101
|
Kamoto K, Noyes H, Nambala P, Senga E, Musaya J, Kumwenda B, Bucheton B, Macleod A, Cooper A, Clucas C, Herz-Fowler C, Matove E, Chiwaya AM, Chisi JE, for the TrypanoGEN Research Group as members of The H3Africa Consortium. Association of APOL1 renal disease risk alleles with Trypanosoma brucei rhodesiense infection outcomes in the northern part of Malawi. PLoS Negl Trop Dis 2019; 13:e0007603. [PMID: 31412021 PMCID: PMC6750591 DOI: 10.1371/journal.pntd.0007603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/18/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022] Open
Abstract
Trypanosoma brucei (T.b.) rhodesiense is the cause of the acute form of human African trypanosomiasis (HAT) in eastern and southern African countries. There is some evidence that there is diversity in the disease progression of T.b. rhodesiense in different countries. HAT in Malawi is associated with a chronic haemo-lymphatic stage infection compared to other countries, such as Uganda, where the disease is acute with more marked neurological impairment. This has raised the question of the role of host genetic factors in infection outcomes. A candidate gene association study was conducted in the northern region of Malawi. This was a case-control study involving 202 subjects, 70 cases and 132 controls. All individuals were from one area; born in the area and had been exposed to the risk of infection since birth. Ninety-six markers were genotyped from 17 genes: IL10, IL8, IL4, HLA-G, TNFA, IL6, IFNG, MIF, APOL, HLA-A, IL1B, IL4R, IL12B, IL12R, HP, HPR, and CFH. There was a strong significant association with APOL1 G2 allele (p = 0.0000105, OR = 0.14, CI95 = [0.05-0.41], BONF = 0.00068) indicating that carriers of the G2 allele were protected against T.b. rhodesiense HAT. SNP rs2069845 in IL6 had raw p < 0.05, but did not remain significant after Bonferroni correction. There were no associations found with the other 15 candidate genes. Our finding confirms results from other studies that the G2 variant of APOL1 is associated with protection against T.b. rhodesiense HAT.
Collapse
Affiliation(s)
- Kelita Kamoto
- University of Malawi, College of Medicine, Department of Basic Medical Sciences, Blantyre, Malawi
| | - Harry Noyes
- Centre for Genomic Research, University of Liverpool, United Kingdom
| | - Peter Nambala
- University of Malawi, College of Medicine, Department of Basic Medical Sciences, Blantyre, Malawi
| | - Edward Senga
- University of Malawi, College of Medicine, Department of Basic Medical Sciences, Blantyre, Malawi
| | - Janelisa Musaya
- University of Malawi, College of Medicine, Department of Basic Medical Sciences, Blantyre, Malawi
| | - Benjamin Kumwenda
- University of Malawi, College of Medicine, Department of Basic Medical Sciences, Blantyre, Malawi
| | - Bruno Bucheton
- Institut de Recherche pour le Développement (IRD), IRD-CIRAD 177, Montpellier, France
- Programme National de Lutte contre la Trypanosomose Humaine Africaine, Conakry, Guinea
| | - Annette Macleod
- Wellcome Trust Centre for Molecular Parasitology, University Place, Glasgow, United Kingdom
| | - Anneli Cooper
- Wellcome Trust Centre for Molecular Parasitology, University Place, Glasgow, United Kingdom
| | - Caroline Clucas
- Wellcome Trust Centre for Molecular Parasitology, University Place, Glasgow, United Kingdom
| | | | | | | | - John E. Chisi
- University of Malawi, College of Medicine, Department of Basic Medical Sciences, Blantyre, Malawi
| | | |
Collapse
|
102
|
Krittika S, Indhumathi P, Vedha Hari BN, Ramya Devi D, Yadav P. Evidence of nanoemulsion as an effective control measure for fruit flies Drosophila melanogaster. Sci Rep 2019; 9:10578. [PMID: 31332229 PMCID: PMC6646352 DOI: 10.1038/s41598-019-47045-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022] Open
Abstract
Pesticide resistance is a common concern. It exerts close association with economic and health associated problems in various plants and other organisms. Several approaches have been trialled for attracting and trapping the insects and flies that are acting as vectors for transmission of communicable diseases. Although Drosophila melanogaster (fruit flies) is not an agricultural pest, its presence in consumer dwelling areas is an objection to human, as it indicates signs of an unhealthy environment or products. The current study focuses on the development of nanoemulsion with synthetic attractants and entrapping in sticky glue formulation that could provide prolonged effect for attracting and trapping the fruit flies. The results of our study showed the efficient attractive ability of exposed nanoemulsion (A3E1T) containing amyl acetate, ammonia, ethanol and Tween 80 compared to that of control. While the sex-based effect was not very prominent, the nanoemulsion showed a higher relative response index to the flies and increased activity even during their siesta time. Therefore, the nanoemulsion-based approach could be identified as one of the promising lines of attack and a suitable alternative for the existing fruit fly control measures. The present study is the first of its kind in reporting the ability of nanoemulsion formulation to attract and influence the activity of fruit flies D. melanogaster, up to our best of knowledge.
Collapse
Affiliation(s)
- Sudhakar Krittika
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, Tamil Nadu, India
| | - P Indhumathi
- Pharmaceutical Technology Laboratory # 214, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, Tamil Nadu, India
| | - B N Vedha Hari
- Pharmaceutical Technology Laboratory # 214, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, Tamil Nadu, India.
| | - D Ramya Devi
- Pharmaceutical Technology Laboratory # 214, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, Tamil Nadu, India
| | - Pankaj Yadav
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
103
|
The Nuclear Export Receptors TbMex67 and TbMtr2 Are Required for Ribosome Biogenesis in Trypanosoma brucei. mSphere 2019; 4:4/4/e00343-19. [PMID: 31270172 PMCID: PMC6609230 DOI: 10.1128/msphere.00343-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nuclear export of ribosomal subunits (60S and 40S) depends in part on the activity of the essential auxiliary export receptors TbMtr2 and TbMex67. When these proteins are individually depleted from the medically and agriculturally significant parasite Trypanosoma brucei, distinct alterations in the processing of the rRNAs of the large subunit (60S) are observed as well as aberrations in the assembly of functional ribosomes (polysomes). We also established that TbMex67 and TbMtr2 interact directly or indirectly with the protein components of the 5S RNP, including the trypanosome-specific P34/P37. The critical role that TbMex67 and TbMtr2 play in this essential biological process together with their parasite-specific interactions may provide new therapeutic targets against this important parasite. Ribosomal maturation is a complex and highly conserved biological process involving migration of a continuously changing RNP across multiple cellular compartments. A critical point in this process is the translocation of individual ribosomal subunits (60S and 40S) from the nucleus to the cytoplasm, and a number of export factors participate in this process. In this study, we characterize the functional role of the auxiliary export receptors TbMex67 and TbMtr2 in ribosome biogenesis in the parasite Trypanosoma brucei. We demonstrate that depletion of each of these proteins dramatically impacts the steady-state levels of other proteins involved in ribosome biogenesis, including the trypanosome-specific factors P34 and P37. In addition, we observe that the loss of TbMex67 or TbMtr2 leads to aberrant ribosome formation, rRNA processing, and polysome formation. Although the TbMex67-TbMtr2 heterodimer is structurally distinct from Mex67-Mtr2 complexes previously studied, our data show that they retain a conserved function in ribosome biogenesis. IMPORTANCE The nuclear export of ribosomal subunits (60S and 40S) depends in part on the activity of the essential auxiliary export receptors TbMtr2 and TbMex67. When these proteins are individually depleted from the medically and agriculturally significant parasite Trypanosoma brucei, distinct alterations in the processing of the rRNAs of the large subunit (60S) are observed as well as aberrations in the assembly of functional ribosomes (polysomes). We also established that TbMex67 and TbMtr2 interact directly or indirectly with the protein components of the 5S RNP, including the trypanosome-specific P34/P37. The critical role that TbMex67 and TbMtr2 play in this essential biological process together with their parasite-specific interactions may provide new therapeutic targets against this important parasite.
Collapse
|
104
|
Anti-Trypanosomal and Antimalarial Properties of Tetralone Derivatives and Structurally Related Benzocycloalkanones. ACTA ACUST UNITED AC 2019; 55:medicina55050206. [PMID: 31137665 PMCID: PMC6572618 DOI: 10.3390/medicina55050206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 02/22/2019] [Accepted: 05/20/2019] [Indexed: 01/24/2023]
Abstract
Background and objectives: Sleeping sickness and malaria alike are insect-borne protozoan diseases that share overlapping endemic areas in sub-Saharan Africa. The causative agent for malaria has developed resistance against all currently deployed anti-malarial agents. In the case of sleeping sickness, the currently deployed therapeutic options are limited in efficacy and activity spectra, and there are very few drug candidates in the development pipeline. Thus, there is a need to search for new drug molecules with a novel mode of actions. Materials and Methods: In the current study, an in vitro screening of a library of tetralone derivatives and related benzocycloalkanones was effected against T. b. brucei and P. falciparum. Results: Several hits with low micromolar activity (0.4–8 µM) against T. b. brucei were identified. Conclusions: The identified hits have a low molecular weight (<280 Da), a low total polar surface area (<50 Ų), and a defined structure activity relationship, which all make them potential starting points for further hit optimization studies.
Collapse
|
105
|
Martínez-Calvillo S, Florencio-Martínez LE, Nepomuceno-Mejía T. Nucleolar Structure and Function in Trypanosomatid Protozoa. Cells 2019; 8:cells8050421. [PMID: 31071985 PMCID: PMC6562600 DOI: 10.3390/cells8050421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
The nucleolus is the conspicuous nuclear body where ribosomal RNA genes are transcribed by RNA polymerase I, pre-ribosomal RNA is processed, and ribosomal subunits are assembled. Other important functions have been attributed to the nucleolus over the years. Here we review the current knowledge about the structure and function of the nucleolus in the trypanosomatid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania ssp., which represent one of the earliest branching lineages among the eukaryotes. These protozoan parasites present a single nucleolus that is preserved throughout the closed nuclear division, and that seems to lack fibrillar centers. Trypanosomatids possess a relatively low number of rRNA genes, which encode rRNA molecules that contain large expansion segments, including several that are trypanosomatid-specific. Notably, the large subunit rRNA (28S-type) is fragmented into two large and four small rRNA species. Hence, compared to other organisms, the rRNA primary transcript requires additional processing steps in trypanosomatids. Accordingly, this group of parasites contains the highest number ever reported of snoRNAs that participate in rRNA processing. The number of modified rRNA nucleotides in trypanosomatids is also higher than in other organisms. Regarding the structure and biogenesis of the ribosomes, recent cryo-electron microscopy analyses have revealed several trypanosomatid-specific features that are discussed here. Additional functions of the nucleolus in trypanosomatids are also reviewed.
Collapse
Affiliation(s)
- Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| | - Luis E Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| |
Collapse
|
106
|
Sutherland CS, Tediosi F. Is the elimination of 'sleeping sickness' affordable? Who will pay the price? Assessing the financial burden for the elimination of human African trypanosomiasis Trypanosoma brucei gambiense in sub-Saharan Africa. BMJ Glob Health 2019; 4:e001173. [PMID: 31139437 PMCID: PMC6509604 DOI: 10.1136/bmjgh-2018-001173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction Programme to eliminate neglected tropical diseases (NTDs) have gained global recognition, and may allow for improvements to universal health coverage and poverty alleviation. It is hoped that elimination of human African trypanosomiasis (HAT) Trypanosoma brucei gambiense (Tbg) would assist in this goal, but the financial costs are still unknown. The objective of this analysis was to forecast the financial burden of direct costs of HAT Tbg to funders and society. Methods In order to estimate the total costs to health services and individuals: (1) potential elimination programmes were defined; (2) the direct costs of programmes were calculated; (3) the per case out-of-pocket payments (OOPs) by programme and financial risk protection indicators were estimated. The total estimated costs for control and elimination programme were reported up till 2020 in international dollars. The mean results for both direct programme costs and OOPs were calculated and reported along with 95% CIs. Results Across sub-Saharan Africa, HAT Tbg maintaining ‘Control’ would lead to a decline in cases and cost US$630.6 million. In comparison, the cost of ‘Elimination’ programme ranged from US$410.9 million to US$1.2 billion. Maintaining ‘Control’ would continue to cause impoverishment and financial hardship to households; while all ‘Elimination’ programme would lead to significant reductions in poverty. Conclusion Overall, the total costs of either control or elimination programme would be near US$1 billion in the next decade. However, only elimination programme will reduce the number of cases and improve financial risk protection for households who are impacted by HAT Tbg.
Collapse
Affiliation(s)
- C Simone Sutherland
- Institute of Pharmaceutical Medicine, Universitat Basel Medizinische Fakultat, Basel, Switzerland.,Department of Epidemiology and Public Health (EPH), Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Fabrizio Tediosi
- Department of Epidemiology and Public Health (EPH), Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Public Health, University of Basel, Basel, Switzerland
| |
Collapse
|
107
|
Moreno CJG, Temporão A, Torres T, Sousa Silva M. Trypanosoma brucei Interaction with Host: Mechanism of VSG Release as Target for Drug Discovery for African Trypanosomiasis. Int J Mol Sci 2019; 20:ijms20061484. [PMID: 30934540 PMCID: PMC6471236 DOI: 10.3390/ijms20061484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 01/18/2023] Open
Abstract
The protozoan Trypanosoma brucei, responsible for animal and human trypanosomiasis, has a family of major surface proteases (MSPs) and phospholipase-C (PLC), both involved in some mechanisms of virulence during mammalian infections. During parasitism in the mammalian host, this protozoan is exclusively extracellular and presents a robust mechanism of antigenic variation that allows the persistence of infection. There has been incredible progress in our understanding of how variable surface glycoproteins (VSGs) are organised and expressed, and how expression is switched, particularly through recombination. The objective of this manuscript is to create a reflection about the mechanisms of antigenic variation in T. brucei, more specifically, in the process of variable surface glycoprotein (VSG) release. We firstly explore the mechanism of VSG release as a potential pathway and target for the development of anti-T. brucei drugs.
Collapse
Affiliation(s)
- Cláudia Jassica Gonçalves Moreno
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59064-741, Brazil.
| | - Adriana Temporão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2775-412 Oeiras, Portugal.
| | - Taffarel Torres
- Centro de Ciências Biológicas e da Saúde, Universidade Federal Rural de Semi-árido, Mossoró 59625-900, Brazil.
| | - Marcelo Sousa Silva
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59064-741, Brazil.
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil.
