data, 18F-LSN3316612 merits evaluation in humans.
Collapse
Affiliation(s)
- Soumen Paul
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Mohammad B Haskali
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland.,Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jeih-San Liow
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Sami S Zoghbi
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | | | | | - Michelle R Bond
- LCMB, NIDDK, National Institutes of Health, Bethesda, Maryland
| | - Cheryl L Morse
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Robert L Gladding
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Michael P Frankland
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Nancy Kant
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | | | | - John A Hanover
- LCMB, NIDDK, National Institutes of Health, Bethesda, Maryland
| | | | - Victor W Pike
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Robert B Innis
- Molecular Imaging Branch, NIMH, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
124
|
Reduction of amyloid beta by Aβ3-10-KLH vaccine also decreases tau pathology in 3×Tg-AD mice. Brain Res Bull 2018; 142:233-240. [DOI: 10.1016/j.brainresbull.2018.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 11/22/2022]
|
125
|
Chauderlier A, Gilles M, Spolcova A, Caillierez R, Chwastyniak M, Kress M, Drobecq H, Bonnefoy E, Pinet F, Weil D, Buée L, Galas MC, Lefebvre B. Tau/DDX6 interaction increases microRNA activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:762-772. [DOI: 10.1016/j.bbagrm.2018.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 12/17/2022]
|
126
|
Sharma S, Young RJ, Chen J, Chen X, Oh EC, Schiller MR. Minimotifs dysfunction is pervasive in neurodegenerative disorders. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:414-432. [PMID: 30225339 PMCID: PMC6139474 DOI: 10.1016/j.trci.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Minimotifs are modular contiguous peptide sequences in proteins that are important for posttranslational modifications, binding to other molecules, and trafficking to specific subcellular compartments. Some molecular functions of proteins in cellular pathways can be predicted from minimotif consensus sequences identified through experimentation. While a role for minimotifs in regulating signal transduction and gene regulation during disease pathogenesis (such as infectious diseases and cancer) is established, the therapeutic use of minimotif mimetic drugs is limited. In this review, we discuss a general theme identifying a pervasive role of minimotifs in the pathomechanism of neurodegenerative diseases. Beyond their longstanding history in the genetics of familial neurodegeneration, minimotifs are also major players in neurotoxic protein aggregation, aberrant protein trafficking, and epigenetic regulation. Generalizing the importance of minimotifs in neurodegenerative diseases offers a new perspective for the future study of neurodegenerative mechanisms and the investigation of new therapeutics.
Collapse
Affiliation(s)
- Surbhi Sharma
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Richard J. Young
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- Department of Psychology, Las Vegas, NV, USA
| | - Edwin C. Oh
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
127
|
Seynnaeve D, Vecchio MD, Fruhmann G, Verelst J, Cools M, Beckers J, Mulvihill DP, Winderickx J, Franssens V. Recent Insights on Alzheimer's Disease Originating from Yeast Models. Int J Mol Sci 2018; 19:E1947. [PMID: 29970827 PMCID: PMC6073265 DOI: 10.3390/ijms19071947] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 01/28/2023] Open
Abstract
In this review article, yeast model-based research advances regarding the role of Amyloid-β (Aβ), Tau and frameshift Ubiquitin UBB+1 in Alzheimer’s disease (AD) are discussed. Despite having limitations with regard to intercellular and cognitive AD aspects, these models have clearly shown their added value as complementary models for the study of the molecular aspects of these proteins, including their interplay with AD-related cellular processes such as mitochondrial dysfunction and altered proteostasis. Moreover, these yeast models have also shown their importance in translational research, e.g., in compound screenings and for AD diagnostics development. In addition to well-established Saccharomyces cerevisiae models, new upcoming Schizosaccharomyces pombe, Candida glabrata and Kluyveromyces lactis yeast models for Aβ and Tau are briefly described. Finally, traditional and more innovative research methodologies, e.g., for studying protein oligomerization/aggregation, are highlighted.
Collapse
Affiliation(s)
- David Seynnaeve
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Mara Del Vecchio
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Gernot Fruhmann
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Joke Verelst
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Melody Cools
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Jimmy Beckers
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Daniel P Mulvihill
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK.
| | - Joris Winderickx
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Vanessa Franssens
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| |
Collapse
|
128
|
Chong FP, Ng KY, Koh RY, Chye SM. Tau Proteins and Tauopathies in Alzheimer's Disease. Cell Mol Neurobiol 2018; 38:965-980. [PMID: 29299792 PMCID: PMC11481908 DOI: 10.1007/s10571-017-0574-1] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD) is characterized by progressive memory loss and cognitive function deficits. There are two major pathological hallmarks that contribute to the pathogenesis of AD which are the presence of extracellular amyloid plaques composed of amyloid-β (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. Despite extensive research that has been done on Aβ in the last two decades, therapies targeting Aβ were not very fruitful at treating AD as the efficacy of Aβ therapies observed in animal models is not reflected in human clinical trials. Hence, tau-directed therapies have received tremendous attention as the potential treatments for AD. Tauopathies are closely correlated with dementia and immunotherapy has been effective at reducing tau pathology and improving cognitive deficits in animal models. Thus, in this review article, we discussed the pathological mechanism of tau proteins, the key factors contributing to tauopathies, and therapeutic approaches for tauopathies in AD based on the recent progress in tau-based research.
