101
|
Men S, Yu Y, Zhang Y, Wang Y, Qian Q, Li W, Yin C. Methylation Landscape of RUNX3 Promoter Region as a Predictive Marker for Th1/Th2 Imbalance in Bronchiolitis. Med Sci Monit 2019; 25:7795-7807. [PMID: 31622282 PMCID: PMC6820333 DOI: 10.12659/msm.917196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The methylation status of RUNX3 promoter region, its impact on RUNX3 gene expression, and Th1/Th2 imbalance are unknown in bronchiolitis. This study aimed to explore the predictors of bronchiolitis developing into asthma. Material/Methods The methylation status of RUNX3 promoter was assessed using Illumina HiSeq platform method. The relative RUNX3 mRNA levels in PBMCs were measured by qRT-PCR. Serum IL-4 and IFN-γ concentrations were measured by ELISA. Results A series of sites with significantly higher levels of methylation as compared to their corresponding controls were identified, including 24 sites in group Ba vs. group Cn, 13 sites in group Ba vs. group Ca, 7 sites in group Ba vs. group Bn, 16 sites in group Bn vs. group Cn, 11 sites in group Ca vs. group Cn, and 23 sites in group B vs. group C; P<0.05. The relative mRNA levels in group Ba were significantly lower than those in groups Cn, Ca, Bn; P<0.05. The serum IL-4 concentrations in group Ba were significantly higher than those in group Cn; P<0.05. The serum IFN-γ concentrations in group Ba were significantly lower than those in groups Cn, Ca, Bn; P<0.05. Correlation analysis showed that differentially methylated RUNX3 promoter region sites were significantly negatively correlated with levels of relative RUNX3 mRNA and IFN-γ, and were significantly positively correlated with IL-4 levels. Conclusions The methylation status of RUNX3 promoter region plays a role in Th1/Th2 imbalance by silencing RUNX3 gene expression, which can serve as predictive marker for the development of bronchiolitis into asthma.
Collapse
Affiliation(s)
- Shuai Men
- Pediatric Asthma Department, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, China (mainland)
| | - Yanyan Yu
- Pediatric Asthma Department, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, China (mainland)
| | - Yuhong Zhang
- Pediatric Asthma Department, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, China (mainland)
| | - Yifen Wang
- Pediatric Asthma Department, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, China (mainland)
| | - Qian Qian
- Pediatric Asthma Department, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, China (mainland)
| | - Wei Li
- Pediatric Asthma Department, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, China (mainland)
| | - Chuang Yin
- Pediatric Asthma Department, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, China (mainland)
| |
Collapse
|
102
|
Zeng X, Qu X, Zhao C, Xu L, Hou K, Liu Y, Zhang N, Feng J, Shi S, Zhang L, Xiao J, Guo Z, Teng Y, Che X. FEN1 mediates miR-200a methylation and promotes breast cancer cell growth via MET and EGFR signaling. FASEB J 2019; 33:10717-10730. [PMID: 31266372 DOI: 10.1096/fj.201900273r] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Flap endonuclease 1 (FEN1) is recognized as a pivotal factor in DNA replication, long-patch excision repair, and telomere maintenance. Excessive FEN1 expression has been reported to be closely associated with cancer progression, but the specific mechanism has not yet been explored. In the present study, we demonstrated that FEN1 promoted breast cancer cell proliferation via an epigenetic mechanism of FEN1-mediated up-regulation of DNA methyltransferase (DNMT)1 and DNMT3a. FEN1 was proved to interact with DNMT3a through proliferating cell nuclear antigen (PCNA) to suppress microRNA (miR)-200a-5p expression mediated by methylation. Furthermore, miR-200a-5p was identified to repress breast cancer cell proliferation by inhibiting the expression of its target genes, hepatocyte growth factor (MET), and epidermal growth factor receptor (EGFR). Overall, our data surprisingly demonstrate that FEN1 promotes breast cancer cell growth via the formation of FEN1/PCNA/DNMT3a complex to inhibit miR-200a expression by DNMT-mediated methylation and to recover the target genes expression of miR-200a, MET, and EGFR. The novel epigenetic mechanism of FEN1 on proliferation promotion provides a significant clue that FEN1 might serve as a predictive biomarker and therapeutic target for breast cancer.-Zeng, X., Qu, X., Zhao, C., Xu, L., Hou, K., Liu, Y., Zhang, N., Feng, J., Shi, S., Zhang, L., Xiao, J., Guo, Z., Teng, Y., Che, X. FEN1 mediates miR-200a methylation and promotes breast cancer cell growth via MET and EGFR signaling.
Collapse
Affiliation(s)
- Xue Zeng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Department of Radiotherapy, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Chenyang Zhao
- The Research Center for Medical Genomics, China Medical University, Shenyang, China
| | - Lu Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Na Zhang
- Department of Radiotherapy, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jing Feng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Sha Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Lingyun Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Jiawen Xiao
- Department of Medical Oncology, Shenyang Fifth People Hospital, Shenyang, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yuee Teng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
103
|
Ye F, Huang J, Wang H, Luo C, Zhao K. Targeting epigenetic machinery: Emerging novel allosteric inhibitors. Pharmacol Ther 2019; 204:107406. [PMID: 31521697 DOI: 10.1016/j.pharmthera.2019.107406] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Epigenetics has emerged as an extremely exciting fast-growing area of biomedical research in post genome era. Epigenetic dysfunction is tightly related with various diseases such as cancer and aging related degeneration, potentiating epigenetics modulators as important therapeutics targets. Indeed, inhibitors of histone deacetylase and DNA methyltransferase have been approved for treating blood tumor malignancies, whereas inhibitors of histone methyltransferase and histone acetyl-lysine recognizer bromodomain are in clinical stage. However, it remains a great challenge to discover potent and selective inhibitors by targeting catalytic site, as the same subfamily of epigenetic enzymes often share high sequence identity and very conserved catalytic core pocket. It is well known that epigenetic modifications are usually carried out by multi-protein complexes, and activation of catalytic subunit is often tightly regulated by other interactive protein component, especially in disease conditions. Therefore, it is not unusual that epigenetic complex machinery may exhibit allosteric regulation site induced by protein-protein interactions. Targeting allosteric site emerges as a compelling alternative strategy to develop epigenetic drugs with enhanced druggability and pharmacological profiles. In this review, we highlight recent progress in the development of allosteric inhibitors for epigenetic complexes through targeting protein-protein interactions. We also summarized the status of clinical applications of those inhibitors. Finally, we provide perspectives of future novel allosteric epigenetic machinery modulators emerging from otherwise undruggable single protein target.
Collapse
Affiliation(s)
- Fei Ye
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jing Huang
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, China; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Cheng Luo
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, South Dong Qing Road, Guizhou 550025, China.
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, China; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
104
|
Veland N, Lu Y, Hardikar S, Gaddis S, Zeng Y, Liu B, Estecio MR, Takata Y, Lin K, Tomida MW, Shen J, Saha D, Gowher H, Zhao H, Chen T. DNMT3L facilitates DNA methylation partly by maintaining DNMT3A stability in mouse embryonic stem cells. Nucleic Acids Res 2019; 47:152-167. [PMID: 30321403 PMCID: PMC6326784 DOI: 10.1093/nar/gky947] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
DNMT3L (DNMT3-like), a member of the DNMT3 family, has no DNA methyltransferase activity but regulates de novo DNA methylation. While biochemical studies show that DNMT3L is capable of interacting with both DNMT3A and DNMT3B and stimulating their enzymatic activities, genetic evidence suggests that DNMT3L is essential for DNMT3A-mediated de novo methylation in germ cells but is dispensable for de novo methylation during embryogenesis, which is mainly mediated by DNMT3B. How DNMT3L regulates DNA methylation and what determines its functional specificity are not well understood. Here we show that DNMT3L-deficient mouse embryonic stem cells (mESCs) exhibit downregulation of DNMT3A, especially DNMT3A2, the predominant DNMT3A isoform in mESCs. DNA methylation analysis of DNMT3L-deficient mESCs reveals hypomethylation at many DNMT3A target regions. These results confirm that DNMT3L is a positive regulator of DNA methylation, contrary to a previous report that, in mESCs, DNMT3L regulates DNA methylation positively or negatively, depending on genomic regions. Mechanistically, DNMT3L forms a complex with DNMT3A2 and prevents DNMT3A2 from being degraded. Restoring the DNMT3A protein level in DNMT3L-deficient mESCs partially recovers DNA methylation. Thus, our work uncovers a role for DNMT3L in maintaining DNMT3A stability, which contributes to the effect of DNMT3L on DNMT3A-dependent DNA methylation.
Collapse
Affiliation(s)
- Nicolas Veland
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Sally Gaddis
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yang Zeng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Marcos R Estecio
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yoko Takata
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Mary W Tomida
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Debapriya Saha
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Hongbo Zhao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
105
|
Du WB, Lin CH, Chen WB. High expression of APC is an unfavorable prognostic biomarker in T4 gastric cancer patients. World J Gastroenterol 2019; 25:4452-4467. [PMID: 31496624 PMCID: PMC6710185 DOI: 10.3748/wjg.v25.i31.4452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/18/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adenoma polyposis coli (APC) mutation is associated with tumorigenesis via the Wnt signaling pathway. AIM To investigate the clinical features and mechanism of APC expression in gastric cancer (GC). METHODS Based on APC expression profile, the related genome-wide mRNA expression, microRNA (miRNA) expression, and methylation profile in GC, the relationship between APC and GC, as well as the prognostic significance of APC were systematically analyzed by multi-dimensional methods. RESULTS We found that high expression of APC (APC high) was significantly associated with adverse outcomes of T4 GC patients. Genome-wide gene expression analysis revealed that varying APC expression levels in GC were associated with some important oncogenes, and corresponding cellular functional pathways. Genome-wide miRNA expression analysis indicated that most of miRNAs associated with high APC expression were downregulated. The mRNA-miRNA regulatory network analysis revealed that down-regulated miRNAs affected their inhibitory effect on tumor genes. Genome-wide methylation profiles associated with APC expression showed that there was differential methylation between the APC high and APC low groups. The number of hypermethylation sites was larger than that of hypomethylation sites, and most of hypermethylation sites were enriched in CpG islands. CONCLUSION Our research demonstrated that high APC expression is an unfavorable prognostic factor for T4 GC patients and may be used as a novel biomarker for pathogenesis research, diagnosis, and treatment of GC.
Collapse
Affiliation(s)
- Wei-Bo Du
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Chen-Hong Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Wen-Biao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
106
|
Kumar R, Paul AM, Rameshwar P, Pillai MR. Epigenetic Dysregulation at the Crossroad of Women's Cancer. Cancers (Basel) 2019; 11:cancers11081193. [PMID: 31426393 PMCID: PMC6721458 DOI: 10.3390/cancers11081193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
An increasingly number of women of all age groups are affected by cancer, despite substantial progress in our understanding of cancer pathobiology, the underlying genomic alterations and signaling cascades, and cellular-environmental interactions. Though our understanding of women’s cancer is far more complete than ever before, there is no comprehensive model to explain the reasons behind the increased incidents of certain reproductive cancer among older as well as younger women. It is generally suspected that environmental and life-style factors affecting hormonal and growth control pathways might help account for the rise of women’s cancers in younger age, as well, via epigenetic mechanisms. Epigenetic regulators play an important role in orchestrating an orderly coordination of cellular signals in gene activity in response to upstream signaling and/or epigenetic modifiers present in a dynamic extracellular milieu. Here we will discuss the broad principles of epigenetic regulation of DNA methylation and demethylation, histone acetylation and deacetylation, and RNA methylation in women’s cancers in the context of gene expression, hormonal action, and the EGFR family of cell surface receptor tyrosine kinases. We anticipate that a better understanding of the epigenetics of women’s cancers may provide new regulatory leads and further fuel the development of new epigenetic biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Rakesh Kumar
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India.