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal.
| |
Collapse
|
108
|
Cerone M, Uliassi E, Prati F, Ebiloma GU, Lemgruber L, Bergamini C, Watson DG, de A. M. Ferreira T, Roth Cardoso GSH, Soares Romeiro LA, de Koning HP, Bolognesi ML. Discovery of Sustainable Drugs for Neglected Tropical Diseases: Cashew Nut Shell Liquid (CNSL)-Based Hybrids Target Mitochondrial Function and ATP Production in Trypanosoma brucei. ChemMedChem 2019; 14:621-635. [PMID: 30664325 PMCID: PMC6686156 DOI: 10.1002/cmdc.201800790] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Indexed: 02/02/2023]
Abstract
In the search for effective and sustainable drugs for human African trypanosomiasis (HAT), we developed hybrid compounds by merging the structural features of quinone 4 (2-phenoxynaphthalene-1,4-dione) with those of phenolic constituents from cashew nut shell liquid (CNSL). CNSL is a waste product from cashew nut processing factories, with great potential as a source of drug precursors. The synthesized compounds were tested against Trypanosoma brucei brucei, including three multidrug-resistant strains, T. congolense, and a human cell line. The most potent activity was found against T. b. brucei, the causative agent of HAT. Shorter-chain derivatives 20 (2-(3-(8-hydroxyoctyl)phenoxy)-5-methoxynaphthalene-1,4-dione) and 22 (5-hydroxy-2-(3-(8-hydroxyoctyl)phenoxy)naphthalene-1,4-dione) were more active than 4, displaying rapid micromolar trypanocidal activity, and no human cytotoxicity. Preliminary studies probing their mode of action on trypanosomes showed ATP depletion, followed by mitochondrial membrane depolarization and mitochondrion ultrastructural damage. This was accompanied by reactive oxygen species production. We envisage that such compounds, obtained from a renewable and inexpensive material, might be promising bio-based sustainable hits for anti-trypanosomatid drug discovery.
Collapse
Affiliation(s)
- Michela Cerone
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum – University of BolognaVia Belmeloro 640126BolognaItaly
- Institute of Infection, Immunity and InflammationUniversity of GlasgowGBRC, University PlaceG12 8ATGlasgowUK
| | - Elisa Uliassi
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum – University of BolognaVia Belmeloro 640126BolognaItaly
| | - Federica Prati
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum – University of BolognaVia Belmeloro 640126BolognaItaly
| | - Godwin U. Ebiloma
- Institute of Infection, Immunity and InflammationUniversity of GlasgowGBRC, University PlaceG12 8ATGlasgowUK
- Department of BiochemistryFaculty of Natural SciencesKogi State UniversityP.M.B. 1008AnyigbaKogi StateNigeria
| | - Leandro Lemgruber
- Institute of Infection, Immunity and InflammationUniversity of GlasgowGBRC, University PlaceG12 8ATGlasgowUK
- Wellcome Trust Centre for Molecular ParasitologyInstitute of Infection, Immunity and InflammationUniversity of GlasgowGBRC, University PlaceG12 8ATGlasgowUK
| | - Christian Bergamini
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum – University of BolognaVia Belmeloro 640126BolognaItaly
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde16 Richmond StreetG1 1XQGlasgowUK
| | - Thais de A. M. Ferreira
- Department of Pharmacy, Health Sciences FacultyUniversity of BrasíliaCampus Universitário Darcy Ribeiro70910-900BrasíliaDFBrazil
| | | | - Luiz A. Soares Romeiro
- Department of Pharmacy, Health Sciences FacultyUniversity of BrasíliaCampus Universitário Darcy Ribeiro70910-900BrasíliaDFBrazil
| | - Harry P. de Koning
- Institute of Infection, Immunity and InflammationUniversity of GlasgowGBRC, University PlaceG12 8ATGlasgowUK
| | - Maria Laura Bolognesi
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum – University of BolognaVia Belmeloro 640126BolognaItaly
| |
Collapse
|
109
|
Volpedo G, Costa L, Ryan N, Halsey G, Satoskar A, Oghumu S. Nanoparticulate drug delivery systems for the treatment of neglected tropical protozoan diseases. J Venom Anim Toxins Incl Trop Dis 2019; 25:e144118. [PMID: 31130996 PMCID: PMC6483407 DOI: 10.1590/1678-9199-jvatitd-1441-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Neglected Tropical Diseases (NTDs) comprise of a group of seventeen infectious
conditions endemic in many developing countries. Among these diseases are three
of protozoan origin, namely leishmaniasis, Chagas disease, and African
trypanosomiasis, caused by the parasites Leishmania spp.,
Trypanosoma cruzi, and Trypanosoma brucei
respectively. These diseases have their own unique challenges which are
associated with the development of effective prevention and treatment methods.
Collectively, these parasitic diseases cause more deaths worldwide than all
other NTDs combined. Moreover, many current therapies for these diseases are
limited in their efficacy, possessing harmful or potentially fatal side effects
at therapeutic doses. It is therefore imperative that new treatment strategies
for these parasitic diseases are developed. Nanoparticulate drug delivery
systems have emerged as a promising area of research in the therapy and
prevention of NTDs. These delivery systems provide novel mechanisms for targeted
drug delivery within the host, maximizing therapeutic effects while minimizing
systemic side effects. Currently approved drugs may also be repackaged using
these delivery systems, allowing for their potential use in NTDs of protozoan
origin. Current research on these novel delivery systems has provided insight
into possible indications, with evidence demonstrating their improved ability to
specifically target pathogens, penetrate barriers within the host, and reduce
toxicity with lower dose regimens. In this review, we will examine current
research on these delivery systems, focusing on applications in the treatment of
leishmaniasis, Chagas disease, and African trypanosomiasis. Nanoparticulate
systems present a unique therapeutic alternative through the repositioning of
existing medications and directed drug delivery.
Collapse
Affiliation(s)
- Greta Volpedo
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA.,Ohio State University, Department of Microbiology, Columbus, OH, 43210, USA
| | - Lourena Costa
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA.,Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Infectologia e Medicina Tropical, Belo Horizonte, MG, Brasil
| | - Nathan Ryan
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA
| | - Gregory Halsey
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA
| | - Abhay Satoskar
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA.,Ohio State University, Department of Microbiology, Columbus, OH, 43210, USA
| | - Steve Oghumu
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA
| |
Collapse
|
110
|
Mulenga P, Boelaert M, Lutumba P, Vander Kelen C, Coppieters Y, Chenge F, Lumbala C, Luboya O, Mpanya A. Integration of Human African Trypanosomiasis Control Activities into Primary Health Services in the Democratic Republic of the Congo: A Qualitative Study of Stakeholder Perceptions. Am J Trop Med Hyg 2019; 100:899-906. [PMID: 30719963 PMCID: PMC6447127 DOI: 10.4269/ajtmh.18-0382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human African trypanosomiasis is close to elimination in several countries in sub-Saharan Africa. The diagnosis and treatment is currently rapidly being integrated into first-line health services. We aimed to document the perspective of stakeholders on this integration process. We conducted 12 focus groups with communities in three health zones of the Democratic Republic of the Congo and held 32 interviews with health-care providers, managers, policy makers, and public health experts. The topic guide focused on enabling and blocking factors related to the integrated diagnosis and treatment approach. The data were analyzed with NVivo (QSR International, Melbourne, Australia) using a thematic analysis process. The results showed that the community mostly welcomed integrated care for diagnosis and treatment of sleeping sickness, as they value the proximity of first-line health services, but feared possible financial barriers. Health-care professionals thought integration contributed to the elimination goal but identified several implementation challenges, such as the lack of skills, equipment, motivation and financial resources in these basic health services. Patients often use multiple therapeutic itineraries that do not necessarily lead them to health centers where screening is available. Financial barriers are important, as health care is not free in first-line health centers, in contrast to the population screening campaigns. Communities and providers signal several challenges regarding the integration process. To succeed, the required training of health professionals, as well as staff deployment and remuneration policy and the financial barriers in the primary care system need to be addressed, to ensure coverage for those most in need.
Collapse
Affiliation(s)
- Philippe Mulenga
- Faculty of Medicine and School of Public Health, University of Lubumbashi, Lubumbashi, DRC.,Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium.,School of Public Health, Université Libre de Bruxelles, Brussels, Belgium
| | - Marleen Boelaert
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pascal Lutumba
- Department of Tropical Medicine, Faculty of Medicine, University of Kinshasa, Kinshasa, DRC
| | | | - Yves Coppieters
- School of Public Health, Université Libre de Bruxelles, Brussels, Belgium
| | - Faustin Chenge
- Faculty of Medicine and School of Public Health, University of Lubumbashi, Lubumbashi, DRC
| | - Crispin Lumbala
- National Program for the Control of Human African Trypanosomiasis, Kinshasa, DRC
| | - Oscar Luboya
- Faculty of Medicine and School of Public Health, University of Lubumbashi, Lubumbashi, DRC
| | - Alain Mpanya
- National Program for the Control of Human African Trypanosomiasis, Kinshasa, DRC
| |
Collapse
|
111
|
Menna-Barreto RFS. Cell death pathways in pathogenic trypanosomatids: lessons of (over)kill. Cell Death Dis 2019; 10:93. [PMID: 30700697 PMCID: PMC6353990 DOI: 10.1038/s41419-019-1370-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022]
Abstract
Especially in tropical and developing countries, the clinically relevant protozoa Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (sleeping sickness) and Leishmania species (leishmaniasis) stand out and infect millions of people worldwide leading to critical social-economic implications. Low-income populations are mainly affected by these three illnesses that are neglected by the pharmaceutical industry. Current anti-trypanosomatid drugs present variable efficacy with remarkable side effects that almost lead to treatment discontinuation, justifying a continuous search for alternative compounds that interfere with essential and specific parasite pathways. In this scenario, the triggering of trypanosomatid cell death machinery emerges as a promising approach, although the exact mechanisms involved in unicellular eukaryotes are still unclear as well as the controversial biological importance of programmed cell death (PCD). In this review, the mechanisms of autophagy, apoptosis-like cell death and necrosis found in pathogenic trypanosomatids are discussed, as well as their roles in successful infection. Based on the published genomic and proteomic maps, the panel of trypanosomatid cell death molecules was constructed under different experimental conditions. The lack of PCD molecular regulators and executioners in these parasites up to now has led to cell death being classified as an unregulated process or incidental necrosis, despite all morphological evidence published. In this context, the participation of metacaspases in PCD was also not described, and these proteases play a crucial role in proliferation and differentiation processes. On the other hand, autophagic phenotype has been described in trypanosomatids under a great variety of stress conditions (drugs, starvation, among others) suggesting that this process is involved in the turnover of damaged structures in the protozoa and is not a cell death pathway. Death mechanisms of pathogenic trypanosomatids may be involved in pathogenesis, and the identification of parasite-specific regulators could represent a rational and attractive alternative target for drug development for these neglected diseases.
Collapse
|
112
|
Kimuda MP, Laming D, Hoppe HC, Tastan Bishop Ö. Identification of Novel Potential Inhibitors of Pteridine Reductase 1 in Trypanosoma brucei via Computational Structure-Based Approaches and in Vitro Inhibition Assays. Molecules 2019; 24:molecules24010142. [PMID: 30609681 PMCID: PMC6337619 DOI: 10.3390/molecules24010142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 11/16/2022] Open
Abstract
Pteridine reductase 1 (PTR1) is a trypanosomatid multifunctional enzyme that provides a mechanism for escape of dihydrofolate reductase (DHFR) inhibition. This is because PTR1 can reduce pterins and folates. Trypanosomes require folates and pterins for survival and are unable to synthesize them de novo. Currently there are no anti-folate based Human African Trypanosomiasis (HAT) chemotherapeutics in use. Thus, successful dual inhibition of Trypanosoma brucei dihydrofolate reductase (TbDHFR) and Trypanosoma brucei pteridine reductase 1 (TbPTR1) has implications in the exploitation of anti-folates. We carried out molecular docking of a ligand library of 5742 compounds against TbPTR1 and identified 18 compounds showing promising binding modes. The protein-ligand complexes were subjected to molecular dynamics to characterize their molecular interactions and energetics, followed by in vitro testing. In this study, we identified five compounds which showed low micromolar Trypanosome growth inhibition in in vitro experiments that might be acting by inhibition of TbPTR1. Compounds RUBi004, RUBi007, RUBi014, and RUBi018 displayed moderate to strong antagonism (mutual reduction in potency) when used in combination with the known TbDHFR inhibitor, WR99210. This gave an indication that the compounds might inhibit both TbPTR1 and TbDHFR. RUBi016 showed an additive effect in the isobologram assay. Overall, our results provide a basis for scaffold optimization for further studies in the development of HAT anti-folates.
Collapse
Affiliation(s)
- Magambo Phillip Kimuda
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa.
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, P.O. Box 7062, Kampala 00256, Uganda.
| | - Dustin Laming
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| | - Heinrich C Hoppe
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa.
| |
Collapse
|
113
|
Varikuti S, Jha BK, Volpedo G, Ryan NM, Halsey G, Hamza OM, McGwire BS, Satoskar AR. Host-Directed Drug Therapies for Neglected Tropical Diseases Caused by Protozoan Parasites. Front Microbiol 2018; 9:2655. [PMID: 30555425 PMCID: PMC6284052 DOI: 10.3389/fmicb.2018.02655] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
The neglected tropical diseases (NTDs) caused by protozoan parasites are responsible for significant morbidity and mortality worldwide. Current treatments using anti-parasitic drugs are toxic and prolonged with poor patient compliance. In addition, emergence of drug-resistant parasites is increasing worldwide. Hence, there is a need for safer and better therapeutics for these infections. Host-directed therapy using drugs that target host pathways required for pathogen survival or its clearance is a promising approach for treating infections. This review will give a summary of the current status and advances of host-targeted therapies for treating NTDs caused by protozoa.