Collapse
Affiliation(s)
- Fong Ping Chong
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
129
|
Phosphorylation of different tau sites during progression of Alzheimer's disease. Acta Neuropathol Commun 2018; 6:52. [PMID: 29958544 PMCID: PMC6027763 DOI: 10.1186/s40478-018-0557-6] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/19/2018] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease is characterized by accumulation of amyloid plaques and tau aggregates in several cortical brain regions. Tau phosphorylation causes formation of neurofibrillary tangles and neuropil threads. Phosphorylation at tau Ser202/Thr205 is well characterized since labeling of this site is used to assign Braak stage based on occurrence of neurofibrillary tangles. Only little is known about the spatial and temporal phosphorylation profile of other phosphorylated tau (ptau) sites. Here, we investigate total tau and ptau at residues Tyr18, Ser199, Ser202/Thr205, Thr231, Ser262, Ser396, Ser422 as well as amyloid-β plaques in human brain tissue of AD patients and controls. Allo- and isocortical brain regions were evaluated applying rater-independent automated quantification based on digital image analysis. We found that the level of ptau at several residues, like Ser199, Ser202/Thr205, and Ser422 was similar in healthy controls and Braak stages I to IV but was increased in Braak stage V/VI throughout the entire isocortex and transentorhinal cortex. Quantification of ThioS-stained plaques showed a similar pattern. Only tau phosphorylation at Tyr18 and Thr231 was already significantly increased in the transentorhinal region at Braak stage III/IV and hence showed a progressive increase with increasing Braak stages. Additionally, the increase in phosphorylation relative to controls was highest at Tyr18, Thr231 and Ser199. By contrast, Ser396 tau and Ser262 tau showed only a weak phosphorylation in all analyzed brain regions and only minor progression. Our results suggest that the ptau burden in the isocortex is comparable between all analyzed ptau sites when using a quantitative approach while levels of ptau at Tyr18 or Thr231 in the transentorhinal region are different between all Braak stages. Hence these sites could be crucial in the pathogenesis of AD already at early stages and therefore represent putative novel therapeutic targets.
Collapse
|
130
|
Tau Does Not Stabilize Axonal Microtubules but Rather Enables Them to Have Long Labile Domains. Curr Biol 2018; 28:2181-2189.e4. [PMID: 30008334 DOI: 10.1016/j.cub.2018.05.045] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/16/2018] [Accepted: 05/16/2018] [Indexed: 11/22/2022]
Abstract
It is widely believed that tau stabilizes microtubules in the axon [1-3] and, hence, that disease-induced loss of tau from axonal microtubules leads to their destabilization [3-5]. An individual microtubule in the axon has a stable domain and a labile domain [6-8]. We found that tau is more abundant on the labile domain, which is inconsistent with tau's proposed role as a microtubule stabilizer. When tau is experimentally depleted from cultured rat neurons, the labile microtubule mass of the axon drops considerably, the remaining labile microtubule mass becomes less labile, and the stable microtubule mass increases. MAP6 (also called stable tubule-only polypeptide), which is normally enriched on the stable domain [9], acquires a broader distribution across the microtubule when tau is depleted, providing a potential explanation for the increase in stable microtubule mass. When MAP6 is depleted, the labile microtubule mass becomes even more labile, indicating that, unlike tau, MAP6 is a genuine stabilizer of axonal microtubules. We conclude that tau is not a stabilizer of axonal microtubules but is enriched on the labile domain of the microtubule to promote its assembly while limiting the binding to it of genuine stabilizers, such as MAP6. This enables the labile domain to achieve great lengths without being stabilized. These conclusions are contrary to tau dogma.
Collapse
|
131
|
Poli G, Lapillo M, Granchi C, Caciolla J, Mouawad N, Caligiuri I, Rizzolio F, Langer T, Minutolo F, Tuccinardi T. Binding investigation and preliminary optimisation of the 3-amino-1,2,4-triazin-5(2H)-one core for the development of new Fyn inhibitors. J Enzyme Inhib Med Chem 2018; 33:956-961. [PMID: 29747534 PMCID: PMC6009924 DOI: 10.1080/14756366.2018.1469017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Fyn tyrosine kinase inhibitors are considered potential therapeutic agents for a variety of human cancers. Furthermore, the involvement of Fyn kinase in signalling pathways that lead to severe pathologies, such as Alzheimer's and Parkinson's diseases, has also been demonstrated. In this study, starting from 3-(benzo[d][1,3]dioxol-5-ylamino)-6-methyl-1,2,4-triazin-5(2H)-one (VS6), a hit compound that showed a micromolar inhibition of Fyn (IC50 = 4.8 μM), we computationally investigated the binding interactions of the 3-amino-1,2,4-triazin-5(2H)-one scaffold and started a preliminary hit to lead optimisation. This analysis led us to confirm the hypothesised binding mode of VS6 and to identify a new derivative that is about 6-fold more active than VS6 (compound 3, IC50 = 0.76 μM).