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Aswathy Mary Paul
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India
- Graduate Degree Program, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pranela Rameshwar
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - M Radhakrishna Pillai
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India
| |
Collapse
|
107
|
Emperle M, Rajavelu A, Kunert S, Arimondo PB, Reinhardt R, Jurkowska RZ, Jeltsch A. The DNMT3A R882H mutant displays altered flanking sequence preferences. Nucleic Acids Res 2019. [PMID: 29518238 PMCID: PMC5887309 DOI: 10.1093/nar/gky168] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The DNMT3A R882H mutation is frequently observed in acute myeloid leukemia (AML). It is located in the subunit and DNA binding interface of DNMT3A and has been reported to cause a reduction in activity and dominant negative effects. We investigated the mechanistic consequences of the R882H mutation on DNMT3A showing a roughly 40% reduction in overall DNA methylation activity. Biochemical assays demonstrated that R882H does not change DNA binding affinity, protein stability or subnuclear distribution of DNMT3A. Strikingly, DNA methylation experiments revealed pronounced changes in the flanking sequence preference of the DNMT3A-R882H mutant. Based on these results, different DNA substrates with selected flanking sequences were designed to be favored or disfavored by R882H. Kinetic analyses showed that the R882H favored substrate was methylated by R882H with 45% increased rate when compared with wildtype DNMT3A, while methylation of the disfavored substrate was reduced 7-fold. Our data expand the model of the potential carcinogenic effect of the R882H mutation by showing CpG site specific activity changes. This result suggests that R882 is involved in the indirect readout of flanking sequence preferences of DNMT3A and it may explain the particular enrichment of the R882H mutation in cancer patients by revealing mutation specific effects.
Collapse
Affiliation(s)
- Max Emperle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Arumugam Rajavelu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Stefan Kunert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Paola B Arimondo
- CNRS ETaC FRE3600, Bât. IBCG. 118, Route de Narbonne, 31062 Toulouse cedex 9, France
| | - Richard Reinhardt
- Max-Planck-Genomzentrum Köln, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Renata Z Jurkowska
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
108
|
Chen W, Zhuang J, Wang PP, Jiang J, Lin C, Zeng P, Liang Y, Zhang X, Dai Y, Diao H. DNA methylation-based classification and identification of renal cell carcinoma prognosis-subgroups. Cancer Cell Int 2019; 19:185. [PMID: 31346320 PMCID: PMC6636124 DOI: 10.1186/s12935-019-0900-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is the most common kidney cancer and includes several molecular and histological subtypes with different clinical characteristics. The combination of DNA methylation and gene expression data can improve the classification of tumor heterogeneity, by incorporating differences at the epigenetic level and clinical features. METHODS In this study, we identified the prognostic methylation and constructed specific prognosis-subgroups based on the DNA methylation spectrum of RCC from the TCGA database. RESULTS Significant differences in DNA methylation profiles among the seven subgroups were revealed by consistent clustering using 3389 CpGs that indicated that were significant differences in prognosis. The specific DNA methylation patterns reflected differentially in the clinical index, including TNM classification, pathological grade, clinical stage, and age. In addition, 437 CpGs corresponding to 477 genes of 151 samples were identified as specific hyper/hypomethylation sites for each specific subgroup. A total of 277 and 212 genes corresponding to DNA methylation at promoter sites were enriched in transcription factor of GKLF and RREB-1, respectively. Finally, Bayesian network classifier with specific methylation sites was constructed and was used to verify the test set of prognoses into DNA methylation subgroups, which was found to be consistent with the classification results of the train set. DNA methylation-based classification can be used to identify the distinct subtypes of renal cell carcinoma. CONCLUSIONS This study shows that DNA methylation-based classification is highly relevant for future diagnosis and treatment of renal cell carcinoma as it identifies the prognostic value of each epigenetic subtype.
Collapse
Affiliation(s)
- Wenbiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, China
| | - Jia Zhuang
- Department of Urinary Surgery, Puning People’s Hospital, Puning People’s Hospital Affiliated To Southern Medical University, 30 Liusha Avenue, Jieyang, Guangdong China
| | - Peizhong Peter Wang
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland Canada
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, China
| | - Chenhong Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, China
| | - Ping Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, China
| | - Yan Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, China
| | - Yong Dai
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, China
| |
Collapse
|
109
|
Mo Z, Li Q, Cai L, Zhan M, Xu Q. The effect of DNA methylation on the miRNA expression pattern in lipopolysaccharide-induced inflammatory responses in human dental pulp cells. Mol Immunol 2019; 111:11-18. [PMID: 30952010 DOI: 10.1016/j.molimm.2019.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/07/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Endodontic infection is a widespread oral problem. DNA methylation is a key epigenetic modification that plays important roles in various inflammatory responses, but its role in dental pulp inflammation is poorly understood. In this study, we assessed the expression of DNA methyltransferases (DNMTs) in human dental pulp cells (hDPCs) during lipopolysaccharide (LPS)-induced inflammation and found that DNMT3B mRNA expression was reduced and DNMT1 mRNA and protein levels decreased significantly. Pretreatment with the DNMT inhibitor 5-Aza-2'-deoxycytidine (5-Aza-CdR) significantly enhanced the expression of the inflammatory cytokines IL-6 and IL-8 in LPS-stimulated hDPCs, indicating that DNA methylation may play a role in hDPC inflammation. Studies have reported that some microRNAs (miRNAs) are involved in dental pulp infection. DNA methylation can modulate the inflammatory response by regulating miRNA expression, but this phenomenon has not yet been reported in pulp inflammation. The present study used next-generation sequencing to examine the effect of 5-Aza-CdR on the miRNA expression profile of LPS-treated hDPCs, and the results showed that 5-Aza-CdR pretreatment changed the miRNA expression pattern in hDPCs during inflammation. Among the changed miRNAs, miR-146a-5p, which is a pulp inflammation-related miRNA, demonstrated the most noticeably altered expression. miR-146a-5p could be induced by LPS in hDPCs, and 5-Aza-CdR preincubation or DNMT1 knockdown markedly increased its expression level. However, no significant difference was found in the methylation pattern of the MIR146A promoter with 5-Aza-CdR pretreatment or DNMT1 knockdown in LPS-stimulated hDPCs. These results indicate that DNA methylation may regulate the LPS-induced inflammatory response by changing the miRNA expression in hDPCs.
Collapse
Affiliation(s)
- Zehuan Mo
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| | - Qimeng Li
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| | - Luhui Cai
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| | - Minkang Zhan
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| | - Qiong Xu
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| |
Collapse
|
110
|
郑 中, 季 慧, 陈 楚, 李 银, 段 世. [Correlation between methylation level of CDKN2A and CDKN2B genes and aging in healthy individuals]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:724-730. [PMID: 31270053 PMCID: PMC6743916 DOI: 10.12122/j.issn.1673-4254.2019.06.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To analyze the relationship between CDKN2A and CDKN2B gene methylation with aging in the general population. METHODS We collected peripheral blood samples from 284 male and 246 female healthy subjects for detection of methylation levels of CDKN2A and CDKN2B genes using quantitative methylation-specific PCR (qMSP). The relationship between the methylation levels of CDKN2A and CDKN2B genes and aging was analyzed using Spearman or Pearson correlation test. RESULTS We found a significant positive correlation between the methylation levels of the two genes in these subjects (P < 0.05). In the overall population as well in the female subjects, CDKN2A methylation was found to be inversely correlated with age (P < 0.05). The methylation levels of CDKN2A and CDKN2B genes were inversely correlated with TG, ApoE, Lp(a) and AST in the overall population (P < 0.05). In both the female and male subjects, the methylation levels of the two genes were inversely correlated with Lp(a) (P < 0.05). In the male subjects, CDKN2A methylation was inversely correlated with AST (P < 0.05), while CDKN2B methylation was inversely correlated with HDL and ApoE (P < 0.05). In the female subjects, CDKN2A methylation was positively correlated with LDL and inversely correlated with ApoE and AST (P < 0.05). CONCLUSIONS The methylation levels of CDKN2A and CDKN2B are closely related to age and the levels of multiple proteins in healthy subjects.
Collapse
Affiliation(s)
- 中华 郑
- />宁波大学医学院//浙江省病理生理学技术研究重点实验室,浙江 宁波 315211Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - 慧慧 季
- />宁波大学医学院//浙江省病理生理学技术研究重点实验室,浙江 宁波 315211Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - 楚嘉 陈
- />宁波大学医学院//浙江省病理生理学技术研究重点实验室,浙江 宁波 315211Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - 银 李
- />宁波大学医学院//浙江省病理生理学技术研究重点实验室,浙江 宁波 315211Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - 世伟 段
- />宁波大学医学院//浙江省病理生理学技术研究重点实验室,浙江 宁波 315211Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|
111
|
Vatanmakanian M, Tavallaie M, Ghadami S. Imatinib independent aberrant methylation of NOV/CCN3 in chronic myelogenous leukemia patients: a mechanism upstream of BCR-ABL1 function? Cell Commun Signal 2019; 17:38. [PMID: 31014357 PMCID: PMC6480731 DOI: 10.1186/s12964-019-0350-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/03/2019] [Indexed: 12/18/2022] Open
Abstract
Background The NOV gene product, CCN3, has been reported in a diverse range of tumors to serve as a negative growth regulator, while acting as a tumor suppressor in Chronic Myelogenous Leukemia (CML). However, the precise mechanism of its silencing in CML is poorly understood. In the current study, we aimed to query if the gene regulation of CCN3 is mediated by the promoter methylation in the patients with CML. In addition, to clarify whether the epigenetic silencing is affected by BCR-ABL1 inhibition, we assessed the methylation status in the patients at different time intervals following the tyrosine kinase inhibition using imatinib therapy, as the first-line treatment for this type of leukemia. Methods To address this issue, we applied bisulfite-sequencing technique as a high-resolution method to study the regulatory segment of the CCN3 gene. The results were analyzed in newly diagnosed CML patients as well as following imatinib therapy. We also evaluated the correlation of CCN3 promoter methylation with BCR-ABL1 levels. Results Our findings revealed that the methylation occurs frequently in the promoter region of CML patients showing a significant increase of the methylated percentage at the CpG sites compared to normal individuals. Interestingly, this hypermethylation was indicated to be independent of BCR-ABL1 titers in both groups, which might suggest a mechanism beyond the BCR-ABL1 function. Conclusion Despite suggesting that the CCN3 hypermethylation acts as a molecular mechanism independent of BCR-ABL1 function in CML patients, this scenario requires further validation by complementary experiments. In the case of acting upstream of BCR-ABL1 signaling, the methylation marker can provide early detection and a novel platform for targeted epigenetic modifiers for efficient treatment in imatinib resistant patients.
Collapse
Affiliation(s)
- Mousa Vatanmakanian
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Mollasadra Ave., Vanak Square, Tehran, Iran
| | - Mahmood Tavallaie
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Mollasadra Ave., Vanak Square, Tehran, Iran
| | - Shirin Ghadami
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Mollasadra Ave., Vanak Square, Tehran, Iran.
| |
Collapse
|
112
|
Methylation of SPARCL1 Is Associated with Oncologic Outcome of Advanced Upper Urinary Tract Urothelial Carcinoma. Int J Mol Sci 2019; 20:ijms20071653. [PMID: 30987093 PMCID: PMC6480388 DOI: 10.3390/ijms20071653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Advanced upper urinary tract urothelial carcinoma (UTUC) is often associated with poor oncologic outcomes. The secreted protein acidic and rich in cysteine-like 1 (SPARCL1) protein, belongs to the SPARC-related family of matricellular proteins. Much literature has been published describing the role of SPARCL1 in the prognosis many cancers. In this study, methylated promoter regions in high-grade and high-stage upper urinary urothelial tumours compared with normal urothelium were analyzed and revealed that SPARCL1 was the most significantly hypermethylated gene in UTUC tissues. Then we prospectively collected UTUC samples and adjacent normal urothelium for pyrosequencing validation, identifying significant CpG site methylation in UTUC tissues. In addition, SPARCL1 RNA levels were significantly lower in UTUC samples. Multivariate Cox regression analysis from 78 patients with solitary renal pelvic or ureteral pT3N0M0 urothelial carcinomas revealed that only negative SPARCL1 expression and nonpapillary tumour architecture were independently associated with systemic recurrence (p = 0.011 and 0.008, respectively). In vitro studies revealed that the behaviour of BFTC-909 cells was less aggressive and more sensitive to radiation or chemotherapy after SPARCL1 overexpression. Thus, SPARCL1 could be considered as a prognostic marker and help decision-making in clinical practice.
