101
|
Choe KY, Han SY, Gaub P, Shell B, Voisin DL, Knapp BA, Barker PA, Brown CH, Cunningham JT, Bourque CW. High salt intake increases blood pressure via BDNF-mediated downregulation of KCC2 and impaired baroreflex inhibition of vasopressin neurons. Neuron 2015; 85:549-60. [PMID: 25619659 PMCID: PMC4577058 DOI: 10.1016/j.neuron.2014.12.048] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 11/10/2014] [Accepted: 12/17/2014] [Indexed: 01/03/2023]
Abstract
The mechanisms by which dietary salt promotes hypertension are unknown. Previous work established that plasma [Na(+)] and osmolality rise in proportion with salt intake and thus promote release of vasopressin (VP) from the neurohypophysis. Although high levels of circulating VP can increase blood pressure, this effect is normally prevented by a potent GABAergic inhibition of VP neurons by aortic baroreceptors. Here we show that chronic high salt intake impairs baroreceptor inhibition of rat VP neurons through a brain-derived neurotrophic factor (BDNF)-dependent activation of TrkB receptors and downregulation of KCC2 expression, which prevents inhibitory GABAergic signaling. We show that high salt intake increases the spontaneous firing rate of VP neurons in vivo and that circulating VP contributes significantly to the elevation of arterial pressure under these conditions. These results provide the first demonstration that dietary salt can affect blood pressure through neurotrophin-induced plasticity in a central homeostatic circuit.
Collapse
Affiliation(s)
- Katrina Y Choe
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC H3G1A4, Canada
| | - Su Y Han
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin 9054, New Zealand
| | - Perrine Gaub
- Montreal Neurological Institute, 3801 University Street, Montreal, QC H3A2B4, Canada
| | - Brent Shell
- Department of Integrative Physiology, University of North Texas Health Sciences Centre, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Daniel L Voisin
- Neurocentre Magendie, INSERM U862, 146, rue Léo Saignat, 33077 Bordeaux, France
| | - Blayne A Knapp
- Department of Integrative Physiology, University of North Texas Health Sciences Centre, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Philip A Barker
- Montreal Neurological Institute, 3801 University Street, Montreal, QC H3A2B4, Canada
| | - Colin H Brown
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin 9054, New Zealand
| | - J Thomas Cunningham
- Department of Integrative Physiology, University of North Texas Health Sciences Centre, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Charles W Bourque
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC H3G1A4, Canada.
| |
Collapse
|
102
|
Puskarjov M, Ahmad F, Khirug S, Sivakumaran S, Kaila K, Blaesse P. BDNF is required for seizure-induced but not developmental up-regulation of KCC2 in the neonatal hippocampus. Neuropharmacology 2015; 88:103-9. [PMID: 25229715 DOI: 10.1016/j.neuropharm.2014.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 01/21/2023]
Abstract
A robust increase in the functional expression of the neuronal K-Cl cotransporter KCC2 during CNS development is necessary for the emergence of hyperpolarizing ionotropic GABAergic transmission. BDNF-TrkB signaling has been implicated in the developmental up-regulation of KCC2 and, in mature animals, in fast activity-dependent down-regulation of KCC2 function following seizures and trauma. In contrast to the decrease in KCC2 expression observed in the adult hippocampus following trauma, seizures in the neonate trigger a TrkB-dependent up-regulation of neuronal Cl(-) extrusion capacity associated with enhanced surface expression of KCC2. Here, we show that this effect is transient, and impaired in the hippocampus of Bdnf(-/-) mice. Notably, however, a complete absence of BDNF does not compromise the increase in KCC2 protein or K-Cl transport functionality during neuronal development. Furthermore, we present data indicating that the functional up-regulation of KCC2 by neonatal seizures is temporally limited by calpain activity.
Collapse
Affiliation(s)
- Martin Puskarjov
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Faraz Ahmad
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Stanislav Khirug
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sudhir Sivakumaran
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Peter Blaesse
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
103
|
Toda T, Ishida K, Kiyama H, Yamashita T, Lee S. Down-regulation of KCC2 expression and phosphorylation in motoneurons, and increases the number of in primary afferent projections to motoneurons in mice with post-stroke spasticity. PLoS One 2014; 9:e114328. [PMID: 25546454 PMCID: PMC4278744 DOI: 10.1371/journal.pone.0114328] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/06/2014] [Indexed: 12/31/2022] Open
Abstract
Spasticity obstructs motor function recovery post-stroke, and has been reported to occur in spinal cord injury and electrophysiological studies. The purpose of the present study was to assess spinal cord circuit spasticity in post-stroke mice. At 3, 7, 21, and 42 d after photothrombotic ischemic cortical injury in C57BL/6J mice, we observed decreased rate-dependent depression (RDD) of the Hoffmann reflex (H reflex) in the affected forelimb of mice compared with the limbs of sham mice and the non-affected forelimb. This finding suggests a hyper-excitable stretch reflex in the affected forelimb. We then performed immunohistochemical and western blot analyses to examine the expression of the potassium-chloride cotransporter 2 (KCC2) and phosphorylation of the KCC2 serine residue, 940 (S940), since this is the main chloride extruder that affects neuronal excitability. We also performed immunohistochemical analyses on the number of vesicular glutamate transporter 1 (vGluT1)-positive boutons to count the number of Ia afferent fibers that connect to motoneurons. Western bolts revealed that, compared with sham mice, experimental mice had significantly reduced KCC2 expression at 7 d post-stroke, and dephosphorylated S940 at 3 and 7 d post-stroke in motoneuron plasma membranes. We also observed a lower density of KCC2-positive areas in the plasma membrane of motoneurons at 3 and 7 d post-stroke. However, western blot and immunohistochemical analyses revealed that there were no differences between groups 21 and 42 d post-stroke, respectively. In addition, at 7 and 42 d post-stroke, experimental mice exhibited a significant increase in vGluT1 boutons compared with sham mice. Our findings suggest that both the down-regulation of KCC2 and increases in Ia afferent fibers are involved in post-stroke spasticity.