Collapse
Affiliation(s)
- Giulio Poli
- a Department of Pharmacy , University of Pisa , Pisa , Italy
| | | | | | | | - Nayla Mouawad
- a Department of Pharmacy , University of Pisa , Pisa , Italy.,b Pathology Unit, Department of Molecular Biology and Translational Research , National Cancer Institute and Center for Molecular Biomedicine , Aviano (PN) , Italy
| | - Isabella Caligiuri
- b Pathology Unit, Department of Molecular Biology and Translational Research , National Cancer Institute and Center for Molecular Biomedicine , Aviano (PN) , Italy
| | - Flavio Rizzolio
- b Pathology Unit, Department of Molecular Biology and Translational Research , National Cancer Institute and Center for Molecular Biomedicine , Aviano (PN) , Italy.,c Department of Molecular Science and Nanosystems , Ca' Foscari Università di Venezia , Venezia-Mestre , Italy
| | - Thierry Langer
- d Department of Pharmaceutical Chemistry, Faculty of Life Sciences , University of Vienna , Vienna , Austria
| | | | - Tiziano Tuccinardi
- a Department of Pharmacy , University of Pisa , Pisa , Italy.,e Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University , Philadelphia , PA , USA
| |
Collapse
|
132
|
Park S, Lee JH, Jeon JH, Lee MJ. Degradation or aggregation: the ramifications of post-translational modifications on tau. BMB Rep 2018; 51:265-273. [PMID: 29661268 PMCID: PMC6033068 DOI: 10.5483/bmbrep.2018.51.6.077] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 01/06/2023] Open
Abstract
Tau protein is encoded in the microtubule-associated protein tau (MAPT) gene and contributes to the stability of microtubules in axons. Despite of its basic isoelectric point and high solubility, tau is often found in intraneuronal filamentous inclusions such as paired helical filaments (PHFs), which are the primary constituent of neurofibrillary tangles (NFTs). This pathological feature is the nosological entity termed "tauopathies" which notably include Alzheimer's disease (AD). A proteinaceous signature of all tauopathies is hyperphosphorylation of the accumulated tau, which has been extensively studied as a major pharmacological target for AD therapy. However, in addition to phosphorylation events, tau undergoes a number of diverse posttranslational modifications (PTMs) which appear to be controlled by complex crosstalk. It remains to be elucidated which of the PTMs or their combinations have pro-aggregation or anti-aggregation properties. In this review, we outline the consequences of and communications between several key PTMs of tau, such as acetylation, phosphorylation, and ubiquitination, focusing on their roles in aggregation and degradation. We place emphasis on the structure of tau protofilaments from the human AD brain, which may be good targets to modulate etiological PTMs which cause tau aggregation. [BMB Reports 2018; 51(6): 265-273].
Collapse
Affiliation(s)
- Seoyoung Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080,
Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Jung Hoon Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080,
Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Jun Hyoung Jeon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080,
Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080,
Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080,
Korea
| |
Collapse
|
133
|
Gauthier-Kemper A, Suárez Alonso M, Sündermann F, Niewidok B, Fernandez MP, Bakota L, Heinisch JJ, Brandt R. Annexins A2 and A6 interact with the extreme N terminus of tau and thereby contribute to tau's axonal localization. J Biol Chem 2018; 293:8065-8076. [PMID: 29636414 DOI: 10.1074/jbc.ra117.000490] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/08/2018] [Indexed: 12/18/2022] Open
Abstract
During neuronal development, the microtubule-associated protein tau becomes enriched in the axon, where it remains concentrated in the healthy brain. In tauopathies such as Alzheimer's disease, tau redistributes from the axon to the somatodendritic compartment. However, the cellular mechanism that regulates tau's localization remains unclear. We report here that tau interacts with the Ca2+-regulated plasma membrane-binding protein annexin A2 (AnxA2) via tau's extreme N terminus encoded by the first exon (E1). Bioinformatics analysis identified two conserved eight-amino-acids-long motifs within E1 in mammals. Using a heterologous yeast system, we found that disease-related mutations and pseudophosphorylation of Tyr-18, located within E1 but outside of the two conserved regions, do not influence tau's interaction with AnxA2. We further observed that tau interacts with the core domain of AnxA2 in a Ca2+-induced open conformation and interacts also with AnxA6. Moreover, lack of E1 moderately increased tau's association rate to microtubules, consistent with the supposition that the presence of the tau-annexin interaction reduces the availability of tau to interact with microtubules. Of note, intracellular competition through overexpression of E1-containing constructs reduced tau's axonal enrichment in primary neurons. Our results suggest that the E1-mediated tau-annexin interaction contributes to the enrichment of tau in the axon and is involved in its redistribution in pathological conditions.
Collapse
Affiliation(s)
| | - María Suárez Alonso
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Frederik Sündermann
- Department of Neurobiology, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Benedikt Niewidok
- Department of Neurobiology, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Maria-Pilar Fernandez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, D-49076 Osnabrück, Germany
| | | | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, D-49076 Osnabrück, Germany.