Collapse
|
113
|
Klein CB. Emerging confluences of epigenetics and DNA repair in cancer and disease. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2019; 780:11-14. [PMID: 31395354 DOI: 10.1016/j.mrrev.2019.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Catherine B Klein
- Department of Environmental Medicine, NYU School of Medicine, 341 East 25 Street, New York, NY, 10010, United States.
| |
Collapse
|
114
|
Zeng Y, Chen T. DNA Methylation Reprogramming during Mammalian Development. Genes (Basel) 2019; 10:E257. [PMID: 30934924 PMCID: PMC6523607 DOI: 10.3390/genes10040257] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
DNA methylation (5-methylcytosine, 5mC) is a major form of DNA modification in the mammalian genome that plays critical roles in chromatin structure and gene expression. In general, DNA methylation is stably maintained in somatic tissues. However, DNA methylation patterns and levels show dynamic changes during development. Specifically, the genome undergoes two waves of global demethylation and remethylation for the purpose of producing the next generation. The first wave occurs in the germline, initiated with the erasure of global methylation in primordial germ cells (PGCs) and completed with the establishment of sex-specific methylation patterns during later stages of germ cell development. The second wave occurs after fertilization, including the erasure of most methylation marks inherited from the gametes and the subsequent establishment of the embryonic methylation pattern. The two waves of DNA methylation reprogramming involve both distinct and shared mechanisms. In this review article, we provide an overview of the key reprogramming events, focusing on the important players in these processes, including DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) family of 5mC dioxygenases.
Collapse
Affiliation(s)
- Yang Zeng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX 78957, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX 78957, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
115
|
Fu Y, Zhang L, Zhang R, Xu S, Wang H, Jin Y, Wu Z. Enterovirus 71 Suppresses miR-17-92 Cluster Through Up-Regulating Methylation of the miRNA Promoter. Front Microbiol 2019; 10:625. [PMID: 30984146 PMCID: PMC6447709 DOI: 10.3389/fmicb.2019.00625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/12/2019] [Indexed: 11/13/2022] Open
Abstract
Enterovirus 71 (EV71), the etiological agent of hand-foot-and-mouth disease, has become an increasing public health challenge worldwide. Accumulating evidence suggests that mammalian microRNAs (miRNAs), a class of non-coding RNAs of 18 to 24 nucleotides (nt) with important regulatory roles in cellular processes, participate in host antiviral defense and studies have suggested roles of miRNAs in EV71 replication and pathogenesis. In the current study, we reported that the expression of hsa-miR-17∼92 cluster was significantly downregulated during EV71 infection. Overexpression of hsa-miR-17∼92 inhibited, while inhibition of endogenous hsa-miR-17∼92 facilitated EV71 replication. We identified two sequences located at nt 3024 to 3038 and nt 2838 to 2862 of the EV71 (strain FY0805) genome as potential targets for hsa-miR-17-5p and miR-19a/b, respectively, which were validated by luciferase reporter assays and Western blot. Meanwhile, we identified DNA methylation as a novel mechanism of hsa-miR-17∼92 regulatory roles. The methylation of the miR-17-92 promoter was significantly increased (50%) upon EV71 infection, which appeared to be caused by the increased expression of DNMT3B but not DNMT1 and DNMT3A. Furthermore, we demonstrated that the members of miR-17-92 cluster were decreased in the sera of EV71 infected patients, suggesting the clinical implication and the potential therapeutic application of miR-17-92.
Collapse
Affiliation(s)
- Yuxuan Fu
- School of Life Sciences, Ningxia University, Yinchuan, China.,Center for Public Health Research, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Li Zhang
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Rui Zhang
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Shijie Xu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Huanru Wang
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Yu Jin
- Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China
| | - Zhiwei Wu
- School of Life Sciences, Ningxia University, Yinchuan, China.,Center for Public Health Research, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
116
|
Stefan-Lifshitz M, Karakose E, Cui L, Ettela A, Yi Z, Zhang W, Tomer Y. Epigenetic modulation of β cells by interferon-α via PNPT1/mir-26a/TET2 triggers autoimmune diabetes. JCI Insight 2019; 4:126663. [PMID: 30721151 DOI: 10.1172/jci.insight.126663] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is caused by autoimmune destruction of pancreatic β cells. Mounting evidence supports a central role for β cell alterations in triggering the activation of self-reactive T cells in T1D. However, the early deleterious events that occur in β cells, underpinning islet autoimmunity, are not known. We hypothesized that epigenetic modifications induced in β cells by inflammatory mediators play a key role in initiating the autoimmune response. We analyzed DNA methylation (DNAm) patterns and gene expression in human islets exposed to IFN-α, a cytokine associated with T1D development. We found that IFN-α triggers DNA demethylation and increases expression of genes controlling inflammatory and immune pathways. We then demonstrated that DNA demethylation was caused by upregulation of the exoribonuclease, PNPase old-35 (PNPT1), which caused degradation of miR-26a. This in turn promoted the upregulation of ten-eleven translocation 2 (TET2) enzyme and increased 5-hydroxymethylcytosine levels in human islets and pancreatic β cells. Moreover, we showed that specific IFN-α expression in the β cells of IFNα-INS1CreERT2 transgenic mice led to development of T1D that was preceded by increased islet DNA hydroxymethylation through a PNPT1/TET2-dependent mechanism. Our results suggest a new mechanism through which IFN-α regulates DNAm in β cells, leading to changes in expression of genes in inflammatory and immune pathways that can initiate islet autoimmunity in T1D.
Collapse
Affiliation(s)
- Mihaela Stefan-Lifshitz
- Division of Endocrinology and the Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| | | | - Lingguang Cui
- Division of Endocrinology and the Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| | - Abora Ettela
- Division of Endocrinology and the Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| | - Zhengzi Yi
- Department of Medicine Bioinformatics Core, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Department of Medicine Bioinformatics Core, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yaron Tomer
- Division of Endocrinology and the Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
117
|
Abstract
The prevalence of insulin resistance (IR) is increasing rapidly worldwide and it is a relevant health problem because it is associated with several diseases, such as type 2 diabetes, cardiovascular disorders and cancer. Understanding the mechanisms involved in IR onset and progression will open new avenues for identifying biomarkers for preventing and treating IR and its co-diseases. Epigenetic mechanisms such as DNA methylation are important factors that mediate the environmental effect in the genome by regulating gene expression and consequently its effect on the phenotype and the development of disease. Taking into account that IR results from a complex interplay between genes and the environment and that epigenetic marks are reversible, disentangling the relationship between IR and epigenetics will provide new tools to improve the management and prevention of IR. Here, we review the current scientific evidence regarding the association between IR and epigenetic markers as mechanisms involved in IR development and potential management.
Collapse
Affiliation(s)
- Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), C/ Choupana, s/n, 15706, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Ana B Crujeiras
- Epigenomics in Endocrinology and Nutrition group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), C/ Choupana, s/n, 15706, Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.
| |
Collapse
|
118
|
Peer Victimization and Adjustment in Young Adulthood: Introduction to the Special Section. JOURNAL OF ABNORMAL CHILD PSYCHOLOGY 2019; 46:5-9. [PMID: 28936797 DOI: 10.1007/s10802-017-0347-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A substantive number of children and adolescents are bullied by their peers, with serious risks for the victims' emotional, behavioral, physical, and academic adjustment. However, while the immediate and short-term consequences of peer victimization in childhood and adolescence are very well documented, knowledge about the potential long-term consequences for victims' functioning once they reach adulthood is only slowly emerging. Based on prospective, longitudinal data from different countries, the 4 papers in this special section investigate the association between peer victimization suffered in childhood and adolescence and victims' developmental outcomes in late adolescence/early adulthood. This introduction highlights the major findings of each paper and discusses the implications for future research.
Collapse
|
119
|
Xie J, Chen J, Wang B, He X, Huang H. Bone mesenchymal stromal cells exhibit functional inhibition but no chromosomal aberrations in chronic myelogenous leukemia. Oncol Lett 2019; 17:999-1007. [PMID: 30655859 PMCID: PMC6312938 DOI: 10.3892/ol.2018.9681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/06/2018] [Indexed: 11/21/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a myeloproliferative neoplasia characterized by the presence of the Philadelphia (Ph) chromosome in hematopoietic cells (HCs). As one of the most important components of the bone marrow microenvironment (BMM), bone mesenchymal stromal cells (BMSCs) are critical in the development of leukemia and essential in the regulation of hematopoiesis. However, little is known regarding the alterations of BMSCs in CML. The current study performed Cell Counting Kit-8 and colony-forming unit fibroblast assays to evaluate the proliferative ability of BMSCs. The percentage of senescent BMSCs was evaluated by a senescence-associated β-galactosidase staining assay. Subsequently, a long-term culture-initiating cell assay was designed to explore the HC-supporting capacity of the BMSCs. Furthermore, cytogenetics were detected by conventional cytogenetic analysis and fluorescence in situ hybridization analysis. The current results revealed that CML-BMSCs exhibited decreased cell proliferation and impaired HC-support capacity, as well as increased susceptibility to senescence. No chromosomal aberrations, including the absence of the Ph chromosome, were noted in all CML-BMSCs. In conclusion, the current study demonstrated functional inhibition of CML-BMSCs; however, no signs of chromosomal aberrations were observed, thereby providing insight into the changes occurring in the CML-BMM.
Collapse
Affiliation(s)
- Jieqiong Xie
- Central Laboratory, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jiadi Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Bin Wang
- Central Laboratory, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xuchun He
- Department of Medical Technology, Fujian Health Career Technical College, Fuzhou, Fujian 350101, P.R. China
| | - Huifang Huang
- Central Laboratory, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
120
|
Chen X, Hua W, Huang X, Chen Y, Zhang J, Li G. Regulatory Role of RNA N 6-Methyladenosine Modification in Bone Biology and Osteoporosis. Front Endocrinol (Lausanne) 2019; 10:911. [PMID: 31998240 PMCID: PMC6965011 DOI: 10.3389/fendo.2019.00911] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022] Open
Abstract
Osteoporosis is a metabolic skeletal disorder in which bone mass is depleted and bone structure is destroyed to the degree that bone becomes fragile and prone to fractures. Emerging evidence suggests that N6-methyladenosine (m6A) modification, a novel epitranscriptomic marker, has a significant role in bone development and metabolism. M6A modification not only participates in bone development, but also plays important roles as writers and erasers in the osteoporosis. M6A methyltransferase METTL3 and demethyltransferase FTO involves in the delicate process between adipogenesis differentiation and osteogenic differentiation, which is important for the pathological development of osteoporosis. Conditional knockdown of the METTL3 in bone marrow stem cells (BMSCs) could suppress PI3K-Akt signaling, limit the expression of bone formation-related genes (such as Runx2 and Osterix), restrain the expression of vascular endothelial growth factor (VEGF) and down-regulate the decreased translation efficiency of parathyroid hormone receptor-1 mRNA. Meanwhile, knockdown of the METTL3 significantly promoted the adipogenesis process and janus kinase 1 (JAK1) protein expression via an m6A-dependent way. Specifically, there was a negative correlation between METTL3 expression and porcine BMSCs adipogenesis. The evidence above suggested that the relationship between METTL3 expression and adipogenesis was inverse, and osteogenesis was positive, respectively. Similarly, FTO regulated for BMSCs fate determination during osteoporosis through the GDF11-FTO-PPARγ axis, prompting the shift of MSC lineage commitment to adipocyte and inhibiting bone formation during osteoporosis. In this systematic review, we summarize the most up-to-date evidence of m6A RNA modification in osteoporosis and highlight the potential role of m6A in prevention, treatment, and management of osteoporosis.
