101
|
Pilon M. Paradigm shift: the primary function of the "Adiponectin Receptors" is to regulate cell membrane composition. Lipids Health Dis 2021; 20:43. [PMID: 33931104 PMCID: PMC8088037 DOI: 10.1186/s12944-021-01468-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
The ADIPOR1 and ADIPOR2 proteins (ADIPORs) are generally considered as adiponectin receptors with anti-diabetic properties. However, studies on the yeast and C. elegans homologs of the mammalian ADIPORs, and of the ADIPORs themselves in various mammalian cell models, support an updated/different view. Based on findings in these experimental models, the ADIPORs are now emerging as evolutionarily conserved regulators of membrane homeostasis that do not require adiponectin to act as membrane fluidity sensors and regulate phospholipid composition. More specifically, membrane rigidification activates ADIPOR signaling to promote fatty acid desaturation and incorporation of polyunsaturated fatty acids into membrane phospholipids until fluidity is restored. The present review summarizes the evidence supporting this new view of the ADIPORs, and briefly examines physiological consequences.
Collapse
Affiliation(s)
- Marc Pilon
- Dept. Chemistry and Molecular Biology, Univ. Gothenburg, Box 462, S-405 30, Gothenburg, Sweden.
| |
Collapse
|
102
|
Fernández-Irigoyen J, Cartas-Cejudo P, Iruarrizaga-Lejarreta M, Santamaría E. Alteration in the Cerebrospinal Fluid Lipidome in Parkinson's Disease: A Post-Mortem Pilot Study. Biomedicines 2021; 9:491. [PMID: 33946950 PMCID: PMC8146703 DOI: 10.3390/biomedicines9050491] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid metabolism is clearly associated to Parkinson's disease (PD). Although lipid homeostasis has been widely studied in multiple animal and cellular models, as well as in blood derived from PD individuals, the cerebrospinal fluid (CSF) lipidomic profile in PD remains largely unexplored. In this study, we characterized the post-mortem CSF lipidomic imbalance between neurologically intact controls (n = 10) and PD subjects (n = 20). The combination of dual extraction with ultra-performance liquid chromatography-electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC-ESI-qToF-MS/MS) allowed for the monitoring of 257 lipid species across all samples. Complementary multivariate and univariate data analysis identified that glycerolipids (mono-, di-, and triacylglycerides), saturated and mono/polyunsaturated fatty acids, primary fatty amides, glycerophospholipids (phosphatidylcholines, phosphatidylethanolamines), sphingolipids (ceramides, sphingomyelins), N-acylethanolamines and sterol lipids (cholesteryl esters, steroids) were significantly increased in the CSF of PD compared to the control group. Interestingly, CSF lipid dyshomeostasis differed depending on neuropathological staging and disease duration. These results, despite the limitation of being obtained in a small population, suggest extensive CSF lipid remodeling in PD, shedding new light on the deployment of CSF lipidomics as a promising tool to identify potential lipid markers as well as discriminatory lipid species between PD and other atypical parkinsonisms.
Collapse
Affiliation(s)
- Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (J.F.-I.); (P.C.-C.)
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (J.F.-I.); (P.C.-C.)
| | | | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (J.F.-I.); (P.C.-C.)
| |
Collapse
|
103
|
Spears LD, Adak S, Dong G, Wei X, Spyropoulos G, Zhang Q, Yin L, Feng C, Hu D, Lodhi IJ, Hsu FF, Rajagopal R, Noguchi KK, Halabi CM, Brier L, Bice AR, Lananna BV, Musiek ES, Avraham O, Cavalli V, Holth JK, Holtzman DM, Wozniak DF, Culver JP, Semenkovich CF. Endothelial ether lipids link the vasculature to blood pressure, behavior, and neurodegeneration. J Lipid Res 2021; 62:100079. [PMID: 33894211 PMCID: PMC8144742 DOI: 10.1016/j.jlr.2021.100079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular disease contributes to neurodegeneration, which is associated with decreased blood pressure in older humans. Plasmalogens, ether phospholipids produced by peroxisomes, are decreased in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. However, the mechanistic links between ether phospholipids, blood pressure, and neurodegeneration are not fully understood. Here, we show that endothelium-derived ether phospholipids affect blood pressure, behavior, and neurodegeneration in mice. In young adult mice, inducible endothelial-specific disruption of PexRAP, a peroxisomal enzyme required for ether lipid synthesis, unexpectedly decreased circulating plasmalogens. PexRAP endothelial knockout (PEKO) mice responded normally to hindlimb ischemia but had lower blood pressure and increased plasma renin activity. In PEKO as compared with control mice, tyrosine hydroxylase was decreased in the locus coeruleus, which maintains blood pressure and arousal. PEKO mice moved less, slept more, and had impaired attention to and recall of environmental events as well as mild spatial memory deficits. In PEKO hippocampus, gliosis was increased, and a plasmalogen associated with memory was decreased. Despite lower blood pressure, PEKO mice had generally normal homotopic functional connectivity by optical neuroimaging of the cerebral cortex. Decreased glycogen synthase kinase-3 phosphorylation, a marker of neurodegeneration, was detected in PEKO cerebral cortex. In a co-culture system, PexRAP knockdown in brain endothelial cells decreased glycogen synthase kinase-3 phosphorylation in co-cultured astrocytes that was rescued by incubation with the ether lipid alkylglycerol. Taken together, our findings suggest that endothelium-derived ether lipids mediate several biological processes and may also confer neuroprotection in mice.
Collapse
Affiliation(s)
- Larry D Spears
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Guifang Dong
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Xiaochao Wei
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | | | - Qiang Zhang
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Li Yin
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Chu Feng
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Donghua Hu
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Rithwick Rajagopal
- Department of Ophthalmology & Visual Sciences, Washington University, St. Louis, MO, USA
| | - Kevin K Noguchi
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Carmen M Halabi
- Department of Pediatrics, Washington University, St. Louis, MO, USA
| | - Lindsey Brier
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Annie R Bice
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Brian V Lananna
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Erik S Musiek
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Oshri Avraham
- Department of Neuroscience, Washington University, St. Louis, MO, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University, St. Louis, MO, USA
| | - Jerrah K Holth
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - David F Wozniak
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Joseph P Culver
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA; Department of Cell Biology & Physiology, Washington University, St. Louis, MO, USA.
| |
Collapse
|
104
|
Abuknesha NR, Ibrahim F, Mohamed IN, Salih M, Daak AA, Elbashir MI, Ghebremeskel K. Plasma fatty acid abnormality in Sudanese drug-resistant epileptic patients. Prostaglandins Leukot Essent Fatty Acids 2021; 167:102271. [PMID: 33798873 DOI: 10.1016/j.plefa.2021.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
Intervention studies have demonstrated that the n-3 fatty acids, docosahexaenoic and eicosapentaenoic acids, ameliorate seizure frequency in patients with drug-resistant epilepsy (DRE). There is a scarcity of fatty acid status of patients with epilepsy. We have investigated blood fatty acids of patients with DRE and assessed the indices of elongase and desaturase activities. DRE patients (n = 83) and healthy controls (n = 31) were recruited form Soba University Hospital Neurology Referral Clinic and Ibn-Auf paediatric Teaching Hospital Neurology Referral Clinic, Khartoum, Sudan. Fatty acid composition of plasma total lipids, phosphatidylcholine and neutral lipids were analysed. The patients compared with their healthy counterparts had higher levels of C14:0, C16:0, C18:0, C20:0, C22:0 (p<0.05) and C24:0, and total saturates (p<0.05). Similarly, the proportions of C16:1n-7, 18:1n-7, C18:1n-9, C20:1n-9, C24:1n-9 and total monounsaturated fatty acids; p<0.005) were higher in the drug-resistant patients. Conversely, the patients had lower levels of n-6 (C18:2n-6, C18:3n-6, C20:4n-6, n-6 metabolites and total n-6; p<0.005 and C20:2n-6 and C20:3n-6; p<0.05) and n-3 (C20:5n-3, C22:5n-3, C22:6n-3, ∑EPA and DHA, n-3 metabolites and total n-3; p<0.05) fatty acids. Indices of elongase and desaturase activities - The plasma total lipid ratios of C16:0/C14:0 (p = 0.001), C18:0/C16:0 (p = 0.001), C16:1n-7/C16:0 (p = 0.027), C18:1n-9/C18:0 (p = 0.022) and C22:4n-6/C20:4n-6 (p = 0.008) were higher and C18:3n-6/C18:2n-6 (p = 0.05), C20:4n-6/C20:3n-6 (p = 0.032) and C20:4n-6/C18:2n-6 (p>0.05) lower in the patients with drug-resistant epilepsy than in the healthy control subjects. DRE is associated with blood fatty acid perturbation and abnormal activities of long-chain fatty acid elongase (ELOVL-6), stearoyl-coenzyme A desaturase-1 (SCD-1), delta 6-fatty acid desaturase (D6D) and delta 5 fatty acid desaturase (D5D). N-3 fatty acids are known to ameliorate seizures frequency and dampen neuronal hyperexcitability. Therefore, patients with DRE should be regularly monitored and, if necessary, supplemented with n-3 fatty acids.