| |
Collapse
|
134
|
|
135
|
Nygaard HB. Targeting Fyn Kinase in Alzheimer's Disease. Biol Psychiatry 2018; 83:369-376. [PMID: 28709498 PMCID: PMC5729051 DOI: 10.1016/j.biopsych.2017.06.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 01/06/2023]
Abstract
The past decade has brought tremendous progress in unraveling the pathophysiology of Alzheimer's disease (AD). While increasingly sophisticated immunotherapy targeting soluble and aggregated brain amyloid-beta (Aβ) continues to dominate clinical research in AD, a deeper understanding of Aβ physiology has led to the recognition of distinct neuronal signaling pathways linking Aβ to synaptotoxicity and neurodegeneration and to new targets for therapeutic intervention. Identifying specific signaling pathways involving Aβ has allowed for the development of more precise therapeutic interventions targeting the most relevant molecular mechanisms leading to AD. In this review, I highlight the discovery of cellular prion protein as a high-affinity receptor for Aβ oligomers, and the downstream signaling pathway elucidated to date, converging on nonreceptor tyrosine kinase Fyn. I discuss preclinical studies targeting Fyn as a therapeutic intervention in AD and our recent experience with the safety, tolerability, and cerebrospinal fluid penetration of the Src family kinase inhibitor saracatinib in patients with AD. Fyn is an attractive target for AD therapeutics, not only based on its activation by Aβ via cellular prion protein but also due to its known interaction with tau, uniquely linking the two key pathologies in AD. Fyn is also a challenging target, with broad expression throughout the body and significant homology with other members of the Src family kinases, which may lead to unintended off-target effects. A phase 2a proof-of-concept clinical trial in patients with AD is currently under way, providing critical first data on the potential effectiveness of targeting Fyn in AD.
Collapse
Affiliation(s)
- Haakon B. Nygaard
- Assistant Professor of Medicine (Neurology), University of British Columbia, Department of Medicine, Division of Neurology, Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
136
|
Culbreth M, Aschner M. GSK-3β, a double-edged sword in Nrf2 regulation: Implications for neurological dysfunction and disease. F1000Res 2018; 7:1043. [PMID: 30079246 PMCID: PMC6053695 DOI: 10.12688/f1000research.15239.1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2018] [Indexed: 12/12/2022] Open
Abstract
In the past decade, it has become evident that glycogen synthase kinase 3β (GSK-3β) modulates the nuclear factor erythroid 2-related factor 2 (Nrf2) oxidative stress response. GSK-3β functions as an inhibitor, both directly in the activation and indirectly in the post-induction of Nrf2. The incidence of oxidative stress in neurological dysfunction and disease has made this signaling pathway an attractive therapeutic target. There is minimal evidence, however, to support a distinctive function for GSK-3β mediated Nrf2 inhibition in nervous system decline, apart from the typical oxidative stress response. In both Alzheimer's disease and brain ischemia, this pathway has been explored for potential benefits on disease etiology and advancement. Presently, it is unclear whether GSK-3β mediated Nrf2 inhibition markedly influences these disease states. Furthermore, the potential that each has unique function in neurodegenerative decline is unsubstantiated.
Collapse
Affiliation(s)
- Megan Culbreth
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
137
|
Chaudhary AR, Berger F, Berger CL, Hendricks AG. Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams. Traffic 2017; 19:111-121. [PMID: 29077261 DOI: 10.1111/tra.12537] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
Organelles, proteins, and mRNA are transported bidirectionally along microtubules by plus-end directed kinesin and minus-end directed dynein motors. Microtubules are decorated by microtubule-associated proteins (MAPs) that organize the cytoskeleton, regulate microtubule dynamics and modulate the interaction between motor proteins and microtubules to direct intracellular transport. Tau is a neuronal MAP that stabilizes axonal microtubules and crosslinks them into bundles. Dysregulation of tau leads to a range of neurodegenerative diseases known as tauopathies including Alzheimer's disease (AD). Tau reduces the processivity of kinesin and dynein by acting as an obstacle on the microtubule. Single-molecule assays indicate that kinesin-1 is more strongly inhibited than kinesin-2 or dynein, suggesting tau might act to spatially modulate the activity of specific motors. To investigate the role of tau in regulating bidirectional transport, we isolated phagosomes driven by kinesin-1, kinesin-2, and dynein and reconstituted their motility along microtubules. We find that tau biases bidirectional motility towards the microtubule minus-end in a dose-dependent manner. Optical trapping measurements show that tau increases the magnitude and frequency of forces exerted by dynein through inhibiting opposing kinesin motors. Mathematical modeling indicates that tau controls the directional bias of intracellular cargoes through differentially tuning the processivity of kinesin-1, kinesin-2, and dynein. Taken together, these results demonstrate that tau modulates motility in a motor-specific manner to direct intracellular transport, and suggests that dysregulation of tau might contribute to neurodegeneration by disrupting the balance of plus- and minus-end directed transport.
Collapse
Affiliation(s)
| | - Florian Berger
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York
| | - Christopher L Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
138
|
Köhler C, Fuhr V, Dinekov M. Distribution of spleen tyrosine kinase and tau phosphorylated at tyrosine 18 in a mouse model of tauopathy and in the human hippocampus. Brain Res 2017; 1677:1-13. [DOI: 10.1016/j.brainres.2017.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/11/2017] [Accepted: 08/25/2017] [Indexed: 12/01/2022]
|
139
|
Brody AH, Strittmatter SM. Synaptotoxic Signaling by Amyloid Beta Oligomers in Alzheimer's Disease Through Prion Protein and mGluR5. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:293-323. [PMID: 29413525 PMCID: PMC5835229 DOI: 10.1016/bs.apha.2017.09.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) represents an impending global health crisis, yet the complexity of AD pathophysiology has so far precluded the development of any interventions to successfully slow or halt AD progression. It is clear that accumulation of Amyloid-beta (Aβ) peptide triggers progressive synapse loss to cause AD symptoms. Once initiated by Aβ, disease progression is complicated and accelerated by inflammation and by tau pathology. The recognition that Aβ peptide assumes multiple distinct states and that soluble oligomeric species (Aβo) are critical for synaptic damage is central to molecular understanding of AD. This knowledge has led to the identification of specific Aβo receptors, such as cellular prion protein (PrPC), mediating synaptic toxicity and neuronal dysfunction. The identification of PrPC as an Aβo receptor has illuminated an Aβo-induced signaling cascade involving mGluR5, Fyn, and Pyk2 that links Aβ and tau pathologies. This pathway provides novel potential therapeutic targets for disease-modifying AD therapy. Here, we discuss the methods by which several putative Aβo receptors were identified. We also offer an in-depth examination of the known molecular mechanisms believed to mediate Aβo-induced synaptic dysfunction, toxicity, and memory dysfunction.