Collapse
Affiliation(s)
- Xuejiao Chen
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wenfeng Hua
- Department of Laboratory Medicine and Central Laboratories, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xin Huang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yuming Chen
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Junguo Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University, Hamilton, ON, Canada
- *Correspondence: Guowei Li
| |
Collapse
|
121
|
Coppedè F, Seghieri M, Stoccoro A, Santini E, Giannini L, Rossi C, Migliore L, Solini A. DNA methylation of genes regulating appetite and prediction of weight loss after bariatric surgery in obese individuals. J Endocrinol Invest 2019; 42:37-44. [PMID: 29603098 DOI: 10.1007/s40618-018-0881-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/25/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Epigenetic traits are influenced by clinical variables; interaction between DNA methylation (DNAmeth) and bariatric surgery-induced weight loss has been scarcely explored. We investigated whether DNAmeth of genes encoding for molecules/hormones regulating appetite, food intake or obesity could predict successful weight outcome following Roux-en-Y gastric bypass (RYGB). METHODS Forty-five obese individuals with no known comorbidities were stratified accordingly to weight decrease one-year after RYGB (excess weight loss, EWL ≥ 50%: good responders, GR; EWL < 50%: worse responders, WR). DNAmeth of leptin (LEP), ghrelin (GHRL), ghrelin receptor (GHSR) and insulin-growth factor-2 (IGF2) was assessed before intervention. Single nucleotide polymorphisms of genes affecting DNAmeth, DNMT3A and DNMT3B, were also determined. RESULTS At baseline, type 2 diabetes was diagnosed by OGTT in 13 patients. Post-operatively, GR (n = 23) and WR (n = 22) achieved an EWL of 67.7 ± 9.6 vs 38.2 ± 9.0%, respectively. Baseline DNAmeth did not differ between GR and WR for any tested genes, even when the analysis was restricted to subjects with no diabetes. A relationship between GHRL and LEP methylation profiles emerged (r = 0.47, p = 0.001). Searching for correlation between DNAmeth of the studied genes with demographic characteristics and baseline biochemical parameters of the studied population, we observed a correlation between IGF2 methylation and folate (r = 0.44, p = 0.003). Rs11683424 for DNMT3A and rs2424913 for DNMT3B did not correlate with DNAmeth of the studied genes. CONCLUSIONS In severely obese subjects, the degree of DNAmeth of some genes affecting obesity and related conditions does not work as predictor of successful response to RYGB.
Collapse
Affiliation(s)
- F Coppedè
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - M Seghieri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Stoccoro
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - E Santini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Giannini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Migliore
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - A Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Via Roma 67, 56126, Pisa, Italy.
| |
Collapse
|
122
|
Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, Song W, Li X, Li L, Du Z, Jia L, Zhou L, Li W, Hoffman AR, Hu JF, Cui J. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol 2018; 19:218. [PMID: 30537986 PMCID: PMC6290540 DOI: 10.1186/s13059-018-1594-y] [Citation(s) in RCA: 317] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/23/2018] [Indexed: 01/10/2023] Open
Abstract
Background Friend leukemia virus integration 1 (FLI1), an ETS transcription factor family member, acts as an oncogenic driver in hematological malignancies and promotes tumor growth in solid tumors. However, little is known about the mechanisms underlying the activation of this proto-oncogene in tumors. Results Immunohistochemical staining showed that FLI1 is aberrantly overexpressed in advanced stage and metastatic breast cancers. Using a CRISPR Cas9-guided immunoprecipitation assay, we identify a circular RNA in the FLI1 promoter chromatin complex, consisting of FLI1 exons 4-2-3, referred to as FECR1.Overexpression of FECR1 enhances invasiveness of MDA-MB231 breast cancer cells. Notably, FECR1 utilizes a positive feedback mechanism to activate FLI1 by inducing DNA hypomethylation in CpG islands of the promoter. FECR1 binds to the FLI1 promoter in cis and recruits TET1, a demethylase that is actively involved in DNA demethylation. FECR1 also binds to and downregulates in trans DNMT1, a methyltransferase that is essential for the maintenance of DNA methylation. Conclusions These data suggest that FECR1 circular RNA acts as an upstream regulator to control breast cancer tumor growth by coordinating the regulation of DNA methylating and demethylating enzymes. Thus, FLI1 drives tumor metastasis not only through the canonical oncoprotein pathway, but also by using epigenetic mechanisms mediated by its exonic circular RNA. Electronic supplementary material The online version of this article (10.1186/s13059-018-1594-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naifei Chen
- Stem Cell and Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 133021, Jilin, China
| | - Gang Zhao
- Department of Breast Cancer Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 133021, Jilin, China
| | - Xu Yan
- Stem Cell and Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 133021, Jilin, China
| | - Zheng Lv
- Stem Cell and Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 133021, Jilin, China
| | - Hongmei Yin
- Department of General Internal Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 133021, Jilin, China
| | - Shilin Zhang
- Stem Cell and Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 133021, Jilin, China.,Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA, 94304, USA
| | - Wei Song
- Stem Cell and Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 133021, Jilin, China
| | - Xueli Li
- Stem Cell and Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 133021, Jilin, China.,Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA, 94304, USA
| | - Lingyu Li
- Stem Cell and Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 133021, Jilin, China
| | - Zhonghua Du
- Stem Cell and Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 133021, Jilin, China
| | - Lin Jia
- Stem Cell and Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 133021, Jilin, China.,Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA, 94304, USA
| | - Lei Zhou
- Stem Cell and Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 133021, Jilin, China
| | - Wei Li
- Stem Cell and Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 133021, Jilin, China
| | - Andrew R Hoffman
- Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA, 94304, USA
| | - Ji-Fan Hu
- Stem Cell and Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 133021, Jilin, China. .,Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA, 94304, USA.
| | - Jiuwei Cui
- Stem Cell and Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 133021, Jilin, China.
| |
Collapse
|
123
|
Shafabakhsh R, Aghadavod E, Ghayour‐Mobarhan M, Ferns G, Asemi Z. Role of histone modification and DNA methylation in signaling pathways involved in diabetic retinopathy. J Cell Physiol 2018; 234:7839-7846. [DOI: 10.1002/jcp.27844] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| | - Majid Ghayour‐Mobarhan
- Metabolic Syndrome Research Center School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Gordon Ferns
- Division of Medical Education Brighton & Sussex Medical School Brighton UK
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| |
Collapse
|
124
|
Garafutdinov RR, Galimova AA, Sakhabutdinova AR. The influence of CpG (5'-d(CpG)-3' dinucleotides) methylation on ultrasonic DNA fragmentation. J Biomol Struct Dyn 2018; 37:3877-3886. [PMID: 30351231 DOI: 10.1080/07391102.2018.1533888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
DNA methylation is an important way of gene regulation. The variety of methods for DNA methylation analysis based on chemical modification or enzyme digestion has been proposed. However, DNA is able to undergo transformations under physical power. Here, we report that the cytosine methylation in CpG dinucleotides determines the difference in fragmentation rate of methylated and unmethylated DNA under sonication. We found that at the beginning of sonication, methylated DNAs are degraded faster than unmethylated one, and the difference in fragmentation degree can be evaluated with high reliability by quantitative polymerase chain reaction (qPCR). The optimal parameters that provide the greatest difference in amount of amplifiable DNA targets corresponding to fragmentation degree are the following: moderate amplicon size (about 150-250 bp), medium CpG sparseness (one CpG dinucleotide per ∼12-14 nucleotides of the chain), and short sonication time (less than 5 min). Along with CpG, the CpA and CpT contents of amplified regions should be taken into account for proper DNA fragmentation by ultrasound as well. The obtained data could be used for elaboration of a method for comparative methylation testing, when there is no need to detect methylation of certain CpG dinucleotides. This method will be simple (can be used by any technician familiar with PCR), low cost (no need to use an expensive reagents), and fast (only brief DNA sonication and conventional qPCR are carried out). Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravil R Garafutdinov
- a Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences , Ufa , Bashkortostan , Russia
| | - Aizilya A Galimova
- a Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences , Ufa , Bashkortostan , Russia
| | - Assol R Sakhabutdinova
- a Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences , Ufa , Bashkortostan , Russia
| |
Collapse
|
125
|
Zhang Y, Charlton J, Karnik R, Beerman I, Smith ZD, Gu H, Boyle P, Mi X, Clement K, Pop R, Gnirke A, Rossi DJ, Meissner A. Targets and genomic constraints of ectopic Dnmt3b expression. eLife 2018; 7:e40757. [PMID: 30468428 PMCID: PMC6251628 DOI: 10.7554/elife.40757] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
DNA methylation plays an essential role in mammalian genomes and expression of the responsible enzymes is tightly controlled. Deregulation of the de novo DNA methyltransferase DNMT3B is frequently observed across cancer types, yet little is known about its ectopic genomic targets. Here, we used an inducible transgenic mouse model to delineate rules for abnormal DNMT3B targeting, as well as the constraints of its activity across different cell types. Our results explain the preferential susceptibility of certain CpG islands to aberrant methylation and point to transcriptional state and the associated chromatin landscape as the strongest predictors. Although DNA methylation and H3K27me3 are usually non-overlapping at CpG islands, H3K27me3 can transiently co-occur with DNMT3B-induced DNA methylation. Our genome-wide data combined with ultra-deep locus-specific bisulfite sequencing suggest a distributive activity of ectopically expressed Dnmt3b that leads to discordant CpG island hypermethylation and provides new insights for interpreting the cancer methylome.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
| | - Jocelyn Charlton
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
- Department of Genome RegulationMax Planck Institute for Molecular GeneticsBerlinGermany
| | - Rahul Karnik
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
| | - Isabel Beerman
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
- Department of PediatricsHarvard Medical SchoolMassachusettsUnited States
- Program in Cellular and Molecular Medicine, Division of Hematology/OncologyBoston Children's HospitalMassachusettsUnited States
| | - Zachary D Smith
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
| | - Hongcang Gu
- Broad Institute of MIT and HarvardMassachusettsUnited States
| | - Patrick Boyle
- Broad Institute of MIT and HarvardMassachusettsUnited States
| | - Xiaoli Mi
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
| | - Kendell Clement
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
| | - Ramona Pop
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
| | - Andreas Gnirke
- Broad Institute of MIT and HarvardMassachusettsUnited States
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
- Department of PediatricsHarvard Medical SchoolMassachusettsUnited States
- Program in Cellular and Molecular Medicine, Division of Hematology/OncologyBoston Children's HospitalMassachusettsUnited States
| | - Alexander Meissner
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
- Department of Genome RegulationMax Planck Institute for Molecular GeneticsBerlinGermany
- Broad Institute of MIT and HarvardMassachusettsUnited States
| |
Collapse
|
126
|
Emperle M, Dukatz M, Kunert S, Holzer K, Rajavelu A, Jurkowska RZ, Jeltsch A. The DNMT3A R882H mutation does not cause dominant negative effects in purified mixed DNMT3A/R882H complexes. Sci Rep 2018; 8:13242. [PMID: 30185810 PMCID: PMC6125428 DOI: 10.1038/s41598-018-31635-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022] Open
Abstract
The DNA methyltransferase DNMT3A R882H mutation is observed in 25% of all AML patients. DNMT3A is active as tetramer and the R882H mutation is located in one of the subunit/subunit interfaces. Previous work has reported that formation of mixed wildtype/R882H complexes leads to a strong loss of catalytic activity observed in in vitro DNA methylation assays (Russler-Germain et al., 2014, Cancer Cell 25:442–454). To investigate this effect further, we have prepared mixed wildtype/R882H DNMT3A complexes by incubation of individually purified subunits of the DNMT3A catalytic domain and full-length DNMT3A2. In addition, we have used a double affinity tag approach and specifically purified mixed catalytic domain complexes formed after co-expression of R882H and wildtype subunits in E. coli cells. Afterwards, we determined the catalytic activity of the mixed complexes and compared it to that of purified complexes only consisting of one subunit type. In both settings, the expected catalytic activities of mixed R882H/wildtype complexes were observed demonstrating an absence of a dominant negative effect of the R882H mutation in purified DNMT3A enzymes. This result suggests that heterocomplex formation of DNMT3A and R882H is unlikely to cause dominant negative effects in human cells as well. The limitations of this conclusion and its implications are discussed.