Collapse
Affiliation(s)
- N R Abuknesha
- Lipidomics and Nutrition Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Fas Ibrahim
- Faculty of Medicine, University of Khartoum, Al-Gamaa Avenue, Al Khartum 11111, Khartoum, Sudan
| | - I N Mohamed
- Faculty of Medicine, University of Khartoum, Al-Gamaa Avenue, Al Khartum 11111, Khartoum, Sudan
| | - Mam Salih
- Faculty of Medicine, University of Khartoum, Al-Gamaa Avenue, Al Khartum 11111, Khartoum, Sudan
| | - A A Daak
- Faculty of Medicine, University of Khartoum, Al-Gamaa Avenue, Al Khartum 11111, Khartoum, Sudan
| | - M I Elbashir
- Faculty of Medicine, University of Khartoum, Al-Gamaa Avenue, Al Khartum 11111, Khartoum, Sudan
| | - K Ghebremeskel
- Lipidomics and Nutrition Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| |
Collapse
|
105
|
Parakh S, Atkin JD. The Mitochondrial-associated ER membrane (MAM) compartment and its dysregulation in Amyotrophic Lateral Sclerosis (ALS). Semin Cell Dev Biol 2021; 112:105-113. [PMID: 33707063 DOI: 10.1016/j.semcdb.2021.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria connect at multiple contact sites to form a unique cellular compartment, termed the 'mitochondria-associated ER membranes' (MAMs). MAMs are hubs for signalling pathways that regulate cellular homeostasis and survival, metabolism, and sensitivity to apoptosis. MAMs are therefore involved in vital cellular functions, but they are dysregulated in several human diseases. Whilst MAM dysfunction is increasingly implicated in the pathogenesis of neurodegenerative diseases, its role in amyotrophic lateral sclerosis (ALS) is poorly understood. However, in ALS both ER and mitochondrial dysfunction are well documented pathophysiological events. Moreover, alterations to lipid metabolism in neurons regulate processes linked to neurodegenerative diseases, and a link between dysfunction of lipid metabolism and ALS has also been proposed. In this review we discuss the structural and functional relevance of MAMs in ALS and how targeting MAM could be therapeutically beneficial in this disorder.
Collapse
Affiliation(s)
- Sonam Parakh
- Macquarie University Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- Macquarie University Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3065, Australia.
| |
Collapse
|
106
|
Meza U, Romero-Méndez C, Sánchez-Armáss S, Rodríguez-Menchaca AA. Role of rafts in neurological disorders. Neurologia 2021; 38:S0213-4853(21)00024-4. [PMID: 33726969 DOI: 10.1016/j.nrl.2021.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/12/2020] [Accepted: 01/01/2021] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Rafts are function-structural cell membrane nano-domains. They contribute to explain the efficiency of signal transduction at the low physiological membrane concentrations of the signaling partners by their clustering inside specialized signaling domains. DEVELOPMENT In this article, we review the current model of the membrane rafts and their physio-pathological relevance in the nervous system, including their role in Parkinson, Alzheimer, and Huntington diseases. CONCLUSIONS Rafts disruption/dysfunction has been shown to relate diverse neurological diseases. Therefore, it has been suggested that preservation of membrane rafts may represent a strategy to prevent or delay neuronal dysfunctions in several diseases.
Collapse
Affiliation(s)
- U Meza
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - C Romero-Méndez
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - S Sánchez-Armáss
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - A A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica. Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
107
|
Perez MA, Watts JL. Worms, Fat, and Death: Caenorhabditis elegans Lipid Metabolites Regulate Cell Death. Metabolites 2021; 11:metabo11020125. [PMID: 33672292 PMCID: PMC7926963 DOI: 10.3390/metabo11020125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/28/2022] Open
Abstract
Caenorhabditis elegans is well-known as the model organism used to elucidate the genetic pathways underlying the first described form of regulated cell death, apoptosis. Since then, C. elegans investigations have contributed to the further understanding of lipids in apoptosis, especially the roles of phosphatidylserines and phosphatidylinositols. More recently, studies in C. elegans have shown that dietary polyunsaturated fatty acids can induce the non-apoptotic, iron-dependent form of cell death, ferroptosis. In this review, we examine the roles of various lipids in specific aspects of regulated cell death, emphasizing recent work in C. elegans.
Collapse
|
108
|
Manna M, Murarka RK. Polyunsaturated Fatty Acid Modulates Membrane-Bound Monomeric α-Synuclein by Modulating Membrane Microenvironment through Preferential Interactions. ACS Chem Neurosci 2021; 12:675-688. [PMID: 33538574 DOI: 10.1021/acschemneuro.0c00694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
There is ample evidence that both native functions and pathogenic aggregation of α-synuclein are intimately dependent on lipid interactions and fatty acid type; the regulatory mechanism however remains unclear. In the present work, using extensive atomistic molecular dynamics simulations and enhanced-sampling, we have focused on exploring the mechanism of fatty acid dependent regulation of monomeric α-Syn100 in a native synaptic vesicle-like membrane. Our results show that α-Syn100 spontaneously binds to the membrane through its N-terminal region (residues 1-34), where the depth of membrane insertion, the structure, and orientation of the membrane-bound α-Syn100 and its impact on membrane structure are modulated by docosahexaenoic acid (DHA). DHA is a polyunsaturated fatty acid abundantly found in the brain and known to promote the oligomerization of α-synuclein. We found that DHA exhibits marked propensity to interact with monomeric α-Syn100 and modulates the microenvironment of the protein by preferentially sorting DHA-containing phospholipids, depleting other phospholipids and cholesterol as well as increasing the proportion of anionic to neutral lipids in the immediate vicinity of the protein. Owing to the unique conformational flexibility, DHA chains form more lipid-packing defects in the membrane and efficiently coat the membrane-embedded surface of the protein, compared to the saturated and monounsaturated fatty acids. DHA thus makes the bilayer more amiable to protein adsorption and less prone to α-synuclein-induced perturbation associated with cytotoxicity. Indeed, in the absence of DHA, we observed significant thinning of the local bilayer membrane induced by α-Syn100. Though α-Syn100 is predominantly α-helical in membranes studied here, in the presence of DHA we observe formation of β-sheet/β-strands in the C-terminal region (residues 35-100) of α-Syn100, which is extended out from the membrane surface. Notably, DHA induces β structure in the NAC domain of α-Syn100 and promotes extended conformations as well as large solvent exposure of this hydrophobic domain, properties that are known to facilitate self-assembly of α-synuclein. To the best of our knowledge, this study for the first time provides the atomistic insights into DHA-induced regulatory mechanism of monomeric α-synuclein, having implications in protein structure and its physiological/pathological functions.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
- Applied Phycology and Biotechnology Division, CSIR−Central Salt & Marine Chemicals Research Institute (CSIR−CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Rajesh K. Murarka
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
109
|
Dai L, Zou L, Meng L, Qiang G, Yan M, Zhang Z. Cholesterol Metabolism in Neurodegenerative Diseases: Molecular Mechanisms and Therapeutic Targets. Mol Neurobiol 2021; 58:2183-2201. [PMID: 33411241 DOI: 10.1007/s12035-020-02232-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Abstract
Cholesterol is an indispensable component of the cell membrane and plays vital roles in critical physiological processes. Brain cholesterol accounts for a large portion of total cholesterol in the human body, and its content must be tightly regulated to ensure normal brain function. Disorders of cholesterol metabolism in the brain are linked to neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and other atypical cognitive deficits that arise at old age. However, the specific role of cholesterol metabolism disorder in the pathogenesis of neurodegenerative diseases has not been fully elucidated. Statins that are a class of lipid-lowering drugs have been reported to have a positive effect on neurodegenerative diseases. Herein, we reviewed the physiological and pathological conditions of cholesterol metabolism and discussed the possible mechanisms of cholesterol metabolism and statin therapy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, China
| | - Mingmin Yan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
110
|
Deb R, Joshi N, Nagotu S. Peroxisomes of the Brain: Distribution, Functions, and Associated Diseases. Neurotox Res 2021; 39:986-1006. [PMID: 33400183 DOI: 10.1007/s12640-020-00323-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Peroxisomes are versatile cell organelles that exhibit a repertoire of organism and cell-type dependent functions. The presence of oxidases and antioxidant enzymes is a characteristic feature of these organelles. The role of peroxisomes in various cell types in human health and disease is under investigation. Defects in the biogenesis of the organelle and its function lead to severe debilitating disorders. In this manuscript, we discuss the distribution and functions of peroxisomes in the nervous system and especially in the brain cells. The important peroxisomal functions in these cells and their role in the pathology of associated disorders such as neurodegeneration are highlighted in recent studies. Although the cause of the pathogenesis of these disorders is still not clearly understood, emerging evidence supports a crucial role of peroxisomes. In this review, we discuss research highlighting the role of peroxisomes in brain development and its function. We also provide an overview of the major findings in recent years that highlight the role of peroxisome dysfunction in various associated diseases.
Collapse
Affiliation(s)
- Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Neha Joshi
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
111
|
Ray B, Bhat A, Mahalakshmi AM, Tuladhar S, Bishir M, Mohan SK, Veeraraghavan VP, Chandra R, Essa MM, Chidambaram SB, Sakharkar MK. Mitochondrial and Organellar Crosstalk in Parkinson's Disease. ASN Neuro 2021; 13:17590914211028364. [PMID: 34304614 PMCID: PMC8317254 DOI: 10.1177/17590914211028364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/04/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction is a well-established pathological event in Parkinson's disease (PD). Proteins misfolding and its impaired cellular clearance due to altered autophagy/mitophagy/pexophagy contribute to PD progression. It has been shown that mitochondria have contact sites with endoplasmic reticulum (ER), peroxisomes and lysosomes that are involved in regulating various physiological processes. In pathological conditions, the crosstalk at the contact sites initiates alterations in intracellular vesicular transport, calcium homeostasis and causes activation of proteases, protein misfolding and impairment of autophagy. Apart from the well-reported molecular changes like mitochondrial dysfunction, impaired autophagy/mitophagy and oxidative stress in PD, here we have summarized the recent scientific reports to provide the mechanistic insights on the altered communications between ER, peroxisomes, and lysosomes at mitochondrial contact sites. Furthermore, the manuscript elaborates on the contributions of mitochondrial contact sites and organelles dysfunction to the pathogenesis of PD and suggests potential therapeutic targets.
