101
|
Twardy SM, Hanson SM, Jursa T, Gaitens JM, Kalinich JM, McDiarmid MA, Smith DR. Succimer chelation does not produce lasting reductions of blood lead levels in a rodent model of retained lead fragments. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104283. [PMID: 37775076 DOI: 10.1016/j.etap.2023.104283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
Retained lead fragments from nonfatal firearm injuries pose a risk of lead poisoning. While chelation is well-established as a lead poisoning treatment, it remains unclear whether chelation mobilizes lead from embedded lead fragments. Here, we tested whether 1) DMSA/succimer or CaNa2EDTA increases mobilization of lead from fragments in vitro, and 2) succimer is efficacious in chelating fragment lead in vivo, using stable lead isotope tracer methods in a rodent model of embedded fragments. DMSA was > 10-times more effective than CaNa2EDTA in mobilizing fragment lead in vitro. In the rodent model, succimer chelation on day 1 produced the greatest blood lead reductions, and fragment lead was not mobilized into blood. However, with continued chelation and over 3-weeks post-chelation, blood lead levels rebounded with mobilization of lead from the fragments. These findings suggest prolonged chelation will increase fragment lead mobilization post-chelation, supporting the need for long-term surveillance in patients with retained fragments.
Collapse
Affiliation(s)
- Shannon M Twardy
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Sarah M Hanson
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Thomas Jursa
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Joanna M Gaitens
- Division of Occupational and Environmental Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John M Kalinich
- Division of Occupational and Environmental Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Melissa A McDiarmid
- Division of Occupational and Environmental Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Don R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
102
|
Sun G, Xiang P, Chen Y, Li Z, Wu B, Rao Y, Zhu Z. Diagnostic value of a logistic model of occupational lead poisoning using hematological parameters. J Int Med Res 2023; 51:3000605231213221. [PMID: 37994031 PMCID: PMC10666822 DOI: 10.1177/03000605231213221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023] Open
Abstract
OBJECTIVE We investigated the predictive value of a logistic model utilizing hematological parameters in diagnosing occupational lead poisoning. METHODS This retrospective study (September 2020-December 2022) included patients with occupational lead poisoning. Differences in hematological parameters were compared between individuals with occupational blood lead poisoning and healthy individuals. We used logistic regression analysis to develop a diagnostic prediction model for occupational blood lead poisoning. Receiver operating characteristic (ROC) curves and corresponding area under the ROC curve values were used to assess the diagnostic value of hematological parameters and logistic models. RESULTS Compared with controls, several indicators were significantly higher in the group with blood lead poisoning, but others were significantly lower. Logistic regression analysis showed that the red blood cell distribution width coefficient of variation (RDW-CV), neutrophil/lymphocyte ratio (NLR), and percentage of small red blood cells (Micro%) were independent factors in diagnosing occupational blood lead poisoning. The logistic regression model constructed based on these three parameters had sensitivity 78.7% and specificity 83.8% for diagnosing occupational lead poisoning. CONCLUSION We identified RDW-CV, NLR, and Micro% as independent predictors in the diagnosis of occupational lead poisoning. A logistic regression model that includes these may contribute to better detection of occupational lead poisoning.