Collapse
Affiliation(s)
- Takuya Toda
- Department of Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kazuto Ishida
- Department of Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Sachiko Lee
- Department of Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
104
|
Dai S, Ma Z. BDNF-trkB-KCC2-GABA pathway may be related to chronic stress-induced hyperalgesia at both the spinal and supraspinal level. Med Hypotheses 2014; 83:772-4. [PMID: 25454160 DOI: 10.1016/j.mehy.2014.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/01/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023]
Abstract
Chronic stresses can induce physiological and psychological changes and result in stress-related neuropsychiatry, sometimes they may also contribute to hypersensitivity to pain known as stress-induced hyperalgesia (SIH). Recently it was found that GABAergic disinhibition is closely related to morphine and chronic inflammation pain induced hyperalgesia in the PAG (periaqueductal gray)-RVM (rostral ventromedial medulla) -spinal descending facilitatory system, the changes of potassium-chloride co-transporter 2 (KCC2) function or expression modulated by brain-derived neurotrophic factor (BDNF) are involved in it. Similarly, chronic stress could induce changes of BDNF, KCC2 and a depolarizing shift in the GABA reversal potential (EGABA). Moreover, the descending facilitatory system has been suggested to be related with SIH, but whether it modulates SIH through disinhibition by the downregulation of KCC2 expression and/or transport function remains unknown. We therefore hypothesized that SIH may be owned to disinhibition caused by the activation of BDNF-trkB-KCC2-GABA pathway, which would provide a new understanding for SIH.
Collapse
Affiliation(s)
- Shuhong Dai
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
105
|
Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 2014; 15:637-54. [PMID: 25234263 DOI: 10.1038/nrn3819] [Citation(s) in RCA: 533] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrical activity in neurons requires a seamless functional coupling between plasmalemmal ion channels and ion transporters. Although ion channels have been studied intensively for several decades, research on ion transporters is in its infancy. In recent years, it has become evident that one family of ion transporters, cation-chloride cotransporters (CCCs), and in particular K(+)-Cl(-) cotransporter 2 (KCC2), have seminal roles in shaping GABAergic signalling and neuronal connectivity. Studying the functions of these transporters may lead to major paradigm shifts in our understanding of the mechanisms underlying brain development and plasticity in health and disease.
Collapse
Affiliation(s)
- Kai Kaila
- 1] Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Theodore J Price
- University of Texas at Dallas, School of Behavior and Brain Sciences, Dallas, Texas 75093, USA
| | - John A Payne
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California 95616, USA
| | - Martin Puskarjov
- 1] Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Juha Voipio
- Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
106
|
Deisz RA, Wierschke S, Schneider UC, Dehnicke C. Effects of VU0240551, a novel KCC2 antagonist, and DIDS on chloride homeostasis of neocortical neurons from rats and humans. Neuroscience 2014; 277:831-41. [PMID: 25086309 DOI: 10.1016/j.neuroscience.2014.07.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 11/24/2022]
Abstract
The normal function of GABAA receptor-mediated inhibition is governed by several factors, including release of GABA, subunit composition and density of the receptors and in particular by the appropriate ionic gradient. In the human epileptogenic neocortex an impaired chloride (Cl(-)) gradient has been proposed, due to decreases of potassium-coupled chloride transport (KCC2) and voltage-gated Cl(-) channels (ClC). Regarding sodium- and potassium-coupled Cl(-) transport (NKCC1) both up- and downregulations have been proposed. We investigated changes of Cl(-) homeostasis of human and rat neocortical neurons (layer 2/3) with intracellular recordings and iontophoretic Cl(-) loading employing selective compounds. After cessation of iontophoresis, the IPSPA amplitudes of rat neurons recovered with a time constant (τrec) of 6.5s (n=21). In human neurons, τrec averaged 17.8s (n=36; 23 resections). Application of the novel KCC2 blocker VU0240551 (1 μM) caused in rat neurons a reversible prolongation of τrec from 5.7 to 8.1s (n=11), corresponding to a VU0240551-sensitive Cl(-) transport rate (1/Δτrec) of 0.0504s(-1). In human neurons, τrec increased on application of 1μM VU0240551, on average from 15.1 to 20.3s (n=17). The human neurons comprised two subgroups with different τrec when segregated according to a border given by the mean+2s.d. of rat neurons. In one group, τrec averaged 8.7s (n=6) and reversibly increased to 14.6s in the presence of 1μM VU0240551, corresponding to a Cl(-) transport rate of 0.0504s(-1). The other group had an average τrec of 18.5s which increased in the presence of 1μM VU0240551 to 23.3s (n=11), indicating a much smaller rate (0.0151s(-1)). Addition of DIDS, a presumed blocker of anion exchanger (AE), increased the τrec of rat neurons from 7.5 to 8.8s (n=6) corresponding to a DIDS-sensitive rate of 0.0185s(-1). In human neurons, DIDS increased τrec from 23.3 to 50.7s (n=7), corresponding to a DIDS-sensitive rate of 0.0200s(-1). These data suggest a greatly reduced KCC2-mediated transport rate in most of the human neurons. The two subgroups observed in human tissue indicate a considerable variability of Cl(-) transport within a given tissue from almost normal to greatly impeded, predominated by a decline of KCC2 whereas AE is unaltered.