Collapse
Affiliation(s)
- Sanjay Varikuti
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Bijay Kumar Jha
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Greta Volpedo
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Nathan M Ryan
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Gregory Halsey
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Omar M Hamza
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Bradford S McGwire
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Abhay R Satoskar
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
114
|
Shaida SS, Weber JS, Gbem TT, Ngomtcho SCH, Musa UB, Achukwi MD, Mamman M, Ndams IS, Nok JA, Kelm S. Diversity and phylogenetic relationships of Glossina populations in Nigeria and the Cameroonian border region. BMC Microbiol 2018; 18:180. [PMID: 30470197 PMCID: PMC6251082 DOI: 10.1186/s12866-018-1293-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Tsetse flies are vectors of trypanosomes, parasites that cause devastating disease in humans and livestock. In the course of vector control programmes it is necessary to know about the Glossina species present in the study area, the population dynamics and the genetic exchange between tsetse fly populations. Results To achieve an overview of the tsetse fly diversity in Nigeria and at the Nigeria-Cameroon border, tsetse flies were trapped and collected between February and March 2014 and December 2016. Species diversity was determined morphologically and by analysis of Cytochrome C Oxidase SU1 (COI) gene sequences. Internal transcribed spacer-1 (ITS-1) sequences were compared to analyse variations within populations. The most dominant species were G. m. submorsitans, G. tachinoides and G. p. palpalis. In Yankari Game Reserve and Kainji Lake National Park, G. submorsitans and G. tachinoides were most frequent, whereas in Old Oyo National Park and Ijah Gwari G. p. palpalis was the dominant species. Interestingly, four unidentified species were recorded during the survey, for which no information on COI or ITS-1 sequences exists. G. p. palpalis populations showed a segregation in two clusters along the Cameroon-Nigerian border. Conclusions The improved understanding of the tsetse populations in Nigeria will support decisions on the scale in which vector control is likely to be more effective. In order to understand in more detail how isolated these populations are, it is recommended that further studies on gene flow be carried out using other markers, including microsatellites.
Collapse
Affiliation(s)
| | - Judith Sophie Weber
- Centre for Biomolecular Interactions, University of Bremen, 28334, Bremen, Germany
| | - Thaddeus Terlumun Gbem
- Centre for Biomolecular Interactions, University of Bremen, 28334, Bremen, Germany.,Department of Biology, Ahmadu Bello University, Zaria, Nigeria.,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | | | - Usman Baba Musa
- Nigerian Institute for Trypanosomiasis Research, Kaduna, Nigeria
| | | | - Mohammed Mamman
- Nigerian Institute for Trypanosomiasis Research, Kaduna, Nigeria
| | - Iliya Shehu Ndams
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.,Department of Zoology, Ahmadu Bello University Zaria, Zaria, Nigeria
| | - Jonathan Andrew Nok
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.,Department of Biochemistry, Ahmadu Bello University Zaria, Zaria, Nigeria
| | - Soerge Kelm
- Centre for Biomolecular Interactions, University of Bremen, 28334, Bremen, Germany.
| |
Collapse
|
115
|
Gervas HE, Opoku NKDO, Ibrahim S. Mathematical Modelling of Human African Trypanosomiasis Using Control Measures. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:5293568. [PMID: 30595713 PMCID: PMC6282183 DOI: 10.1155/2018/5293568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/12/2018] [Accepted: 10/22/2018] [Indexed: 11/17/2022]
Abstract
Human African trypanosomiasis (HAT), commonly known as sleeping sickness, is a neglected tropical vector-borne disease caused by trypanosome protozoa. It is transmitted by bites of infected tsetse fly. In this paper, we first present the vector-host model which describes the general transmission dynamics of HAT. In the tsetse fly population, the HAT is modelled by three compartments, while in the human population, the HAT is modelled by four compartments. The next-generation matrix approach is used to derive the basic reproduction number, R 0, and it is also proved that if R 0 ≤ 1, the disease-free equilibrium is globally asymptotically stable, which means the disease dies out. The disease persists in the population if the value of R 0 > 1. Furthermore, the optimal control model is determined by using the Pontryagin's maximum principle, with control measures such as education, treatment, and insecticides used to optimize the objective function. The model simulations confirm that the use of the three control measures is very efficient and effective to eliminate HAT in Africa.
Collapse
Affiliation(s)
- Hamenyimana Emanuel Gervas
- African Institute for Mathematical Sciences, Biriwa, Cape Coast, Ghana
- University of Dar es Salaam, Dar es Salaam, Tanzania
- University of Dodoma, Dodoma, Tanzania
| | | | | |
Collapse
|
116
|
Merritt MW, Sutherland CS, Tediosi F. Ethical Considerations for Global Health Decision-Making: Justice-Enhanced Cost-Effectiveness Analysis of New Technologies for Trypanosoma brucei gambiense. Public Health Ethics 2018; 11:275-292. [PMID: 30429873 PMCID: PMC6225893 DOI: 10.1093/phe/phy013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We sought to assess formally the extent to which different control and elimination strategies for human African trypanosomiasis Trypanosoma brucei gambiense (Gambiense HAT) would exacerbate or alleviate experiences of societal disadvantage that traditional economic evaluation does not take into account. Justice-enhanced cost-effectiveness analysis (JE-CEA) is a normative approach under development to address social justice considerations in public health decision-making alongside other types of analyses. It aims to assess how public health interventions under analysis in comparative evaluation would be expected to influence the clustering of disadvantage across three core dimensions of well-being: agency, association and respect. As a case study to test the approach, we applied it to five strategies for Gambiense HAT control and elimination, in combination with two different other evaluations: a cost-effectiveness analysis and a probability of elimination analysis. We have demonstrated how JE-CEA highlights the ethical importance of adverse social justice impacts of otherwise attractive options and how it indicates specific modifications to policy options to mitigate such impacts. JE-CEA holds promise as an approach to help decision makers and other stakeholders consider social justice more fully, explicitly and systematically in evaluating public health programs.
Collapse
Affiliation(s)
- Maria W Merritt
- Johns Hopkins Berman Institute of Bioethics and Department of International Health, Johns Hopkins Bloomberg School of Public Health
| | | | - Fabrizio Tediosi
- Swiss Tropical and Public Health Institute and Universität Basel
| |
Collapse
|
117
|
Pineda E, Thonnus M, Mazet M, Mourier A, Cahoreau E, Kulyk H, Dupuy JW, Biran M, Masante C, Allmann S, Rivière L, Rotureau B, Portais JC, Bringaud F. Glycerol supports growth of the Trypanosoma brucei bloodstream forms in the absence of glucose: Analysis of metabolic adaptations on glycerol-rich conditions. PLoS Pathog 2018; 14:e1007412. [PMID: 30383867 PMCID: PMC6245841 DOI: 10.1371/journal.ppat.1007412] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/20/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022] Open
Abstract
The bloodstream forms of Trypanosoma brucei (BSF), the parasite protist causing sleeping sickness, primarily proliferate in the blood of their mammalian hosts. The skin and adipose tissues were recently identified as additional major sites for parasite development. Glucose was the only carbon source known to be used by bloodstream trypanosomes to feed their central carbon metabolism, however, the metabolic behaviour of extravascular tissue-adapted parasites has not been addressed yet. Since the production of glycerol is an important primary function of adipocytes, we have adapted BSF trypanosomes to a glucose-depleted but glycerol-rich culture medium (CMM_Glyc/GlcNAc) and compared their metabolism and proteome to those of parasites grown in standard glucose-rich conditions (CMM_Glc). BSF were shown to consume 2-folds more oxygen per consumed carbon unit in CMM_Glyc/GlcNAc and were 11.5-times more sensitive to SHAM, a specific inhibitor of the plant-like alternative oxidase (TAO), which is the only mitochondrial terminal oxidase expressed in BSF. This is consistent with (i) the absolute requirement of the mitochondrial respiratory activity to convert glycerol into dihydroxyacetone phosphate, as deduced from the updated metabolic scheme and (ii) with the 1.8-fold increase of the TAO expression level compared to the presence of glucose. Proton NMR analysis of excreted end products from glycerol and glucose metabolism showed that these two carbon sources are metabolised through the same pathways, although the contributions of the acetate and succinate branches are more important in the presence of glycerol than glucose (10.2% versus 3.4% of the excreted end products, respectively). In addition, metabolomic analyses by mass spectrometry showed that, in the absence of glucose, 13C-labelled glycerol was incorporated into hexose phosphates through gluconeogenesis. As expected, RNAi-mediated down-regulation of glycerol kinase expression abolished glycerol metabolism and was lethal for BSF grown in CMM_Glyc/GlcNAc. Interestingly, BSF have adapted their metabolism to grow in CMM_Glyc/GlcNAc by concomitantly increasing their rate of glycerol consumption and decreasing that of glucose. However, the glycerol kinase activity was 7.8-fold lower in CMM_Glyc/GlcNAc, as confirmed by both western blotting and proteomic analyses. This suggests that the huge excess in glycerol kinase that is not absolutely required for glycerol metabolism, might be used for another yet undetermined non-essential function in glucose rich-conditions. Altogether, these data demonstrate that BSF trypanosomes are well-adapted to glycerol-rich conditions that could be encountered by the parasite in extravascular niches, such as the skin and adipose tissues. Until very recently, the bloodstream forms (BSF) of the Trypanosoma brucei group species have been considered to propagate exclusively in the mammalian fluids, including the blood, the lymphatic network and the cerebrospinal fluid. All these fluids are rich in glucose, which is widely considered by the scientific community as the only carbon source used by the parasite to feed its central carbon metabolism and its ATP production. Here, we show for the first time that the BSF trypanosomes efficiently grow in glucose-free conditions as long as glycerol is supplied. The raison d'être of this capacity developed by BSF trypanosomes to grow in glycerol-rich conditions regardless of the glucose concentration, including in glucose-free conditions, is not yet understood. However, the recent discovery that trypanosomes colonize and proliferate in the skin and the adipose tissues of their mammalian hosts may provide a rational explanation for the development of a glycerol-based metabolism in BSF. Indeed, the adipocytes composing adipose tissues and also abundantly present in subcutaneous layers excrete large amounts of glycerol produced from the catabolism of glucose and triglycerides. We also show that BSF trypanosomes adapted to glucose-depleted conditions activate gluconeogenesis to produce the essential hexose phosphates from glycerol metabolism. Interestingly, the constitutive expression of the key gluconeogenic enzyme fructose-1,6-bisphosphatase, which is not used for glycolysis, suggests that BSF trypanosomes maintained in the standard glucose-rich medium are pre-adapted to glucose-depleted conditions. This further strengthens the new paradigm that BSF trypanosomes can use glycerol in tissues producing this carbon source, such as the skin the adipose tissues.
Collapse
Affiliation(s)
- Erika Pineda
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
| | - Magali Thonnus
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
| | - Muriel Mazet
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Arnaud Mourier
- Institute of Biochemistry and Genetics of the Cell (IBGC) du CNRS, Université de Bordeaux, Bordeaux, France
| | - Edern Cahoreau
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Hanna Kulyk
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jean-William Dupuy
- Centre de Génomique Fonctionnelle, Plateforme Protéome, Université de Bordeaux, Bordeaux, France
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Cyril Masante
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
| | - Stefan Allmann
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Loïc Rivière
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | | | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
- * E-mail:
| |
Collapse
|
118
|
Figarella K, Uzcategui NL, Mogk S, Wild K, Fallier-Becker P, Neher JJ, Duszenko M. Morphological changes, nitric oxide production, and phagocytosis are triggered in vitro in microglia by bloodstream forms of Trypanosoma brucei. Sci Rep 2018; 8:15002. [PMID: 30302029 PMCID: PMC6177420 DOI: 10.1038/s41598-018-33395-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/27/2018] [Indexed: 01/18/2023] Open
Abstract
The flagellated parasite Trypanosoma brucei is the causative agent of Human African Trypanosomiasis (HAT). By a mechanism not well understood yet, trypanosomes enter the central nervous system (CNS), invade the brain parenchyma, and cause a fatal encephalopathy if is not treated. Trypanosomes are fast dividing organisms that, without any immune response, would kill the host in a short time. However, infected individuals survive either 6-12 months or more than 3 years for the acute and chronic forms, respectively. Thus, only when the brain defense collapses a lethal encephalopathy will occur. Here, we evaluated interactions between trypanosomes and microglial cells, which are the primary immune effector cells within the CNS. Using co-cultures of primary microglia and parasites, we found clear evidences of trypanosome phagocytosis by microglial cells. Microglia activation was also evident; analysis of its ultrastructure showed changes that have been reported in activated microglia undergoing oxidative stress caused by infections or degenerative diseases. Accordingly, an increase of the nitric oxide production was detected in supernatants of microglia/parasite co-cultures. Altogether, our results demonstrate that microglial cells respond to the presence of the parasite, leading to parasite's engulfment and elimination.
Collapse
Affiliation(s)
- Katherine Figarella
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany.
- Institute for Neurophysiology, University of Tübingen, Tübingen, Germany.
| | - Nestor L Uzcategui
- Institute for Anatomy, Central University of Venezuela, Caracas, Venezuela
| | - Stefan Mogk
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Katleen Wild
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany and Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University Hospital of Tübingen, Tübingen, Germany
| | - Jonas J Neher
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany and Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Michael Duszenko
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
- Faculty of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
119
|
Nambala P, Musaya J, Hayashida K, Maganga E, Senga E, Kamoto K, Chisi J, Sugimoto C. Comparative evaluation of dry and liquid RIME LAMP in detecting trypanosomes in dead tsetse flies. ACTA ACUST UNITED AC 2018; 85:e1-e6. [PMID: 30326717 PMCID: PMC6324077 DOI: 10.4102/ojvr.v85i1.1543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 11/06/2022]
Abstract
Xenomonitoring is an important approach in assessing the progress of trypanosomiasis control as well as in estimating the endemicity of trypanosomes in affected areas. One of the major challenges in this approach is the unavailability of sensitive and easy to use xenomonitoring tools that can be used in the remote areas where the disease occurs. One tool that has been used successfully in detecting the parasites in tsetse flies is the repetitive insertion mobile element loop-mediated isothermal amplification (RIME LAMP). This tool has recently been modified from the liquid form to dry form for use in remote areas; however, uptake for use in the field has been slow. Field-collected tsetse flies were used to evaluate the performance of dry RIME LAMP over the conventional liquid RIME LAMP. All the samples were also subjected to internal transcribed spacer 1 (ITS1) ribosomal deoxyribonucleic acid (DNA) polymerase chain reaction (PCR) as a standard. ITS1-PCR-positive samples were further sequenced for confirmation of the species. A total of 86 wild tsetse flies were left to dry at room temperature for 3 months and DNA was extracted subsequently. All 86 flies were Glossina morsitans morsitans. From these, dry RIME LAMP detected 16.3% while liquid RIME LAMP detected 11.6% as infected with trypanosomes. Ten positive samples on ITS1-PCR were sequenced and all were shown to be trypanosomes. The use of dry RIME LAMP in the field for xenomonitoring of trypanosomes in tsetse flies will greatly contribute towards control of this neglected tropical disease as it provides the cheapest, fastest and simplest way to estimate possible human infective trypanosome infection rates in the tsetse fly vectors.