Collapse
Affiliation(s)
- Guokang Sun
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Pinpin Xiang
- Xiping Community Healthcare Center of Longquanyi District, Chengdu, China
| | - Yiping Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zheng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Bo Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yanping Rao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zheng Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
103
|
Ko CM, Then CK, Kuo YM, Lin YK, Shen SC. Far-Infrared Ameliorates Pb-Induced Renal Toxicity via Voltage-Gated Calcium Channel-Mediated Calcium Influx. Int J Mol Sci 2023; 24:15828. [PMID: 37958813 PMCID: PMC10649088 DOI: 10.3390/ijms242115828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Far-infrared (FIR), characterized by its specific electromagnetic wavelengths, has emerged as an adjunctive therapeutic strategy for various diseases, particularly in ameliorating manifestations associated with renal disorders. Although FIR was confirmed to possess antioxidative and anti-inflammatory attributes, the intricate cellular mechanisms through which FIR mitigates lead (Pb)-induced nephrotoxicity remain enigmatic. In this study, we investigated the effects of FIR on Pb-induced renal damage using in vitro and in vivo approaches. NRK52E rat renal cells exposed to Pb were subsequently treated with ceramic-generated FIR within the 9~14 μm range. Inductively coupled plasma mass spectrometry (ICP-MS) enabled quantitative Pb concentration assessment, while proteomic profiling unraveled intricate cellular responses. In vivo investigations used Wistar rats chronically exposed to lead acetate (PbAc) at 6 g/L in their drinking water for 15 weeks, with or without a concurrent FIR intervention. Our findings showed that FIR upregulated the voltage-gated calcium channel, voltage-dependent L type, alpha 1D subunit (CaV1.3), and myristoylated alanine-rich C kinase substrate (MARCKS) (p < 0.05), resulting in increased calcium influx (p < 0.01), the promotion of mitochondrial activity, and heightened ATP production. Furthermore, the FIR intervention effectively suppressed ROS production, concurrently mitigating Pb-induced cellular death. Notably, rats subjected to FIR exhibited significantly reduced blood Pb levels (30 vs. 71 μg/mL; p < 0.01), attenuated Pb-induced glomerulosclerosis, and enhanced Pb excretion compared to the controls. Our findings suggest that FIR has the capacity to counteract Pb-induced nephrotoxicity by modulating calcium influx and optimizing mitochondrial function. Overall, our data support FIR as a novel therapeutic avenue for Pb toxicity in the kidneys.
Collapse
Affiliation(s)
- Chin-Meng Ko
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-M.K.); (Y.-M.K.)
| | - Chee-Kin Then
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
| | - Yu-Ming Kuo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-M.K.); (Y.-M.K.)
| | - Yen-Kuang Lin
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-M.K.); (Y.-M.K.)
- Department of Dermatology, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Master and Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
104
|
Wang S, Huang H, Wang X, Zhou Z, Luo Y, Huang K, Cheng N. Recent Advances in Personal Glucose Meter-Based Biosensors for Food Safety Hazard Detection. Foods 2023; 12:3947. [PMID: 37959066 PMCID: PMC10649190 DOI: 10.3390/foods12213947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Food safety has emerged as a significant concern for global public health and sustainable development. The development of analytical tools capable of rapidly, conveniently, and sensitively detecting food safety hazards is imperative. Over the past few decades, personal glucose meters (PGMs), characterized by their rapid response, low cost, and high degree of commercialization, have served as portable signal output devices extensively utilized in the construction of biosensors. This paper provides a comprehensive overview of the mechanism underlying the construction of PGM-based biosensors, which consists of three fundamental components: recognition, signal transduction, and signal output. It also detailedly enumerates available recognition and signal transduction elements, and their modes of integration. Then, a multitude of instances is examined to present the latest advancements in the application of PGMs in food safety detection, including targets such as pathogenic bacteria, mycotoxins, agricultural and veterinary drug residues, heavy metal ions, and illegal additives. Finally, the challenges and prospects of PGM-based biosensors are highlighted, aiming to offer valuable references for the iterative refinement of detection techniques and provide a comprehensive framework and inspiration for further investigations.
Collapse
Affiliation(s)
- Su Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| | - Huixian Huang
- College of Environmental and Food Engineering, Liuzhou Vocational and Technical College, Liuzhou 545000, China;
| | - Xin Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| | - Ziqi Zhou
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| | - Yunbo Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| |
Collapse
|
105
|
Guo S, Zhang X, Zhang Y, Chen X, Zhang Y, Cao B, Xia D. Development of a rapid zebrafish model for lead poisoning research and drugs screening. CHEMOSPHERE 2023; 345:140561. [PMID: 39491111 DOI: 10.1016/j.chemosphere.2023.140561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Lead (Pb) contamination is a worldwide public health threaten. Besides close restraint of lead exposure, it's emergency to discover compounds that could help to cue toxicities caused by lead. Zebrafish embryos and early larvae can serve as valuable screening tools in early pre-clinical phase of drug screening and research. In order to establish a zebrafish lead poisoning model that could be used for drug screening and research, zebrafish embryos at 6 h post-fertilization (hpf) were treated with lead at different concentrations by soaking intermittently, raised in lead work solution at night while in fish water during the day. After treated for 90 h, death and severe trunk curvature were observed on zebrafish in 640 μM group, obvious dysplasia, blood toxicity, excessive reactive oxygen species (ROS), severe neurotoxicity, such as shorter length of peripheral motor neurons, neuronal apoptosis, and axonal injury, and neurobehavior impairment were induced by lead at 80, 160 and 320 μM, similar to phenotypes reported in rodent. Moreover, the mRNA level of genes related to neurodevelopment, memory, and antioxidation were significantly down regulated, and apoptosis-related genes were up regulated, consistent to zebrafish phenotypic change. Finally, zebrafish were intermittently exposed to 80 μM lead solution to establish the lead poisoning model, and the efficacy of a safe chelating agent Meso-2,3-Dimercaptosuccinic acid (DMSA) was tested at a series of concentrations to validate the zebrafish model. The result showed concentration-dependent decrease of lead content in zebrafish in DMSA treated groups compared with model group. The above data fully demonstrated a zebrafish model of lead poisoning suitable for drug screening was successfully developed, which was expected to provide a rapid and economic tools for discovering antidotes of lead and drugs of neuroprotection.