Collapse
Affiliation(s)
- Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Muhammed Bishir
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai – 600123, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat, Sultanate of Oman
- Visiting Professor, Biomedical Sciences department, University of Pacific, Sacramento, CA, USA
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK- S7N 5A2, Canada
| |
Collapse
|
112
|
Dave AM, Peeples ES. Cholesterol metabolism and brain injury in neonatal encephalopathy. Pediatr Res 2021; 90:37-44. [PMID: 33106607 PMCID: PMC8511855 DOI: 10.1038/s41390-020-01218-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/05/2023]
Abstract
Neonatal encephalopathy (NE) results from impaired cerebral blood flow and oxygen delivery to the brain. The pathophysiology of NE is complex and our understanding of its underlying pathways continues to evolve. There is considerable evidence that cholesterol dysregulation is involved in several adult diseases, including traumatic brain injury, stroke, Huntington's disease, and Parkinson's disease. Although the research is less robust in pediatrics, there is emerging evidence that aberrations in cholesterol metabolism may also be involved in the pathophysiology of neonatal NE. This narrative review provides an overview of cholesterol metabolism in the brain along with several examples from the adult literature where pathologic alterations in cholesterol metabolism have been associated with inflammatory and ischemic brain injury. Using those data as a background, the review then discusses the current preclinical data supporting the involvement of cholesterol in the pathogenesis of NE as well as how brain-specific cholesterol metabolites may serve as serum biomarkers for brain injury. Lastly, we review the potential for using the cholesterol metabolic pathways as therapeutic targets. Further investigation of the shifts in cholesterol synthesis and metabolism after hypoxia-ischemia may prove vital in understanding NE pathophysiology as well as providing opportunities for rapid diagnosis and therapeutic interventions. IMPACT: This review summarizes emerging evidence that aberrations in cholesterol metabolism may be involved in the pathophysiology of NE. Using data from NE as well as analogous adult disease states, this article reviews the potential for using cholesterol pathways as targets for developing novel therapeutic interventions and using cholesterol metabolites as biomarkers for injury. When possible, gaps in the current literature were identified to aid in the development of future studies to further investigate the interactions between cholesterol pathways and NE.
Collapse
Affiliation(s)
- Amanda M Dave
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
113
|
Gowrishankar S, Cologna SM, Givogri MI, Bongarzone ER. Deregulation of signalling in genetic conditions affecting the lysosomal metabolism of cholesterol and galactosyl-sphingolipids. Neurobiol Dis 2020; 146:105142. [PMID: 33080336 PMCID: PMC8862610 DOI: 10.1016/j.nbd.2020.105142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/04/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The role of lipids in neuroglial function is gaining momentum in part due to a better understanding of how many lipid species contribute to key cellular signalling pathways at the membrane level. The description of lipid rafts as membrane domains composed by defined classes of lipids such as cholesterol and sphingolipids has greatly helped in our understanding of how cellular signalling can be regulated and compartmentalized in neurons and glial cells. Genetic conditions affecting the metabolism of these lipids greatly impact on how some of these signalling pathways work, providing a context to understand the biological function of the lipid. Expectedly, abnormal metabolism of several lipids such as cholesterol and galactosyl-sphingolipids observed in several metabolic conditions involving lysosomal dysfunction are often accompanied by neuronal and myelin dysfunction. This review will discuss the role of lysosomal biology in the context of deficiencies in the metabolism of cholesterol and galactosyl-sphingolipids and their impact on neural function in three genetic disorders: Niemann-Pick type C, Metachromatic leukodystrophy and Krabbe's disease.
Collapse
Affiliation(s)
- S Gowrishankar
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - S M Cologna
- Department of Chemistry, University of Illinois, Chicago, IL, USA.
| | - M I Givogri
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - E R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
114
|
Domingues AV, Pereira IM, Vilaça-Faria H, Salgado AJ, Rodrigues AJ, Teixeira FG. Glial cells in Parkinson´s disease: protective or deleterious? Cell Mol Life Sci 2020; 77:5171-5188. [PMID: 32617639 PMCID: PMC11104819 DOI: 10.1007/s00018-020-03584-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/25/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Glial cells have been identified more than 100 years ago, and are known to play a key role in the central nervous system (CNS) function. A recent piece of evidence is emerging showing that in addition to the capacity of CNS modulation and homeostasis, glial cells are also being looked like as a promising cell source not only to study CNS pathologies initiation and progression but also to the establishment and development of new therapeutic strategies. Thus, in the present review, we will discuss the current evidence regarding glial cells' contribution to neurodegenerative diseases as Parkinson's disease, providing cellular, molecular, functional, and behavioral data supporting its active role in disease initiation, progression, and treatment. As so, considering their functional relevance, glial cells may be important to the understanding of the underlying mechanisms regarding neuronal-glial networks in neurodegeneration/regeneration processes, which may open new research opportunities for their future use as a target or treatment in human clinical trials.
Collapse
Affiliation(s)
- Ana V Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Inês M Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Helena Vilaça-Faria
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Ana J Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| | - Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
115
|
Parkinson's Disease Master Regulators on Substantia Nigra and Frontal Cortex and Their Use for Drug Repositioning. Mol Neurobiol 2020; 58:1517-1534. [PMID: 33211252 DOI: 10.1007/s12035-020-02203-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is among the most prevalent neurodegenerative diseases. Available evidences support the view of PD as a complex disease, being the outcome of interactions between genetic and environmental factors. In face of diagnosis and therapy challenges, and the elusive PD etiology, the use of alternative methodological approaches for the elucidation of the disease pathophysiological mechanisms and proposal of novel potential therapeutic interventions has become increasingly necessary. In the present study, we first reconstructed the transcriptional regulatory networks (TN), centered on transcription factors (TF), of two brain regions affected in PD, the substantia nigra pars compacta (SNc) and the frontal cortex (FCtx). Then, we used case-control studies data from these regions to identify TFs working as master regulators (MR) of the disease, based on region-specific TNs. Twenty-nine regulatory units enriched with differentially expressed genes were identified for the SNc, and twenty for the FCtx, all of which were considered MR candidates for PD. Three consensus MR candidates were found for SNc and FCtx, namely ATF2, SLC30A9, and ZFP69B. In order to search for novel potential therapeutic interventions, we used these consensus MR candidate signatures as input to the Connectivity Map (CMap), a computational drug repositioning webtool. This analysis resulted in the identification of four drugs that reverse the expression pattern of all three MR consensus simultaneously, benperidol, harmaline, tubocurarine chloride, and vorinostat, thus suggested as novel potential PD therapeutic interventions.
Collapse
|
116
|
Dorninger F, Forss-Petter S, Wimmer I, Berger J. Plasmalogens, platelet-activating factor and beyond - Ether lipids in signaling and neurodegeneration. Neurobiol Dis 2020; 145:105061. [PMID: 32861763 PMCID: PMC7116601 DOI: 10.1016/j.nbd.2020.105061] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycerol-based ether lipids including ether phospholipids form a specialized branch of lipids that in mammals require peroxisomes for their biosynthesis. They are major components of biological membranes and one particular subgroup, the plasmalogens, is widely regarded as a cellular antioxidant. Their vast potential to influence signal transduction pathways is less well known. Here, we summarize the literature showing associations with essential signaling cascades for a wide variety of ether lipids, including platelet-activating factor, alkylglycerols, ether-linked lysophosphatidic acid and plasmalogen-derived polyunsaturated fatty acids. The available experimental evidence demonstrates links to several common players like protein kinase C, peroxisome proliferator-activated receptors or mitogen-activated protein kinases. Furthermore, ether lipid levels have repeatedly been connected to some of the most abundant neurological diseases, particularly Alzheimer's disease and more recently also neurodevelopmental disorders like autism. Thus, we critically discuss the potential role of these compounds in the etiology and pathophysiology of these diseases with an emphasis on signaling processes. Finally, we review the emerging interest in plasmalogens as treatment target in neurological diseases, assessing available data and highlighting future perspectives. Although many aspects of ether lipid involvement in cellular signaling identified in vitro still have to be confirmed in vivo, the compiled data show many intriguing properties and contributions of these lipids to health and disease that will trigger further research.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria.
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria.
| |
Collapse
|
117
|
Snowden SG, Fernandes HJ, Kent J, Foskolou S, Tate P, Field SF, Metzakopian E, Koulman A. Development and Application of High-Throughput Single Cell Lipid Profiling: A Study of SNCA-A53T Human Dopamine Neurons. iScience 2020; 23:101703. [PMID: 33196026 PMCID: PMC7644967 DOI: 10.1016/j.isci.2020.101703] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/10/2020] [Accepted: 10/15/2020] [Indexed: 02/02/2023] Open
Abstract
Advances in single cell genomics and transcriptomics have shown that at tissue level there is complex cellular heterogeneity. To understand the effect of this inter-cell heterogeneity on metabolism it is essential to develop a single cell lipid profiling approach that allows the measurement of lipids in large numbers of single cells from a population. This will provide a functional readout of cell activity and membrane structure. Using liquid extraction surface analysis coupled with high-resolution mass spectrometry we have developed a high-throughput method for untargeted single cell lipid profiling. This technological advance highlighted the importance of cellular heterogeneity in the functional metabolism of individual human dopamine neurons, suggesting that A53T alpha-synuclein (SNCA) mutant neurons have impaired membrane function. These results demonstrate that this single cell lipid profiling platform can provide robust data that will expand the frontiers in biomedical research.