Collapse
Affiliation(s)
- R A Deisz
- Charité Universitätsmedizin Berlin, Centre for Anatomy, Institute for Cell Biology and Neurobiology, Berlin, Germany.
| | - S Wierschke
- Charité Universitätsmedizin Berlin, Centre for Anatomy, Institute for Cell Biology and Neurobiology, Berlin, Germany
| | - U C Schneider
- Charité Universitätsmedizin Berlin, Department of Neurosurgery, Berlin, Germany
| | - C Dehnicke
- Epilepsie-Zentrum Berlin-Brandenburg, Evangelisches Krankenhaus Königin Elisabeth Herzberge, Berlin, Germany
| |
Collapse
|
107
|
Arosio D, Ratto GM. Twenty years of fluorescence imaging of intracellular chloride. Front Cell Neurosci 2014; 8:258. [PMID: 25221475 PMCID: PMC4148895 DOI: 10.3389/fncel.2014.00258] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/12/2014] [Indexed: 11/23/2022] Open
Abstract
Chloride homeostasis has a pivotal role in controlling neuronal excitability in the adult brain and during development. The intracellular concentration of chloride is regulated by the dynamic equilibrium between passive fluxes through membrane conductances and the active transport mediated by importers and exporters. In cortical neurons, chloride fluxes are coupled to network activity by the opening of the ionotropic GABAA receptors that provides a direct link between the activity of interneurons and chloride fluxes. These molecular mechanisms are not evenly distributed and regulated over the neuron surface and this fact can lead to a compartmentalized control of the intracellular concentration of chloride. The inhibitory drive provided by the activity of the GABAA receptors depends on the direction and strength of the associated currents, which are ultimately dictated by the gradient of chloride, the main charge carrier flowing through the GABAA channel. Thus, the intracellular distribution of chloride determines the local strength of ionotropic inhibition and influences the interaction between converging excitation and inhibition. The importance of chloride regulation is also underlined by its involvement in several brain pathologies, including epilepsy and disorders of the autistic spectra. The full comprehension of the physiological meaning of GABAergic activity on neurons requires the measurement of the spatiotemporal dynamics of chloride fluxes across the membrane. Nowadays, there are several available tools for the task, and both synthetic and genetically encoded indicators have been successfully used for chloride imaging. Here, we will review the available sensors analyzing their properties and outlining desirable future developments.
Collapse
Affiliation(s)
- Daniele Arosio
- Institute of Biophysics, National Research Council and Bruno Kessler Foundation Trento, Italy ; Centre for Integrative Biology, University of Trento Trento, Italy
| | - Gian Michele Ratto
- Nanoscience Institute, National Research Council of Italy Pisa, Italy ; NEST, Scuola Normale Superiore Pisa, Italy
| |
Collapse
|
108
|
Jantzie LL, Getsy PM, Firl DJ, Wilson CG, Miller RH, Robinson S. Erythropoietin attenuates loss of potassium chloride co-transporters following prenatal brain injury. Mol Cell Neurosci 2014; 61:152-62. [PMID: 24983520 PMCID: PMC4134983 DOI: 10.1016/j.mcn.2014.06.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 04/17/2014] [Accepted: 06/09/2014] [Indexed: 11/22/2022] Open
Abstract
Therapeutic agents that restore the inhibitory actions of γ-amino butyric acid (GABA) by modulating intracellular chloride concentrations will provide novel avenues to treat stroke, chronic pain, epilepsy, autism, and neurodegenerative and cognitive disorders. During development, upregulation of the potassium-chloride co-transporter KCC2, and the resultant switch from excitatory to inhibitory responses to GABA guide the formation of essential inhibitory circuits. Importantly, maturation of inhibitory mechanisms is also central to the development of excitatory circuits and proper balance between excitatory and inhibitory networks in the developing brain. Loss of KCC2 expression occurs in postmortem samples from human preterm infant brains with white matter lesions. Here we show that late gestation brain injury in a rat model of extreme prematurity impairs the developmental upregulation of potassium chloride co-transporters during a critical postnatal period of circuit maturation in CA3 hippocampus by inducing a sustained loss of oligomeric KCC2 via a calpain-dependent mechanism. Further, administration of erythropoietin (EPO) in a clinically relevant postnatal dosing regimen following the prenatal injury protects the developing brain by reducing calpain activity, restoring oligomeric KCC2 expression and attenuating KCC2 fragmentation, thus providing the first report of a safe therapy to address deficits in KCC2 expression. Together, these data indicate it is possible to reverse abnormalities in KCC2 expression during the postnatal period, and potentially reverse deficits in inhibitory circuit formation central to cognitive impairment and epileptogenesis.
Collapse
Affiliation(s)
- L L Jantzie
- Department of Neurology, Boston Children's Hospital & Harvard Medical School, 300 Longwood Avenue, Boston MA 02115, USA; Department of Neurosurgery, Boston Children's Hospital & Harvard Medical School, 300 Longwood Avenue, Boston MA 02115, USA
| | - P M Getsy
- Department of Pediatrics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - D J Firl
- Department of Neurology, Boston Children's Hospital & Harvard Medical School, 300 Longwood Avenue, Boston MA 02115, USA; Department of Neurosurgery, Boston Children's Hospital & Harvard Medical School, 300 Longwood Avenue, Boston MA 02115, USA
| | - C G Wilson
- Department of Pediatrics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - R H Miller
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - S Robinson
- Department of Neurology, Boston Children's Hospital & Harvard Medical School, 300 Longwood Avenue, Boston MA 02115, USA; Department of Neurosurgery, Boston Children's Hospital & Harvard Medical School, 300 Longwood Avenue, Boston MA 02115, USA.