Collapse
Affiliation(s)
- Shengya Guo
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Xiaoxi Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yong Zhang
- Hunter Biotechnology, Inc., Hangzhou, 310051, China; Schoool of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xinghui Chen
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Yiwen Zhang
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Bingbing Cao
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Daozong Xia
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
106
|
Baghdadi Y, Temerov F, Cui J, Daboczi M, Rattner E, Sena MS, Itskou I, Eslava S. Cs 3Bi 2Br 9/g-C 3N 4 Direct Z-Scheme Heterojunction for Enhanced Photocatalytic Reduction of CO 2 to CO. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:8607-8620. [PMID: 37901142 PMCID: PMC10601477 DOI: 10.1021/acs.chemmater.3c01635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Indexed: 10/31/2023]
Abstract
Lead-free halide perovskite derivative Cs3Bi2Br9 has recently been found to possess optoelectronic properties suitable for photocatalytic CO2 reduction reactions to CO. However, further work needs to be performed to boost charge separation for improving the overall efficiency of the photocatalyst. This report demonstrates the synthesis of a hybrid inorganic/organic heterojunction between Cs3Bi2Br9 and g-C3N4 at different ratios, achieved by growing Cs3Bi2Br9 crystals on the surface of g-C3N4 using a straightforward antisolvent crystallization method. The synthesized powders showed enhanced gas-phase photocatalytic CO2 reduction in the absence of hole scavengers of 14.22 (±1.24) μmol CO g-1 h-1 with 40 wt % Cs3Bi2Br9 compared with 1.89 (±0.72) and 5.58 (±0.14) μmol CO g-1 h-1 for pure g-C3N4 and Cs3Bi2Br9, respectively. Photoelectrochemical measurements also showed enhanced photocurrent in the 40 wt % Cs3Bi2Br9 composite, demonstrating enhanced charge separation. In addition, stability tests demonstrated structural stability upon the formation of a heterojunction, even after 15 h of illumination. Band structure alignment and selective metal deposition studies indicated the formation of a direct Z-scheme heterojunction between the two semiconductors, which boosted charge separation. These findings support the potential of hybrid organic/inorganic g-C3N4/Cs3Bi2Br9 Z-scheme photocatalyst for enhanced CO2 photocatalytic activity and improved stability.