Collapse
Affiliation(s)
- Stuart G. Snowden
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK,Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey Tw20 0EX, UK
| | - Hugo J.R. Fernandes
- UK Dementia Research Institute, University of Cambridge, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| | - Josh Kent
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK,UK Dementia Research Institute, University of Cambridge, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| | - Stefanie Foskolou
- UK Dementia Research Institute, University of Cambridge, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| | - Peri Tate
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey Tw20 0EX, UK
| | - Sarah F. Field
- UK Dementia Research Institute, University of Cambridge, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, University of Cambridge, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK,Corresponding author
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK,Corresponding author
| |
Collapse
|
118
|
Angelopoulou E, Paudel YN, Villa C, Piperi C. Arylsulfatase A (ASA) in Parkinson's Disease: From Pathogenesis to Biomarker Potential. Brain Sci 2020; 10:E713. [PMID: 33036336 PMCID: PMC7601048 DOI: 10.3390/brainsci10100713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/28/2023] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder after Alzheimer's disease, is a clinically heterogeneous disorder, with obscure etiology and no disease-modifying therapy to date. Currently, there is no available biomarker for PD endophenotypes or disease progression. Accumulating evidence suggests that mutations in genes related to lysosomal function or lysosomal storage disorders may affect the risk of PD development, such as GBA1 gene mutations. In this context, recent studies have revealed the emerging role of arylsulfatase A (ASA), a lysosomal hydrolase encoded by the ARSA gene causing metachromatic leukodystrophy (MLD) in PD pathogenesis. In particular, altered ASA levels have been detected during disease progression, and reduced enzymatic activity of ASA has been associated with an atypical PD clinical phenotype, including early cognitive impairment and essential-like tremor. Clinical evidence further reveals that specific ARSA gene variants may act as genetic modifiers in PD. Recent in vitro and in vivo studies indicate that ASA may function as a molecular chaperone interacting with α-synuclein (SNCA) in the cytoplasm, preventing its aggregation, secretion and cell-to-cell propagation. In this review, we summarize the results of recent preclinical and clinical studies on the role of ASA in PD, aiming to shed more light on the potential implication of ASA in PD pathogenesis and highlight its biomarker potential.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
119
|
Gilmozzi V, Gentile G, Castelo Rueda MP, Hicks AA, Pramstaller PP, Zanon A, Lévesque M, Pichler I. Interaction of Alpha-Synuclein With Lipids: Mitochondrial Cardiolipin as a Critical Player in the Pathogenesis of Parkinson's Disease. Front Neurosci 2020; 14:578993. [PMID: 33122994 PMCID: PMC7573567 DOI: 10.3389/fnins.2020.578993] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
Alpha-Synuclein (α-Syn) is a central protein in the pathogenesis of synucleinopathies, a group of neurodegenerative disorders including Parkinson’s disease (PD). Although its role in neurotransmission is well established, the precise role of this protein in disease pathogenesis is still not fully understood. It is, however, widely regarded to be associated with the misfolding and accumulation of toxic intracellular aggregates. In fact, α-Syn is the most abundant protein component of Lewy bodies and Lewy neurites, which are also characterized by a high lipid content. Lipids, the main constituents of cellular membranes, have been implicated in many aspects of PD-related processes. α-Syn interacts with membrane phospholipids and free fatty acids via its N-terminal domain, and altered lipid-protein complexes might enhance both its binding to synaptic and mitochondrial membranes and its oligomerization. Several studies have highlighted a specific interaction of α-Syn with the phospholipid cardiolipin (CL), a major constituent of mitochondrial membranes. By interacting with CL, α-Syn is able to disrupt mitochondrial membrane integrity, leading to mitochondrial dysfunction. Additionally, externalized CL is able to facilitate the refolding of toxic α-Syn species at the outer mitochondrial membrane. In this review, we discuss how α-Syn/lipid interactions, in particular the α-Syn/CL interaction at the mitochondrial membrane, may affect α-Syn aggregation and mitochondrial dysfunction and may thus represent an important mechanism in the pathogenesis of PD.
Collapse
Affiliation(s)
- Valentina Gilmozzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giovanna Gentile
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | | | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Alessandra Zanon
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Cervo Brain Research Centre, Université Laval, Quebec, QC, Canada
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
120
|
Jo DS, Park NY, Cho DH. Peroxisome quality control and dysregulated lipid metabolism in neurodegenerative diseases. Exp Mol Med 2020; 52:1486-1495. [PMID: 32917959 PMCID: PMC8080768 DOI: 10.1038/s12276-020-00503-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
In recent decades, the role of the peroxisome in physiology and disease conditions has become increasingly important. Together with the mitochondria and other cellular organelles, peroxisomes support key metabolic platforms for the oxidation of various fatty acids and regulate redox conditions. In addition, peroxisomes contribute to the biosynthesis of essential lipid molecules, such as bile acid, cholesterol, docosahexaenoic acid, and plasmalogen. Therefore, the quality control mechanisms that regulate peroxisome biogenesis and degradation are important for cellular homeostasis. Current evidence indicates that peroxisomal function is often reduced or dysregulated in various human disease conditions, such as neurodegenerative diseases. Here, we review the recent progress that has been made toward understanding the quality control systems that regulate peroxisomes and their pathological implications. Systematic studies of cellular organelles called peroxisomes are needed to determine their influence on the progression of neurodegenerative diseases. Peroxisomes play vital roles in biological processes including the metabolism of lipids and reactive oxygen species, and the synthesis of key molecules, including bile acid and cholesterol. Disruption to peroxisome activity has been linked to metabolic disorders, cancers and neurodegenerative conditions. Dong-Hyung Cho at Kyungpook National University in Daegu, South Korea, and coworkers reviewed current understanding of peroxisome regulation, with a particular focus on brain disorders. The quantity and activity of peroxisomes alter according to environmental and stress cues. The brain is lipid-rich, and even small changes in fatty acid composition may influence neuronal function. Changes in fatty acid metabolism are found in early stage Alzheimer’s and Parkinson’s diseases, but whether peroxisome disruption is responsible requires clarification.
Collapse
Affiliation(s)
- Doo Sin Jo
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Na Yeon Park
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong-Hyung Cho
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea. .,School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
121
|
Foley S, Miller E, Braziel S, Lee S. Molecular organization in mixed SOPC and SDPC model membranes: Water permeability studies of polyunsaturated lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183365. [DOI: 10.1016/j.bbamem.2020.183365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022]
|
122
|
Zhou Y, Yu N, Zhao J, Xie Z, Yang Z, Tian B. Advances in the Biosynthetic Pathways and Application Potential of Plasmalogens in Medicine. Front Cell Dev Biol 2020; 8:765. [PMID: 32984309 PMCID: PMC7487321 DOI: 10.3389/fcell.2020.00765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
Plasmalogens are a special class of polar glycerolipids containing a vinyl-ether bond and an ester bond at sn-1 and sn-2 positions of the glycerol backbone, respectively. In animals, impaired biosynthesis and regulation of plasmalogens may lead to certain neurological and metabolic diseases. Plasmalogens deficiency was proposed to be strongly associated with neurodegenerative and metabolic diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), and appropriate supplement of plasmalogens could help to prevent and possibly provide therapy of these diseases. Plasmalogens evolved first in anaerobic bacteria with an anaerobic biosynthetic pathway. Later, an oxygen-dependent biosynthesis of plasmalogens appeared in animal cells. This review summarizes and updates current knowledge of anaerobic and aerobic pathways of plasmalogens biosynthesis, including the enzymes involved, steps and aspects of the regulation of these processes. Strategies for increasing the expression of plasmalogen synthetic genes using synthetic biology techniques under specific conditions are discussed. Deep understanding of plasmalogens biosynthesis will provide the bases for the use of plasmalogens and their precursors as potential therapeutic regimens for age-related degenerative and metabolic diseases.
Collapse
Affiliation(s)
- Yulong Zhou
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.,MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ning Yu
- MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jie Zhao
- Department of Applied Biological Science, Zhejiang University, Hangzhou, China
| | - Zhenming Xie
- MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhaonan Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.,MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bing Tian
- MOE Key Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
123
|
Singh H, Thakur S, Sahajpal NS, Singh H, Singh A, Sohal HS, Jain SK. Recent Advances in the Novel Formulation of Docosahexaenoic Acid for Effective Delivery, Associated Challenges and Its Clinical Importance. Curr Drug Deliv 2020; 17:483-504. [DOI: 10.2174/1567201817666200512103402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/03/2020] [Accepted: 02/02/2020] [Indexed: 11/22/2022]
Abstract
Docosahexaenoic Acid (DHA) is an essential polyunsaturated omega-3 fatty acid, and a fundamental structural component of the phospholipid membranes, especially of neural and retinal cells. DHA is found to be critical for the normal development and functioning of neurons and synaptogenesis in the brain, and is required during pre- and post-natal stages of life. DHA has also been observed to exhibit neuroprotective, cardioprotective, and anti-inflammatory properties. However, geographical dietary variations and poor economic conditions lead to insufficient DHA levels resulting in various health deficits like improper brain development, cognitive disorders, and other clinical complications. Thus, to prevent its deficiency-induced derangements, several authorities recommend DHA as a supplement during pregnancy, infancy, and throughout adulthood. In past decades, the soft gelatin capsule was only feasible resolute of DHA, but due to their limitations and invention of new technologies; it led to the development of new dosage forms with improved physicochemical characteristics of DHA. This article will discuss in detail about the role of DHA in brain development, microalgae oil as an emerging source of DHA, clinical- and pharmacological-activities of DHA, issues related to DHA oil, current formulation of DHA along with their application, limitations, and strategies used for improvement and future prospectives.