Collapse
Affiliation(s)
- Max Emperle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Michael Dukatz
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Stefan Kunert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Katharina Holzer
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Arumugam Rajavelu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany.,Rajiv Gandhi Center for Biotechnology (RGCB), Trivandrum, 695014, Kerala, India
| | - Renata Z Jurkowska
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany.,BioMed X Innovation Center, Im Neuenheimer Feld 583, D-69120, Heidelberg, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
127
|
Atdjian C, Iannazzo L, Braud E, Ethève-Quelquejeu M. Synthesis of SAM-Adenosine Conjugates for the Study of m 6
A-RNA Methyltransferases. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Colette Atdjian
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Team “Chemistry of RNAs, nucleosides, peptides and heterocycles”; Université Paris Descartes; UMR 8601; 75005 Paris France
| | - Laura Iannazzo
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Team “Chemistry of RNAs, nucleosides, peptides and heterocycles”; Université Paris Descartes; UMR 8601; 75005 Paris France
| | - Emmanuelle Braud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Team “Chemistry of RNAs, nucleosides, peptides and heterocycles”; Université Paris Descartes; UMR 8601; 75005 Paris France
| | - Mélanie Ethève-Quelquejeu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Team “Chemistry of RNAs, nucleosides, peptides and heterocycles”; Université Paris Descartes; UMR 8601; 75005 Paris France
| |
Collapse
|
128
|
Norvil AB, Petell CJ, Alabdi L, Wu L, Rossie S, Gowher H. Dnmt3b Methylates DNA by a Noncooperative Mechanism, and Its Activity Is Unaffected by Manipulations at the Predicted Dimer Interface. Biochemistry 2018; 57:4312-4324. [PMID: 27768276 PMCID: PMC5992102 DOI: 10.1021/acs.biochem.6b00964] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The catalytic domains of the de novo DNA methyltransferases Dnmt3a-C and Dnmt3b-C are highly homologous. However, their unique biochemical properties could potentially contribute to differences in the substrate preferences or biological functions of these enzymes. Dnmt3a-C forms tetramers through interactions at the dimer interface, which also promote multimerization on DNA and cooperativity. Similar to the case for processive enzymes, cooperativity allows Dnmt3a-C to methylate multiple sites on the same DNA molecule; however, it is unclear whether Dnmt3b-C methylates DNA by a cooperative or processive mechanism. The importance of the tetramer structure and cooperative mechanism is emphasized by the observation that the R882H mutation in the dimer interface of DNMT3A is highly prevalent in acute myeloid leukemia and leads to a substantial loss of its activity. Under conditions that distinguish between cooperativity and processivity, we show that in contrast to that of Dnmt3a-C, the activity of Dnmt3b-C is not cooperative and confirm the processivity of Dnmt3b-C and the full length Dnmt3b enzyme. Whereas the R878H mutation (mouse homologue of R882H) led to the loss of cooperativity of Dnmt3a-C, the activity and processivity of the analogous Dnmt3b-C R829H variant were comparable to those of the wild-type enzyme. Additionally, buffer acidification that attenuates the dimer interface interactions of Dnmt3a-C had no effect on Dnmt3b-C activity. Taken together, these results demonstrate an important mechanistic difference between Dnmt3b and Dnmt3a and suggest that interactions at the dimer interface may play a limited role in regulating Dnmt3b-C activity. These new insights have potential implications for the distinct biological roles of Dnmt3a and Dnmt3b.
Collapse
Affiliation(s)
- Allison B. Norvil
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christopher J. Petell
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lama Alabdi
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lanchen Wu
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sandra Rossie
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Humaira Gowher
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
129
|
May S, Owen H, Phesse TJ, Greenow KR, Jones G, Blackwood A, Cook PC, Towers C, Gallimore AM, Williams GT, Stürzl M, Britzen‐Laurent N, Sansom OJ, MacDonald AS, Bird AP, Clarke AR, Parry L. Mbd2 enables tumourigenesis within the intestine while preventing tumour-promoting inflammation. J Pathol 2018; 245:270-282. [PMID: 29603746 PMCID: PMC6032908 DOI: 10.1002/path.5074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 02/22/2018] [Accepted: 03/08/2018] [Indexed: 01/14/2023]
Abstract
Epigenetic regulation plays a key role in the link between inflammation and cancer. Here we examine Mbd2, which mediates epigenetic transcriptional silencing by binding to methylated DNA. In separate studies the Mbd2-/- mouse has been shown (1) to be resistant to intestinal tumourigenesis and (2) to have an enhanced inflammatory/immune response, observations that are inconsistent with the links between inflammation and cancer. To clarify its role in tumourigenesis and inflammation, we used constitutive and conditional models of Mbd2 deletion to explore its epithelial and non-epithelial roles in the intestine. Using a conditional model, we found that suppression of intestinal tumourigenesis is due primarily to the absence of Mbd2 within the epithelia. Next, we demonstrated, using the DSS colitis model, that non-epithelial roles of Mbd2 are key in preventing the transition from acute to tumour-promoting chronic inflammation. Combining models revealed that prior to inflammation the altered Mbd2-/- immune response plays a role in intestinal tumour suppression. However, following inflammation the intestine converts from tumour suppressive to tumour promoting. To summarise, in the intestine the normal function of Mbd2 is exploited by cancer cells to enable tumourigenesis, while in the immune system it plays a key role in preventing tumour-enabling inflammation. Which role is dominant depends on the inflammation status of the intestine. As environmental interactions within the intestine can alter DNA methylation patterns, we propose that Mbd2 plays a key role in determining whether these interactions are anti- or pro-tumourigenic and this makes it a useful new epigenetic model for inflammation-associated carcinogenesis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Stephanie May
- European Cancer Stem Cell Research InstituteCardiff University, School of BiosciencesCardiffUK
| | - Heather Owen
- Wellcome Trust Centre for Cell BiologyUniversity of Edinburgh, Michael Swann BuildingEdinburghUK
| | - Toby J Phesse
- European Cancer Stem Cell Research InstituteCardiff University, School of BiosciencesCardiffUK
| | - Kirsty R Greenow
- European Cancer Stem Cell Research InstituteCardiff University, School of BiosciencesCardiffUK
| | - Gareth‐Rhys Jones
- Manchester Collaborative Centre for Inflammation ResearchManchesterUK
| | - Adam Blackwood
- European Cancer Stem Cell Research InstituteCardiff University, School of BiosciencesCardiffUK
| | - Peter C Cook
- Manchester Collaborative Centre for Inflammation ResearchManchesterUK
| | - Christopher Towers
- European Cancer Stem Cell Research InstituteCardiff University, School of BiosciencesCardiffUK
| | - Awen M Gallimore
- Cardiff Institute of Infection and Immunity, Henry Wellcome BuildingCardiffUK
| | - Geraint T Williams
- Institute of Cancer and GeneticsCardiff University School of MedicineCardiffUK
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of SurgeryFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg and Universitätsklinikum ErlangenErlangenGermany
| | - Nathalie Britzen‐Laurent
- Division of Molecular and Experimental Surgery, Department of SurgeryFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg and Universitätsklinikum ErlangenErlangenGermany
| | | | | | - Adrian P Bird
- Wellcome Trust Centre for Cell BiologyUniversity of Edinburgh, Michael Swann BuildingEdinburghUK
| | - Alan R Clarke
- European Cancer Stem Cell Research InstituteCardiff University, School of BiosciencesCardiffUK
| | - Lee Parry
- European Cancer Stem Cell Research InstituteCardiff University, School of BiosciencesCardiffUK
| |
Collapse
|
130
|
Svahn F, Paulsson JO, Stenman A, Fotouhi O, Mu N, Murtha TD, Korah R, Carling T, Bäckdahl M, Wang N, Juhlin CC, Larsson C. TERT promoter hypermethylation is associated with poor prognosis in adrenocortical carcinoma. Int J Mol Med 2018; 42:1675-1683. [PMID: 29956721 DOI: 10.3892/ijmm.2018.3735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/11/2018] [Indexed: 11/05/2022] Open
Abstract
Telomere maintenance, most commonly achieved by telomerase activation through induction of the telomerase reverse transcriptase (TERT) gene, is required for cell immortalization, a hallmark of cancer. Adrenocortical carcinoma (ACC) is an endocrine tumor for which TERT promoter mutations and telomerase activation have been reported. The present study assessed alterations of the TERT gene locus and telomere length in relation to clinical characteristics in ACC. In total, 38 cases of ACC with known TERT promoter mutational status were included. TERT promoter methylation densities were assessed by pyrosequencing, and TERT copy numbers and telomere length were determined by quantitative polymerase chain reaction analysis, followed by comparison of the mRNA expression of TERT and clinical parameters. The ACC tissue samples showed increased TERT copy numbers, compared with normal adrenal tissue (NAT) samples (P=0.001). Mutually exclusive TERT copy number gains or promoter mutation were present in 70% of the ACC samples. The ACC tissues exhibited higher levels of CpG promoter methylation of all eight CpG sites investigated within the ‑578 to ‑541 bp (Region A), compared with the NATs (P=0.001). High methylation density at this region was associated with metastatic disease and/or relapse, poor survival rates and higher European Network for the Study of Adrenal Tumor stage (P<0.05). The mRNA expression of TERT was inversely correlated with methylation density at ‑162 to ‑100 bp (Region B). Correlation was observed between relative telomere length and the gene expression of TERT. It was concluded that epigenetic alterations of the TERT promoter are frequent and associated with advanced disease and poorer clinical outcome in ACC.
Collapse
Affiliation(s)
- Fredrika Svahn
- Department of Oncology‑Pathology, Karolinska Institutet, Karolinska University Hospital, Cancer Center Karolinska, SE‑17176 Stockholm, Sweden
| | - Johan O Paulsson
- Department of Oncology‑Pathology, Karolinska Institutet, Karolinska University Hospital, Cancer Center Karolinska, SE‑17176 Stockholm, Sweden
| | - Adam Stenman
- Department of Oncology‑Pathology, Karolinska Institutet, Karolinska University Hospital, Cancer Center Karolinska, SE‑17176 Stockholm, Sweden
| | - Omid Fotouhi
- Department of Oncology‑Pathology, Karolinska Institutet, Karolinska University Hospital, Cancer Center Karolinska, SE‑17176 Stockholm, Sweden
| | - Ninni Mu
- Department of Oncology‑Pathology, Karolinska Institutet, Karolinska University Hospital, Cancer Center Karolinska, SE‑17176 Stockholm, Sweden
| | - Timothy D Murtha
- Department of Surgery, Yale School of Medicine, Yale Endocrine Neoplasia Laboratory, Yale School of Medicine, New Haven, CT 06520, USA
| | - Reju Korah
- Department of Surgery, Yale School of Medicine, Yale Endocrine Neoplasia Laboratory, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tobias Carling
- Department of Surgery, Yale School of Medicine, Yale Endocrine Neoplasia Laboratory, Yale School of Medicine, New Haven, CT 06520, USA
| | - Martin Bäckdahl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, SE‑17176 Stockholm, Sweden
| | - Na Wang
- Department of Oncology‑Pathology, Karolinska Institutet, Karolinska University Hospital, Cancer Center Karolinska, SE‑17176 Stockholm, Sweden
| | - C Christofer Juhlin
- Department of Oncology‑Pathology, Karolinska Institutet, Karolinska University Hospital, Cancer Center Karolinska, SE‑17176 Stockholm, Sweden
| | - Catharina Larsson
- Department of Oncology‑Pathology, Karolinska Institutet, Karolinska University Hospital, Cancer Center Karolinska, SE‑17176 Stockholm, Sweden
| |
Collapse
|
131
|
Deobagkar D. Epigenetics with special reference to the human X chromosome inactivation and the enigma of Drosophila DNA methylation. J Genet 2018. [DOI: 10.1007/s12041-018-0937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
132
|
Zanger UM, Klein K, Kugler N, Petrikat T, Ryu CS. Epigenetics and MicroRNAs in Pharmacogenetics. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 83:33-64. [PMID: 29801581 DOI: 10.1016/bs.apha.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Germline pharmacogenetics has so far mainly studied common variants in "pharmacogenes," i.e., genes encoding drug metabolizing enzymes and transporters (DMET genes), certain auxiliary and regulatory genes, and drug target genes. Despite remarkable progress in understanding genetically determined differences in pharmacokinetics and pharmacodynamics of drugs, currently known common variants even in important pharmacogenes explain genetic variability only partially. This suggests "missing heritability" that may in part be due to rare variants in the classical pharmacogenes, but current evidence suggests that largely unexplored resources with potential for pharmacogenetics exist, both within already known pharmacogenes and in entirely new areas. In particular, recent studies suggest that epigenetic processes and noncoding RNAs, including mostly microRNAs (miRNAs), represent important and largely unexplored layers of DMET gene regulation that may fill some of the gaps in understanding interindividual variability and lead to new biomarkers. In this chapter we summarize recent advances in the understanding of genetic variability in epigenetic and miRNA-mediated processes with focus on their significance for DMET regulation and pharmacokinetic or pharmacological endpoints.
Collapse
Affiliation(s)
- Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University Hospital Tübingen, Tübingen, Germany.