Collapse
Affiliation(s)
- Yasmine Baghdadi
- Department
of Chemical Engineering and Centre for Processable Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Filipp Temerov
- Department
of Chemical Engineering and Centre for Processable Electronics, Imperial College London, London SW7 2AZ, United Kingdom
- Nano
and molecular system (NANOMO) research unit, University of Oulu, Oulu 90570, Finland
| | - Junyi Cui
- Department
of Chemical Engineering and Centre for Processable Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Matyas Daboczi
- Department
of Chemical Engineering and Centre for Processable Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Eduardo Rattner
- Department
of Chemical Engineering and Centre for Processable Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael Segundo Sena
- Department
of Chemical Engineering and Centre for Processable Electronics, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Graduation in Chemical Engineering, Universidade
Federal do Rio Grande do Norte/UFRN, 59.078-970 Rio Grande do Norte, Brazil
| | - Ioanna Itskou
- Barrer
Centre, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Salvador Eslava
- Department
of Chemical Engineering and Centre for Processable Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
107
|
Billmann M, Hulot C, Pauget B, Badreddine R, Papin A, Pelfrêne A. Oral bioaccessibility of PTEs in soils: A review of data, influencing factors and application in human health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165263. [PMID: 37400023 DOI: 10.1016/j.scitotenv.2023.165263] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Understanding the behavior of metal(loi)ds transported from soil to humans is critical for human health risk assessment (HHRA). In the last two decades, extensive studies have been conducted to better assess human exposure to potentially toxic elements (PTEs) by estimating their oral bioaccessibility (BAc) and quantifying the influence of different factors. This study reviews the common in vitro methods used to determine the BAc of PTEs (in particular As, Cd, Cr, Ni, Pb, and Sb) under specific conditions (particularly in terms of the particle size fraction and validation status against an in vivo model). The results were compiled from soils derived from various sources and allowed the identification of the most important influencing factors of BAc (using single and multiple regression analyses), including physicochemical soil properties and the speciation of the PTEs in question. This review presents current knowledge on integrating relative bioavailability (RBA) in calculating doses from soil ingestion in the HHRA process. Depending on the jurisdiction, validated or non-validated bioaccessibility methods were used, and risks assessors applied different approaches: (i) using default assumptions (i.e., RBA of 1); (ii) considering that bioaccessibility value (BAc) accurately represents RBA (i.e., RBA equal to BAc); (iii) using regression models to convert BAc of As and Pb into RBA as proposed by the USA with the US EPA Method 1340; or (iv) applying an adjustment factor as proposed by the Netherlands and France to use BAc from UBM (Unified Barge Method) protocol. The findings from this review should help inform risk stakeholders about the uncertainties surrounding using bioaccessibility data and provide recommendations for better interpreting the results and using bioaccessibility in risk studies.
Collapse
Affiliation(s)
- Madeleine Billmann
- Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515-LGCgE, Laboratoire de Génie Civil et géo-Environnement, 48 boulevard Vauban, F-59000 Lille, France; Agence de l'Environnement et de la Maîtrise de l'Énergie, 20 avenue du Grésillé BP 90406, F-49004 Angers Cedex 01, France
| | - Corinne Hulot
- Ineris, Parc technologique Alata, BP 2, F-60550 Verneuil-en-Halatte, France
| | | | - Rabia Badreddine
- Ineris, Parc technologique Alata, BP 2, F-60550 Verneuil-en-Halatte, France
| | - Arnaud Papin
- Ineris, Parc technologique Alata, BP 2, F-60550 Verneuil-en-Halatte, France
| | - Aurélie Pelfrêne
- Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515-LGCgE, Laboratoire de Génie Civil et géo-Environnement, 48 boulevard Vauban, F-59000 Lille, France.
| |
Collapse
|
108
|
Jung WY, Kim JW, Kim SR, Park M. Heavy metal deposition and parameter change of soft contact lenses by exposure to particulate matter : Parameter change of SCL due to exposure to PM and heavy metal deposition. BMC Ophthalmol 2023; 23:423. [PMID: 37864135 PMCID: PMC10588221 DOI: 10.1186/s12886-023-03154-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Particulate matter (PM) is known to contain heavy metals and be harmful to the tissues and organs of the human body including the eyes. As such, in this study, the deposition of heavy metals from PM on soft contact lenses was examined, and changes in the lens parameters were further investigated. METHODS Six types of soft contact lenses were exposed to captured PM10 for eight hours. The central thickness, water content, refractive power, and oxygen transmissibility of each contact lens were measured after analyzing the amounts of six heavy metals adsorbed on the contact lenses. RESULTS Lead, manganese, barium, arsenic, vanadium, and cadmium were detected in the captured PM, and only lead was adsorbed on all soft contact lenses except senofilcon C. The largest deposition was 23.21 ± 0.70 (10- 3)µg/lens of the lead on lotrafilcon B. The oxygen transmissibility of nelfilcon A exhibited statistically significant changes, however, it was within the ISO standard tolerance. Nevertheless, changes in the central thickness, water content, and refractive power of each soft contact lens were not statistically significant. CONCLUSIONS This study revealed that a considerable amount of lead in PM10 was adsorbed on soft contact lenses. Amongst lens parameters, only oxygen transmissibility changed significantly. Thus, wearing soft contact lenses under high PM10 concentration might affect the physiology of the eyes.