Collapse
Affiliation(s)
- Harmanpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Nikhil Shri Sahajpal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Harjeet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Harminder Singh Sohal
- Department of Orthopaedics, Government Medical College, Amritsar 143001, Punjab, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| |
Collapse
|
124
|
Li Y, Yu N, Li M, Li K, Shi W, Yu H, Wei S. Metabolomic insights into the lasting impacts of early-life exposure to BDE-47 in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114524. [PMID: 32283404 DOI: 10.1016/j.envpol.2020.114524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/17/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Early-life exposure to toxicants may have lasting effects that adversely impact later development. Thus, although the production and use of a toxicant have been banned, the risk to previously exposed individuals may continue. BDE-47, a component of commercial penta-BDEs, is a persistent organic pollutant with demonstrated neurotoxicity. To investigate the persistent effects of BDE-47 and the mechanisms thereof, we employed a metabolomics approach to analyze the brain, blood and urine of mice exposed to BDE-47 for 28 days and then 3 months post-exposure. In the brain, BDE-47 was detectable just after exposure but was below the limit of detection (LOD) 3 months later. However, the metabolomic alterations caused by early-life exposure to BDE-47 persisted. Potential biomarkers related to these alterations included phosphatidylcholine, lysophosphatidylcholine, sphingomyelin and several amino acids and biogenic amines. The metabolic pathways involved in the response to BDE-47 in the brain were mainly those related to glycerophospholipid metabolism, sphingomyelin metabolism and neurotransmitter regulation. Thus, our study demonstrates the utility of metabolomics, as the omics most closely reflecting the phenotype, in exploring the mechanisms underlying the lasting effects induced by early-life BDE-47 exposure.
Collapse
Affiliation(s)
- Yuqian Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Meiying Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Kan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
125
|
Abstract
Peroxisomes are metabolic organelles involved in lipid metabolism and cellular redox balance. Peroxisomal function is central to fatty acid oxidation, ether phospholipid synthesis, bile acid synthesis, and reactive oxygen species homeostasis. Human disorders caused by genetic mutations in peroxisome genes have led to extensive studies on peroxisome biology. Peroxisomal defects are linked to metabolic dysregulation in diverse human diseases, such as neurodegeneration and age-related disorders, revealing the significance of peroxisome metabolism in human health. Cancer is a disease with metabolic aberrations. Despite the critical role of peroxisomes in cell metabolism, the functional effects of peroxisomes in cancer are not as well recognized as those of other metabolic organelles, such as mitochondria. In addition, the significance of peroxisomes in cancer is less appreciated than it is in degenerative diseases. In this review, I summarize the metabolic pathways in peroxisomes and the dysregulation of peroxisome metabolism in cancer. In addition, I discuss the potential of inactivating peroxisomes to target cancer metabolism, which may pave the way for more effective cancer treatment.
Collapse
|
126
|
Wang Y, Nakajima T, Diao P, Yamada Y, Nakamura K, Nakayama J, Tanaka N, Aoyama T, Kamijo Y. Polyunsaturated fatty acid deficiency affects sulfatides and other sulfated glycans in lysosomes through autophagy-mediated degradation. FASEB J 2020; 34:9594-9614. [PMID: 32501606 DOI: 10.1096/fj.202000030rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022]
Abstract
Metabolic changes in sulfatides and other sulfated glycans have been related to various diseases, including Alzheimer's disease (AD). However, the importance of polyunsaturated fatty acids (PUFA) in sulfated lysosomal substrate metabolism and its related disorders is currently unknown. We investigated the effects of deficiency or supplementation of PUFA on the metabolism of sulfatides and sulfated glycosaminoglycans (sGAGs) in sulfatide-rich organs (brain and kidney) of mice. A PUFA-deficient diet for over 5 weeks significantly reduced the sulfatide expression by increasing the sulfatide degradative enzymes arylsulfatase A and galactosylceramidase in brain and kidney. This sulfatide degradation was clearly associated with the activation of autophagy and lysosomal hyperfunction, the former of which was induced by suppression of the Erk/mTOR pathway. A PUFA-deficient diet also activated the degradation of sGAGs in the brain and kidney and that of amyloid precursor proteins in the brain, indicating an involvement in general lysosomal function and the early developmental process of AD. PUFA supplementation prevented all of the above abnormalities. Taken together, a PUFA deficiency might lead to sulfatide and sGAG degradation associated with autophagy activation and general lysosomal hyperfunction and play a role in many types of disease development, suggesting a possible benefit of prophylactic PUFA supplementation.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takero Nakajima
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Pan Diao
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yosuke Yamada
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Nephrology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kozo Nakamura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Minamiminowa, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuji Kamijo
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Nephrology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
127
|
Kytikova OY, Novgorodtseva TP, Antonyuk MV, Gvozdenko TA. Plasmalogens in the Pathophysiology and Therapy of Age-Specific Diseases. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s207905702003011x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
128
|
Fontaine D, Figiel S, Félix R, Kouba S, Fromont G, Mahéo K, Potier-Cartereau M, Chantôme A, Vandier C. Roles of endogenous ether lipids and associated PUFAs in the regulation of ion channels and their relevance for disease. J Lipid Res 2020; 61:840-858. [PMID: 32265321 PMCID: PMC7269763 DOI: 10.1194/jlr.ra120000634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/29/2020] [Indexed: 12/16/2022] Open
Abstract
Ether lipids (ELs) are lipids characterized by the presence of either an ether linkage (alkyl lipids) or a vinyl ether linkage [i.e., plasmalogens (Pls)] at the sn1 position of the glycerol backbone, and they are enriched in PUFAs at the sn2 position. In this review, we highlight that ELs have various biological functions, act as a reservoir for second messengers (such as PUFAs) and have roles in many diseases. Some of the biological effects of ELs may be associated with their ability to regulate ion channels that control excitation-contraction/secretion/mobility coupling and therefore cell physiology. These channels are embedded in lipid membranes, and lipids can regulate their activities directly or indirectly as second messengers or by incorporating into membranes. Interestingly, ELs and EL-derived PUFAs have been reported to play a key role in several pathologies, including neurological disorders, cardiovascular diseases, and cancers. Investigations leading to a better understanding of their mechanisms of action in pathologies have opened a new field in cancer research. In summary, newly identified lipid regulators of ion channels, such as ELs and PUFAs, may represent valuable targets to improve disease diagnosis and advance the development of new therapeutic strategies for managing a range of diseases and conditions.
Collapse
Affiliation(s)
- Delphine Fontaine
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Sandy Figiel
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Romain Félix
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Sana Kouba
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Gaëlle Fromont
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France; Department of Pathology, CHRU Bretonneau, F-37044 Tours CEDEX 9, France
| | - Karine Mahéo
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France; Faculté de Pharmacie, Université de Tours, F-37200 Tours, France
| | | | - Aurélie Chantôme
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France; Faculté de Pharmacie, Université de Tours, F-37200 Tours, France
| | - Christophe Vandier
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France. mailto:
| |
Collapse
|
129
|
Soll LG, Eisen JN, Vargas KJ, Medeiros AT, Hammar KM, Morgan JR. α-Synuclein-112 Impairs Synaptic Vesicle Recycling Consistent With Its Enhanced Membrane Binding Properties. Front Cell Dev Biol 2020; 8:405. [PMID: 32548120 PMCID: PMC7272675 DOI: 10.3389/fcell.2020.00405] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/04/2020] [Indexed: 01/06/2023] Open
Abstract
Synucleinopathies are neurological disorders associated with α-synuclein overexpression and aggregation. While it is well-established that overexpression of wild type α-synuclein (α-syn-140) leads to cellular toxicity and neurodegeneration, much less is known about other naturally occurring α-synuclein splice isoforms. In this study we provide the first detailed examination of the synaptic effects caused by one of these splice isoforms, α-synuclein-112 (α-syn-112). α-Syn-112 is produced by an in-frame excision of exon 5, resulting in deletion of amino acids 103-130 in the C-terminal region. α-Syn-112 is upregulated in the substantia nigra, frontal cortex, and cerebellum of parkinsonian brains and higher expression levels are correlated with susceptibility to Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple systems atrophy (MSA). We report here that α-syn-112 binds strongly to anionic phospholipids when presented in highly curved liposomes, similar to α-syn-140. However, α-syn-112 bound significantly stronger to all phospholipids tested, including the phosphoinositides. α-Syn-112 also dimerized and trimerized on isolated synaptic membranes, while α-syn-140 remained largely monomeric. When introduced acutely to lamprey synapses, α-syn-112 robustly inhibited synaptic vesicle recycling. Interestingly, α-syn-112 produced effects on the plasma membrane and clathrin-mediated synaptic vesicle endocytosis that were phenotypically intermediate between those caused by monomeric and dimeric α-syn-140. These findings indicate that α-syn-112 exhibits enhanced phospholipid binding and oligomerization in vitro and consequently interferes with synaptic vesicle recycling in vivo in ways that are consistent with its biochemical properties. This study provides additional evidence suggesting that impaired vesicle endocytosis is a cellular target of excess α-synuclein and advances our understanding of potential mechanisms underlying disease pathogenesis in the synucleinopathies.