Collapse
Affiliation(s)
- A Harrison Brody
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT, United States; Yale University, New Haven, CT, United States
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT, United States; Yale University, New Haven, CT, United States.
| |
Collapse
|
140
|
Tau-based therapies in neurodegeneration: opportunities and challenges. Nat Rev Drug Discov 2017; 16:863-883. [DOI: 10.1038/nrd.2017.155] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
141
|
Wang Y, Hall RA, Lee M, Kamgar-Parsi A, Bi X, Baudry M. The tyrosine phosphatase PTPN13/FAP-1 links calpain-2, TBI and tau tyrosine phosphorylation. Sci Rep 2017; 7:11771. [PMID: 28924170 PMCID: PMC5603515 DOI: 10.1038/s41598-017-12236-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) increases the risk of Alzheimer's disease (AD). Calpain activation and tau hyperphosphorylation have been implicated in both TBI and AD. However, the link between calpain and tau phosphorylation has not been fully identified. We recently discovered that the two major calpain isoforms in the brain, calpain-1 and calpain-2, play opposite functions in synaptic plasticity and neuronal survival/death, which may be related to their different C-terminal PDZ binding motifs. Here, we identify the tyrosine phosphatase PTPN13 as a key PDZ binding partner of calpain-2. PTPN13 is cleaved by calpain-2, which inactivates its phosphatase activity and generates stable breakdown products (P13BPs). We also found that PTPN13 dephosphorylates and inhibits c-Abl. Following TBI, calpain-2 activation cleaved PTPN13, activated c-Abl and triggered tau tyrosine phosphorylation. The activation of this pathway was responsible for the accumulation of tau oligomers after TBI, as post-TBI injection of a calpain-2 selective inhibitor inhibited c-Abl activation and tau oligomer accumulation. Thus, the calpain-2-PTPN13-c-Abl pathway provides a direct link between calpain-2 activation and abnormal tau aggregation, which may promote tangle formation and accelerate the development of AD pathology after repeated concussions or TBI. This study suggests that P13BPs could be potential biomarkers to diagnose mTBI or AD.
Collapse
Affiliation(s)
- Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Randy A Hall
- Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Moses Lee
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Andysheh Kamgar-Parsi
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA.
| |
Collapse
|
142
|
Li C, Götz J. Somatodendritic accumulation of Tau in Alzheimer's disease is promoted by Fyn-mediated local protein translation. EMBO J 2017; 36:3120-3138. [PMID: 28864542 DOI: 10.15252/embj.201797724] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/25/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022] Open
Abstract
The cause of protein accumulation in neurodegenerative disease is incompletely understood. In Alzheimer's disease (AD), the axonally enriched protein Tau forms hyperphosphorylated aggregates in the somatodendritic domain. Consequently, a process of subcellular relocalization driven by Tau phosphorylation and detachment from microtubules has been proposed. Here, we reveal an alternative mechanism of de novo protein synthesis of Tau and its hyperphosphorylation in the somatodendritic domain, induced by oligomeric amyloid-β (Aβ) and mediated by the kinase Fyn that activates the ERK/S6 signaling pathway. Activation of this pathway is demonstrated in a range of cellular systems, and in vivo in brains from Aβ-depositing, Aβ-injected, and Fyn-overexpressing mice with Tau accumulation. Both pharmacological inhibition and genetic deletion of Fyn abolish the Aβ-induced Tau overexpression via ERK/S6 suppression. Together, these findings present a more cogent mechanism of Tau aggregation in disease. They identify a prominent role for neuronal Fyn in integrating signal transduction pathways that lead to the somatodendritic accumulation of Tau in AD.