Collapse
Affiliation(s)
- Won Young Jung
- Department of Optometry, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, Republic of Korea
| | | | - So Ra Kim
- Department of Optometry, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, Republic of Korea
| | - Mijung Park
- Department of Optometry, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, Republic of Korea.
| |
Collapse
|
109
|
Baj J, Bargieł J, Cabaj J, Skierkowski B, Hunek G, Portincasa P, Flieger J, Smoleń A. Trace Elements Levels in Major Depressive Disorder-Evaluation of Potential Threats and Possible Therapeutic Approaches. Int J Mol Sci 2023; 24:15071. [PMID: 37894749 PMCID: PMC10606638 DOI: 10.3390/ijms242015071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The multifactorial etiology of major depressive disorder (MDD) includes biological, environmental, genetic, and psychological aspects. Recently, there has been an increasing interest in metallomic studies in psychiatry, aiming to evaluate the role of chosen trace elements in the MDD etiology as well as the progression of symptoms. This narrative review aims to summarize the available literature on the relationship between the concentration of chosen elements in the serum of patients with MDD and the onset and progression of this psychiatric condition. The authors reviewed PubMed, Web of Science, and Scopus databases searching for elements that had been investigated so far and further evaluated them in this paper. Ultimately, 15 elements were evaluated, namely, zinc, magnesium, selenium, iron, copper, aluminium, cadmium, lead, mercury, arsenic, calcium, manganese, chromium, nickel, and phosphorus. The association between metallomic studies and psychiatry has been developing dynamically recently. According to the results of current research, metallomics might act as a potential screening tool for patients with MDD while at the same time providing an assessment of the severity of symptoms. Either deficiencies or excessive amounts of chosen elements might be associated with the progression of depressive symptoms or even the onset of the disease among people predisposed to MDD.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Julia Bargieł
- Student Research Group of Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.B.); (J.C.); (B.S.)
| | - Justyna Cabaj
- Student Research Group of Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.B.); (J.C.); (B.S.)
| | - Bartosz Skierkowski
- Student Research Group of Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.B.); (J.C.); (B.S.)
| | - Gabriela Hunek
- Student Research Group of Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Agata Smoleń
- Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, 20-080 Lublin, Poland;
| |
Collapse
|
110
|
Yang H, Yang J, Wang Z, Zhibin W, Tian J, Chen J, Liu S, Li J, Liang Q, Lan J. Transcriptome Changes Reveal the Toxic Mechanism of Cadmium and Lead Combined Exposure on Silk Production and Web-Weaving Behavior of Spider A. ventricosus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14917-14928. [PMID: 37751292 DOI: 10.1021/acs.est.3c06838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The combined exposure of multiple metals imposes a substantial burden on the ecophysiological functions in organisms; however, the precise mechanism(s) remains largely unknown. Here, adult female A. ventricosus were exposed to single and combined exposure to cadmium (Cd) and lead (Pb) through the food chain. The aim was to explore the combined toxicity of these metals on silk production and web-weaving behavior at physiological, cellular morphological, and transcriptomic levels. The Cd and Pb combined exposure significantly inhibited the ability of silk production and web-weaving, including reduced silk fiber weight and diameter of single strands, lowered weaving position, induced nocturnal weaving, and increased instances of no-web, and showed a dose-response relationship on the Cd and Pb bioaccumulation. Concurrently, severe oxidative stress and degenerative changes in cells were observed. In addition, the combined pollution of Cd and Pb demonstrated synergistic effects, influenced by variations in concentration, on the enrichment of metals, inhibition of silk weight, oxidative damage, and cellular degeneration. At the transcriptome level, the upregulated ampullate spidroin genes and downregulated amino acid anabolic genes, upregulated Far genes and downregulated cytoskeleton-related TUBA genes, and overexpressed AChE and Glu genes may tend to present promising potential as biomarkers for silk protein synthesis, cellular degeneration, and neurotransmitter induction. This study offers an enormous capability for a comprehensive understanding of the eco-toxicological effects and mechanisms of multiheavy metals pollution.