| |
Collapse
|
109
|
Mahadevan V, Pressey JC, Acton BA, Uvarov P, Huang MY, Chevrier J, Puchalski A, Li CM, Ivakine EA, Airaksinen MS, Delpire E, McInnes RR, Woodin MA. Kainate receptors coexist in a functional complex with KCC2 and regulate chloride homeostasis in hippocampal neurons. Cell Rep 2014; 7:1762-70. [PMID: 24910435 PMCID: PMC6340141 DOI: 10.1016/j.celrep.2014.05.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 03/31/2014] [Accepted: 05/09/2014] [Indexed: 12/01/2022] Open
Abstract
KCC2 is the neuron-specific K+-Cl(-) cotransporter required for maintaining low intracellular Cl(-), which is essential for fast inhibitory synaptic transmission in the mature CNS. Despite the requirement of KCC2 for inhibitory synaptic transmission, understanding of the cellular mechanisms that regulate KCC2 expression and function is rudimentary. We examined KCC2 in its native protein complex in vivo to identify key KCC2-interacting partners that regulate KCC2 function. Using blue native-polyacrylamide gel electrophoresis (BN-PAGE), we determined that native KCC2 exists in a macromolecular complex with kainate-type glutamate receptors (KARs). We found that KAR subunits are required for KCC2 oligomerization and surface expression. In accordance with this finding, acute and chronic genetic deletion of KARs decreased KCC2 function and weakened synaptic inhibition in hippocampal neurons. Our results reveal KARs as regulators of KCC2, significantly advancing our growing understanding of the tight interplay between excitation and inhibition.
Collapse
Affiliation(s)
- Vivek Mahadevan
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jessica C Pressey
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Brooke A Acton
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Pavel Uvarov
- Institute of Biomedicine, Anatomy, University of Helsinki, 00014 Helsinki, Finland
| | - Michelle Y Huang
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jonah Chevrier
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Andrew Puchalski
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Caiwei M Li
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Evgueni A Ivakine
- Hospital for Sick Children Research Institute, Toronto, ON M5G 1X8, Canada
| | - Matti S Airaksinen
- Institute of Biomedicine, Anatomy, University of Helsinki, 00014 Helsinki, Finland
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Roderick R McInnes
- Hospital for Sick Children Research Institute, Toronto, ON M5G 1X8, Canada; Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Melanie A Woodin
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
110
|
Puskarjov M, Seja P, Heron SE, Williams TC, Ahmad F, Iona X, Oliver KL, Grinton BE, Vutskits L, Scheffer IE, Petrou S, Blaesse P, Dibbens LM, Berkovic SF, Kaila K. A variant of KCC2 from patients with febrile seizures impairs neuronal Cl- extrusion and dendritic spine formation. EMBO Rep 2014; 15:723-9. [PMID: 24668262 PMCID: PMC4197883 DOI: 10.1002/embr.201438749] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 11/11/2022] Open
Abstract
Genetic variation in SLC12A5 which encodes KCC2, the neuron-specific cation-chloride cotransporter that is essential for hyperpolarizing GABAergic signaling and formation of cortical dendritic spines, has not been reported in human disease. Screening of SLC12A5 revealed a co-segregating variant (KCC2-R952H) in an Australian family with febrile seizures. We show that KCC2-R952H reduces neuronal Cl(-) extrusion and has a compromised ability to induce dendritic spines in vivo and in vitro. Biochemical analyses indicate a reduced surface expression of KCC2-R952H which likely contributes to the functional deficits. Our data suggest that KCC2-R952H is a bona fide susceptibility variant for febrile seizures.
Collapse
Affiliation(s)
- Martin Puskarjov
- Department of Biosciences, University of Helsinki, Helsinki, Finland Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Patricia Seja
- Department of Biosciences, University of Helsinki, Helsinki, Finland Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Sarah E Heron
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia Sansom Institute for Health Research, University of South Australia, Adelaide SA, Australia
| | - Tristiana C Williams
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Faraz Ahmad
- Department of Biosciences, University of Helsinki, Helsinki, Finland Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Xenia Iona
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Karen L Oliver
- Department of Medicine, Epilepsy Research Center, The University of Melbourne Austin Health, Melbourne Vic., Australia
| | - Bronwyn E Grinton
- Department of Paediatrics, Florey Institute, Royal Children's Hospital The University of Melbourne, Melbourne, Vic., Australia
| | - Laszlo Vutskits
- Department of Anesthesiology, Pharmacology and Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Ingrid E Scheffer
- Department of Medicine, Epilepsy Research Center, The University of Melbourne Austin Health, Melbourne Vic., Australia Department of Paediatrics, Florey Institute, Royal Children's Hospital The University of Melbourne, Melbourne, Vic., Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health and the Center for Neural Engineering, The University of Melbourne, Parkville, Vic., Australia
| | - Peter Blaesse
- Department of Biosciences, University of Helsinki, Helsinki, Finland Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Leanne M Dibbens
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia Sansom Institute for Health Research, University of South Australia, Adelaide SA, Australia
| | - Samuel F Berkovic
- Department of Medicine, Epilepsy Research Center, The University of Melbourne Austin Health, Melbourne Vic., Australia
| | - Kai Kaila
- Department of Biosciences, University of Helsinki, Helsinki, Finland Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
111
|
Puskarjov M, Kahle KT, Ruusuvuori E, Kaila K. Pharmacotherapeutic targeting of cation-chloride cotransporters in neonatal seizures. Epilepsia 2014; 55:806-18. [PMID: 24802699 PMCID: PMC4284054 DOI: 10.1111/epi.12620] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2014] [Indexed: 12/15/2022]
Abstract
Seizures are a common manifestation of acute neurologic insults in neonates and are often resistant to the standard antiepileptic drugs that are efficacious in children and adults. The paucity of evidence-based treatment guidelines, coupled with a rudimentary understanding of disease pathogenesis, has made the current treatment of neonatal seizures empiric and often ineffective, highlighting the need for novel therapies. Key developmental differences in γ-aminobutyric acid (GABA)ergic neurotransmission between the immature and mature brain, and trauma-induced alterations in the function of the cation-chloride cotransporters (CCCs) NKCC1 and KCC2, probably contribute to the poor efficacy of standard antiepileptic drugs used in the treatment of neonatal seizures. Although CCCs are attractive drug targets, bumetanide and other existing CCC inhibitors are suboptimal because of pharmacokinetic constraints and lack of target specificity. Newer approaches including isoform-specific NKCC1 inhibitors with increased central nervous system penetration, and direct and indirect strategies to enhance KCC2-mediated neuronal chloride extrusion, might allow therapeutic modulation of the GABAergic system for neonatal seizure treatment. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.