Collapse
Affiliation(s)
- Chuanzhou Li
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, Qld, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
143
|
Oliveira J, Costa M, de Almeida MSC, da Cruz e Silva OA, Henriques AG. Protein Phosphorylation is a Key Mechanism in Alzheimer’s Disease. J Alzheimers Dis 2017; 58:953-978. [DOI: 10.3233/jad-170176] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joana Oliveira
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| | - Márcio Costa
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| | | | - Odete A.B. da Cruz e Silva
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
144
|
Miyamoto T, Stein L, Thomas R, Djukic B, Taneja P, Knox J, Vossel K, Mucke L. Phosphorylation of tau at Y18, but not tau-fyn binding, is required for tau to modulate NMDA receptor-dependent excitotoxicity in primary neuronal culture. Mol Neurodegener 2017; 12:41. [PMID: 28526038 PMCID: PMC5438564 DOI: 10.1186/s13024-017-0176-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hyperexcitability of neuronal networks can lead to excessive release of the excitatory neurotransmitter glutamate, which in turn can cause neuronal damage by overactivating NMDA-type glutamate receptors and related signaling pathways. This process (excitotoxicity) has been implicated in the pathogenesis of many neurological conditions, ranging from childhood epilepsies to stroke and neurodegenerative disorders such as Alzheimer's disease (AD). Reducing neuronal levels of the microtubule-associated protein tau counteracts network hyperexcitability of diverse causes, but whether this strategy can also diminish downstream excitotoxicity is less clear. METHODS We established a cell-based assay to quantify excitotoxicity in primary cultures of mouse hippocampal neurons and investigated the role of tau in exicitotoxicity by modulating neuronal tau expression through genetic ablation or transduction with lentiviral vectors expressing anti-tau shRNA or constructs encoding wildtype versus mutant mouse tau. RESULTS We demonstrate that shRNA-mediated knockdown of tau reduces glutamate-induced, NMDA receptor-dependent Ca2+ influx and neurotoxicity in neurons from wildtype mice. Conversely, expression of wildtype mouse tau enhances Ca2+ influx and excitotoxicity in tau-deficient (Mapt -/-) neurons. Reconstituting tau expression in Mapt -/- neurons with mutant forms of tau reveals that the tau-related enhancement of Ca2+ influx and excitotoxicity depend on the phosphorylation of tau at tyrosine 18 (pY18), which is mediated by the tyrosine kinase Fyn. These effects are most evident at pathologically elevated concentrations of glutamate, do not involve GluN2B-containing NMDA receptors, and do not require binding of Fyn to tau's major interacting PxxP motif or of tau to microtubules. CONCLUSIONS Although tau has been implicated in diverse neurological diseases, its most pathogenic forms remain to be defined. Our study suggests that reducing the formation or level of pY18-tau can counteract excitotoxicity by diminishing NMDA receptor-dependent Ca2+ influx.
Collapse
Affiliation(s)
- Takashi Miyamoto
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Liana Stein
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Reuben Thomas
- Gladstone Institutes, Convergence Zone, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Biljana Djukic
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Praveen Taneja
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Joseph Knox
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Keith Vossel
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA. .,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
145
|
Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathol 2017; 133:665-704. [PMID: 28386764 PMCID: PMC5390006 DOI: 10.1007/s00401-017-1707-9] [Citation(s) in RCA: 630] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/26/2017] [Accepted: 03/26/2017] [Indexed: 01/18/2023]
Abstract
Tau is well established as a microtubule-associated protein in neurons. However, under pathological conditions, aberrant assembly of tau into insoluble aggregates is accompanied by synaptic dysfunction and neural cell death in a range of neurodegenerative disorders, collectively referred to as tauopathies. Recent advances in our understanding of the multiple functions and different locations of tau inside and outside neurons have revealed novel insights into its importance in a diverse range of molecular pathways including cell signalling, synaptic plasticity, and regulation of genomic stability. The present review describes the physiological and pathophysiological properties of tau and how these relate to its distribution and functions in neurons. We highlight the post-translational modifications of tau, which are pivotal in defining and modulating tau localisation and its roles in health and disease. We include discussion of other pathologically relevant changes in tau, including mutation and aggregation, and how these aspects impinge on the propensity of tau to propagate, and potentially drive neuronal loss, in diseased brain. Finally, we describe the cascade of pathological events that may be driven by tau dysfunction, including impaired axonal transport, alterations in synapse and mitochondrial function, activation of the unfolded protein response and defective protein degradation. It is important to fully understand the range of neuronal functions attributed to tau, since this will provide vital information on its involvement in the development and pathogenesis of disease. Such knowledge will enable determination of which critical molecular pathways should be targeted by potential therapeutic agents developed for the treatment of tauopathies.
Collapse
Affiliation(s)
- Tong Guo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK
| | - Diane P Hanger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK.
| |
Collapse
|
146
|
Rubenstein R, Chang B, Grinkina N, Drummond E, Davies P, Ruditzky M, Sharma D, Wang K, Wisniewski T. Tau phosphorylation induced by severe closed head traumatic brain injury is linked to the cellular prion protein. Acta Neuropathol Commun 2017; 5:30. [PMID: 28420443 PMCID: PMC5395835 DOI: 10.1186/s40478-017-0435-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/08/2017] [Indexed: 12/30/2022] Open
Abstract
Studies in vivo and in vitro have suggested that the mechanism underlying Alzheimer's disease (AD) neuropathogenesis is initiated by an interaction between the cellular prion protein (PrPC) and amyloid-β oligomers (Aβo). This PrPC-Aβo complex activates Fyn kinase which, in turn, hyperphosphorylates tau (P-Tau) resulting in synaptic dysfunction, neuronal loss and cognitive deficits. AD transgenic mice lacking PrPC accumulate Aβ, but show normal survival and no loss of spatial learning and memory suggesting that PrPC functions downstream of Aβo production but upstream of intracellular toxicity within neurons. Since AD and traumatic brain injury (TBI)-linked chronic traumatic encephalopathy are tauopathies, we examined whether similar mechanistic pathways are responsible for both AD and TBI pathophysiologies. Using transgenic mice expressing different levels of PrPC, our studies investigated the influence and necessity of PrPC on biomarker (total-tau [T-Tau], P-Tau, GFAP) levels in brain and blood as measured biochemically following severe TBI in the form of severe closed head injury (sCHI). We found that following sCHI, increasing levels of T-Tau and P-Tau in the brain were associated with the PrPC expression levels. A similar relationship between PrPC expression and P-Tau levels following sCHI were found in blood in the absence of significant T-Tau changes. This effect was not seen with GFAP which increased within 24 h following sCHI and progressively decreased by the 7 day time point regardless of the PrPC expression levels. Changes in the levels of all biomarkers were independent of gender. We further enhanced and expanded the quantitation of brain biomarkers with correlative studies using immunohisochemistry. We also demonstrate that a TBI-induced calpain hyperactivation is not required for the generation of P-Tau. A relationship was demonstrated between the presence/absence of PrPC, the levels of P-Tau and cognitive dysfunction. Our studies suggest that PrPC is important in mediating TBI related pathology.