Collapse
Affiliation(s)
- Lindsey G Soll
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Julia N Eisen
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Karina J Vargas
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Audrey T Medeiros
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Katherine M Hammar
- Central Microscopy Facility, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Jennifer R Morgan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, United States
| |
Collapse
|
130
|
Mori A, Imai Y, Hattori N. Lipids: Key Players That Modulate α-Synuclein Toxicity and Neurodegeneration in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21093301. [PMID: 32392751 PMCID: PMC7247581 DOI: 10.3390/ijms21093301] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease; it is characterized by the loss of dopaminergic neurons in the midbrain and the accumulation of neuronal inclusions, mainly consisting of α-synuclein (α-syn) fibrils in the affected regions. The prion-like property of the pathological forms of α-syn transmitted via neuronal circuits has been considered inherent in the nature of PD. Thus, one of the potential targets in terms of PD prevention is the suppression of α-syn conversion from the functional form to pathological forms. Recent studies suggested that α-syn interacts with synaptic vesicle membranes and modulate the synaptic functions. A series of studies suggest that transient interaction of α-syn as multimers with synaptic vesicle membranes composed of phospholipids and other lipids is required for its physiological function, while an α-syn-lipid interaction imbalance is believed to cause α-syn aggregation and the resultant pathological α-syn conversion. Altered lipid metabolisms have also been implicated in the modulation of PD pathogenesis. This review focuses on the current literature reporting the role of lipids, especially phospholipids, and lipid metabolism in α-syn dynamics and aggregation processes.
Collapse
Affiliation(s)
- Akio Mori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Yuzuru Imai
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (Y.I.); (N.H.); Tel.: +81-3-6801-8332 (Y.I. & N.H.)
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (Y.I.); (N.H.); Tel.: +81-3-6801-8332 (Y.I. & N.H.)
| |
Collapse
|
131
|
Grassi S, Giussani P, Mauri L, Prioni S, Sonnino S, Prinetti A. Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. J Lipid Res 2020; 61:636-654. [PMID: 31871065 PMCID: PMC7193971 DOI: 10.1194/jlr.tr119000427] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson's, Huntington's, and Alzheimer's diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.jlr;61/5/636/F1F1f1.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy. mailto:
| |
Collapse
|
132
|
Mu P, Liu Y, Jiang S, Gao J, Sun S, Li L, Gao D. Glial cell line-derived neurotrophic factor alters lipid composition and protein distribution in MPP+-injured differentiated SH-SY5Y cells. J Cell Physiol 2020; 235:9347-9360. [PMID: 32356318 DOI: 10.1002/jcp.29738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/28/2020] [Accepted: 04/18/2020] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra and striatum. Glial cell line-derived neurotrophic factor (GDNF) can effectively promote the differentiation and survival of many types of neurons, especially dopaminergic neurons, suggesting it could be a treatment for PD. Lipid rafts are highly dynamic cell membrane domains that contain numerous signal protein receptors, providing an important platform for signal transduction. Compelling evidence indicates that alterations in lipid rafts are associated with PD, and some studies have reported that GDNF can regulate the expression of caveolin-1, a lipid raft-marker protein. However, the precise effects of GDNF on lipid rafts remain unknown. We developed a cellular PD model, purified detergent-resistant membranes (membrane rafts), and performed proteomic and lipid metabolomics analyses to examine changes in lipid rafts after GDNF treatment. The results showed considerable protein and lipid alterations in response to GDNF, especially altered levels of dopamine-β-hydroxylase, heat shock 70 kDa protein, neural cell adhesion molecule, cytoskeletal proteins, and long-chain polysaturated/unsaturated fatty acids. These findings reveal a new avenue to explore the relationships between GDNF, lipid rafts, and PD and support the hypothesis that GDNF may be a useful treatment for PD.
Collapse
Affiliation(s)
- Peipei Mu
- Jiangsu Key Laboratory of Brian Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,School of Nursing and Midwifery, Jiangsu College of Nursing, Huaian, Jiangsu, China.,Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuting Liu
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shimin Jiang
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin Gao
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shen Sun
- Department of Histology and Embryology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li Li
- Jiangsu Key Laboratory of Brian Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathophysiology, School of the Basic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dianshuai Gao
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
133
|
|
134
|
West A, Zoni V, Teague WE, Leonard AN, Vanni S, Gawrisch K, Tristram-Nagle S, Sachs JN, Klauda JB. How Do Ethanolamine Plasmalogens Contribute to Order and Structure of Neurological Membranes? J Phys Chem B 2020; 124:828-839. [PMID: 31916765 PMCID: PMC8157475 DOI: 10.1021/acs.jpcb.9b08850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ethanolamine plasmalogen (EtnPLA) is a conical-shaped ether lipid and an essential component of neurological membranes. Low stability against oxidation limits its study in experiments. The concentration of EtnPLA in the bilayer varies depending on cell type and disease progression. Here we report on mixed bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-(1Z-octadecenyl)-2-oleoyl-sn-glycero-3-phosphoethanolamine (C18(Plasm)-18:1PE, PLAPE), an EtnPLA lipid subtype, at mole ratios of 2:1, 1:1, and 1:2. We present X-ray diffuse scattering (XDS) form factors F(qz) from oriented stacks of bilayers, related electron-density profiles, and hydrocarbon chain NMR order parameters. To aid future research on EtnPLA lipids and associated proteins, we have also extended the CHARMM36 all-atom force field to include the PLAPE lipid. The ability of the new force-field parameters to reproduce both X-ray and NMR structural properties of the mixed bilayer is remarkable. Our results indicate a thickening of the bilayer upon incorporation of increasing amounts of PLAPE into mixed bilayers, a reduction of lateral area per molecule, and an increase in lipid tail-ordering. The lateral compressibility modulus (KA) calculated from simulations yielded values for PLAPE similar to POPC.
Collapse
Affiliation(s)
- Ana West
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Valeria Zoni
- Department of Biology , University of Fribourg , 1700 Fribourg , Switzerland
| | - Walter E Teague
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism , NIH , Bethesda , Maryland 20892 , United States
| | - Alison N Leonard
- Biophysics Graduate Program , University of Maryland , College Park , Maryland 20742 , United States
| | - Stefano Vanni
- Department of Biology , University of Fribourg , 1700 Fribourg , Switzerland
| | - Klaus Gawrisch
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism , NIH , Bethesda , Maryland 20892 , United States
| | - Stephanie Tristram-Nagle
- Biological Physics Group, Physics Department , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Jonathan N Sachs
- Department of Biomedical Engineering , University of Minnesota , Twin Cities , Minnesota 55455 , United States
| | - Jeffery B Klauda
- Biophysics Graduate Program , University of Maryland , College Park , Maryland 20742 , United States
- Department of Chemical and Biomolecular Engineering , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
135
|
Xicoy H, Brouwers JF, Kalnytska O, Wieringa B, Martens GJM. Lipid Analysis of the 6-Hydroxydopamine-Treated SH-SY5Y Cell Model for Parkinson's Disease. Mol Neurobiol 2020; 57:848-859. [PMID: 31493240 PMCID: PMC7031185 DOI: 10.1007/s12035-019-01733-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/15/2019] [Indexed: 11/20/2022]
Abstract
Parkinson's disease (PD) is a highly prevalent neurodegenerative disease for which no disease-modifying treatments are available, mainly because knowledge about its pathogenic mechanism is still incomplete. Recently, a key role for lipids emerged, but lipid profiling of brain samples from human subjects is demanding. Here, we used an unbiased approach, lipidomics, to determine PD-linked changes in the lipid profile of a well-established cell model for PD, the catecholaminergic neuronal cell line SH-SY5Y treated with the neurotoxin 6-hydroxydopamine (6-OHDA). We observed changes in multiple lipid classes, including phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidylserine (PS), sphingomyelin (SM), and total cholesterol, in 6-OHDA-treated SH-SY5Y cells. Furthermore, we found differences in the length and degree of unsaturation of the fatty acyl chains, indicating changes in their metabolism. Except for the observed decreased PS levels, the alterations in PC, PG, PI, and cholesterol levels are in agreement with the results of previous studies on PD-patient material. Opposite to what has been previously described, the cholesterol-lowering drug statins did not have a protective effect, while low doses of cholesterol supplementation partially protected SH-SY5Y cells from 6-OHDA toxicity. However, cholesterol supplementation triggered neuronal differentiation, which could have confounded the results of cholesterol modulation. Taken together, our results show that 6-OHDA-treated SH-SY5Y cells display many lipid changes also found in PD patient and animal model brains, although the SH-SY5Y cell model seems less suitable to study the involvement of cholesterol in PD initiation and progression.
Collapse
Affiliation(s)
- Helena Xicoy
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
- Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Neuroscience, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Jos F. Brouwers
- Department of Biochemistry & Cell Biology, Lipidomics Facility, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Oleksandra Kalnytska
- Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Neuroscience, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Gerard J. M. Martens
- Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Neuroscience, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
136
|
Fallatah W, Smith T, Cui W, Jayasinghe D, Di Pietro E, Ritchie SA, Braverman N. Oral administration of a synthetic vinyl-ether plasmalogen normalizes open field activity in a mouse model of rhizomelic chondrodysplasia punctata. Dis Model Mech 2020; 13:dmm.042499. [PMID: 31862688 PMCID: PMC6994958 DOI: 10.1242/dmm.042499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023] Open
Abstract
Rhizomelic chondrodysplasia punctata (RCDP) is a rare genetic disorder caused by mutations in peroxisomal genes essential for plasmalogen biosynthesis. Plasmalogens are a class of membrane glycerophospholipids containing a vinyl-ether-linked fatty alcohol at the sn-1 position that affect functions including vesicular transport, membrane protein function and free radical scavenging. A logical rationale for the treatment of RCDP is therefore the therapeutic augmentation of plasmalogens. The objective of this work was to provide a preliminary characterization of a novel vinyl-ether synthetic plasmalogen, PPI-1040, in support of its potential utility as an oral therapeutic option for RCDP. First, wild-type mice were treated with 13C6-labeled PPI-1040, which showed that the sn-1 vinyl-ether and the sn-3 phosphoethanolamine groups remained intact during digestion and absorption. Next, a 4-week treatment of adult plasmalogen-deficient Pex7hypo/null mice with PPI-1040 showed normalization of plasmalogen levels in plasma, and variable increases in plasmalogen levels in erythrocytes and peripheral tissues (liver, small intestine, skeletal muscle and heart). Augmentation was not observed in brain, lung and kidney. Functionally, PPI-1040 treatment normalized the hyperactive behavior observed in the Pex7hypo/null mice as determined by open field test, with a significant inverse correlation between activity and plasma plasmalogen levels. Parallel treatment with an equal amount of ether plasmalogen precursor, PPI-1011, did not effectively augment plasmalogen levels or reduce hyperactivity. Our findings show, for the first time, that a synthetic vinyl-ether plasmalogen is orally bioavailable and can improve plasmalogen levels in an RCDP mouse model. Further exploration of its clinical utility is warranted. This article has an associated First Person interview with the joint first authors of the paper. Summary: This article shows, for the first time, that a synthetic vinyl-ether plasmalogen is orally bioavailable and bioactive in vivo following administration in animals.