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Nicole Kugler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Tamara Petrikat
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Chang S Ryu
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| |
Collapse
|
133
|
Guan B, Xing Y, Xiong G, Cao Z, Fang D, Li Y, Zhan Y, Peng D, Liu L, Li X, Zhou L. Predictive value of gene methylation for second recurrence following surgical treatment of first bladder recurrence of a primary upper-tract urothelial carcinoma. Oncol Lett 2018; 15:9397-9405. [PMID: 29805663 DOI: 10.3892/ol.2018.8498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/12/2017] [Indexed: 12/18/2022] Open
Abstract
The clinical relevance of aberrant DNA promoter methylation is being increasingly recognized in urothelial carcinoma. The present study was conducted to explore the methylation status of patients with upper-tract urothelial carcinoma (UTUC) who experienced bladder recurrence, and to evaluate the predictive value of gene methylation for second bladder recurrence and tumor progression. A total of 85 patients with primary UTUC, who experienced bladder recurrence after radical nephroureterectomy, were enrolled between January 2001 and December 2013. Using methylation-sensitive polymerase chain reaction, the promoter methylation statuses of 10 genes were analyzed in the bladder tumor specimens. Among the patient group, 32 patients experienced second bladder recurrence, and bladder progression was detected in 16. With the exception of BRCA1, the methylation rate of the majority of genes tended to gradually increase to varying extents with the number of recurrences; a smaller proportion of primary tumors exhibited gene methylation when compared with the first recurrent tumors and second recurrent tumors. Univariate and multivariate Cox regression analyses revealed that unmethylated GDF15 [hazard ratio (HR)=0.36; 95% confidence interval (CI), 0.14-0.92] and methylated VIM (HR=2.91; 95% CI, 1.11-7.61) in the first recurrent bladder tumor, as well as male gender (HR=2.28; 95% CI, 1.06-4.87), first recurrence interval <8 months (HR=2.34; 95% CI, 1.15-4.78) and primary UTUC tumor size ≥5 cm (HR=3.48; 95% CI, 1.43-8.45) were independent risk factors for a second bladder recurrence after surgery for the first bladder recurrence; the Harrell's concordance index (c-index) for the related nomogram was 0.71 (95% CI: 0.61-0.81). Furthermore, methylated CDH1 (HR=2.91; 95% CI, 1.08-7.77) and VIM (HR=4.91; 95% CI, 1.11-21.7) in the first recurrent bladder tumor, male gender (HR=3.6; 95% CI, 1.1-11.73), and primary tumor stage T2-T4 (HR=4.57; 95% CI, 1.22-17.13), multifocality (HR=3.64; 95% CI, 1.19-11.16) and size ≥5 cm (HR=3.1; 95% CI, 1.91-10.54) for the primary UTUC were considered to be predictors of tumor progression; the c-index for the nomogram was 0.88 (95% CI, 0.69-0.92). The present findings demonstrated that promoter methylation of cancer-related genes was frequently observed in patients with urothelial carcinoma, and that the gene methylation rate of certain genes tended to gradually increase with the number of bladder recurrences. This may be used as a predictive factor for a second bladder recurrence and tumor progression after the surgical treatment of the first bladder recurrence.
Collapse
Affiliation(s)
- Bao Guan
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, P.R. China
| | - Yunchao Xing
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, P.R. China
| | - Gengyan Xiong
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, P.R. China
| | - Zhenpeng Cao
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, P.R. China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, P.R. China
| | - Yifan Li
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, P.R. China
| | - Yonghao Zhan
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, P.R. China
| | - Ding Peng
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, P.R. China
| | - Libo Liu
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, P.R. China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, P.R. China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, P.R. China
| |
Collapse
|
134
|
Zhu Y, Lu H, Zhang D, Li M, Sun X, Wan L, Yu D, Tian Y, Jin H, Lin A, Gao F, Lai M. Integrated analyses of multi-omics reveal global patterns of methylation and hydroxymethylation and screen the tumor suppressive roles of HADHB in colorectal cancer. Clin Epigenetics 2018; 10:30. [PMID: 29507648 PMCID: PMC5833094 DOI: 10.1186/s13148-018-0458-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/14/2018] [Indexed: 12/15/2022] Open
Abstract
Background DNA methylation is an important epigenetic modification, associated with gene expression. 5-Methylcytosine and 5-hydroxymethylcytosine are two epigenetic hallmarks that maintain the equilibrium of epigenetic reprogramming. Disequilibrium in genomic methylation leads to carcinogenesis. The purpose of this study was to elucidate the epigenetic mechanisms of DNA methylation and hydroxymethylation in the carcinogenesis of colorectal cancer. Methods Genome-wide patterns of DNA methylation and hydroxymethylation in six paired colorectal tumor tissues and corresponding normal tissues were determined using immunoprecipitation and sequencing. Transcriptional expression was determined by RNA sequencing (RNA-Seq). Groupwise differential methylation regions (DMR), differential hydroxymethylation regions (DhMR), and differentially expressed gene (DEG) regions were identified. Epigenetic biomarkers were screened by integrating DMR, DhMR, and DEGs and confirmed using functional analysis. Results We identified a genome-wide distinct hydroxymethylation pattern that could be used as an epigenetic biomarker for clearly differentiating colorectal tumor tissues from normal tissues. We identified 59,249 DMRs, 187,172 DhMRs, and 948 DEGs by comparing between tumors and normal tissues. After cross-matching genes containing DMRs or DhMRs with DEGs, we screened seven genes that were aberrantly regulated by DNA methylation in tumors. Furthermore, hypermethylation of the HADHB gene was persistently found to be correlated with downregulation of its transcription in colorectal cancer (CRC). These findings were confirmed in other patients of colorectal cancer. Tumor functional analysis indicated that HADHB reduced cancer cell migration and invasiveness. These findings suggested its possible role as a tumor suppressor gene (TSG). Conclusion This study reveals the global patterns of methylation and hydroxymethylation in CRC. Several CRC-associated genes were screened with multi-omic analysis. Aberrant methylation and hydroxymethylation were found to be in the carcinogenesis of CRC. Electronic supplementary material The online version of this article (10.1186/s13148-018-0458-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yimin Zhu
- 1Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058 China
| | - Hanlin Lu
- 2BGI-Shenzhen, Shenzhen, 518083 China.,3Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Dandan Zhang
- 4Key Laboratory of Disease Proteomics of Zhejiang Province and Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Meiyan Li
- 2BGI-Shenzhen, Shenzhen, 518083 China
| | - Xiaohui Sun
- 1Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058 China
| | - Ledong Wan
- 4Key Laboratory of Disease Proteomics of Zhejiang Province and Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Dan Yu
- 4Key Laboratory of Disease Proteomics of Zhejiang Province and Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Yiping Tian
- 4Key Laboratory of Disease Proteomics of Zhejiang Province and Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Hongchuan Jin
- 5Laboratory of Cancer Biology, Provincial Key Lab of Biotherapy in Zhejiang, Sir Runrun Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Aifen Lin
- Human Tissue Bank/Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang 317000 China
| | - Fei Gao
- 2BGI-Shenzhen, Shenzhen, 518083 China.,3Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Maode Lai
- 4Key Laboratory of Disease Proteomics of Zhejiang Province and Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, 310058 China.,7Department of Pathology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Zhejiang, Hangzhou 310058 China
| |
Collapse
|
135
|
Stalman SE, Solanky N, Ishida M, Alemán-Charlet C, Abu-Amero S, Alders M, Alvizi L, Baird W, Demetriou C, Henneman P, James C, Knegt LC, Leon LJ, Mannens MMAM, Mul AN, Nibbering NA, Peskett E, Rezwan FI, Ris-Stalpers C, van der Post JAM, Kamp GA, Plötz FB, Wit JM, Stanier P, Moore GE, Hennekam RC. Genetic Analyses in Small-for-Gestational-Age Newborns. J Clin Endocrinol Metab 2018; 103:917-925. [PMID: 29342293 DOI: 10.1210/jc.2017-01843] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
CONTEXT Small for gestational age (SGA) can be the result of fetal growth restriction, which is associated with perinatal morbidity and mortality. Mechanisms that control prenatal growth are poorly understood. OBJECTIVE The aim of the current study was to gain more insight into prenatal growth failure and determine an effective diagnostic approach in SGA newborns. We hypothesized that one or more copy number variations (CNVs) and disturbed methylation and sequence variants may be present in genes associated with fetal growth. DESIGN A prospective cohort study of subjects with a low birth weight for gestational age. SETTING The study was conducted at an academic pediatric research institute. PATIENTS A total of 21 SGA newborns with a mean birth weight below the first centile and a control cohort of 24 appropriate-for-gestational-age newborns were studied. INTERVENTIONS Array comparative genomic hybridization, genome-wide methylation studies, and exome sequencing were performed. MAIN OUTCOME MEASURES The numbers of CNVs, methylation disturbances, and sequence variants. RESULTS The genetic analyses demonstrated three CNVs, one systematically disturbed methylation pattern, and one sequence variant explaining SGA. Additional methylation disturbances and sequence variants were present in 20 patients. In 19 patients, multiple abnormalities were found. CONCLUSION Our results confirm the influence of a large number of mechanisms explaining dysregulation of fetal growth. We concluded that CNVs, methylation disturbances, and sequence variants all contribute to prenatal growth failure. These genetic workups can be an effective diagnostic approach in SGA newborns.
Collapse
Affiliation(s)
- Susanne E Stalman
- Department of Pediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Nita Solanky
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Miho Ishida
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Cristina Alemán-Charlet
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Sayeda Abu-Amero
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Lucas Alvizi
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - William Baird
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Charalambos Demetriou
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Peter Henneman
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Chela James
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Lia C Knegt
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Lydia J Leon
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Marcel M A M Mannens
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Adi N Mul
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole A Nibbering
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Emma Peskett
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Faisal I Rezwan
- Department of Human Development and Health, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Carrie Ris-Stalpers
- Department of Gynecology and Obstetrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris A M van der Post
- Department of Gynecology and Obstetrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerdine A Kamp
- Department of Pediatrics, Tergooi Hospitals, Blaricum, The Netherlands
| | - Frans B Plötz
- Department of Pediatrics, Tergooi Hospitals, Blaricum, The Netherlands
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Philip Stanier
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Gudrun E Moore
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Raoul C Hennekam
- Department of Pediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
136
|
Association between Retinoic acid receptor-β hypermethylation and NSCLC risk: a meta-analysis and literature review. Oncotarget 2018; 8:5814-5822. [PMID: 28008143 PMCID: PMC5351591 DOI: 10.18632/oncotarget.14023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence indicates that Retinoic acid receptor-β (RARβ) is a tumor suppressor in many types of tumor. However, whether or not RARβ is a risk factor and is correlated to clinicopathological characteristics of non-small cell lung cancer (NSCLC) remains unclear. In this report, we performed a meta-analysis to determine the effects of RARβ hypermethylation on the incidence of NSCLC and clinicopathological characteristics in human NSCLC patients. Final valuation and analysis of 1780 cancer patients from 16 eligible studies was performed. RARβ hypermethylation was found to be significantly higher in NSCLC than in normal lung tissue, the pooled OR from 7 studies including 646 NSCLC and 580 normal lung tissues, OR = 6.05, 95% CI = 3.56-10.25, p<0.00001. RARβ hypermethylation was significantly higher in adenocarcinoma (AC) compared to squamous cell carcinoma (SCC), pooled OR is 0.68 (95% CI = 0.52-0.89, p = 0.005). RARβ hypermethylation was also found to occur significantly higher in smoker (n = 232) than non-smoker (n = 213) (OR = 2.46, 95% CI = 1.54-3.93, p = 0.0002). Our results indicate that RARβ hypermethylation correlates well with an increased risk in NSCLC patients. RARβ geneinactivation caused by RARβ methylation contributes the NSCLC tumorigenesis and may serve as a potential risk factor, diagnostic marker and drug target of NSCLC.