Collapse
Affiliation(s)
- Richard Rubenstein
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/ Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, 11203-2098, NY, USA.
| | - Binggong Chang
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/ Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, 11203-2098, NY, USA
| | - Natalia Grinkina
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/ Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, 11203-2098, NY, USA
| | - Eleanor Drummond
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29th Street, New York, 10016, NY, USA
| | - Peter Davies
- Litwin-Zucker Center for Research in Alzheimer's Disease, Feinstein Institute for Medical Research, Manhasset, 11030, NY, USA
| | - Meir Ruditzky
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/ Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, 11203-2098, NY, USA
| | - Deep Sharma
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/ Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, 11203-2098, NY, USA
| | - Kevin Wang
- Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Psychiatry and Neuroscience, University of Florida, Gainesville, 32611, FL, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Departments of Neurology, Pathology and Psychiatry, New York University School of Medicine, Alexandria ERSP, 450 East 29th Street, New York, 10016, NY, USA
| |
Collapse
|
147
|
Šimić G, Babić Leko M, Wray S, Harrington CR, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L, de Silva R, Di Giovanni G, Wischik CM, Hof PR. Monoaminergic neuropathology in Alzheimer's disease. Prog Neurobiol 2017; 151:101-138. [PMID: 27084356 PMCID: PMC5061605 DOI: 10.1016/j.pneurobio.2016.04.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/09/2016] [Accepted: 04/05/2016] [Indexed: 01/02/2023]
Abstract
None of the proposed mechanisms of Alzheimer's disease (AD) fully explains the distribution patterns of the neuropathological changes at the cellular and regional levels, and their clinical correlates. One aspect of this problem lies in the complex genetic, epigenetic, and environmental landscape of AD: early-onset AD is often familial with autosomal dominant inheritance, while the vast majority of AD cases are late-onset, with the ε4 variant of the gene encoding apolipoprotein E (APOE) known to confer a 5-20 fold increased risk with partial penetrance. Mechanisms by which genetic variants and environmental factors influence the development of AD pathological changes, especially neurofibrillary degeneration, are not yet known. Here we review current knowledge of the involvement of the monoaminergic systems in AD. The changes in the serotonergic, noradrenergic, dopaminergic, histaminergic, and melatonergic systems in AD are briefly described. We also summarize the possibilities for monoamine-based treatment in AD. Besides neuropathologic AD criteria that include the noradrenergic locus coeruleus (LC), special emphasis is given to the serotonergic dorsal raphe nucleus (DRN). Both of these brainstem nuclei are among the first to be affected by tau protein abnormalities in the course of sporadic AD, causing behavioral and cognitive symptoms of variable severity. The possibility that most of the tangle-bearing neurons of the LC and DRN may release amyloid β as well as soluble monomeric or oligomeric tau protein trans-synaptically by their diffuse projections to the cerebral cortex emphasizes their selective vulnerability and warrants further investigations of the monoaminergic systems in AD.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Selina Wray
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nataša Jovanov-Milošević
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danira Bažadona
- Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Luc Buée
- University of Lille, Inserm, CHU-Lille, UMR-S 1172, Alzheimer & Tauopathies, Lille, France
| | - Rohan de Silva
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Claude M Wischik
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Patrick R Hof
- Fishberg Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
148
|
Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Prog Neurobiol 2017; 156:1-68. [PMID: 28322921 DOI: 10.1016/j.pneurobio.2017.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
The human genome encodes a vast repertoire of protein non-coding RNAs (ncRNA), some specific to the brain. MicroRNAs, which interfere with the translation of target mRNAs, are of particular interest since their deregulation has been implicated in neurodegenerative disorders like Alzheimer's disease (AD). However, it remains challenging to link the complex body of observations on miRNAs and AD into a coherent framework. Using extensive graphical support, this article discusses how a diverse panoply of miRNAs convergently and divergently impact (and are impacted by) core pathophysiological processes underlying AD: neuroinflammation and oxidative stress; aberrant generation of β-amyloid-42 (Aβ42); anomalies in the production, cleavage and post-translational marking of Tau; impaired clearance of Aβ42 and Tau; perturbation of axonal organisation; disruption of synaptic plasticity; endoplasmic reticulum stress and the unfolded protein response; mitochondrial dysfunction; aberrant induction of cell cycle re-entry; and apoptotic loss of neurons. Intriguingly, some classes of miRNA provoke these cellular anomalies, whereas others act in a counter-regulatory, protective mode. Moreover, changes in levels of certain species of miRNA are a consequence of the above-mentioned anomalies. In addition to miRNAs, circular RNAs, piRNAs, long non-coding RNAs and other types of ncRNA are being increasingly implicated in AD. Overall, a complex mesh of deregulated and multi-tasking ncRNAs reciprocally interacts with core pathophysiological mechanisms underlying AD. Alterations in ncRNAs can be detected in CSF and the circulation as well as the brain and are showing promise as biomarkers, with the ultimate goal clinical exploitation as targets for novel modes of symptomatic and course-altering therapy.