Collapse
Affiliation(s)
- Wedad Fallatah
- Department of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center and McGill University, Montreal, QC H4A3J1, Canada.,Department of Medical Genetics, King Abdul-Aziz University, Jeddah, 21589 Saudi Arabia
| | - Tara Smith
- Med-Life Discoveries LP, Saskatoon, SK S7N2X8, Canada
| | - Wei Cui
- Department of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center and McGill University, Montreal, QC H4A3J1, Canada
| | | | - Erminia Di Pietro
- Department of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center and McGill University, Montreal, QC H4A3J1, Canada
| | | | - Nancy Braverman
- Department of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center and McGill University, Montreal, QC H4A3J1, Canada
| |
Collapse
|
137
|
Ermilova I, Lyubartsev AP. Modelling of interactions between Aβ(25-35) peptide and phospholipid bilayers: effects of cholesterol and lipid saturation. RSC Adv 2020; 10:3902-3915. [PMID: 35492630 PMCID: PMC9048594 DOI: 10.1039/c9ra06424a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/14/2019] [Indexed: 11/25/2022] Open
Abstract
Aggregation of amyloid beta (Aβ) peptides in neuronal membranes is a known promoter of Alzheimer’s disease. To gain insight into the molecular details of Aβ peptide aggregation and its effect on model neuronal membranes, we carried out molecular dynamics simulations of the Aβ(25–35) fragment of the amyloid precursor protein in phospholipid bilayers composed of either fully saturated or highly unsaturated lipids, in the presence or absence of cholesterol. It was found that the peptide does not penetrate through any of the considered membranes, but can reside in the headgroup region and upper part of the lipid tails showing a clear preference to a polyunsaturated cholesterol-free membrane. Due to the ordering and condensing effect upon addition of cholesterol, membranes become more rigid facilitating peptide aggregation on the surface. Except for the case of the cholesterol-free saturated lipid bilayer, the peptides have a small effect on the membrane structure and ordering. It was also found that the most “active” amino-acid for peptide–lipid and peptide–cholesterol interaction is methionine-35, followed by asparagine-27 and serine-26, which form hydrogen bonds between peptides and polar atoms of lipid headgroups. These amino acids are also primarily responsible for peptide aggregation. This work will be relevant for designing strategies to develop drugs to combat Alzheimer’s disease. Molecular dynamics simulations of Aβ(25–35) peptides in phospholipid bilayers are carried out to investigate the effect of polyunsaturated lipids and cholesterol on aggregation of the peptides. ![]()
Collapse
Affiliation(s)
- Inna Ermilova
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm Sweden +46 8161193
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm Sweden +46 8161193
| |
Collapse
|
138
|
Germain K, Kim PK. Pexophagy: A Model for Selective Autophagy. Int J Mol Sci 2020; 21:ijms21020578. [PMID: 31963200 PMCID: PMC7013971 DOI: 10.3390/ijms21020578] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 01/03/2023] Open
Abstract
The removal of damaged or superfluous organelles from the cytosol by selective autophagy is required to maintain organelle function, quality control and overall cellular homeostasis. Precisely how substrate selectivity is achieved, and how individual substrates are degraded during selective autophagy in response to both extracellular and intracellular cues is not well understood. The aim of this review is to highlight pexophagy, the autophagic degradation of peroxisomes, as a model for selective autophagy. Peroxisomes are dynamic organelles whose abundance is rapidly modulated in response to metabolic demands. Peroxisomes are routinely turned over by pexophagy for organelle quality control yet can also be degraded by pexophagy in response to external stimuli such as amino acid starvation or hypoxia. This review discusses the molecular machinery and regulatory mechanisms governing substrate selectivity during both quality-control pexophagy and pexophagy in response to external stimuli, in yeast and mammalian systems. We draw lessons from pexophagy to infer how the cell may coordinate the degradation of individual substrates by selective autophagy across different cellular cues.
Collapse
Affiliation(s)
- Kyla Germain
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Peter K. Kim
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +1-416-813-5983
| |
Collapse
|
139
|
Parkinson's disease: proteinopathy or lipidopathy? NPJ PARKINSONS DISEASE 2020; 6:3. [PMID: 31909184 PMCID: PMC6941970 DOI: 10.1038/s41531-019-0103-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022]
Abstract
Lipids play a more significant role in Parkinson’s disease and its related brain disorders than is currently recognized, supporting a “lipid cascade”. The 14 kDa protein α-synuclein (αS) is strongly associated with Parkinson’s disease (PD), dementia with Lewy bodies (DLB), other synucleinopathies such as multiple system atrophy, and even certain forms of Alzheimer’s disease. Rigorously deciphering the biochemistry of αS in native systems is the key to developing treatments. αS is highly expressed in the brain, the second most lipid-rich organ, and has been proposed to be a lipid-binding protein that physiologically interacts with phospholipids and fatty acids (FAs). αS-rich cytoplasmic inclusions called Lewy bodies and Lewy neurites are the hallmark lesions of synucleinopathies. Excess αS–membrane interactions may trigger proteinaceous αS aggregation by stimulating its primary nucleation. However, αS may also exert its toxicity prior to or independent of its self-aggregation, e.g., via excessive membrane interactions, which may be promoted by certain lipids and FAs. A complex αS-lipid landscape exists, which comprises both physiological and pathological states of αS. As novel insights about the composition of Lewy lesions occur, new lipid-related PD drug candidates emerge, and genome-wide association studies (GWAS) increasingly validate new hits in lipid-associated pathways, it seems timely to review our current knowledge of lipids in PD and consider the roles for these pathways in synucleinopathies.αS ↔ lipid interplay: aspects of cellular αS homeostasis (blue oval), aspects of lipid homeostasis (green oval), and overlapping aspects. Pathological states are labeled in red. Simplified schematic of both select αS and select lipid species. Several existing publications suggest αS effects on lipids and vice versa, as indicated by arrows. DG diglyceride, ER endoplasmic reticulum, FA fatty acid, LD, lipid droplet, TG triglyceride. ![]()
Collapse
|
140
|
Kataoka H, Sugie K. Serum adiponectin levels between patients with Parkinson’s disease and those with PSP. Neurol Sci 2020; 41:1125-1131. [DOI: 10.1007/s10072-019-04216-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
|
141
|
Hossain MS, Mawatari S, Fujino T. Biological Functions of Plasmalogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:171-193. [PMID: 33417215 DOI: 10.1007/978-3-030-60204-8_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasmalogens (Pls) are one kind of phospholipids enriched in the brain and other organs. These lipids were thought to be involved in the membrane bilayer formation and anti-oxidant function. However, extensive studies revealed that Pls exhibit various beneficial biological activities including prevention of neuroinflammation, improvement of cognitive function, and inhibition of neuronal cell death. The biological activities of Pls were associated with the changes in cellular signaling and gene expression. Membrane-bound GPCRs were identified as possible receptors of Pls, suggesting that Pls might function as ligands or hormones. Aging, stress, and inflammatory stimuli reduced the Pls contents in cells, and addition of Pls inhibited inflammatory processes, which could suggest that reduction of Pls might be one of the risk factors for the diseases associated with inflammation. Oral ingestion of Pls showed promising health benefits among Alzheimer's disease (AD) patients, suggesting that Pls might have therapeutic potential in other neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Shiro Mawatari
- Institute of Rheological Functions of Food, Fukuoka, Japan
| | | |
Collapse
|
142
|
Guo H, Liu M, Zhang L, Wang L, Hou W, Ma Y, Ma Y. The Critical Period for Neuroprotection by Estrogen Replacement Therapy and the Potential Underlying Mechanisms. Curr Neuropharmacol 2020; 18:485-500. [PMID: 31976839 PMCID: PMC7457406 DOI: 10.2174/1570159x18666200123165652] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 01/13/2023] Open
Abstract
17β-Estradiol (estradiol or E2) is a steroid hormone that has been broadly applied as a neuroprotective therapy for a variety of neurodegenerative and cerebrovascular disorders such as ischemic stroke, Alzheimer's disease, and Parkinson's disease. Several laboratory and clinical studies have reported that Estrogen Replacement Therapy (ERT) had no effect against these diseases in elderly postmenopausal women, and at worst, increased their risk of onset and mortality. This review focuses on the growing body of data from in vitro and animal models characterizing the potential underlying mechanisms and signaling pathways that govern successful neuroprotection by ERT, including the roles of E2 receptors in mediating neuroprotection, E2 genomic regulation of apoptosis- related pathways, membrane-bound receptor-mediated non-genomic signaling pathways, and the antioxidant mechanisms of E2. Also discussed is the current evidence for a critical period of effective treatment with estrogen following natural or surgical menopause and the outcomes of E2 administration within an advantageous time period. The known mechanisms governing the duration of the critical period include depletion of E2 receptors, the switch to a ketogenic metabolic profile by neuronal mitochondria, and a decrease in acetylcholine that accompanies E2 deficiency. Also the major clinical trials and observational studies concerning postmenopausal Hormone Therapy (HT) are summarized to compare their outcomes with respect to neurological disease and discuss their relevance to the critical period hypothesis. Finally, potential controversies and future directions for this field are discussed throughout the review.