Collapse
|
137
|
Ji S, Ding X, Ji J, Wu H, Sun R, Li X, Zhang L, Tian Y. Cranial irradiation inhibits hippocampal neurogenesis via DNMT1 and DNMT3A. Oncol Lett 2018; 15:2899-2904. [PMID: 29435016 PMCID: PMC5778827 DOI: 10.3892/ol.2017.7643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
Impairment of neurogenesis in the hippocampus following whole-brain irradiation is the most important mechanism of radiation-induced cognitive dysfunction. However, the underlying mechanism remains obscure, meaning an ideal therapeutic target has not been identified. Evidence indicates that DNA methylation in neurons regulates synaptic plasticity and neuronal network activity. In the present study, the expression of DNA methyltransferases (DNMTs) in the hippocampus was analyzed to investigate their potential function in radiation-induced neurogenesis impairment. Sprague-Dawley rats were used throughout the present study, apportioned to the following groups: Control, radiation only, zebularine (a DNMT inhibitor) only, and radiation and zebularine together. Immunofluorescence staining revealed that radiation inhibited cellular proliferation and dendritic growth within new neurons of the hippocampus. In addition, western blot analysis demonstrated lower expression levels of DNMT1 and DNMT3A protein following radiation treatment compared with that in the non-irradiated control. Furthermore, compared with the radiation-only group, the radiation and zebularine group had significantly lower cell proliferative abilities, dendritic growth, and DNMT1 and DNMT3A protein levels. The results of the present study indicated that DNMT1 and DNMT3A may be involved in the pathogenesis of whole-brain radiation-induced neurogenesis impairment.
Collapse
Affiliation(s)
- Shengjun Ji
- Cancer Center, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu 215001, P.R. China
| | - Xin Ding
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jiang Ji
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Haohao Wu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Rui Sun
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xiaoyang Li
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Liyuan Zhang
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ye Tian
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
138
|
Chen HL, Li ZM, Liu JF, Han B, Wu ZX, Mao YQ, Sun KY, Wang LS. Polymorphism of the DNA methyltransferase 1 gene is associated with the susceptibility to essential hypertension in male. Clin Exp Hypertens 2018; 40:695-701. [PMID: 29400588 DOI: 10.1080/10641963.2018.1425420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Essential hypertension is a leading global public health issue, billions of people suffered from it every year. Recently, multiple evidence suggests that DNA methylation play an important role in regulating blood pressure. Here, we tested the risk for essential hypertension conferred by single nucleotide polymorphisms (SNPs) within DNA methyltransferase 1 (DNMT1). Three loci (rs2228611, rs2228612, and rs16999593) were selected to be analyzed in 3410 cases and 1307 normal controls in southern Chinese aged 60 or above. No significant association with essential hypertension was observed for rs2228612 and rs16999593. A higher risk of essential hypertension was found in the minor A allele of rs2228611 in the codominant and recessive model (P < 0.05). After stratified by sex, this association was found in male but not female. Furthermore, this difference was abolished after BMI adjustment in the whole population and reduced in male. In addition, the mutation rate of rs2228611 was higher in the obesity group compared with the normal weight group of male. Intriguingly, rs2228611 was also a risk factor of essential hypertension in normal weight male. These findings indicated that rs2228611 might contribute to male hypertension via BMI-dependent mechanisms in obesity male and BMI-independent mechanisms in normal weight male.
Collapse
Affiliation(s)
- Hui-Ling Chen
- a Institute of Fudan-Minhang Academic Health System, Minhang Hospital , Fudan University , Shanghai , P.R.China
| | - Zhan-Ming Li
- a Institute of Fudan-Minhang Academic Health System, Minhang Hospital , Fudan University , Shanghai , P.R.China
| | - Jin-Feng Liu
- a Institute of Fudan-Minhang Academic Health System, Minhang Hospital , Fudan University , Shanghai , P.R.China
| | - Bing Han
- a Institute of Fudan-Minhang Academic Health System, Minhang Hospital , Fudan University , Shanghai , P.R.China
| | - Zhao-Xia Wu
- a Institute of Fudan-Minhang Academic Health System, Minhang Hospital , Fudan University , Shanghai , P.R.China
| | - Yu-Qin Mao
- a Institute of Fudan-Minhang Academic Health System, Minhang Hospital , Fudan University , Shanghai , P.R.China
| | - Ke-Yu Sun
- b Emergency Department, Minhang Hospital , Fudan University , Shanghai , P.R. China
| | - Li-Shun Wang
- a Institute of Fudan-Minhang Academic Health System, Minhang Hospital , Fudan University , Shanghai , P.R.China
| |
Collapse
|
139
|
Wang LH, Huang J, Wu CR, Huang LY, Cui J, Xing ZZ, Zhao CY. Downregulation of miR‑29b targets DNMT3b to suppress cellular apoptosis and enhance proliferation in pancreatic cancer. Mol Med Rep 2018; 17:2113-2120. [PMID: 29207141 PMCID: PMC5783451 DOI: 10.3892/mmr.2017.8145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 05/19/2017] [Indexed: 12/16/2022] Open
Abstract
As one of the most aggressive types of tumor, pancreatic cancer is a principal cause of tumor‑associated mortality. Negative associations between microRNA‑29 (miR‑29) and DNA methyltransferases (DNMT) 3a and 3b have been demonstrated to be associated with the carcinogenesis of a number of types of cancer; however, this has not been completely elucidated in pancreatic cancer. In the present study, pancreatic cancer tissues (n=15) and corresponding paracancerous tissues (n=15) were obtained and the results of reverse transcription‑quantitative polymerase chain reaction analysis indicated decreased expression of miR‑29b and enhanced mRNA expression of DNMT3b in pancreatic cancer tissues, compared with the corresponding paracancerous tissues. Increased protein expression of DNMT3b was demonstrated by western blotting and immunohistochemistry. In addition, the negative association between miR‑29b and DNMT3b was noted in pancreatic cancer tissues, and luciferase reporter assays confirmed that miR‑29b was able to directly target DNMT3b in vitro. Notably, miR‑29b overexpression was able to decrease cell viability and to promote the apoptosis by targeting DNMT3b, and the knockdown of DNMT3b exhibited consistent results in vitro and in vivo. The results of the present study suggested that miR‑29b, as a tumor suppressor, may be a novel target for the development of treatments for pancreatic cancer.
Collapse
Affiliation(s)
- Li-Hua Wang
- Department of Gastroenterology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Ju Huang
- Department of Queen Mary University, Medical College of Nanchang University, Nanchang, Jiangxi 330038, P.R. China
| | - Cheng-Rong Wu
- Department of Gastroenterology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Liu-Ye Huang
- Department of Gastroenterology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Jun Cui
- Department of Gastroenterology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Zhi-Zhi Xing
- Department of Gastroenterology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Chun-Yu Zhao
- Department of Gastroenterology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
140
|
Ravichandran M, Jurkowska RZ, Jurkowski TP. Target specificity of mammalian DNA methylation and demethylation machinery. Org Biomol Chem 2018; 16:1419-1435. [DOI: 10.1039/c7ob02574b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We review here the molecular mechanisms employed by DNMTs and TET enzymes that are responsible for shaping the DNA methylation pattern of a mammalian cell.
Collapse
Affiliation(s)
| | | | - T. P. Jurkowski
- Universität Stuttgart
- Abteilung Biochemie
- Institute für Biochemie und Technische Biochemie
- Stuttgart D-70569
- Germany
| |
Collapse
|
141
|
Roulois D, Deshayes S, Guilly MN, Nader JS, Liddell C, Robard M, Hulin P, Ouacher A, Le Martelot V, Fonteneau JF, Grégoire M, Blanquart C, Pouliquen DL. Characterization of preneoplastic and neoplastic rat mesothelial cell lines: the involvement of TETs, DNMTs, and 5-hydroxymethylcytosine. Oncotarget 2017; 7:34664-87. [PMID: 27129173 PMCID: PMC5085183 DOI: 10.18632/oncotarget.8970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/10/2016] [Indexed: 12/12/2022] Open
Abstract
Malignant mesothelioma (MM) is one of the worst cancers in terms of clinical outcome, urging the need to establish and characterize new preclinical tools for investigation of the tumorigenic process, improvement of early diagnosis and evaluation of new therapeutic strategies. For these purposes, we characterized a collection of 27 cell lines established from F344 rats, after 136 to 415 days of induction with crocidolite asbestos administered intraperitoneally. Four mesotheliomas were distinguished from 23 preneoplastic mesothelial cell lines (PN) according to their propensity to generate tumors after orthotopic transplantation into syngeneic rats, their growth pattern, and the expression profile of three genes. PN cell lines were further discriminated into groups / subgroups according to morphology in culture and the expression profiles of 14 additional genes. This approach was completed by analysis of positive and negative immunohistochemical MM markers in the four tumors, of karyotype alterations in the most aggressive MM cell line in comparison with a PN epithelioid cell line, and of human normal mesothelial and mesothelioma cells and a tissue array. Our results showed that both the rat and human MM cell lines shared in common a dramatic decrease in the relative expression of Cdkn2a and of epigenetic regulators, in comparison with PN and normal human mesothelial cells, respectively. In particular, we identified the involvement of the relative expression of the Ten-Eleven Translocation (TET) family of dioxygenases and Dnmt3a in relation to the 5-hydroxymethylcytosine level in malignant transformation and the acquisition of metastatic potential.
Collapse
Affiliation(s)
- David Roulois
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Sophie Deshayes
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Joëlle S Nader
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Charly Liddell
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Myriam Robard
- INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Cellular and Tissular Imaging Core Facility (MicroPICell), Nantes, France
| | - Philippe Hulin
- INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Cellular and Tissular Imaging Core Facility (MicroPICell), Nantes, France
| | - Amal Ouacher
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Vanessa Le Martelot
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Jean-François Fonteneau
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Marc Grégoire
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Christophe Blanquart
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Daniel L Pouliquen
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| |
Collapse
|
142
|
Kovalchuk A, Rodriguez-Juarez R, Ilnytskyy Y, Byeon B, Shpyleva S, Melnyk S, Pogribny I, Kolb B, Kovalchuk O. Sex-specific effects of cytotoxic chemotherapy agents cyclophosphamide and mitomycin C on gene expression, oxidative DNA damage, and epigenetic alterations in the prefrontal cortex and hippocampus - an aging connection. Aging (Albany NY) 2017; 8:697-711. [PMID: 27032448 PMCID: PMC4925823 DOI: 10.18632/aging.100920] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/30/2016] [Indexed: 01/21/2023]
Abstract
Recent research shows that chemotherapy agents can be more toxic to healthy brain cells than to the target cancer cells. They cause a range of side effects, including memory loss and cognitive dysfunction that can persist long after the completion of treatment. This condition is known as chemo brain. The molecular and cellular mechanisms of chemo brain remain obscure. Here, we analyzed the effects of two cytotoxic chemotherapy drugs—cyclophosphamide (CPP) and mitomycin C (MMC) - on transcriptomic and epigenetic changes in the murine prefrontal cortex (PFC) and hippocampal regions. We for the first time showed that CPP and MMC treatments led to profound sex- and brain region-specific alterations in gene expression profiles. Gene expression changes were most prominent in the PFC tissues of female mice 3 weeks after MMC treatment, and the gene expression response was much greater for MCC than CPP exposure. MMC exposure resulted in oxidative DNA damage, evidenced by accumulation of 8-oxo-2′-deoxyguanosine (8-oxodG) and a decrease in the level of 8-oxodG repair protein OGG1 in the PFC of female animals 3 weeks after treatment. MMC treatment decreased global DNA methylation and increased DNA hydroxymethylation in the PFC tissues of female mice. The majority of the changes induced by chemotherapy in the PFC tissues of female mice resembled those that occur during the brain's aging processes. Therefore, our study suggests a link between chemotherapy-induced chemo brain and brain aging, and provides an important roadmap for future analysis.
Collapse
Affiliation(s)
- Anna Kovalchuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Rocio Rodriguez-Juarez
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Boseon Byeon
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Svitlana Shpyleva
- Division of Biochemical Toxicology, Food and Drug Administration National Center for Toxicological Research, Jefferson, AR 72079, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Stepan Melnyk
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Igor Pogribny
- Division of Biochemical Toxicology, Food and Drug Administration National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Bryan Kolb
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada.,Alberta Epigenetics Network, Calgary, AB, T2L 2A6, Canada.,Canadian Institute for Advanced Research, Toronto, ON, M5G 1Z8, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada.,Alberta Epigenetics Network, Calgary, AB, T2L 2A6, Canada
| |
Collapse
|
143
|
Fernandes GFS, Silva GDB, Pavan AR, Chiba DE, Chin CM, Dos Santos JL. Epigenetic Regulatory Mechanisms Induced by Resveratrol. Nutrients 2017; 9:nu9111201. [PMID: 29104258 PMCID: PMC5707673 DOI: 10.3390/nu9111201] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Resveratrol (RVT) is one of the main natural compounds studied worldwide due to its potential therapeutic use in the treatment of many diseases, including cancer, diabetes, cardiovascular diseases, neurodegenerative diseases and metabolic disorders. Nevertheless, the mechanism of action of RVT in all of these conditions is not completely understood, as it can modify not only biochemical pathways but also epigenetic mechanisms. In this paper, we analyze the biological activities exhibited by RVT with a focus on the epigenetic mechanisms, especially those related to DNA methyltransferase (DNMT), histone deacetylase (HDAC) and lysine-specific demethylase-1 (LSD1).