Collapse
Affiliation(s)
- Martin Puskarjov
- Department of Biosciences and Neuroscience Center, University of HelsinkiHelsinki, Finland
| | - Kristopher T Kahle
- Department of Neurosurgery, Harvard Medical School, Massachusetts General HospitalBoston, Massachusetts, U.S.A
| | - Eva Ruusuvuori
- Department of Biosciences and Neuroscience Center, University of HelsinkiHelsinki, Finland
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center, University of HelsinkiHelsinki, Finland
| |
Collapse
|
112
|
Kaila K, Ruusuvuori E, Seja P, Voipio J, Puskarjov M. GABA actions and ionic plasticity in epilepsy. Curr Opin Neurobiol 2014; 26:34-41. [PMID: 24650502 DOI: 10.1016/j.conb.2013.11.004] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 10/23/2013] [Accepted: 11/06/2013] [Indexed: 11/18/2022]
Abstract
Concepts of epilepsy, based on a simple change in neuronal excitation/inhibition balance, have subsided in face of recent insights into the large diversity and context-dependence of signaling mechanisms at the molecular, cellular and neuronal network level. GABAergic transmission exerts both seizure-suppressing and seizure-promoting actions. These two roles are prone to short-term and long-term alterations, evident both during epileptogenesis and during individual epileptiform events. The driving force of GABAergic currents is controlled by ion-regulatory molecules such as the neuronal K-Cl cotransporter KCC2 and cytosolic carbonic anhydrases. Accumulating evidence suggests that neuronal ion regulation is highly plastic, thereby contributing to the multiple roles ascribed to GABAergic signaling during epileptogenesis and epilepsy.
Collapse
Affiliation(s)
- Kai Kaila
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Eva Ruusuvuori
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Patricia Seja
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Juha Voipio
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Martin Puskarjov
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
113
|
Abstract
The neurotransmitters GABA and glycine mediate fast synaptic inhibition by activating ligand-gated chloride channels--namely, type A GABA (GABA(A)) and glycine receptors. Both types of receptors are anchored postsynaptically by gephyrin, which self-assembles into a scaffold and interacts with the cytoskeleton. Current research indicates that postsynaptic gephyrin clusters are dynamic assemblies that are held together and regulated by multiple protein-protein interactions. Moreover, post-translational modifications of gephyrin regulate the formation and plasticity of GABAergic synapses by altering the clustering properties of postsynaptic scaffolds and thereby the availability and function of receptors and other signalling molecules. Here, we discuss the formation and regulation of the gephyrin scaffold, its role in GABAergic and glycinergic synaptic function and the implications for the pathophysiology of brain disorders caused by abnormal inhibitory neurotransmission.
Collapse
|
114
|
Fritschy JM, Panzanelli P. GABAAreceptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur J Neurosci 2014; 39:1845-65. [DOI: 10.1111/ejn.12534] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH; Zurich Switzerland
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini; University of Turin; Turin Italy
| |
Collapse
|
115
|
Tyzio R, Nardou R, Ferrari DC, Tsintsadze T, Shahrokhi A, Eftekhari S, Khalilov I, Tsintsadze V, Brouchoud C, Chazal G, Lemonnier E, Lozovaya N, Burnashev N, Ben-Ari Y. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science 2014; 343:675-9. [PMID: 24503856 DOI: 10.1126/science.1247190] [Citation(s) in RCA: 438] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report that the oxytocin-mediated neuroprotective γ-aminobutyric acid (GABA) excitatory-inhibitory shift during delivery is abolished in the valproate and fragile X rodent models of autism. During delivery and subsequently, hippocampal neurons in these models have elevated intracellular chloride levels, increased excitatory GABA, enhanced glutamatergic activity, and elevated gamma oscillations. Maternal pretreatment with bumetanide restored in offspring control electrophysiological and behavioral phenotypes. Conversely, blocking oxytocin signaling in naïve mothers produced offspring having electrophysiological and behavioral autistic-like features. Our results suggest a chronic deficient chloride regulation in these rodent models of autism and stress the importance of oxytocin-mediated GABAergic inhibition during the delivery process. Our data validate the amelioration observed with bumetanide and oxytocin and point to common pathways in a drug-induced and a genetic rodent model of autism.