Collapse
Affiliation(s)
- Peter Nambala
- Department of Basic Medical Sciences, University of Malawi.
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Okeyo WA, Saarman NP, Bateta R, Dion K, Mengual M, Mireji PO, Ouma C, Okoth S, Murilla G, Aksoy S, Caccone A. Genetic Differentiation of Glossina pallidipes Tsetse Flies in Southern Kenya. Am J Trop Med Hyg 2018; 99:945-953. [PMID: 30105964 PMCID: PMC6159567 DOI: 10.4269/ajtmh.18-0154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/15/2018] [Indexed: 11/07/2022] Open
Abstract
The tsetse fly Glossina pallidipes, the major vector of the parasite that causes animal African trypanosomiasis in Kenya, has been subject to intense control measures with only limited success. The G. pallidipes population dynamics and dispersal patterns that underlie limited success in vector control campaigns remain unresolved, and knowledge on genetic connectivity can provide insights, and thereby improve control and monitoring efforts. We therefore investigated the population structure and estimated migration and demographic parameters in G. pallidipes using genotypic data from 11 microsatellite loci scored in 250 tsetse flies collected from eight localities in Kenya. Clustering analysis identified two genetically distinct eastern and western clusters (mean between-cluster F ST = 0.202) separated by the Great Rift Valley. We also found evidence of admixture and migration between the eastern and western clusters, isolation by distance, and a widespread signal of inbreeding. We detected differences in population dynamics and dispersal patterns between the western and eastern clusters. These included lower genetic diversity (allelic richness; 7.48 versus 10.99), higher relatedness (percent related individuals; 21.4% versus 9.1%), and greater genetic differentiation (mean within-cluster F ST; 0.183 versus 0.018) in the western than the eastern cluster. Findings are consistent with the presence of smaller, less well-connected populations in Western relative to eastern Kenya. These data suggest that recent anthropogenic influences such as land use changes and vector control programs have influenced population dynamics in G. pallidipes in Kenya, and that vector control efforts should include some region-specific strategies to effectively control this disease vector.
Collapse
Affiliation(s)
- Winnie A. Okeyo
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Kisumu, Kenya
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
- Yale School of Public Health, Yale University, New Haven, Connecticut
| | - Norah P. Saarman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut
| | - Rosemary Bateta
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | - Kirstin Dion
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut
| | - Michael Mengual
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut
| | - Paul O. Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
- Yale School of Public Health, Yale University, New Haven, Connecticut
- Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Kisumu, Kenya
| | - Sylvance Okoth
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | - Grace Murilla
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
- Yale School of Public Health, Yale University, New Haven, Connecticut
| | - Serap Aksoy
- Yale School of Public Health, Yale University, New Haven, Connecticut
| | - Adalgisa Caccone
- Yale School of Public Health, Yale University, New Haven, Connecticut
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut
| |
Collapse
|
121
|
Chakraborty C, Clayton C. Stress susceptibility in Trypanosoma brucei lacking the RNA-binding protein ZC3H30. PLoS Negl Trop Dis 2018; 12:e0006835. [PMID: 30273340 PMCID: PMC6181440 DOI: 10.1371/journal.pntd.0006835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 10/11/2018] [Accepted: 09/11/2018] [Indexed: 01/17/2023] Open
Abstract
Trypanosomes rely on post-transcriptional mechanisms and mRNA-binding proteins for control of gene expression. Trypanosoma brucei ZC3H30 is an mRNA-binding protein that is expressed in both the bloodstream form (which grows in mammals) and the procyclic form (which grows in the tsetse fly midgut). Attachment of ZC3H30 to an mRNA causes degradation of that mRNA. Cells lacking ZC3H30 showed no growth defect under normal culture conditions; but they were more susceptible than wild-type cells to heat shock, starvation, and treatment with DTT, arsenite or ethanol. Transcriptomes of procyclic-form trypanosomes lacking ZC3H30 were indistinguishable from those of cells in which ZC3H30 had been re-expressed, but un-stressed bloodstream forms lacking ZC3H30 had about 2-fold more HSP70 mRNA. Results from pull-downs suggested that ZC3H30 mRNA binding may not be very specific. ZC3H30 was found in stress-induced granules and co-purified with another stress granule protein, Tb927.8.3820; but RNAi targeting Tb927.8.3820 did not affect either ZC3H30 granule association or stress resistance. The conservation of the ZC3H30 gene in both monogenetic and digenetic kinetoplastids, combined with the increased stress susceptibility of cells lacking it, suggests that ZC3H30 confers a selective advantage in the wild, where the parasites are subject to temperature fluctuations and immune attack in both the insect and mammalian hosts.
Collapse
Affiliation(s)
| | - Christine Clayton
- Zentrum für Molekular Biologie, Universität Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
122
|
Cockram PE, Smith TK. Active Natural Product Scaffolds against Trypanosomatid Parasites: A Review. JOURNAL OF NATURAL PRODUCTS 2018; 81:2138-2154. [PMID: 30234295 DOI: 10.1021/acs.jnatprod.8b00159] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neglected tropical diseases caused by trypanosomatid parasites are a continuing and escalating problem, which devastate the less economically developed cultures in countries in which they are endemic by impairing both human and animal health. Current drugs for these diseases are regarded as out-of-date and expensive, with unacceptable side-effects and mounting parasite resistance, meaning there is an urgent need for new therapeutics. Natural products have long been a source of potent, structurally diverse bioactive molecules. Herein are reviewed natural products with reported trypanocidal activity, which have been clustered based on core structural similarities, to aid the future discovery of new trypanocidal core motifs with potential routes to synthetically accessible natural product cores suggested.
Collapse
Affiliation(s)
- Peter E Cockram
- Biomedical Sciences Research Complex , University of St Andrews , North Haugh , St Andrews , Scotland , KY16 9ST
| | - Terry K Smith
- Biomedical Sciences Research Complex , University of St Andrews , North Haugh , St Andrews , Scotland , KY16 9ST
| |
Collapse
|
123
|
Philot Pavão B, Demarque KC, Meuser Batista M, Melo de Oliveira G, França da Silva C, Guedes da Silva FH, Gonçalves Caputo LF, Machado Cascabulho C, Barcinski MA, Correia Soeiro MDN. Impact of autologous whole blood administration upon experimental mouse models of acute Trypanosoma cruzi infection. J Venom Anim Toxins Incl Trop Dis 2018; 24:25. [PMID: 30186314 PMCID: PMC6117903 DOI: 10.1186/s40409-018-0157-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/01/2018] [Indexed: 01/03/2023] Open
Abstract
Background Autologous whole blood (AWB) administration is described as alternative/complementary medical practice widely employed in medical and veterinary therapy against infections, chronic pathologies and neoplasias. Our aim is to investigate in vivo biological effect of AWB using healthy murine models under the course of Trypanosoma cruzi acute infection. Methods The first set of studies consisted of injecting different volumes of AWB and saline (SAL) into the posterior region of quadriceps muscle of healthy male Swiss mice under distinct therapeutic schemes evaluating: animal behavior, body and organ weight, hemogram, plasmatic biochemical markers for tissue damage and inflammatory cytokine levels and profile. To assess the impact on the experimental T. cruzi infection, different schemes (prior and post infection) and periods of AWB administration (from one up to 10 days) were conducted, also employing heterologous whole blood (HWB) and evaluating plasma cytokine profile. Results No major adverse events were observed in healthy AWB-treated mice, except gait impairment in animals that received three doses of 20 μL AWB in the same hind limb. AWB and SAL triggered an immediate polymorphonuclear response followed by mononuclear infiltrate. Although SAL triggered an inflammatory response, the kinetics and intensity of the histological profile and humoral mediator levels were different from AWB, the latter occurring earlier and more intensely with concomitant elevation of plasma IL-6. Inflammatory peak response of SAL, mainly composed of mononuclear cells with IL-10, was increased at 24 h. According to the mouse model of acute T. cruzi infection, only minor decreases (< 30%) in the parasitemia levels were produced by AWB and HWB given before and after infection, without protecting against mortality. Rises in IFN-gamma, TNF-alpha and IL-6 were detected at 9 dpi in all infected animals as compared to uninfected mice but only Bz displayed a statistically significant diminution (p = 0.02) in TNF-alpha levels than infected and untreated mice. Conclusions This study revealed that the use of autologous whole blood (AWB) in the acute model employed was unable to reduce the parasitic load of infected mice, providing only a minor decrease in parasitemia levels (up to 30%) but without protecting against animal mortality. Further in vivo studies will be necessary to elucidate the effective impact of this procedure.
Collapse
Affiliation(s)
- Beatriz Philot Pavão
- 1Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ Brazil
| | - Kelly Cristina Demarque
- 1Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ Brazil
| | - Marcos Meuser Batista
- 1Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ Brazil
| | - Gabriel Melo de Oliveira
- 1Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ Brazil
| | - Cristiane França da Silva
- 1Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ Brazil
| | | | - Luzia Fátima Gonçalves Caputo
- 2Laboratório de Patologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ Brazil
| | - Cynthia Machado Cascabulho
- 3Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ Brazil
| | - Marcello André Barcinski
- 1Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ Brazil
| | - Maria de Nazaré Correia Soeiro
- 1Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ Brazil
| |
Collapse
|
124
|
Begolo D, Vincent IM, Giordani F, Pöhner I, Witty MJ, Rowan TG, Bengaly Z, Gillingwater K, Freund Y, Wade RC, Barrett MP, Clayton C. The trypanocidal benzoxaborole AN7973 inhibits trypanosome mRNA processing. PLoS Pathog 2018; 14:e1007315. [PMID: 30252911 PMCID: PMC6173450 DOI: 10.1371/journal.ppat.1007315] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/05/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022] Open
Abstract
Kinetoplastid parasites-trypanosomes and leishmanias-infect millions of humans and cause economically devastating diseases of livestock, and the few existing drugs have serious deficiencies. Benzoxaborole-based compounds are very promising potential novel anti-trypanosomal therapies, with candidates already in human and animal clinical trials. We investigated the mechanism of action of several benzoxaboroles, including AN7973, an early candidate for veterinary trypanosomosis. In all kinetoplastids, transcription is polycistronic. Individual mRNA 5'-ends are created by trans splicing of a short leader sequence, with coupled polyadenylation of the preceding mRNA. Treatment of Trypanosoma brucei with AN7973 inhibited trans splicing within 1h, as judged by loss of the Y-structure splicing intermediate, reduced levels of mRNA, and accumulation of peri-nuclear granules. Methylation of the spliced leader precursor RNA was not affected, but more prolonged AN7973 treatment caused an increase in S-adenosyl methionine and methylated lysine. Together, the results indicate that mRNA processing is a primary target of AN7973. Polyadenylation is required for kinetoplastid trans splicing, and the EC50 for AN7973 in T. brucei was increased three-fold by over-expression of the T. brucei cleavage and polyadenylation factor CPSF3, identifying CPSF3 as a potential molecular target. Molecular modeling results suggested that inhibition of CPSF3 by AN7973 is feasible. Our results thus chemically validate mRNA processing as a viable drug target in trypanosomes. Several other benzoxaboroles showed metabolomic and splicing effects that were similar to those of AN7973, identifying splicing inhibition as a common mode of action and suggesting that it might be linked to subsequent changes in methylated metabolites. Granule formation, splicing inhibition and resistance after CPSF3 expression did not, however, always correlate and prolonged selection of trypanosomes in AN7973 resulted in only 1.5-fold resistance. It is therefore possible that the modes of action of oxaboroles that target trypanosome mRNA processing might extend beyond CPSF3 inhibition.
Collapse
Affiliation(s)
- Daniela Begolo
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
| | - Isabel M. Vincent
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, 120 University Place, University of Glasgow, Glasgow, United Kingdom
| | - Federica Giordani
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, 120 University Place, University of Glasgow, Glasgow, United Kingdom
| | - Ina Pöhner
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, Heidelberg, Germany
| | - Michael J. Witty
- Global Alliance for Livestock and Veterinary Medicine, Doherty Building, Pentlands Science Park, Penicuik, Edinburgh, United Kingdom
| | - Timothy G. Rowan
- Global Alliance for Livestock and Veterinary Medicine, Doherty Building, Pentlands Science Park, Penicuik, Edinburgh, United Kingdom
| | - Zakaria Bengaly
- Centre International de Recherche–Développement sur l’Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso 01, Burkina Faso
| | - Kirsten Gillingwater
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, Switzerland
- University of Basel, Petersplatz 1, Basel, Switzerland
| | - Yvonne Freund
- Anacor Pharmaceuticals, Inc., Palo Alto, CA, United States of America
| | - Rebecca C. Wade
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, Heidelberg, Germany
| | - Michael P. Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, 120 University Place, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Christine Clayton
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
| |
Collapse
|
125
|
Gumbo M, Beteck RM, Mandizvo T, Seldon R, Warner DF, Hoppe HC, Isaacs M, Laming D, Tam CC, Cheng LW, Liu N, Land KM, Khanye SD. Cinnamoyl-Oxaborole Amides: Synthesis and Their in Vitro Biological Activity. Molecules 2018; 23:E2038. [PMID: 30111695 PMCID: PMC6222898 DOI: 10.3390/molecules23082038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 11/19/2022] Open
Abstract
Due to the increased interest in their application in the treatment of infectious diseases, boron-containing compounds have received a significant coverage in the literature. Herein, a small set of novel cinnamoly-oxaborole amides were synthesized and screened against nagana Trypanosoma brucei brucei for antitrypanosomal activity. Compound 5g emerged as a new hit with an in vitro IC50 value of 0.086 μM against T. b. brucei without obvious inhibitory activity against HeLa cell lines. The same series was also screened against other human pathogens, including Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), for which moderate to weak activity (10 to >125 μM) was observed. Similarly, these compounds exhibited moderate activity against the human protozoal pathogen Trichomonas vaginalis with no observed effect on common microbiome bacterial species. The cross-species inhibitory activity presents the possibility of these compounds serving as broad-spectrum antibiotics for these prevalent three human pathogens.
Collapse
Affiliation(s)
- Maureen Gumbo
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| | - Richard M Beteck
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| | - Tawanda Mandizvo
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| | - Ronnett Seldon
- Drug Discovery and Development Centre (H3-D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.
| | - Digby F Warner
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa.
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
| | - Heinrich C Hoppe
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| | - Michelle Isaacs
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| | - Dustin Laming
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| | - Christina C Tam
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| | - Nicole Liu
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA.