Collapse
Affiliation(s)
- Huilin Yang
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128 Hunan, China
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128 Hunan, China
| | - Jing Yang
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128 Hunan, China
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128 Hunan, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha, 410006 Hunan, China
| | - Wu Zhibin
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128 Hunan, China
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128 Hunan, China
| | - Jianxiang Tian
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha, 410128 Hunan, China
| | - Jinkun Chen
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128 Hunan, China
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128 Hunan, China
| | - Shize Liu
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128 Hunan, China
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128 Hunan, China
| | - Jiajia Li
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128 Hunan, China
| | - Qi Liang
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128 Hunan, China
| | - Jiao Lan
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128 Hunan, China
| |
Collapse
|
111
|
Bhasin T, Lamture Y, Kumar M, Dhamecha R. Unveiling the Health Ramifications of Lead Poisoning: A Narrative Review. Cureus 2023; 15:e46727. [PMID: 38021769 PMCID: PMC10631288 DOI: 10.7759/cureus.46727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
The presence of lead (Pb) in children's toys and paint is a significant global public health concern. Numerous studies conducted worldwide have measured lead concentrations in these products. This article aims to examine the research findings and shed light on the implications for human health, including legal consequences and public awareness. Despite regulations on lead levels in polyvinyl chloride (PVC) paints and children's toys in many countries, several reviewed documents indicate that these products often contain substantial amounts of lead, frequently surpassing legal limits. Particularly high levels of lead in paints have been found in countries such as China, Thailand, and Brazil. It is crucial to raise awareness among parents by educating them about this issue and empowering them to take proactive measures to protect their children from lead poisoning associated with toys and colored paints. There is also global support for eliminating lead pigments and regulating the amount of lead in PVC toys.
Collapse
Affiliation(s)
- Taanvi Bhasin
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Yashwant Lamture
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mayank Kumar
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Rishi Dhamecha
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
112
|
Shehzad J, Khan I, Zaheer S, Farooq A, Chaudhari SK, Mustafa G. Insights into heavy metal tolerance mechanisms of Brassica species: physiological, biochemical, and molecular interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108448-108476. [PMID: 37924172 DOI: 10.1007/s11356-023-29979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/15/2023] [Indexed: 11/06/2023]
Abstract
Heavy metal (HM) contamination of soil due to anthropogenic activities has led to bioaccumulation and biomagnification, posing toxic effects on plants by interacting with vital cellular biomolecules such as DNA and proteins. Brassica species have developed complex physiological, biochemical, and molecular mechanisms for adaptability, tolerance, and survival under these conditions. This review summarizes the HM tolerance strategies of Brassica species, covering the role of root exudates, microorganisms, cell walls, cell membranes, and organelle-specific proteins. The first line of defence against HM stress in Brassica species is the avoidance strategy, which involves metal ion precipitation, root sorption, and metal exclusion. The use of plant growth-promoting microbes, Pseudomonas, Psychrobacter, and Rhizobium species effectively immobilizes HMs and reduces their uptake by Brassica roots. The roots of Brassica species efficiently detoxify metals, particularly by flavonoid glycoside exudation. The composition of the cell wall and callose deposition also plays a crucial role in enhancing HMs resistance in Brassica species. Furthermore, plasma membrane-associated transporters, BjCET, BjPCR, BjYSL, and BnMTP, reduce HM concentration by stimulating the efflux mechanism. Brassica species also respond to stress by up-regulating existing protein pools or synthesizing novel proteins associated with HM stress tolerance. This review provides new insights into the HM tolerance mechanisms of Brassica species, which are necessary for future development of HM-resistant crops.
Collapse
Affiliation(s)
- Junaid Shehzad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ilham Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saira Zaheer
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Atikah Farooq
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sunbal Khalil Chaudhari
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, Sargodha, 42100, Pakistan
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, 323000, China.