Collapse
Affiliation(s)
- Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, institut de recherche Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| |
Collapse
|
149
|
Maphis NM, Jiang S, Binder J, Wright C, Gopalan B, Lamb BT, Bhaskar K. Whole Genome Expression Analysis in a Mouse Model of Tauopathy Identifies MECP2 as a Possible Regulator of Tau Pathology. Front Mol Neurosci 2017; 10:69. [PMID: 28367114 PMCID: PMC5355442 DOI: 10.3389/fnmol.2017.00069] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/28/2017] [Indexed: 11/14/2022] Open
Abstract
Increasing evidence suggests that hyperphosphorylation and aggregation of microtubule-associated protein tau (MAPT or tau) correlates with the development of cognitive impairment in Alzheimer’s disease (AD) and related tauopathies. While numerous attempts have been made to model AD-relevant tau pathology in various animal models, there has been very limited success for these models to fully recapitulate the progression of disease as seen in human tauopathies. Here, we performed whole genome gene expression in a genomic mouse model of tauopathy that expressed human MAPT gene under the control of endogenous human MAPT promoter and also were complete knockout for endogenous mouse tau [referred to as ‘hTauMaptKO(Duke)′ mice]. First, whole genome expression analysis revealed 64 genes, which were differentially expressed (32 up-regulated and 32 down-regulated) in the hippocampus of 6-month-old hTauMaptKO(Duke) mice compared to age-matched non-transgenic controls. Genes relevant to neuronal function or neurological disease include up-regulated genes: PKC-alpha (Prkca), MECP2 (Mecp2), STRN4 (Strn4), SLC40a1 (Slc40a1), POLD2 (Pold2), PCSK2 (Pcsk2), and down-regulated genes: KRT12 (Krt12), LASS1 (Cers1), PLAT (Plat), and NRXN1 (Nrxn1). Second, network analysis suggested anatomical structure development, cellular metabolic process, cell death, signal transduction, and stress response were significantly altered biological processes in the hTauMaptKO(Duke) mice as compared to age-matched non-transgenic controls. Further characterization of a sub-group of significantly altered genes revealed elevated phosphorylation of MECP2 (methyl-CpG-binding protein-2), which binds to methylated CpGs and associates with chromatin, in hTauMaptKO(Duke) mice compared to age-matched controls. Third, phoshpho-MECP2 was elevated in autopsy brain samples from human AD compared to healthy controls. Finally, siRNA-mediated knockdown of MECP2 in human tau expressing N2a cells resulted in a significant decrease in total and phosphorylated tau. Together, these results suggest that MECP2 is a potential novel regulator of tau pathology relevant to AD and tauopathies.
Collapse
Affiliation(s)
- Nicole M Maphis
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque NM, USA
| | - Shanya Jiang
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque NM, USA
| | - Jessica Binder
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque NM, USA
| | - Carrie Wright
- Lieber Institute for Brain Development, Baltimore MD, USA
| | - Banu Gopalan
- Department of Biostatistics, Cleveland Clinic Foundation Cleveland OH, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University, Indianapolis IN, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque NM, USA
| |
Collapse
|
150
|
Zabik NL, Imhof MM, Martic-Milne S. Structural evaluations of tau protein conformation: methodologies and approaches. Biochem Cell Biol 2017; 95:338-349. [PMID: 28278386 DOI: 10.1139/bcb-2016-0227] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein-misfolding diseases are based on a common principle of aggregation initiated by intra- and inter-molecular contacts. The structural and conformational changes induced by biochemical transformations such as post-translational modifications (PTMs), often lead to protein unfolding and misfolding. Thus, these order-to-disorder or disorder-to-order transitions may regulate cellular function. Tau, a neuronal protein, regulates microtubule (MT) structure and overall cellular integrity. However, misfolded tau modified by PTMs results in MT destabilization, toxic tau aggregate formation, and ultimately cell death, leading to neurodegeneration. Currently, the lack of structural information surrounding tau severely limits understanding of neurodegeneration. This minireview focuses on the current methodologies and approaches aimed at probing tau conformation and the role of conformation in various aspects of tau biochemistry. The recent applications of nuclear magnetic resonance, mass spectrometry, Förster resonance electron transfer, and molecular dynamics simulations toward structural analysis of conformational landscapes of tau will be described. The strategies developed for structural evaluation of tau may significantly improve our understanding of misfolding diseases.
Collapse
Affiliation(s)
- Nicole L Zabik
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA.,Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Matthew M Imhof
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA.,Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Sanela Martic-Milne
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA.,Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|