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA.
| | - Setshaba D Khanye
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
126
|
Stanton MC, Esterhuizen J, Tirados I, Betts H, Torr SJ. The development of high resolution maps of tsetse abundance to guide interventions against human African trypanosomiasis in northern Uganda. Parasit Vectors 2018; 11:340. [PMID: 29884213 PMCID: PMC5994020 DOI: 10.1186/s13071-018-2922-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/28/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Vector control is emerging as an important component of global efforts to control Gambian sleeping sickness (human African trypanosomiasis, HAT). The deployment of insecticide-treated targets ("Tiny Targets") to attract and kill riverine tsetse, the vectors of Trypanosoma brucei gambiense, has been shown to be particularly cost-effective. As this method of vector control continues to be implemented across larger areas, knowledge of the abundance of tsetse to guide the deployment of "Tiny Targets" will be of increasing value. In this paper, we use a geostatistical modelling framework to produce maps of estimated tsetse abundance under two scenarios: (i) when accurate data on the local river network are available; and (ii) when river information is sparse. METHODS Tsetse abundance data were obtained from a pre-intervention survey conducted in northern Uganda in 2010. River network data obtained from either digitised maps or derived from 30 m resolution digital elevation model (DEM) data as a proxy for ground truth data. Other environmental variables were derived from publicly-available resolution remotely sensed data (e.g. Landsat, 30 m resolution). Zero-inflated negative binomial geostatistical models were fitted to the abundance data using an integrated nested Laplace approximation approach, and maps of estimated tsetse abundance were produced. RESULTS Restricting the analysis to traps located within 100 m of any river, positive associations were identified between the length of river and the minimum soil/vegetation moisture content of the surrounding area and daily fly catches, whereas negative associations were identified with elevation and distance to the river. The resulting models could accurately distinguish between traps with high and low fly catches (e.g. < 5 or > 5 flies/day), with a ROC-AUC (receiver-operating characteristic - area under the curve) greater than 0.9. Whilst the precise course of the river was not well approximated using the DEM data, the models fitted using DEM-derived river data performed similarly to those that incorporated the more accurate local river information. CONCLUSIONS These models can now be used to assist in the design, implementation and monitoring of tsetse control operations in northern Uganda and further can be used as a framework by which to undertake similar studies in other areas where Glossina fuscipes fuscipes spreads Gambian sleeping sickness.
Collapse
Affiliation(s)
| | - Johan Esterhuizen
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Inaki Tirados
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hannah Betts
- Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Steve J. Torr
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
127
|
Loeuillet C, Touquet B, Oury B, Eddaikra N, Pons JL, Guichou JF, Labesse G, Sereno D. Synthesis of aminophenylhydroxamate and aminobenzylhydroxamate derivatives and in vitro screening for antiparasitic and histone deacetylase inhibitory activity. Int J Parasitol Drugs Drug Resist 2018; 8:59-66. [PMID: 29414107 PMCID: PMC6114082 DOI: 10.1016/j.ijpddr.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
A series of aminophenylhydroxamates and aminobenzylhydroxamates were synthesized and screened for their antiparasitic activity against Leishmania, Trypanosoma, and Toxoplasma. Their anti-histone deacetylase (HDAC) potency was determined. Moderate to no antileishmanial or antitrypanosomal activity was found (IC50 > 10 μM) that contrast with the highly efficient anti-Toxoplasma activity (IC50 < 1.0 μM) of these compounds. The antiparasitic activity of the synthetized compounds correlates well with their HDAC inhibitory activity. The best-performing compound (named 363) express a high anti-HDAC6 inhibitory activity (IC50 of 0.045 ± 0.015 μM) a moderate cytotoxicity and a high anti-Toxoplasma activity in the range of known anti-Toxoplasma compounds (IC50 of 0.35-2.25 μM). The calculated selectivity index (10-300 using different human cell lines) of the compound 363 makes it a lead compound for the future development of anti-Toxoplasma molecules.
Collapse
Affiliation(s)
- C Loeuillet
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France; IRD, Univ Montpellier, MiVegec, Montpellier, France
| | - B Touquet
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions & Immunity to Infection, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - B Oury
- IRD, Univ Montpellier, InterTryp, Montpellier, France; IRD, Univ Montpellier, MiVegec, Montpellier, France
| | - N Eddaikra
- Laboratoire d'Eco-épidemiologie Parasitaire et Génétique des Populations, Institut Pasteur d'Alger, Route du Petit Staoueli, Dely Brahim, Alger, Algeria; Laboratoire de Biochimie Analytique et Biotechnologies, Université Mouloud Mammeri de Tizi Ouzou, Algeria
| | - J L Pons
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, France
| | - J F Guichou
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, France
| | - G Labesse
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, France
| | - D Sereno
- IRD, Univ Montpellier, InterTryp, Montpellier, France; IRD, Univ Montpellier, MiVegec, Montpellier, France.
| |
Collapse
|
128
|
Marin PA, da Silva MS, Pavani RS, Machado CR, Elias MC. Recruitment kinetics of the homologous recombination pathway in procyclic forms of Trypanosoma brucei after ionizing radiation treatment. Sci Rep 2018; 8:5405. [PMID: 29599445 PMCID: PMC5876374 DOI: 10.1038/s41598-018-23731-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
One of the most important mechanisms for repairing double-strand breaks (DSBs) in model eukaryotes is homologous recombination (HR). Although the genes involved in HR have been found in Trypanosoma brucei and studies have identified some of the proteins that participate in this HR pathway, the recruitment kinetics of the HR machinery onto DNA during DSB repair have not been clearly elucidated in this organism. Using immunofluorescence, protein DNA-bound assays, and DNA content analysis, we established the recruitment kinetics of the HR pathway in response to the DSBs generated by ionizing radiation (IR) in procyclic forms of T. brucei. These kinetics involved the phosphorylation of histone H2A and the sequential recruitment of the essential HR players Exo1, RPA, and Rad51. The process of DSB repair took approximately 5.5 hours. We found that DSBs led to a decline in the G2/M phase after IR treatment, concomitant with cell cycle arrest in the G1/S phase. This finding suggests that HR repairs DSBs faster than the other possible DSB repair processes that act during the G1/S transition. Taken together, these data suggest that the interplay between DNA damage detection and HR machinery recruitment is finely coordinated, allowing these parasites to repair DNA rapidly after DSBs during the late S/G2 proficient phases.
Collapse
Affiliation(s)
- Paula Andrea Marin
- Cell Cycle Laboratory (LECC) - Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, São Paulo, 05503-900, Brazil
| | - Marcelo Santos da Silva
- Cell Cycle Laboratory (LECC) - Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, São Paulo, 05503-900, Brazil
| | - Raphael Souza Pavani
- Cell Cycle Laboratory (LECC) - Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, São Paulo, 05503-900, Brazil
| | - Carlos Renato Machado
- Biochemical and Immunology Department, Institute of Biomedical Science, ICB, Federal University of Minas Gerais (UFMG), Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Maria Carolina Elias
- Cell Cycle Laboratory (LECC) - Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, São Paulo, 05503-900, Brazil.
| |
Collapse
|
129
|
Prospective evaluation of a rapid diagnostic test for Trypanosoma brucei gambiense infection developed using recombinant antigens. PLoS Negl Trop Dis 2018; 12:e0006386. [PMID: 29590116 PMCID: PMC5898764 DOI: 10.1371/journal.pntd.0006386] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/13/2018] [Accepted: 03/13/2018] [Indexed: 11/19/2022] Open
Abstract
Background Diagnosis and treatment are central elements of strategies to control Trypanosoma brucei gambiense human African trypanosomiasis (HAT). Serological screening is a key entry point in diagnostic algorithms. The Card Agglutination Test for Trypanosomiasis (CATT) has been the most widely used screening test for decades, despite a number of practical limitations that were partially addressed by the introduction of rapid diagnostic tests (RDTs). However, current RDTs are manufactured using native antigens, which are challenging to produce. Methodology/Principal findings The objective of this study was to evaluate the accuracy of a new RDT developed using recombinant antigens (SD BIOLINE HAT 2.0), in comparison with an RDT produced using native antigens (SD BIOLINE HAT) and CATT. A total of 57,632 individuals were screened in the Democratic Republic of the Congo, either passively at 10 health centres, or actively by 5 mobile teams, and 260 HAT cases were confirmed by parasitology. The highest sensitivity was achieved with the SD BIOLINE HAT 2.0 (71.2%), followed by CATT (62.5%) and the SD BIOLINE HAT (59.0%). The most specific test was CATT (99.2%), while the specificity of the SD BIOLINE HAT and SD BIOLINE HAT 2.0 were 98.9% and 98.1%, respectively. Sensitivity of the tests was lower than previously reported, as they identified cases from partially overlapping sub-populations. All three tests were significantly more sensitive in passive than in active screening. Combining two or three tests resulted in a markedly increased sensitivity: When the SD BIOLINE HAT was combined with the SD BIOLINE HAT 2.0, sensitivity reached 98.4% in passive and 83.0% in active screening. Conclusions/Significance The recombinant antigen-based RDT was more sensitive than, and as specific as, the SD BIOLINE HAT. It was as sensitive as, but slightly less specific than CATT. While the practicality and cost-effectiveness of algorithms including several screening tests would need to be investigated, using two or more tests appears to enhance sensitivity of diagnostic algorithms, although some decrease in specificity is observed as well. Sleeping sickness, or human African trypanosomiasis (HAT), is a neglected tropical disease that represents a risk to more than seventy million people in Sub-Saharan Africa. Most cases are caused by infection with Trypanosoma brucei gambiense. Diagnosis of HAT relies on the identification of suspected cases by serological methods, which include recently developed rapid diagnostic tests (RDTs). Current RDTs are produced using native antigens that are purified from live parasites in a laborious and dangerous process. The objective of this study was to evaluate the performance of a new RDT made using recombinant antigens, by screening people in fifteen endemic sites in the Democratic Republic of the Congo. The new RDT was found to be more sensitive than, and as specific as, the reference RDT made using native antigens. It was also more sensitive than CATT, a serological test that has been widely used for decades. While one third of HAT cases were correctly diagnosed by all tests, the other cases were only identified by one or two of the tests. In order to enhance case detection and accelerate elimination of HAT, there may be a need to explore diagnostic strategies that combine two or more screening tests.
Collapse
|
130
|
Stijlemans B, De Baetselier P, Magez S, Van Ginderachter JA, De Trez C. African Trypanosomiasis-Associated Anemia: The Contribution of the Interplay between Parasites and the Mononuclear Phagocyte System. Front Immunol 2018; 9:218. [PMID: 29497418 PMCID: PMC5818406 DOI: 10.3389/fimmu.2018.00218] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/25/2018] [Indexed: 12/16/2022] Open
Abstract
African trypanosomosis (AT) is a chronically debilitating parasitic disease of medical and economic importance for the development of sub-Saharan Africa. The trypanosomes that cause this disease are extracellular protozoan parasites that have developed efficient immune escape mechanisms to manipulate the entire host immune response to allow parasite survival and transmission. During the early stage of infection, a profound pro-inflammatory type 1 activation of the mononuclear phagocyte system (MPS), involving classically activated macrophages (i.e., M1), is required for initial parasite control. Yet, the persistence of this M1-type MPS activation in trypanosusceptible animals causes immunopathology with anemia as the most prominent pathological feature. By contrast, in trypanotolerant animals, there is an induction of IL-10 that promotes the induction of alternatively activated macrophages (M2) and collectively dampens tissue damage. A comparative gene expression analysis between M1 and M2 cells identified galectin-3 (Gal-3) and macrophage migration inhibitory factor (MIF) as novel M1-promoting factors, possibly acting synergistically and in concert with TNF-α during anemia development. While Gal-3 enhances erythrophagocytosis, MIF promotes both myeloid cell recruitment and iron retention within the MPS, thereby depriving iron for erythropoiesis. Hence, the enhanced erythrophagocytosis and suppressed erythropoiesis lead to anemia. Moreover, a thorough investigation using MIF-deficient mice revealed that the underlying mechanisms in AT-associated anemia development in trypanosusceptible and tolerant animals are quite distinct. In trypanosusceptible animals, anemia resembles anemia of inflammation, while in trypanotolerant animals’ hemodilution, mainly caused by hepatosplenomegaly, is an additional factor contributing to anemia. In this review, we give an overview of how trypanosome- and host-derived factors can contribute to trypanosomosis-associated anemia development with a focus on the MPS system. Finally, we will discuss potential intervention strategies to alleviate AT-associated anemia that might also have therapeutic potential.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
131
|
Tesoriero C, Xu YZ, Mumba Ngoyi D, Bentivoglio M. Neural Damage in Experimental Trypanosoma brucei gambiense Infection: The Suprachiasmatic Nucleus. Front Neuroanat 2018; 12:6. [PMID: 29491832 PMCID: PMC5817918 DOI: 10.3389/fnana.2018.00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/12/2018] [Indexed: 01/01/2023] Open
Abstract
Trypanosoma brucei (T. b.) gambiense is the parasite subspecies responsible for most reported cases of human African trypanosomiasis (HAT) or sleeping sickness. This severe infection leads to characteristic disruption of the sleep-wake cycle, recalling attention on the circadian timing system. Most animal models of the disease have been hitherto based on infection of laboratory rodents with the T. b. brucei subspecies, which is not infectious to humans. In these animal models, functional, rather than structural, alterations of the master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), have been reported. Information on the SCN after infection with the human pathogenic T. b. gambiense is instead lacking. The present study was aimed at the examination of the SCN after T. b. gambiense infection of a susceptible rodent, the multimammate mouse, Mastomys natalensis, compared with T. b. brucei infection of the same host species. The animals were examined at 4 and 8 weeks post-infection, when parasites (T. b. gambiense or T. b. brucei) were detected in the brain parenchyma, indicating that the disease was in the encephalitic stage. Neuron and astrocyte changes were examined with Nissl staining, immunophenotyping and quantitative analyses. Interestingly, significant neuronal loss (about 30% reduction) was documented in the SCN during the progression of T. b. gambiense infection. No significant neuronal density changes were found in the SCN of T. b. brucei-infected animals. Neuronal cell counts in the hippocampal dentate gyrus of T. b. gambiense-infected M. natalensis did not point out significant changes, indicating that no widespread neuron loss had occurred in the brain. Marked activation of astrocytes was detected in the SCN after both T. b. gambiense and T. b. brucei infections. Altogether the findings reveal that neurons of the biological clock are highly susceptible to the infection caused by human pathogenic African trypanosomes, which have the capacity to cause permanent partial damage of this structure.