Collapse
Affiliation(s)
- Guilherme Felipe Santos Fernandes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
- Institute of Chemistry, São Paulo State University (UNESP), 14800060 Araraquara, Brazil.
| | | | - Aline Renata Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Diego Eidy Chiba
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| |
Collapse
|
144
|
Lai CY, Huang CC, Tsai CH, Wang JY, Kerr CL, Chen YY, Cai YW, Wong RH. The DNA Methyltransferase 3B -149 Genetic Polymorphism Modulates Lung Cancer Risk from Smoking. Asian Pac J Cancer Prev 2017; 18:2717-2723. [PMID: 29072397 PMCID: PMC5747395 DOI: 10.22034/apjcp.2017.18.10.2717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Smoking can cause increase of DNA methylation and hypermethylation of tumor suppressor genes, this possible contributing to subsequent lung cancer development. DNA methyltransferase 3B (DNMT3B) is crucial in regulation of DNA methylation and it has been proposed that green tea might lower cancer risk through inhibiting its activity. Here, we designed a case-control study to investigate whether the DNMT3B -149 genetic polymorphism could modulate lung cancer risk due to smoking. Possible interactions of smoking and green tea consumption with this DNMT3B genetic polymorphism were also assessed. Materials and Methods: A total of 190 lung cancer patients and 380 healthy controls were recruited. Questionnaires were administered to obtain data on sociodemographic and lifestyle variables, as well as family history of lung cancer. Genotypes for DNMT3B -149 were identified by polymerase chain reaction. Results: Smoking, green tea consumption, exposure to cooking fumes, family history of lung cancer, and the DNMT3B -149 genotype (odds ratio (OR)=2.65; 95% confidence interval (CI) 1.15-6.10) were all significantly associated with the development of lung cancer. Smokers carrying the DNMT3B -149 TT genotype were at elevated risk compared to non-smokers carrying DNMT3B -149 (OR=7.69; 95% CI 2.55-23.14). Interaction of smoking with DNMT3B -149 genotypes was significant regarding lung cancer risk. However, interaction between green tea drinking and DNMT3B -149 genotypes was not. Conclusions: The DNMT3B -149 TT genotype might increase the smoking-associated lung cancer risk.
Collapse
Affiliation(s)
- Chung Yu Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- ,Department of Surgery, Cheng-Ching General Hospital, Taichung, Taiwan
- ,Center for General Education, Chung Shan Medical University,Taichung, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Cheng Z, Zheng L, Almeida FA. Epigenetic reprogramming in metabolic disorders: nutritional factors and beyond. J Nutr Biochem 2017; 54:1-10. [PMID: 29154162 DOI: 10.1016/j.jnutbio.2017.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022]
Abstract
Environmental factors (e.g., malnutrition and physical inactivity) contribute largely to metabolic disorders including obesity, type 2 diabetes, cardiometabolic disease and nonalcoholic fatty liver diseases. The abnormalities in metabolic activity and pathways have been increasingly associated with altered DNA methylation, histone modification and noncoding RNAs, whereas lifestyle interventions targeting diet and physical activity can reverse the epigenetic and metabolic changes. Here we review recent evidence primarily from human studies that links DNA methylation reprogramming to metabolic derangements or improvements, with a focus on cross-tissue (e.g., the liver, skeletal muscle, pancreas, adipose tissue and blood samples) epigenetic markers, mechanistic mediators of the epigenetic reprogramming, and the potential of using epigenetic traits to predict disease risk and intervention response. The challenges in epigenetic studies addressing the mechanisms of metabolic diseases and future directions are also discussed and prospected.
Collapse
Affiliation(s)
- Zhiyong Cheng
- Department of Human Nutrition, Foods, and Exercise, Fralin Translational Obesity Research Center, College of Agriculture and Life Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Louise Zheng
- Department of Human Nutrition, Foods, and Exercise, Fralin Translational Obesity Research Center, College of Agriculture and Life Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Fabio A Almeida
- Department of Health Promotion, Social & Behavioral Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
146
|
Angioimmunoblastic T cell lymphoma: novel molecular insights by mutation profiling. Oncotarget 2017; 8:17763-17770. [PMID: 28148900 PMCID: PMC5392284 DOI: 10.18632/oncotarget.14846] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 01/19/2017] [Indexed: 01/02/2023] Open
Abstract
Angioimmunoblastic T cell lymphoma (AITL) originates from follicular helper T-cells and is characterised by a polymorphic infiltrate with the neoplastic T-cells forming small clusters around the follicle and high endothelial venules. Despite the recent advances in its phenotypic characterisation, the genetics and molecular mechanisms underlying AITL are not fully understood. In the present study, we performed whole exome sequencing in 9 cases of AITL from Taiwan (n = 6) and U.K. (n = 3). We confirmed frequent mutations in TET2 (9/9), DNMT3A (3/9), IDH2 (3/9), RHOA (3/9) and PLCG1 (2/9) as recently reported by others. More importantly, we identified mutations in TNFRSF21 (1/9), CCND3 (1/9) and SAMSN1 (1/9), which are not yet seen or strongly implicated in the pathogenesis of AITL. Among the pathogenic mutations identified in AITL, mutations in DNA methylation regulators TET2 and DNMT3A occur early in hematopoietic stem cells as shown by previous studies, and these genetic events enhance the self-renewal of hematopoietic stem cells, but are unlikely to have any major impact on T-cell differentiation. Mutations in RHOA, PLCG1 and TNFRSF21 (DR6), which encode proteins critical for T-cell biology, most likely promote T-cell differentiation and malignant transformation, consequently generating the malignant phenotype. Our findings extend the molecular insights into the multistage development of AITL.
Collapse
|
147
|
McGee SL, Walder KR. Exercise and the Skeletal Muscle Epigenome. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a029876. [PMID: 28320830 DOI: 10.1101/cshperspect.a029876] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An acute bout of exercise is sufficient to induce changes in skeletal muscle gene expression that are ultimately responsible for the adaptive responses to exercise. Although much research has described the intracellular signaling responses to exercise that are linked to transcriptional regulation, the epigenetic mechanisms involved are only just emerging. This review will provide an overview of epigenetic mechanisms and what is known in the context of exercise. Additionally, we will explore potential interactions between metabolism during exercise and epigenetic regulation, which serves as a framework for potential areas for future research. Finally, we will consider emerging opportunities to pharmacologically manipulate epigenetic regulators and mechanisms to induce aspects of the skeletal muscle exercise adaptive response for therapeutic intervention in various disease states.
Collapse
Affiliation(s)
- Sean L McGee
- Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3216, Australia
| | - Ken R Walder
- Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
148
|
Xu YM, Yu FY, Lau ATY. Discovering Epimodifications of the Genome, Transcriptome, Proteome, and Metabolome: the Quest for Conquering the Uncharted Epi(c) Territories. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40495-017-0103-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
149
|
Chen H, Cai W, Chu ESH, Tang J, Wong CC, Wong SH, Sun W, Liang Q, Fang J, Sun Z, Yu J. Hepatic cyclooxygenase-2 overexpression induced spontaneous hepatocellular carcinoma formation in mice. Oncogene 2017; 36:4415-4426. [PMID: 28346420 PMCID: PMC5543258 DOI: 10.1038/onc.2017.73] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 12/12/2022]
Abstract
Cyclooxygenase (COX)-2 is upregulated in hepatocellular carcinoma (HCC). However, the direct causative effect of COX-2 in spontaneous HCC formation remains unknown. We thus investigate the role and molecular pathogenesis of COX-2 in HCC by using liver-specific COX-2 transgenic (TG) mice. We found spontaneous HCC formation with elevated inflammatory infiltrates and neovessels in male TG mice (3/21, 14.3%), but not in any of male WT mice (0/19). Reduced representation bisulfite sequencing (RRBS) and gene expression microarrays were performed in the HCC tumor and non-HCC liver tissues to investigate the molecular mechanisms of COX-2-driven HCC. By RRBS, DNA promoter hypermethylation was identified in HCC from TG mice. Induction of promoter hypermethylation was associated with reduced tet methylcytosine dioxygenase 1 (TET1) expression by COX-2. TET1 could catalyze the conversion of 5-methylcytosine into 5-hydroxymethylcytosine (5hmC) and prevents DNA hypermethylation. In keeping with this, loss of 5hmC was demonstrated in COX-2-induced HCC. Consistently, COX-2 overexpression in human HCC cell lines could reduce both TET1 expression and 5hmc levels. Integrative analyses of DNA methylation and gene expression profiles further identified significantly downregulated genes including LTBP1, ADCY5 and PRKCZ by promoter methylation in COX-2-induced HCC. Reduced expression of LTBP1, ADCY5 and PRKCZ by promoter hypermethylation was further validated in human HCCs. Bio-functional investigation revealed that LTBP1 inhibited cell proliferation in HCC cell lines, suggesting its potential role as a tumor suppressor in HCC. Gene expression microarrays revealed that signaling cascades (AKT (protein kinase B), STK33 (Serine/Threonine kinase 33) and MTOR (mechanistic target of rapamycin) pathways) were enriched in COX-2-induced HCC. In conclusion, this study demonstrated for the first time that enhanced COX-2 expression in hepatocytes is sufficient to induce HCC through inducing promoter hypermethylation by reducing TET1, silencing tumor-suppressive genes and activating key oncogenic pathways. Inhibition of COX-2 represents a mechanism-based target for HCC prevention.
Collapse
Affiliation(s)
- H Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - W Cai
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - E S H Chu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - J Tang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - C-C Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - S H Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - W Sun
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Q Liang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - J Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Z Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - J Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
150
|
Fu RJ, He W, Wang XB, Li L, Zhao HB, Liu XY, Pang Z, Chen GQ, Huang L, Zhao KW. DNMT1-maintained hypermethylation of Krüppel-like factor 5 involves in the progression of clear cell renal cell carcinoma. Cell Death Dis 2017; 8:e2952. [PMID: 28749461 PMCID: PMC5550868 DOI: 10.1038/cddis.2017.323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/27/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the major subtype of renal cell carcinoma (RCC) that is resistant to conventional radiation and chemotherapy. It is a challenge to explore effective therapeutic targets and drugs for this kind of cancer. Transcription factor Krüppel-like factor 5 (KLF5) exerts diverse functions in various tumor types. By analyzing cohorts of the Cancer Genome Atlas (TCGA) data sets, we find that KLF5 expression is suppressed in ccRCC patients and higher level of KLF5 expression is associated with better prognostic outcome. Our further investigations demonstrate that KLF5 genomic loci are hypermethylated at proximal exon 4 and suppression of DNA methyltransferase 1 (DNMT1) expression by ShRNAs or a methylation inhibitor 5-Aza-CdR can recover KLF5 expression. Meanwhile, there is a negative correlation between expressions of KLF5 and DNMT1 in ccRCC tissues. Ectopic KLF5 expression inhibits ccRCC cell proliferation and migration/invasion in vitro and decreases xenograft growth and metastasis in vivo. Moreover, 5-Aza-CdR, a chemotherapy drug as DNMTs' inhibitor that can induce KLF5 expression, suppresses ccRCC cell growth, while knockdown of KLF5 abolishes 5-Aza-CdR-induced growth inhibition. Collectively, our data demonstrate that KLF5 inhibits ccRCC growth as a tumor suppressor and highlight the potential of 5-Aza-CdR to release KLF5 expression as a therapeutic modality for the treatment of ccRCC.
Collapse
Affiliation(s)
- Rong-Jie Fu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS) &Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Wei He
- Department of Pathology, Ren-Ji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Bo Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Lei Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Huan-Bin Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xiao-Ye Liu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS) &Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Zhi Pang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Guo-Qiang Chen
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS) &Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China.,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Lei Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Ke-Wen Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| |
Collapse
|