- State Agricultural Ministry Laboratory of Horticultural Crop growth and Development, Ministry of Agri-culture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
113
|
Albrektienė-Plačakė R, Bazienė K, Gargasas J. Investigation on Applying Biodegradable Material for Removal of Various Substances (Fluorides, Nitrates and Lead) from Water. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6519. [PMID: 37834656 PMCID: PMC10573546 DOI: 10.3390/ma16196519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Sapropel was used as a biodegradable material for water treatment. Sapropel is a sedimentary layer of a mix of organic and inorganic substances accumulated in the bottoms of lakes for thousands of years. It is a jelly-like homogeneous mass and has properties of sorption. Sapropel is used as a biosorbent and an environment-friendly fertiliser, and it is used in building materials and in the beauty industry as well. In water, there are abundant various solutes that may cause a risk to human health. Such substances include fluorides, nitrates and lead in different sources of water. The goal of this investigation is to explore and compare the efficiencies of removal of different pollutants (fluorides, nitrates and lead) from aqueous solutions upon using sapropel as a sorbent. In this research, various doses of sapropel (0.1, 0.5, 1, 5, 10, 20, 50, 100 and 200 g/L) and various mixing times (15, 30, 60, 90 and 120 min) were used for removal of fluorides, nitrates and lead from aqueous solutions. It was found that the maximum efficiency (up to 98.57%) of lead removal from aqueous solutions by sapropel was achieved when the minimum doses of it (0.1 and 0.5 g/L) were used. The most efficient removal of fluorides (64.67%) was achieved by using 200 g/L of sapropel and mixing for 120 min. However, sapropel does not adsorb nitrates from aqueous solutions.
Collapse
Affiliation(s)
- Ramunė Albrektienė-Plačakė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Kristina Bazienė
- Department of Mechanical and Material Engineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Justinas Gargasas
- Department of Mechanical and Material Engineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| |
Collapse
|
114
|
Guo B, Li T, Wang L, Liu F, Chen B. Long non-coding RNAs regulate heavy metal-induced apoptosis in embryo-derived cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121956. [PMID: 37271361 DOI: 10.1016/j.envpol.2023.121956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Heavy metal pollution has been a worldwide prevalent problem, and particularly a threat to ecosystem integrity and animals' health. Previous studies on the mechanisms of heavy metal toxicity have focused on protein-coding genes, whereas most genomic transcripts are long non-coding RNAs (lncRNAs). Although lncRNAs are known to play important regulatory roles in biological processes, their role in heavy metal stress regulation is still not fully understood. We here developed an insect embryo cell model for studying metal toxicity and the underlying regulatory mechanisms. We performed genome-wide screening and functional characterization of lncRNAs induced by two essential and two non-essential heavy metals in Drosophila embryo-derived S2 cells. We identified 4894 lncRNAs, of which 1410 were novel. Forty-one lncRNAs, together with 328 mRNAs, were induced by all the four heavy metals. LncRNA-mRNA co-expression network and pathway enrichment analysis showed that detoxification metabolism, circadian rhythm, and apoptosis regulation pathways were activated in response to heavy metal stress. LncRNA CR44138 was remarkably upregulated in cells exposed to the four heavy metals and was associated with the apoptosis pathway. Expression interference confirmed that CR44138 aggravated cytotoxicity-induced apoptosis in cells under heavy metals stress. This study highlights the important role of lncRNAs in regulating the cellular response to heavy metals. This study also lays the foundation for discovering the novel regulatory mechanisms and developing diagnostic biomarkers of the toxic effects of heavy metal pollutants on organisms.
Collapse
Affiliation(s)
- Boyang Guo
- College of Life Science, Hebei University, Baoding 071002, China
| | - Ting Li
- School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, 271016, Shandong Province, China
| | - Lingyan Wang
- College of Life Science, Hebei University, Baoding 071002, China
| | - Fengsong Liu
- College of Life Science, Hebei University, Baoding 071002, China
| | - Bing Chen
- College of Life Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
115
|
Sawe S, Amasi A, Wynants M. Assessment of Potentially Toxic Metals in Fish from Lake Manyara, Northern Tanzania. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:39. [PMID: 37704929 PMCID: PMC10499695 DOI: 10.1007/s00128-023-03794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
Elemental tracer concentrations of copper, lead, nickel and zinc, were assessed in the muscles of Oreochromis amphimelas and Clarias gariepinus from Lake Manyara, Tanzania, to evaluate their safety to consumers, specifically humans. Results revealed that no elemental concentrations exceeded the FAO permissible levels, indicating fish from all sites are safe for human consumption. However, based on the highest found concentration of Pb, we recommend a maximum consumption of 2.2 kg of fish from Lake Manyara per week. No significant differences were observed in the metal concentrations between the two fish species, suggesting there is no bioaccumulation in the food chain. Moreover, no significant differences were found between fish landing sites, indicating there are no regions in the lake with higher pollution. These findings indicate that PTM concentrations have not increased to toxic levels due to increased mobilisation from the catchment. Continued monitoring of potential toxic metal concentrations in fish is recommended due to endorheic nature of Lake Manyara and increasing anthropogenic activities in its catchment area.