Collapse
Affiliation(s)
- Chiara Tesoriero
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Yuan-Zhong Xu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Dieudonné Mumba Ngoyi
- Institut National de Recherche Biomedicale (INRB), Kinshasa, Democratic Republic of Congo
| | - Marina Bentivoglio
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience (INN), Verona Unit, Verona, Italy
| |
Collapse
|
132
|
Volkov OA, Brockway AJ, Wring SA, Peel M, Chen Z, Phillips MA, De Brabander JK. Species-Selective Pyrimidineamine Inhibitors of Trypanosoma brucei S-Adenosylmethionine Decarboxylase. J Med Chem 2018; 61:1182-1203. [PMID: 29271204 PMCID: PMC5965259 DOI: 10.1021/acs.jmedchem.7b01654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
New therapeutic options are needed for treatment of human African trypanosomiasis (HAT) caused by protozoan parasite Trypanosoma brucei. S-Adenosylmethionine decarboxylase (AdoMetDC) is an essential enzyme in the polyamine pathway of T. brucei. Previous attempts to target this enzyme were thwarted by the lack of brain penetration of the most advanced series. Herein, we describe a T. brucei AdoMetDC inhibitor series based on a pyrimidineamine pharmacophore that we identified by target-based high-throughput screening. The pyrimidineamines showed selectivity for T. brucei AdoMetDC over the human enzyme, inhibited parasite growth in whole-cell assay, and had good predicted blood-brain barrier penetration. The medicinal chemistry program elucidated structure-activity relationships within the series. Features of the series that were required for binding were revealed by determining the X-ray crystal structure of TbAdoMetDC bound to one analog. The pyrimidineamine series provides a novel starting point for an anti-HAT lead optimization.
Collapse
Affiliation(s)
- Oleg A. Volkov
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9038, United States
| | - Anthony J. Brockway
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9038, United States
| | - Stephen A. Wring
- Scynexis, Inc. (now Avista Pharma Solutions), 3501 Tricenter Boulevard, Suite C, Durham, North Carolina 27713, United States
| | - Michael Peel
- Scynexis, Inc. (now Avista Pharma Solutions), 3501 Tricenter Boulevard, Suite C, Durham, North Carolina 27713, United States
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9038, United States
| | - Margaret A. Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9038, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9038, United States
| | - Jef K. De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9038, United States
| |
Collapse
|
133
|
Bauerenol Acetate, the Pentacyclic Triterpenoid from Tabernaemontana longipes, is an Antitrypanosomal Agent. Molecules 2018; 23:molecules23020355. [PMID: 29419735 PMCID: PMC5911922 DOI: 10.3390/molecules23020355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 01/11/2023] Open
Abstract
The Latin American plant Tabernaemontana longipes was studied in this work as a potential source of antiparasitic agents. The chloroform extract of T. longipes leaves was separated into several fractions, and tested for antitrypanosomal activity. One of the fractions displayed significant growth inhibitory activity against Trypanosoma brucei. The active principle in the fraction was isolated, purified, and characterized by NMR and mass spectrometry. The antitrypanosomal agent in the CHCl3 extract of T. longipes leaves is the pentacyclic triterpenoid bauerenol acetate. A metabolite profiling assay suggest that the triterpenoid influences cholesterol metabolism. The molecular target(s) of bauerenol and its acetate, like many other antiparasitic pentacyclic triterpenoids is/are unknown, but they present privileged structural scaffolds that can be explored for structure-based activity optimization studies using phenotypic assays.
Collapse
|
134
|
Molinari J, Moreno SA. Trypanosoma brucei Plimmer & Bradford, 1899 is a synonym of T. evansi (Steel, 1885) according to current knowledge and by application of nomenclature rules. Syst Parasitol 2018; 95:249-256. [PMID: 29411297 DOI: 10.1007/s11230-018-9779-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/19/2018] [Indexed: 12/11/2022]
Abstract
Proper application of the principles of biological nomenclature is fundamental for scientific and technical communication about organisms. As other scientific disciplines, taxonomy inherently is open to change, thus species names cannot be final and immutable. Nevertheless, altering the names of organisms of high economical, medical, or veterinary importance can become a complex challenge between the scientific need to have correct classifications, and the practical ideal of having fixed classifications. Trypanosoma evansi (Steel, 1885), T. brucei Plimmer & Bradford, 1899 and T. equiperdum Doflein, 1901 are important parasites of mammals. According to current knowledge, the three names are synonyms of a single trypanosome species, the valid name of which should be T. evansi by the mandatory application of the Principle of Priority of zoological nomenclature. Subspecies known as T. brucei brucei Plimmer & Bradford, 1899, T. b. gambiense Dutton, 1902 and T. b. rhodesiense Stephens & Fantham, 1910 should be referred to respectively as T. evansi evansi (Steel, 1885), T. e. gambiense and T. e. rhodesiense. The polyphyletic groupings so far known as T. evansi and T. equiperdum should be referred respectively to as surra- and dourine-causing strains of T. e. evansi. Likewise, trypanosomes so far known as T. b. brucei should be referred to as nagana-causing strains of T. e. evansi. Though it modifies the scientific names of flagship human and animal parasites, the amended nomenclature proposed herein should be adopted because it reflects phylogenetic and biological advancements, fixes errors, and is simpler than the existing classificatory system.
Collapse
Affiliation(s)
- Jesús Molinari
- Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 05101, Venezuela.
| | - S Andrea Moreno
- Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 05101, Venezuela
| |
Collapse
|
135
|
Morriswood B, Engstler M. Let's get fISSical: fast in silico synchronization as a new tool for cell division cycle analysis. Parasitology 2018; 145:196-209. [PMID: 28166845 PMCID: PMC5964468 DOI: 10.1017/s0031182017000038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/23/2022]
Abstract
Cell cycle progression is a question of fundamental biological interest. The coordinated duplication and segregation of all cellular structures and organelles is however an extremely complex process, and one which remains only partially understood even in the most intensively researched model organisms. Trypanosomes are in an unusual position in this respect - they are both outstanding model systems for fundamental questions in eukaryotic cell biology, and pathogens that are the causative agents of three of the neglected tropical diseases. As a failure to successfully complete cell division will be deleterious or lethal, analysis of the cell division cycle is of relevance both to basic biology and drug design efforts. Cell division cycle analysis is however experimentally challenging, as the analysis of phenotypes associated with it remains hypothesis-driven and therefore biased. Current methods of analysis are extremely labour-intensive, and cell synchronization remains difficult and unreliable. Consequently, there exists a need - both in basic and applied trypanosome biology - for a global, unbiased, standardized and high-throughput analysis of cell division cycle progression. In this review, the requirements - both practical and computational - for such a system are considered and compared with existing techniques for cell cycle analysis.
Collapse
Affiliation(s)
- Brooke Morriswood
- Department of Cell & Developmental Biology,University of Würzburg,Biocentre, Am Hubland, 97074 Würzburg,Germany
| | - Markus Engstler
- Department of Cell & Developmental Biology,University of Würzburg,Biocentre, Am Hubland, 97074 Würzburg,Germany
| |
Collapse
|
136
|
Cestari I, Stuart K. Transcriptional Regulation of Telomeric Expression Sites and Antigenic Variation in Trypanosomes. Curr Genomics 2018; 19:119-132. [PMID: 29491740 PMCID: PMC5814960 DOI: 10.2174/1389202918666170911161831] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/03/2017] [Accepted: 05/04/2017] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Trypanosoma brucei uses antigenic variation to evade the host antibody clearance by periodically changing its Variant Surface Glycoprotein (VSGs) coat. T. brucei encode over 2,500 VSG genes and pseudogenes, however they transcribe only one VSG gene at time from one of the 20 telomeric Expression Sites (ESs). VSGs are transcribed in a monoallelic fashion by RNA polymerase I from an extranucleolar site named ES body. VSG antigenic switching occurs by transcriptional switching between telomeric ESs or by recombination of the VSG gene expressed. VSG expression is developmentally regulated and its transcription is controlled by epigenetic mechanisms and influenced by a telomere position effect. CONCLUSION Here, we discuss 1) the molecular basis underlying transcription of telomeric ESs and VSG antigenic switching; 2) the current knowledge of VSG monoallelic expression; 3) the role of inositol phosphate pathway in the regulation of VSG expression and switching; and 4) the developmental regulation of Pol I transcription of procyclin and VSG genes.
Collapse
Affiliation(s)
- Igor Cestari
- Center for Infectious Disease Research, Seattle, WA98109, USA
| | - Ken Stuart
- Center for Infectious Disease Research, Seattle, WA98109, USA
- Department of Global Health, University of Washington, Seattle, WA98195, USA
| |
Collapse
|
137
|
Kimuda MP, Noyes H, Mulindwa J, Enyaru J, Alibu VP, Sidibe I, Mumba Ngoyi D, Hertz-Fowler C, MacLeod A, Tastan Bishop Ö, Matovu E, TrypanoGEN Research Group as members of The H3Africa Consortium. No evidence for association between APOL1 kidney disease risk alleles and Human African Trypanosomiasis in two Ugandan populations. PLoS Negl Trop Dis 2018; 12:e0006300. [PMID: 29470556 PMCID: PMC5844566 DOI: 10.1371/journal.pntd.0006300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 03/09/2018] [Accepted: 02/05/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human African trypanosomiasis (HAT) manifests as an acute form caused by Trypanosoma brucei rhodesiense (Tbr) and a chronic form caused by Trypanosoma brucei gambiense (Tbg). Previous studies have suggested a host genetic role in infection outcomes, particularly for APOL1. We have undertaken candidate gene association studies (CGAS) in a Ugandan Tbr and a Tbg HAT endemic area, to determine whether polymorphisms in IL10, IL8, IL4, HLAG, TNFA, TNX4LB, IL6, IFNG, MIF, APOL1, HLAA, IL1B, IL4R, IL12B, IL12R, HP, HPR, and CFH have a role in HAT. METHODOLOGY AND RESULTS We included 238 and 202 participants from the Busoga Tbr and Northwest Uganda Tbg endemic areas respectively. Single Nucleotide Polymorphism (SNP) genotype data were analysed in the CGAS. The study was powered to find odds ratios > 2 but association testing of the SNPs with HAT yielded no positive associations i.e. none significant after correction for multiple testing. However there was strong evidence for no association with Tbr HAT and APOL1 G2 of the size previously reported in the Kabermaido district of Uganda. CONCLUSIONS/SIGNIFICANCE A recent study in the Soroti and Kaberamaido focus in Central Uganda found that the APOL1 G2 allele was strongly associated with protection against Tbr HAT (odds ratio = 0.2, 95% CI: 0.07 to 0.48, p = 0.0001). However, in our study no effect of G2 on Tbr HAT was found, despite being well powered to find a similar sized effect (OR = 0.9281, 95% CI: 0.482 to 1.788, p = 0.8035). It is possible that the G2 allele is protective from Tbr in the Soroti/Kabermaido focus but not in the Iganga district of Busoga, which differ in ethnicity and infection history. Mechanisms underlying HAT infection outcome and virulence are complex and might differ between populations, and likely involve several host, parasite or even environmental factors.
Collapse
Affiliation(s)
- Magambo Phillip Kimuda
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Harry Noyes
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Julius Mulindwa
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - John Enyaru
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | | | - Issa Sidibe
- Unité Maladies à Vecteurs et Biodiversité, Centre International de Recherche-Développement sur l'Elevage en Zone Subhumide (CIRDES), Bobo-Dioulass, Burkina Faso
| | | | | | - Annette MacLeod
- Wellcome Center for Molecular Parasitology, University Place, Glasgow, United Kingdom
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | | |
Collapse
|
138
|
Rijo-Ferreira F, Carvalho T, Afonso C, Sanches-Vaz M, Costa RM, Figueiredo LM, Takahashi JS. Sleeping sickness is a circadian disorder. Nat Commun 2018; 9:62. [PMID: 29302035 PMCID: PMC5754353 DOI: 10.1038/s41467-017-02484-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Sleeping sickness is a fatal disease caused by Trypanosoma brucei, a unicellular parasite that lives in the bloodstream and interstitial spaces of peripheral tissues and the brain. Patients have altered sleep/wake cycles, body temperature, and endocrine profiles, but the underlying causes are unknown. Here, we show that the robust circadian rhythms of mice become phase advanced upon infection, with abnormal activity occurring during the rest phase. This advanced phase is caused by shortening of the circadian period both at the behavioral level as well as at the tissue and cell level. Period shortening is T. brucei specific and independent of the host immune response, as co-culturing parasites with explants or fibroblasts also shortens the clock period, whereas malaria infection does not. We propose that T. brucei causes an advanced circadian rhythm disorder, previously associated only with mutations in clock genes, which leads to changes in the timing of sleep. African sleeping sickness is well known for the alterations of sleeping patterns, but it is not known how circadian biology is altered by the causative pathogen Trypanosoma brucei. Here the authors show T. brucei causes a disorder of the cellular circadian clock that is unrelated to the immune response to the parasite.
Collapse
Affiliation(s)
- Filipa Rijo-Ferreira
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4099-002, Porto, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, USA
| | - Tânia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Cristina Afonso
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal
| | - Margarida Sanches-Vaz
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Rui M Costa
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal
| | - Luísa M Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, USA.
| |
Collapse
|
139
|
Muhanguzi D, Mugenyi A, Bigirwa G, Kamusiime M, Kitibwa A, Akurut GG, Ochwo S, Amanyire W, Okech SG, Hattendorf J, Tweyongyere R. African animal trypanosomiasis as a constraint to livestock health and production in Karamoja region: a detailed qualitative and quantitative assessment. BMC Vet Res 2017; 13:355. [PMID: 29178951 PMCID: PMC5702144 DOI: 10.1186/s12917-017-1285-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/17/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Nagana (African Animal Trypanosomiasis-AAT) and tick-borne diseases (TBDs) constrain livestock production in most parts of sub-Saharan Africa. To this realisation, Uganda government set up an African trypanosomiasis (AT) control unit, which among other activities generates national tsetse control priority maps using apparent tsetse density data. Such maps underestimate mechanically transmitted AAT and thus ought to be refined using actual AT prevalence data. We therefore set out to generate up-to-date cattle and donkey trypanosomiasis prevalence data as well as find out the constraints to livestock production in Karamoja region in a bid to re-define AT control priority in this region. RESULTS Livestock keepers and animal health workers indicated that TBDs and AAT were the most important livestock diseases in Karamoja region. The prevalence of Trypanosoma spp. in cattle and donkeys was 16.3% (95% CI: 12.4-21.1%) and 32.4% (95% CI; 20.2-47.6%) respectively. Trypanosoma vivax (12.1%) and Trypanosoma congolense savannah (29.6%) were the most prevalent Trypanosoma spp. in cattle and donkeys respectively. Majority of the cattle (85.7%) and more than half of the donkey (57.1%) herds were positive for Trypanosoma spp. CONCLUSIONS African animal trypanosomiasis and TBDs are the most important constraints to livestock production in Karamoja region. In order to improve livestock production and hence Karamajong livelihoods, government of Uganda and her development partners will need to invest in livestock health programs particularly targeting tsetse and TBD control.