Collapse
Affiliation(s)
- Roman Tyzio
- Mediterranean Institute of Neurobiology (INMED), U901, INSERM, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Medina I, Friedel P, Rivera C, Kahle KT, Kourdougli N, Uvarov P, Pellegrino C. Current view on the functional regulation of the neuronal K(+)-Cl(-) cotransporter KCC2. Front Cell Neurosci 2014; 8:27. [PMID: 24567703 PMCID: PMC3915100 DOI: 10.3389/fncel.2014.00027] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/18/2014] [Indexed: 12/22/2022] Open
Abstract
In the mammalian central nervous system (CNS), the inhibitory strength of chloride (Cl(-))-permeable GABAA and glycine receptors (GABAAR and GlyR) depends on the intracellular Cl(-) concentration ([Cl(-)]i). Lowering [Cl(-)]i enhances inhibition, whereas raising [Cl(-)]i facilitates neuronal activity. A neuron's basal level of [Cl(-)]i, as well as its Cl(-) extrusion capacity, is critically dependent on the activity of the electroneutral K(+)-Cl(-) cotransporter KCC2, a member of the SLC12 cation-Cl(-) cotransporter (CCC) family. KCC2 deficiency compromises neuronal migration, formation and the maturation of GABAergic and glutamatergic synaptic connections, and results in network hyperexcitability and seizure activity. Several neurological disorders including multiple epilepsy subtypes, neuropathic pain, and schizophrenia, as well as various insults such as trauma and ischemia, are associated with significant decreases in the Cl(-) extrusion capacity of KCC2 that result in increases of [Cl(-)]i and the subsequent hyperexcitability of neuronal networks. Accordingly, identifying the key upstream molecular mediators governing the functional regulation of KCC2, and modifying these signaling pathways with small molecules, might constitute a novel neurotherapeutic strategy for multiple diseases. Here, we discuss recent advances in the understanding of the mechanisms regulating KCC2 activity, and of the role these mechanisms play in neuronal Cl(-) homeostasis and GABAergic neurotransmission. As KCC2 mediates electroneutral transport, the experimental recording of its activity constitutes an important research challenge; we therefore also, provide an overview of the different methodological approaches utilized to monitor function of KCC2 in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Igor Medina
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| | - Perrine Friedel
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| | - Claudio Rivera
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
- Neuroscience Center, University of HelsinkiHelsinki, Finland
| | - Kristopher T. Kahle
- Department of Cardiology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's HospitalBoston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical SchoolBoston, MA, USA
| | - Nazim Kourdougli
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| | - Pavel Uvarov
- Institute of Biomedicine, Anatomy, University of HelsinkiHelsinki, Finland
| | - Christophe Pellegrino
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| |
Collapse
|
117
|
Walker AK, Kavelaars A, Heijnen CJ, Dantzer R. Neuroinflammation and comorbidity of pain and depression. Pharmacol Rev 2013; 66:80-101. [PMID: 24335193 PMCID: PMC3880465 DOI: 10.1124/pr.113.008144] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Comorbid depression and chronic pain are highly prevalent in individuals suffering from physical illness. Here, we critically examine the possibility that inflammation is the common mediator of this comorbidity, and we explore the implications of this hypothesis. Inflammation signals the brain to induce sickness responses that include increased pain and negative affect. This is a typical and adaptive response to acute inflammation. However, chronic inflammation induces a transition from these typical sickness behaviors into depression and chronic pain. Several mechanisms can account for the high comorbidity of pain and depression that stem from the precipitating inflammation in physically ill patients. These mechanisms include direct effects of cytokines on the neuronal environment or indirect effects via downregulation of G protein-coupled receptor kinase 2, activation of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase that generates neurotropic kynurenine metabolites, increased brain extracellular glutamate, and the switch of GABAergic neurotransmission from inhibition to excitation. Despite the existence of many neuroimmune candidate mechanisms for the co-occurrence of depression and chronic pain, little work has been devoted so far to critically assess their mediating role in these comorbid symptoms. Understanding neuroimmune mechanisms that underlie depression and pain comorbidity may yield effective pharmaceutical targets that can treat both conditions simultaneously beyond traditional antidepressants and analgesics.
Collapse
Affiliation(s)
- A K Walker
- Department of Symptom Research Laboratory of Neuroimmunology of Cancer-Related Symptoms at the Institute of Biosciences and Technology, Texas A&M Health Sciences Center, 2121 W. Holcombe Boulevard, Room 1025, Houston, TX 77030.
| | | | | | | |
Collapse
|
118
|
Kahle KT, Deeb TZ, Puskarjov M, Silayeva L, Liang B, Kaila K, Moss SJ. Modulation of neuronal activity by phosphorylation of the K-Cl cotransporter KCC2. Trends Neurosci 2013; 36:726-737. [PMID: 24139641 PMCID: PMC4381966 DOI: 10.1016/j.tins.2013.08.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 12/29/2022]
Abstract
The K-Cl cotransporter KCC2 establishes the low intraneuronal Cl- levels required for the hyperpolarizing inhibitory postsynaptic potentials mediated by ionotropic γ-aminobutyric acid receptors (GABAARs) and glycine receptors (GlyRs). Decreased KCC2-mediated Cl- extrusion and impaired hyperpolarizing GABAAR- and/or GlyR-mediated currents have been implicated in epilepsy, neuropathic pain, and spasticity. Recent evidence suggests that the intrinsic ion transport rate, cell surface stability, and plasmalemmal trafficking of KCC2 are rapidly and reversibly modulated by the (de)phosphorylation of critical serine, threonine, and tyrosine residues in the C terminus of this protein. Alterations in KCC2 phosphorylation have been associated with impaired KCC2 function in several neurological diseases. Targeting KCC2 phosphorylation directly or indirectly via upstream regulatory kinases might be a novel strategy to modulate GABA- and/or glycinergic signaling for therapeutic benefit.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Howard Hughes Medical Institute, Department of Cardiology, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Martin Puskarjov
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Liliya Silayeva
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Bo Liang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Neuroscience, Physiology and Pharmacology, University College, London, WC1E 6BT, UK
| |
Collapse
|
119
|
Activity-dependent regulation of the K/Cl transporter KCC2 membrane diffusion, clustering, and function in hippocampal neurons. J Neurosci 2013; 33:15488-503. [PMID: 24068817 DOI: 10.1523/jneurosci.5889-12.2013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neuronal K/Cl transporter KCC2 exports chloride ions and thereby influences the efficacy and polarity of GABA signaling in the brain. KCC2 is also critical for dendritic spine morphogenesis and the maintenance of glutamatergic transmission in cortical neurons. Because KCC2 plays a pivotal role in the function of central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. Here, we studied the impact of membrane diffusion and clustering on KCC2 function. KCC2 forms clusters in the vicinity of both excitatory and inhibitory synapses. Using quantum-dot-based single-particle tracking on rat primary hippocampal neurons, we show that KCC2 is slowed down and confined at excitatory and inhibitory synapses compared with extrasynaptic regions. However, KCC2 escapes inhibitory synapses faster than excitatory synapses, reflecting stronger molecular constraints at the latter. Interfering with KCC2-actin interactions or inhibiting F-actin polymerization releases diffusion constraints on KCC2 at excitatory but not inhibitory synapses. Thus, F-actin constrains KCC2 diffusion at excitatory synapses, whereas KCC2 is confined at inhibitory synapses by a distinct mechanism. Finally, increased neuronal activity rapidly increases the diffusion coefficient and decreases the dwell time of KCC2 at excitatory synapses. This effect involves NMDAR activation, Ca(2+) influx, KCC2 S940 dephosphorylation and calpain protease cleavage of KCC2 and is accompanied by reduced KCC2 clustering and ion transport function. Thus, activity-dependent regulation of KCC2 lateral diffusion and clustering allows for a rapid regulation of chloride homeostasis in neurons.