Collapse
Affiliation(s)
| | | | | | | | | | - Yaqun Ma
- Address correspondence to these authors at the Anesthesia and Operation Center, The First Medical Center to Chinese PLA General Hospital, Beijing 100853, China; Tel: +86 010 66938152; E-mail: and Department of Anesthesiology, The Seventh Medical Center to Chinese PLA General Hospital, Beijing 100700, China; E-mail:
| | - Yulong Ma
- Address correspondence to these authors at the Anesthesia and Operation Center, The First Medical Center to Chinese PLA General Hospital, Beijing 100853, China; Tel: +86 010 66938152; E-mail: and Department of Anesthesiology, The Seventh Medical Center to Chinese PLA General Hospital, Beijing 100700, China; E-mail:
| |
Collapse
|
143
|
Lin Q, Zhang D, Xia Y. Analysis of ether glycerophosphocholines at the level of CC locations from human plasma. Analyst 2020; 145:513-522. [DOI: 10.1039/c9an01515a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Near-complete structural characterization is achieved for ether PCs by coupling offline Paternò–Büchi derivatization with MS/MS.
Collapse
Affiliation(s)
- Qiaohong Lin
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Donghui Zhang
- Department of Precision Instrument
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
144
|
Nadeau J, Smith T, Lamontagne-Proulx J, Bourque M, Al Sweidi S, Jayasinghe D, Ritchie S, Di Paolo T, Soulet D. Neuroprotection and immunomodulation in the gut of parkinsonian mice with a plasmalogen precursor. Brain Res 2019; 1725:146460. [DOI: 10.1016/j.brainres.2019.146460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
|
145
|
Jin U, Park SJ, Park SM. Cholesterol Metabolism in the Brain and Its Association with Parkinson's Disease. Exp Neurobiol 2019; 28:554-567. [PMID: 31698548 PMCID: PMC6844833 DOI: 10.5607/en.2019.28.5.554] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second most progressive neurodegenerative disorder of the aging population after Alzheimer’s disease (AD). Defects in the lysosomal systems and mitochondria have been suspected to cause the pathogenesis of PD. Nevertheless, the pathogenesis of PD remains obscure. Abnormal cholesterol metabolism is linked to numerous disorders, including atherosclerosis. The brain contains the highest level of cholesterol in the body and abnormal cholesterol metabolism links also many neurodegenerative disorders such as AD, PD, Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). The blood brain barrier effectively prevents uptake of lipoprotein-bound cholesterol from blood circulation. Accordingly, cholesterol level in the brain is independent from that in peripheral tissues. Because cholesterol metabolism in both peripheral tissue and the brain are quite different, cholesterol metabolism associated with neurodegeneration should be examined separately from that in peripheral tissues. Here, we review and compare cholesterol metabolism in the brain and peripheral tissues. Furthermore, the relationship between alterations in cholesterol metabolism and PD pathogenesis is reviewed.
Collapse
Affiliation(s)
- Uram Jin
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Cardiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Soo Jin Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,BK21 Plus Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
146
|
Gubert C, Kong G, Renoir T, Hannan AJ. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol Dis 2019; 134:104621. [PMID: 31628992 DOI: 10.1016/j.nbd.2019.104621] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 09/14/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
The last decade has witnessed an exponentially growing interest in gut microbiota and the gut-brain axis in health and disease. Accumulating evidence from preclinical and clinical research indicate that gut microbiota, and their associated microbiomes, may influence pathogenic processes and thus the onset and progression of various diseases, including neurological and psychiatric disorders. In fact, gut dysbiosis (microbiota dysregulation) has been associated with a range of neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's and motor neuron disease, as well as multiple sclerosis. The gut microbiota constitutes a dynamic microbial system constantly challenged by many biological variables, including environmental factors. Since the gut microbiota constitute a changeable and experience-dependent ecosystem, they provide potential therapeutic targets that can be modulated as new interventions for dysbiosis-related disorders, including neurodegenerative diseases. This article reviews the evidence for environmental modulation of gut microbiota and its relevance to brain disorders, exploring in particular the implications for neurodegenerative diseases. We will focus on three major environmental factors that are known to influence the onset and progression of those diseases, namely exercise, diet and stress. Further exploration of environmental modulation, acting via both peripheral (e.g. gut microbiota and associated metabolic dysfunction or 'metabolopathy') and central (e.g. direct effects on CNS neurons and glia) mechanisms, may lead to the development of novel therapeutic approaches, such as enviromimetics, for a wide range of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Geraldine Kong
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
147
|
Hu C, Zhou Y, Feng J, Zhou S, Li C, Zhao S, Shen Y, Hong L, Xuan Q, Liu X, Li Q, Wang X, Zhang Y, Xu G. Untargeted Lipidomics Reveals Specific Lipid Abnormalities in Nonfunctioning Human Pituitary Adenomas. J Proteome Res 2019; 19:455-463. [DOI: 10.1021/acs.jproteome.9b00637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics,Chinese Academy of Sciences, Dalian 116023, China
| | - Yang Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics,Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Shiyu Zhou
- Department of Psychology, Dalian Medical University, Dalian 116044, China
| | | | | | | | | | - Qiuhui Xuan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics,Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics,Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics,Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics,Chinese Academy of Sciences, Dalian 116023, China
| | - Yazhuo Zhang
- China National Clinical Research Centre for Neurological Diseases, Beijing 100050, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics,Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
148
|
Jones JW, Sarkar C, Lipinski MM, Kane MA. Detection and Structural Characterization of Ether Glycerophosphoethanolamine from Cortical Lysosomes Following Traumatic Brain Injury Using UPLC-HDMS E. Proteomics 2019; 19:e1800297. [PMID: 30790445 PMCID: PMC7565256 DOI: 10.1002/pmic.201800297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/29/2019] [Indexed: 01/08/2023]
Abstract
The use of ultra performance liquid chromatography coupled to data independent tandem mass spectrometry with traveling wave ion mobility for detection and structural identification of ether-linked glycerophosphoethanolamine is described. The experimental design generates 4D data (chromatographic retention time, precursor accurate mass, drift time with associated calculated collisional cross-section, and time-aligned accurate mass diagnostic product ions) for each ionization mode. Confident structure identification depends on satisfying 4D data confirmation in both positive and negative ion mode. Using this methodology, a number of ether-linked glycerophosphoethanolamine lipids are structurally elucidated from mouse brain lysosomes. It is further determined that several ether-linked glycerophosphoethanolamine structures are differentially abundant between lysosomes isolated from mouse cortex following traumatic brain injury as compared to that of sham animals. The combined effort of aligning multi-dimensional mass spectrometry data with a well-defined traumatic brain injury model lays the foundation for gaining mechanistic insight in the role lysosomal membrane damage plays in neuronal cell death following brain injury.
Collapse
Affiliation(s)
- Jace W Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, 21201, USA
| | - Chinmoy Sarkar
- University of Maryland, School of Medicine, Department of Anesthesiology, Baltimore, MD, 21201, USA
| | - Marta M Lipinski
- University of Maryland, School of Medicine, Department of Anesthesiology, Baltimore, MD, 21201, USA
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, 21201, USA
| |
Collapse
|
149
|
Sackmann V, Sinha MS, Sackmann C, Civitelli L, Bergström J, Ansell-Schultz A, Hallbeck M. Inhibition of nSMase2 Reduces the Transfer of Oligomeric α-Synuclein Irrespective of Hypoxia. Front Mol Neurosci 2019; 12:200. [PMID: 31555088 PMCID: PMC6724746 DOI: 10.3389/fnmol.2019.00200] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Recently, extracellular vesicles (EVs), such as exosomes, have been proposed to play an influential role in the cell-to-cell spread of neurodegenerative diseases, including the intercellular transmission of α-synuclein (α-syn). However, the regulation of EV biogenesis and its relation to Parkinson’s disease (PD) is only partially understood. The generation of EVs through the ESCRT-independent pathway depends on the hydrolysis of sphingomyelin by neutral sphingomyelinase 2 (nSMase2) to produce ceramide, which causes the membrane of endosomal multivesicular bodies to bud inward. nSMase2 is sensitive to oxidative stress, a common process in PD brains; however, little is known about the role of sphingomyelin metabolism in the pathogenesis of PD. This is the first study to show that inhibiting nSMase2 decreases the transfer of oligomeric aggregates of α-syn between neuron-like cells. Furthermore, it reduced the accumulation and aggregation of high-molecular-weight α-syn. Hypoxia, as a model of oxidative stress, reduced the levels of nSMase2, but not its enzymatic activity, and significantly altered the lipid composition of cells without affecting EV abundance or the transfer of α-syn. These data show that altering sphingolipids can mitigate the spread of α-syn, even under hypoxic conditions, potentially suppressing PD progression.
Collapse
Affiliation(s)
- Valerie Sackmann
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Maitrayee Sardar Sinha
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Christopher Sackmann
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Livia Civitelli
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Joakim Bergström
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Anna Ansell-Schultz
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Martin Hallbeck
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
150
|
Paul S, Lancaster GI, Meikle PJ. WITHDRAWN: Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res 2019:100993. [PMID: 31442528 DOI: 10.1016/j.plipres.2019.100993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Sudip Paul
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| | - Graeme I Lancaster
- Haematopoiesis and Leukocyte Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| |
Collapse
|