Collapse
Affiliation(s)
- Dennis Muhanguzi
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Albert Mugenyi
- Coordinating Office for Control of Trypanosomiasis in Uganda, Ministry of Agriculture, Animal Industry and Fisheries, Plot 78, Buganda Road, P. O. Box: 16345 Wandegeya, Kampala, Uganda
| | - Godfrey Bigirwa
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | | | - Ann Kitibwa
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Grace Gloria Akurut
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Sylvester Ochwo
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Wilson Amanyire
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Samuel George Okech
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Jan Hattendorf
- Swiss Tropical Institute, Socinstrasse 57, -4002 Basel, CH Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Robert Tweyongyere
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| |
Collapse
|
140
|
Abry MF, Kimenyi KM, Masiga D, Kulohoma BW. Comparative genomics identifies male accessory gland proteins in five Glossina species. Wellcome Open Res 2017; 2:73. [PMID: 29260004 PMCID: PMC5721568 DOI: 10.12688/wellcomeopenres.12445.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 01/07/2023] Open
Abstract
Accessory gland proteins (ACPs) are important reproductive proteins produced by the male accessory glands (MAGs) of most insect species. These proteins are essential for male insect fertility, and are transferred alongside semen to females during copulation. ACPs are poorly characterized in
Glossina species (tsetse fly), the principal vector of the parasite that causes life-threatening Human African Trypanosomiasis and Animal trypanosomiasis in endemic regions in Africa. The tsetse fly has a peculiar reproductive cycle because of the absence of oviposition. Females mate once and store sperm in a spermathecal, and produce a single fully developed larva at a time that pupates within minutes of exiting their uterus. This slow reproductive cycle, compared to other insects, significantly restricts reproduction to only 3 to 6 larvae per female lifespan. This unique reproductive cycle is an attractive vector control strategy entry point. We exploit comparative genomics approaches to explore the diversity of ACPs in the recently available whole genome sequence data from five tsetse fly species (
Glossina morsitans, G. austeni, G. brevipalpis, G. pallidipes and
G. fuscipes). We used previously described ACPs in
Drosophila melanogaster and
Anopheles gambiae as reference sequences. We identified 36, 27, 31, 29 and 33 diverse ACP orthologous genes in
G. austeni, G. brevipalpis, G. fuscipes, G. pallidipes and
G. morsitans genomes respectively, which we classified into 21 functional classes. Our findings provide genetic evidence of MAG proteins in five recently sequenced
Glossina genomes. It highlights new avenues for molecular studies that evaluate potential field control strategies of these important vectors of human and animal disease.
Collapse
Affiliation(s)
- Muna F Abry
- Center for Biotechnology and Bioinformatics, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya.,International Centre for Insect Physiology and Ecology, P.O. Box 30772, Nairobi, 00100, Kenya
| | - Kelvin M Kimenyi
- Center for Biotechnology and Bioinformatics, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya.,International Centre for Insect Physiology and Ecology, P.O. Box 30772, Nairobi, 00100, Kenya
| | - Daniel Masiga
- International Centre for Insect Physiology and Ecology, P.O. Box 30772, Nairobi, 00100, Kenya
| | - Benard W Kulohoma
- Center for Biotechnology and Bioinformatics, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya.,International Centre for Insect Physiology and Ecology, P.O. Box 30772, Nairobi, 00100, Kenya
| |
Collapse
|
141
|
Thompson AM, Marshall AJ, Maes L, Yarlett N, Bacchi CJ, Gaukel E, Wring SA, Launay D, Braillard S, Chatelain E, Mowbray CE, Denny WA. Assessment of a pretomanid analogue library for African trypanosomiasis: Hit-to-lead studies on 6-substituted 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 8-oxides. Bioorg Med Chem Lett 2017; 28:207-213. [PMID: 29191556 PMCID: PMC5840523 DOI: 10.1016/j.bmcl.2017.10.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/18/2017] [Accepted: 10/26/2017] [Indexed: 01/16/2023]
Abstract
A 900 compound nitroimidazole-based library derived from our pretomanid backup program with TB Alliance was screened for utility against human African trypanosomiasis (HAT) by the Drugs for Neglected Diseases initiative. Potent hits included 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 8-oxides, which surprisingly displayed good metabolic stability and excellent cell permeability. Following comprehensive mouse pharmacokinetic assessments on four hits and determination of the most active chiral form, a thiazine oxide counterpart of pretomanid (24) was identified as the best lead. With once daily oral dosing, this compound delivered complete cures in an acute infection mouse model of HAT and increased survival times in a stage 2 model, implying the need for more prolonged CNS exposure. In preliminary SAR findings, antitrypanosomal activity was reduced by removal of the benzylic methylene but enhanced through a phenylpyridine-based side chain, providing important direction for future studies.
Collapse
Affiliation(s)
- Andrew M Thompson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Andrew J Marshall
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Nigel Yarlett
- Haskins Laboratories, Pace University, NY 10038, USA
| | | | - Eric Gaukel
- Scynexis, Inc., Research Triangle Park, NC 27713, USA
| | | | - Delphine Launay
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Stephanie Braillard
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Charles E Mowbray
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
142
|
Bukachi SA, Wandibba S, Nyamongo IK. The socio-economic burden of human African trypanosomiasis and the coping strategies of households in the South Western Kenya foci. PLoS Negl Trop Dis 2017; 11:e0006002. [PMID: 29073144 PMCID: PMC5675461 DOI: 10.1371/journal.pntd.0006002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/07/2017] [Accepted: 09/30/2017] [Indexed: 12/03/2022] Open
Abstract
Introduction Human African Trypanosomiasis (HAT), a disease caused by protozoan parasites transmitted by tsetse flies, is an important neglected tropical disease endemic in remote regions of sub-Saharan Africa. Although the determination of the burden of HAT has been based on incidence, mortality and morbidity rates, the true burden of HAT goes beyond these metrics. This study sought to establish the socio-economic burden that households with HAT faced and the coping strategies they employed to deal with the increased burden. Materials and methods A mixed methods approach was used and data were obtained through: review of hospital records; structured interviews (152); key informant interviews (11); case narratives (12) and focus group discussions (15) with participants drawn from sleeping sickness patients in the south western HAT foci in Kenya. Quantitative data were analysed using descriptive statistics while qualitative data was analysed based on emerging themes. Results Socio-economic impacts included, disruption of daily activities, food insecurity, neglect of homestead, poor academic performance/school drop-outs and death. Delayed diagnosis of HAT caused 93% of the affected households to experience an increase in financial expenditure (ranging from US$ 60–170) in seeking treatment. Out of these, 81.5% experienced difficulties in raising money for treatment resorting to various ways of raising it. The coping strategies employed to deal with the increased financial expenditure included: sale of agricultural produce (64%); seeking assistance from family and friends (54%); sale/lease of family assets (22%); seeking credit (22%) and use of personal savings (17%). Conclusion and recommendation Coping strategies outlined in this study impacted negatively on the affected households leading to further food insecurity and impoverishment. Calculation of the true burden of disease needs to go beyond incidence, mortality and morbidity rates to capture socio-economic variables entailed in seeking treatment and coping strategies of HAT affected households. Sleeping sickness affects people often living in remote rural areas and those who mainly depend on subsistence agriculture. We carried out a study among former sleeping sickness patients in Kenya to find out the socio-economic challenges they faced in seeking treatment and the coping strategies they used to deal with them. This is important because the socio-economic effects of sleeping sickness and its coping strategies have not been adequately researched on yet it is on the strength of these impacts that policies and control programmes are formulated. If the real burden of sleeping sickness is not known, then it will continue to be neglected in terms of the attention it receives world-wide. Sleeping sickness patients and their households spent a lot of money seeking treatment besides facing challenges of disruption of daily activities, food insecurity, neglect of homesteads, poor academic performance/school drop-outs and death. Majority of them faced difficulties in raising the money required for seeking treatment hence resorted to various coping strategies. These negatively impacted on them and their households, already living on less than a dollar per day. There is need to pay attention to these effects of sleeping sickness in establishing the real burden of the disease.
Collapse
Affiliation(s)
- Salome A. Bukachi
- Institute of Anthropology, Gender and African Studies, University of Nairobi, Nairobi, Kenya
- * E-mail:
| | - Simiyu Wandibba
- Institute of Anthropology, Gender and African Studies, University of Nairobi, Nairobi, Kenya
| | - Isaac K. Nyamongo
- Institute of Anthropology, Gender and African Studies, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
143
|
Simwango M, Ngonyoka A, Nnko HJ, Salekwa LP, Ole-Neselle M, Kimera SI, Gwakisa PS. Molecular prevalence of trypanosome infections in cattle and tsetse flies in the Maasai Steppe, northern Tanzania. Parasit Vectors 2017; 10:507. [PMID: 29061160 PMCID: PMC5654092 DOI: 10.1186/s13071-017-2411-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 09/28/2017] [Indexed: 11/16/2022] Open
Abstract
Background African trypanosomosis is a disease of public health and economic importance that poses a major threat to the livelihoods of people living in the Maasai Steppe, where there is a significant interaction between people, livestock and wildlife. The vulnerability of the Maasai people to the disease is enhanced by the interaction of their cattle, which act as vehicles for trypanosomes, and tsetse flies close to wildlife in protected areas. This study was aimed at identification of trypanosome infections circulating in cattle and tsetse flies in order to understand their distribution and prevalence in livestock/wildlife interface areas in the Maasai Steppe. Methods A total of 1002 cattle and 886 tsetse flies were sampled from June 2015 to February 2016 in five villages and PCR was conducted to amplify the internal transcribed spacer 1 (ITS1) from trypanosomes. All Trypanosoma brucei-positive samples were further tested for the presence of the serum resistance-associated (SRA) gene found in human-infective trypanosomes using the SRA-LAMP technique. Results The overall prevalence of trypanosome infections was 17.2% in cattle and 3.4% in tsetse flies. Using a nested PCR, prevalence and abundance of five trypanosome species, Trypanosoma vivax, T. brucei, T. simiae, T. theileri and T. congolense, were determined, which varied with season and location. The highest prevalence of the identified trypanosome species was recorded at the end of wet season with an exception of T. brucei which was high at the beginning of the wet season. No human-infective trypanosomes were detected in both cattle and tsetse fly DNA. Conclusions This study confirms that seasonality and location have a significant contribution to the prevalence of trypanosome species in both mammalian and vector hosts. These results are important for designing of community-wide vector and disease control interventions and planning of sustainable regimes for reduction of the burden of trypanosomosis in endemic pastoral areas, such as the Maasai Steppe in northern Tanzania.
Collapse
Affiliation(s)
- Mary Simwango
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture (SUA), P.O box 3015, Morogoro, Tanzania.
| | - Anibariki Ngonyoka
- Nelson Mandela African Institution of Science and Technology, School of Life Sciences and Bioengineering, P. O. Box 447, Arusha, Tanzania.,Department of Geography and Environmental Studies, University of Dodoma, P. O. Box 395, Dodoma, Tanzania
| | - Happiness J Nnko
- Nelson Mandela African Institution of Science and Technology, School of Life Sciences and Bioengineering, P. O. Box 447, Arusha, Tanzania.,Department of Geography and Environmental Studies, University of Dodoma, P. O. Box 395, Dodoma, Tanzania
| | - Linda P Salekwa
- Genome Sciences Centre, Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Moses Ole-Neselle
- FAO Emergency Centre for Transboundary Animal Disease (ECTAD), P.O Box 2, Dar es Salaam, Tanzania
| | - Sharadhuli I Kimera
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture (SUA), P.O box 3015, Morogoro, Tanzania
| | - Paul S Gwakisa
- Genome Sciences Centre, Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
144
|
N’Djetchi MK, Ilboudo H, Koffi M, Kaboré J, Kaboré JW, Kaba D, Courtin F, Coulibaly B, Fauret P, Kouakou L, Ravel S, Deborggraeve S, Solano P, De Meeûs T, Bucheton B, Jamonneau V. The study of trypanosome species circulating in domestic animals in two human African trypanosomiasis foci of Côte d'Ivoire identifies pigs and cattle as potential reservoirs of Trypanosoma brucei gambiense. PLoS Negl Trop Dis 2017; 11:e0005993. [PMID: 29045405 PMCID: PMC5662240 DOI: 10.1371/journal.pntd.0005993] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 10/30/2017] [Accepted: 09/25/2017] [Indexed: 01/14/2023] Open
Abstract
Background Important control efforts have led to a significant reduction of the prevalence of human African trypanosomiasis (HAT) in Côte d’Ivoire, but the disease is still present in several foci. The existence of an animal reservoir of Trypanosoma brucei gambiense may explain disease persistence in these foci where animal breeding is an important source of income but where the prevalence of animal African trypanosomiasis (AAT) is unknown. The aim of this study was to identify the trypanosome species circulating in domestic animals in both Bonon and Sinfra HAT endemic foci. Methodology/Principal findings 552 domestic animals (goats, pigs, cattle and sheep) were included. Blood samples were tested for trypanosomes by microscopic observation, species-specific PCR for T. brucei sl, T. congolense, T. vivax and subspecies-specific PCR for T. b. gambiense and T. b. gambiense immune trypanolysis (TL). Infection rates varied significantly between animal species and were by far the highest in pigs (30%). T. brucei s.l was the most prevalent trypanosome species (13.7%) followed by T. congolense. No T. b. gambiense was identified by PCR while high TL positivity rates were observed using T. b. gambiense specific variants (up to 27.6% for pigs in the Bonon focus). Conclusion This study shows that domestic animals are highly infected by trypanosomes in the studied foci. This was particularly true for pigs, possibly due to a higher exposure of these animals to tsetse flies. Whereas T. brucei s.l. was the most prevalent species, discordant results were obtained between PCR and TL regarding T. b. gambiense identification. It is therefore crucial to develop better tools to study the epidemiological role of potential animal reservoir for T. b. gambiense. Our study illustrates the importance of “one health” approaches to reach HAT elimination and contribute to AAT control in the studied foci. In Africa, significant efforts to control human African trypanosomiasis (HAT) over the past three decades have drastically reduced the prevalence of the disease and elimination seems today an achievable goal. However, potential animal reservoirs of Trypanosoma brucei gambiense may compromise this ambitious objective. In the Bonon and Sinfra HAT endemic foci in Côte d’Ivoire, no recent data are available about the prevalence of animal African trypanosomiasis (AAT). The aim of this study was to identify trypanosomes circulating in domestic animals in these two HAT foci using serological, parasitological and molecular tools. We showed that T. brucei s.l. and T. congolense were the most prevalent trypanosome species and that pigs and cattle were the most infected animals. Discordant results were observed between the T. b. gambiense specific molecular and serological tools and the presence of an animal reservoir for T. b. gambiense remains unclear. Nevertheless, improved control strategies can be proposed based on this study to reach HAT elimination and contribute to AAT control in the study areas.