Collapse
|
120
|
Sharp JW, Ross-Inta CM, Baccelli I, Payne JA, Rudell JB, Gietzen DW. Effects of essential amino acid deficiency: down-regulation of KCC2 and the GABAA receptor; disinhibition in the anterior piriform cortex. J Neurochem 2013; 127:520-30. [PMID: 24024616 PMCID: PMC3858386 DOI: 10.1111/jnc.12403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 01/27/2023]
Abstract
The anterior piriform cortex (APC) is activated by, and is the brain area most sensitive to, essential (indispensable) amino acid (IAA) deficiency. The APC is required for the rapid (20 min) behavioral rejection of IAA deficient diets and increased foraging, both crucial adaptive functions supporting IAA homeostasis in omnivores. The biochemical mechanisms signaling IAA deficiency in the APC block initiation of translation in protein synthesis via uncharged tRNA and the general amino acid control kinase, general control nonderepressing kinase 2. Yet, how inhibition of protein synthesis activates the APC is unknown. The neuronal K(+) Cl(-) cotransporter, neural potassium chloride co-transporter (KCC2), and GABAA receptors are essential inhibitory elements in the APC with short plasmalemmal half-lives that maintain control in this highly excitable circuitry. After a single IAA deficient meal both proteins were reduced (vs. basal diet controls) in western blots of APC (but not neocortex or cerebellum) and in immunohistochemistry of APC. Furthermore, electrophysiological analyses support loss of inhibitory elements such as the GABAA receptor in this model. As the crucial inhibitory function of the GABAA receptor depends on KCC2 and the Cl(-) transmembrane gradient it establishes, these results suggest that loss of such inhibitory elements contributes to disinhibition of the APC in IAA deficiency. The circuitry of the anterior piriform cortex (APC) is finely balanced between excitatory (glutamate, +) and inhibitory (GABA, -) transmission. GABAA receptors use Cl(-), requiring the neural potassium chloride co-transporter (KCC2). Both are rapidly turning-over proteins, dependent on protein synthesis for repletion. In IAA (indispensable amino acid) deficiency, within 20 min, blockade of protein synthesis prevents restoration of these inhibitors; they are diminished; disinhibition ensues. GCN2 = general control non-derepressing kinase 2, eIF2α = α-subunit of the eukaryotic initiation factor 2.
Collapse
Affiliation(s)
- James W. Sharp
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Ave, Davis CA 95616, USA, Voice +530-752-1174, Fax +530-752-7690
| | - Catherine M. Ross-Inta
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Ave, Davis CA 95616, USA, Voice +530-752-1174, Fax +530-752-7690
| | - Irène Baccelli
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Ave, Davis CA 95616, USA, Voice +530-752-1174, Fax +530-752-7690
| | - John A. Payne
- Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616, USA, Voice +1 530 752 3336, FAX +1 530 752 5423
| | - John B. Rudell
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Ave, Davis CA 95616, USA, Voice +530-752-1174, Fax +530-752-7690
| | - Dorothy W. Gietzen
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Ave, Davis CA 95616, USA, Voice +530-752-1174, Fax +530-752-7690
| |
Collapse
|
121
|
Ahmad F, Kaila K, Blaesse P. Quantitative analysis of surface expression of membrane proteins using cold-adapted proteases. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2013; 73:3.11.1-3.11.12. [PMID: 24510593 DOI: 10.1002/0471140864.ps0311s73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This unit presents an improved method for quantitative analysis of surface expression of membrane proteins utilizing a cold-adapted trypsin. Preservation of the proteolytic activity of the enzyme at 0° to 4°C allows cleavage of surface-expressed membrane proteins at temperatures at which trafficking of the mammalian plasmalemmal proteins is blocked. This provides an important advantage over established trypsin-cleavage protocols since it can be applied to membrane proteins with a fast turnover rate of the membrane pool and a fast recycling rate. Compared to surface biotinylation, the method is less time consuming.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biosciences and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Peter Blaesse
- Department of Biosciences and Neuroscience Center, University of Helsinki, Helsinki, Finland.,Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster, Germany
| |
Collapse
|
122
|
Ferrini F, De Koninck Y. Microglia control neuronal network excitability via BDNF signalling. Neural Plast 2013; 2013:429815. [PMID: 24089642 PMCID: PMC3780625 DOI: 10.1155/2013/429815] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 07/28/2013] [Indexed: 12/27/2022] Open
Abstract
Microglia-neuron interactions play a crucial role in several neurological disorders characterized by altered neural network excitability, such as epilepsy and neuropathic pain. While a series of potential messengers have been postulated as substrates of the communication between microglia and neurons, including cytokines, purines, prostaglandins, and nitric oxide, the specific links between messengers, microglia, neuronal networks, and diseases have remained elusive. Brain-derived neurotrophic factor (BDNF) released by microglia emerges as an exception in this riddle. Here, we review the current knowledge on the role played by microglial BDNF in controlling neuronal excitability by causing disinhibition. The efforts made by different laboratories during the last decade have collectively provided a robust mechanistic paradigm which elucidates the mechanisms involved in the synthesis and release of BDNF from microglia, the downstream TrkB-mediated signals in neurons, and the biophysical mechanism by which disinhibition occurs, via the downregulation of the K⁺-Cl⁻ cotransporter KCC2, dysrupting Cl⁻ homeostasis, and hence the strength of GABA(A)- and glycine receptor-mediated inhibition. The resulting altered network activity appears to explain several features of the associated pathologies. Targeting the molecular players involved in this canonical signaling pathway may lead to novel therapeutic approach for ameliorating a wide array of neural dysfunctions.