Collapse
Affiliation(s)
- Martial Kassi N’Djetchi
- Laboratoire des Interactions Hôte-Microorganisme-Environnement et Evolution, Unité de Formation et de Recherche Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Hamidou Ilboudo
- Unité de recherches sur les bases biologiques de la lutte intégrée, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Mathurin Koffi
- Laboratoire des Interactions Hôte-Microorganisme-Environnement et Evolution, Unité de Formation et de Recherche Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Jacques Kaboré
- Unité de recherches sur les bases biologiques de la lutte intégrée, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
- Unité de Formation et de Recherche Sciences et Techniques, Université Nazi Boni, Bobo-Dioulasso, Burkina-Faso
| | - Justin Windingoudi Kaboré
- Unité de recherches sur les bases biologiques de la lutte intégrée, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Dramane Kaba
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Fabrice Courtin
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Bamoro Coulibaly
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Pierre Fauret
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Lingué Kouakou
- Programme National d’Elimination de la Trypanosomose Humaine Africaine, Ministère de la Santé et de l’Hygiène Publique, Abidjan, Côte d’Ivoire
| | - Sophie Ravel
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Stijn Deborggraeve
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Philippe Solano
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Thierry De Meeûs
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Bruno Bucheton
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Vincent Jamonneau
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
- * E-mail:
| |
Collapse
|
145
|
Crozier TWM, Tinti M, Larance M, Lamond AI, Ferguson MAJ. Prediction of Protein Complexes in Trypanosoma brucei by Protein Correlation Profiling Mass Spectrometry and Machine Learning. Mol Cell Proteomics 2017; 16:2254-2267. [PMID: 29042480 PMCID: PMC5724185 DOI: 10.1074/mcp.o117.068122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/04/2017] [Indexed: 01/10/2023] Open
Abstract
A disproportionate number of predicted proteins from the genome sequence of the protozoan parasite Trypanosoma brucei, an important human and animal pathogen, are hypothetical proteins of unknown function. This paper describes a protein correlation profiling mass spectrometry approach, using two size exclusion and one ion exchange chromatography systems, to derive sets of predicted protein complexes in this organism by hierarchical clustering and machine learning methods. These hypothesis-generating proteomic data are provided in an open access online data visualization environment (http://134.36.66.166:8083/complex_explorer). The data can be searched conveniently via a user friendly, custom graphical interface. We provide examples of both potential new subunits of known protein complexes and of novel trypanosome complexes of suggested function, contributing to improving the functional annotation of the trypanosome proteome. Data are available via ProteomeXchange with identifier PXD005968.
Collapse
Affiliation(s)
- Thomas W M Crozier
- From the ‡Division of Biological Chemistry and Drug Discovery and.,§Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD2 1NW, UK
| | - Michele Tinti
- From the ‡Division of Biological Chemistry and Drug Discovery and
| | - Mark Larance
- §Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD2 1NW, UK
| | - Angus I Lamond
- §Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD2 1NW, UK
| | | |
Collapse
|
146
|
Ridewood S, Ooi CP, Hall B, Trenaman A, Wand NV, Sioutas G, Scherwitzl I, Rudenko G. The role of genomic location and flanking 3'UTR in the generation of functional levels of variant surface glycoprotein in Trypanosoma brucei. Mol Microbiol 2017; 106:614-634. [PMID: 28906055 PMCID: PMC5698767 DOI: 10.1111/mmi.13838] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
Trypanosoma brucei faces relentless immune attack in the mammalian bloodstream, where it is protected by an essential coat of Variant Surface Glycoprotein (VSG) comprising ∼10% total protein. The active VSG gene is in a Pol I‐transcribed telomeric expression site (ES). We investigated factors mediating these extremely high levels of VSG expression by inserting ectopic VSG117 into VSG221 expressing T. brucei. Mutational analysis of the ectopic VSG 3′UTR demonstrated the essentiality of a conserved 16‐mer for mRNA stability. Expressing ectopic VSG117 from different genomic locations showed that functional VSG levels could be produced from a gene 60 kb upstream of its normal telomeric location. High, but very heterogeneous levels of VSG117 were obtained from the Pol I‐transcribed rDNA. Blocking VSG synthesis normally triggers a precise precytokinesis cell‐cycle checkpoint. VSG117 expression from the rDNA was not adequate for functional complementation, and the stalled cells arrested prior to cytokinesis. However, VSG levels were not consistently low enough to trigger a characteristic ‘VSG synthesis block’ cell‐cycle checkpoint, as some cells reinitiated S phase. This demonstrates the essentiality of a Pol I‐transcribed ES, as well as conserved VSG 3′UTR 16‐mer sequences for the generation of functional levels of VSG expression in bloodstream form T. brucei.
Collapse
Affiliation(s)
- Sophie Ridewood
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Cher-Pheng Ooi
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Belinda Hall
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Anna Trenaman
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Nadina Vasileva Wand
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Georgios Sioutas
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Iris Scherwitzl
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Gloria Rudenko
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
147
|
Mwiinde AM, Simuunza M, Namangala B, Chama-Chiliba CM, Machila N, Anderson N, Shaw A, Welburn SC. Estimating the economic and social consequences for patients diagnosed with human African trypanosomiasis in Muchinga, Lusaka and Eastern Provinces of Zambia (2004-2014). Infect Dis Poverty 2017; 6:150. [PMID: 29017597 PMCID: PMC5634962 DOI: 10.1186/s40249-017-0363-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/19/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute human African trypanosomiasis (rHAT) caused by Trypanosoma brucei rhodesiense is associated with high mortality and is fatal if left untreated. Only a few studies have examined the psychological, social and economic impacts of rHAT. In this study, mixed qualitative and quantitative research methods were used to evaluate the socio-economic impacts of rHAT in Mambwe, Rufunsa, Mpika and Chama Districts of Zambia. METHODS Individuals diagnosed with rHAT from 2004 to 2014 were traced using hospital records and discussions with communities. Either they, or their families, were interviewed using a structured questionnaire and focus group discussions were conducted with affected communities. The burden of the disease was investigated using disability adjusted life years (DALYs), with and without discounting and age-weighting. The impact of long-term disabilities on the rHAT burden was also investigated. RESULTS Sixty four cases were identified in the study. The majority were identified in second stage, and the mortality rate was high (12.5%). The total number of DALYs was 285 without discounting or age-weighting. When long-term disabilities were included this estimate increased by 50% to 462. The proportion of years lived with disability (YLD) increased from 6.4% to 37% of the undiscounted and un-age-weighted DALY total. When a more active surveillance method was applied in 2013-2014 the cases identified increased dramatically, suggesting a high level of under-reporting. Similarly, the proportion of females increased substantially, indicating that passive surveillance may be especially failing this group. An average of 4.9 months of productive time was lost per patient as a consequence of infection. The health consequences included pain, amnesia and physical disability. The social consequences included stigma, dropping out of education, loss of friends and self-esteem. Results obtained from focus group discussions revealed misconceptions among community members which could be attributed to lack of knowledge about rHAT. CONCLUSIONS The social and economic impact of rHAT on rural households and communities is substantial. Improved surveillance and strengthening of local medical services are needed for early and accurate diagnosis. Disease prevention should be prioritised in communities at risk of rHAT, and interventions put in place to prevent zoonotic disease spill over from domestic animals and wildlife. Supportive measures to mitigate the long-term effects of disability due to rHAT are needed.
Collapse
Affiliation(s)
- Allan Mayaba Mwiinde
- School of Veterinary Medicine, University of Zambia, Lusaka, Zambia. .,School of Veterinary Medicine Department of Disease Control, University of Zambia, P.O Box 32379, Lusaka, Zambia.
| | - Martin Simuunza
- School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | | | | | - Noreen Machila
- School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.,Division of Infection and Pathway Medicine and Centre for Infectious Diseases, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, Scotland, EH16 4SB, UK
| | - Neil Anderson
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Roslin, EH25 9RG, UK
| | - Alexandra Shaw
- Division of Infection and Pathway Medicine and Centre for Infectious Diseases, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, Scotland, EH16 4SB, UK.,AP Consultants, Walworth Enterprise Centre, Andover, SP10 5AP, UK
| | - Susan C Welburn
- Division of Infection and Pathway Medicine and Centre for Infectious Diseases, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, Scotland, EH16 4SB, UK
| |
Collapse
|
148
|
Berninger M, Schmidt I, Ponte-Sucre A, Holzgrabe U. Novel lead compounds in pre-clinical development against African sleeping sickness. MEDCHEMCOMM 2017; 8:1872-1890. [PMID: 30108710 PMCID: PMC6072528 DOI: 10.1039/c7md00280g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/29/2017] [Indexed: 01/21/2023]
Abstract
Human African trypanosomiasis (HAT), also known as African sleeping sickness, is caused by parasitic protozoa of the genus Trypanosoma. As the disease progresses, the parasites cross the blood brain barrier and are lethal for the patients if the disease is left untreated. Current therapies suffer from several drawbacks due to e.g. toxicity of the respective compounds or resistance to approved antitrypanosomal drugs. In this review, the different strategies of drug development against HAT are considered, namely the target-based approach, the phenotypic high throughput screening and the drug repurposing strategy. The most promising compounds emerging from these approaches entering an in vivo evaluation are mentioned herein. Of note, it may turn out to be difficult to confirm in vitro activity in an animal model of infection; however, possible reasons for the missing efficacy in unsuccessful in vivo studies are discussed.
Collapse
Affiliation(s)
- Michael Berninger
- Institute of Pharmacy and Food Chemistry , University of Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Ines Schmidt
- Institute of Pharmacy and Food Chemistry , University of Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Alicia Ponte-Sucre
- Laboratory of Molecular Physiology , Institute of Experimental Medicine , Luis Razetti School of Medicine , Faculty of Medicine , Universidad Central de Venezuela Caracas , Venezuela . Tel: +0931 31 85461
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry , University of Würzburg , Am Hubland , 97074 Würzburg , Germany .
| |
Collapse
|
149
|
Kamidi CM, Saarman NP, Dion K, Mireji PO, Ouma C, Murilla G, Aksoy S, Schnaufer A, Caccone A. Multiple evolutionary origins of Trypanosoma evansi in Kenya. PLoS Negl Trop Dis 2017; 11:e0005895. [PMID: 28880965 PMCID: PMC5605091 DOI: 10.1371/journal.pntd.0005895] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/19/2017] [Accepted: 08/22/2017] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma evansi is the parasite causing surra, a form of trypanosomiasis in camels and other livestock, and a serious economic burden in Kenya and many other parts of the world. Trypanosoma evansi transmission can be sustained mechanically by tabanid and Stomoxys biting flies, whereas the closely related African trypanosomes T. brucei brucei and T. b. rhodesiense require cyclical development in tsetse flies (genus Glossina) for transmission. In this study, we investigated the evolutionary origins of T. evansi. We used 15 polymorphic microsatellites to quantify levels and patterns of genetic diversity among 41 T. evansi isolates and 66 isolates of T. b. brucei (n = 51) and T. b. rhodesiense (n = 15), including many from Kenya, a region where T. evansi may have evolved from T. brucei. We found that T. evansi strains belong to at least two distinct T. brucei genetic units and contain genetic diversity that is similar to that in T. brucei strains. Results indicated that the 41 T. evansi isolates originated from multiple T. brucei strains from different genetic backgrounds, implying independent origins of T. evansi from T. brucei strains. This surprising finding further suggested that the acquisition of the ability of T. evansi to be transmitted mechanically, and thus the ability to escape the obligate link with the African tsetse fly vector, has occurred repeatedly. These findings, if confirmed, have epidemiological implications, as T. brucei strains from different genetic backgrounds can become either causative agents of a dangerous, cosmopolitan livestock disease or of a lethal human disease, like for T. b. rhodesiense.
Collapse
Affiliation(s)
- Christine M. Kamidi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, United States of America
| | - Norah P. Saarman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Kirstin Dion
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Paul O. Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, United States of America
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Grace Murilla
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Serap Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, United States of America
| | - Achim Schnaufer
- Centre for Immunity, Infection & Evolution, and Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Adalgisa Caccone
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, United States of America
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, United States of America
| |
Collapse
|
150
|
Abry MF, Kimenyi KM, Masiga DK, Kulohoma BW. Comparative genomics identifies male accessory gland proteins in five Glossina species. Wellcome Open Res 2017; 2:73. [DOI: 10.12688/wellcomeopenres.12445.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2017] [Indexed: 11/20/2022] Open
Abstract
Accessory gland proteins (ACPs) are important reproductive proteins produced by the male accessory glands (MAGs) of most insect species. These proteins are essential for male insect fertility, and are transferred alongside semen to females during copulation. ACPs are poorly characterized in Glossina species (tsetse fly), the principal vector of the parasite that causes life-threatening Human African Trypanosomiasis and Animal trypanosomiasis in endemic regions in Africa. The tsetse fly has a peculiar reproductive cycle because of the absence of oviposition. Females mate once and store sperm in a spermathecal, and produce a single fully developed larva at a time that pupates within minutes of exiting their uterus. This slow reproductive cycle, compared to other insects, significantly restricts reproduction to only 3 to 6 larvae per female lifespan. This unique reproductive cycle is an attractive vector control strategy entry point. We exploit comparative genomics approaches to explore the diversity of ACPs in the recently available whole genome sequence data from five tsetse fly species (Glossina morsitans, G. austeni, G. brevipalpis, G. pallidipes and G. fuscipes). We used previously described ACPs in Drosophila melanogaster and Anopheles gambiae as reference sequences. We identified 36, 27, 31, 29 and 33 diverse ACP orthologous genes in G. austeni, G. brevipalpis, G. fuscipes, G. pallidipes and G. morsitans genomes respectively, which we classified into 21 functional classes. Our findings provide genetic evidence of MAG proteins in five recently sequenced Glossina genomes. It provides new avenues for molecular studies that evaluate potential field control strategies of these important vectors of human and animal disease.
Collapse
|