Collapse
Affiliation(s)
- Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy
| | - Yves De Koninck
- Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada G1J 2G3
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada G13 7P4
| |
Collapse
|
123
|
Löscher W, Puskarjov M, Kaila K. Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology 2013; 69:62-74. [PMID: 22705273 DOI: 10.1016/j.neuropharm.2012.05.045] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/22/2012] [Accepted: 05/28/2012] [Indexed: 12/31/2022]
Abstract
In cortical and hippocampal neurons, cation-chloride cotransporters (CCCs) control the reversal potential (EGABA) of GABAA receptor-mediated current and voltage responses and, consequently, they modulate the efficacy of GABAergic inhibition. Two members of the CCC family, KCC2 (the major neuron-specific K-Cl cotransporter; KCC isoform 2) and NKCC1 (the Na-K-2Cl cotransporter isoform 1 which is expressed in both neurons and glial cells) have attracted much interest in studies on GABAergic signaling under both normal and pathophysiological conditions, such as epilepsy. There is tentative evidence that loop diuretic compounds such as furosemide and bumetanide may have clinically relevant antiepileptic actions, especially when administered in combination with conventional GABA-mimetic drugs such as phenobarbital. Furosemide is a non-selective inhibitor of CCCs while at low concentrations bumetanide is selective for NKCCs. Search for novel antiepileptic drugs (AEDs) is highly motivated especially for the treatment of neonatal seizures which are often resistant to, or even aggravated by conventional AEDs. This review shows that the antiepileptic effects of loop diuretics described in the pertinent literature are based on widely heterogeneous mechanisms ranging from actions on both neuronal NKCC1 and KCC2 to modulation of the brain extracellular volume fraction. A promising strategy for the development of novel CCC-blocking AEDs is based on prodrugs that are activated following their passage across the blood-brain barrier. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.
| | | | | |
Collapse
|
124
|
Pavlov I, Kaila K, Kullmann DM, Miles R. Cortical inhibition, pH and cell excitability in epilepsy: what are optimal targets for antiepileptic interventions? J Physiol 2013; 591:765-74. [PMID: 22890709 PMCID: PMC3591695 DOI: 10.1113/jphysiol.2012.237958] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/10/2012] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is characterised by the propensity of the brain to generate spontaneous recurrent bursts of excessive neuronal activity, seizures. GABA-mediated inhibition is critical for restraining neuronal excitation in the brain, and therefore potentiation of GABAergic neurotransmission is commonly used to prevent seizures. However, data obtained in animal models of epilepsy and from human epileptic tissue suggest that GABA-mediated signalling contributes to interictal and ictal activity. Prolonged activation of GABA(A) receptors during epileptiform bursts may even initiate a shift in GABAergic neurotransmission from inhibitory to excitatory and so have a proconvulsant action. Direct targeting of the membrane mechanisms that reduce spiking in glutamatergic neurons may better control neuronal excitability in epileptic tissue. Manipulation of brain pH may be a promising approach and recent advances in gene therapy and optogenetics seem likely to provide further routes to effective therapeutic intervention.
Collapse
Affiliation(s)
- Ivan Pavlov
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London WC1N 3BG, UK.
| | | | | | | |
Collapse
|
125
|
Deeb TZ, Maguire J, Moss SJ. Possible alterations in GABAA receptor signaling that underlie benzodiazepine-resistant seizures. Epilepsia 2012; 53 Suppl 9:79-88. [PMID: 23216581 PMCID: PMC4402207 DOI: 10.1111/epi.12037] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Benzodiazepines have been used for decades as first-line treatment for status epilepticus (SE). For reasons that are not fully understood, the efficacy of benzodiazepines decreases with increasing duration of seizure activity. This often forces clinicians to resort to more drastic second- and third-line treatments that are not always successful. The antiseizure properties of benzodiazepines are mediated by γ-aminobutyric acid type A (GABA(A) ) receptors. Decades of research have focused on the failure of GABAergic inhibition after seizure onset as the likely cause of the development benzodiazepine resistance during SE. However, the details of the deficits in GABA(A) signaling are still largely unknown. Therefore, it is necessary to improve our understanding of the mechanisms of benzodiazepine resistance so that more effective strategies can be formulated. In this review we discuss evidence supporting the role of altered GABA(A) receptor function as the major underlying cause of benzodiazepine-resistant SE in both humans and animal models. We specifically address the prevailing hypothesis, which is based on changes in the number and subtypes of GABA(A) receptors, as well as the potential influence of perturbed chloride homeostasis in the mature brain.
Collapse
Affiliation(s)
- Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|