Collapse
Affiliation(s)
- Shovi Sawe
- Department of Research and Development, Tanzania Atomic Energy Commission, P O Box 743, Arusha, Tanzania
| | - Aloyce Amasi
- School of Materials, Energy, Water and Environmental Science, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, 23311 Arusha, Tanzania
| | - Maarten Wynants
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 75007 Uppsala, Sweden
| |
Collapse
|
116
|
Scutarașu EC, Trincă LC. Heavy Metals in Foods and Beverages: Global Situation, Health Risks and Reduction Methods. Foods 2023; 12:3340. [PMID: 37761050 PMCID: PMC10528236 DOI: 10.3390/foods12183340] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Heavy metals are chemical elements with a toxic effect on the human body. The expansion of industries has led to significant increasing levels of these constituents in the environment. Intensive agriculture can also lead to an increased concentration of heavy metals as a result of using different fertilizers and pesticides. Heavy metal accumulation in soil and plants represents a serious issue because of the potential risks to consumers. There are several methods available for the removal of these toxic components from different substrates (chemical precipitation, electrodialysis, coagulation and flocculation, photocatalytic removal, and adsorption-based processes), but most procedures are expensive and difficult to perform. Thus, more research is needed on the development of low-cost methods in foods. This work represents a review on the heavy metal presence in different food substrates (such as fruits and vegetables, milk and dairy products, meat and meat derivatives, oils, and alcoholic beverages) and provides an overview of the current situation worldwide, taking into account the fact that risks for human health are induced by the intensification of industry and the high degree of pollution. Considering that the toxicological quality of food affects its acceptability, this work provides valuable data regarding the actual situation on the proposed topic.
Collapse
Affiliation(s)
| | - Lucia Carmen Trincă
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iași University of Life Sciences, 3rd M. Sadoveanu Alley, 700490 Iași, Romania;
| |
Collapse
|
117
|
Palanirajan SK, Gummadi SN. Phospholipid scramblase 3: a latent mediator connecting mitochondria and heavy metal apoptosis. Cell Biochem Biophys 2023; 81:443-458. [PMID: 37341933 DOI: 10.1007/s12013-023-01145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Lead and mercury are the ubiquitous heavy metals triggering toxicity and initiating apoptosis in cells. Though the toxic effects of heavy metals on various organs are known, there is a paucity of information on the mechanisms that instigate the current study. A plausible role of phospholipid scramblase 3 (PLSCR3) in Pb2+ and Hg2+ induced apoptosis was investigated with human embryonic kidney (HEK 293) cells. After 12 h of exposure, ~30-40% of the cells were in the early stage of apoptosis with increased reactive oxygen species (ROS), decreased mitochondrial membrane potential, and increased intracellular calcium levels. Also, ~20% of the cardiolipin localized within the inner mitochondrial membrane was translocated to the outer mitochondrial membrane along with the mobilization of truncated Bid (t-Bid) to the mitochondria and cytochrome c from the mitochondria. The endogenous expression levels of PLSCR3, caspase 8, and caspase 3 were upregulated in Pb2+ and Hg2+ induced apoptosis. The activation and upregulation of PLSCR3 mediate CL translocation playing a potential role in initiating the heavy metal-induced apoptosis. Therefore, PLSCR3 could be the linker between mitochondria and heavy metal apoptosis.
Collapse
Affiliation(s)
- Santosh Kumar Palanirajan
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India.
| |
Collapse
|
118
|
Singaram P, Retnamma J, Cheruparambil R, Nagarathinam A, Loganathan J, Thangaraj JR, Radhakrishnan SS. Heavy metals concentration in zooplankton (copepods) in the western Bay of Bengal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101565-101584. [PMID: 37653191 DOI: 10.1007/s11356-023-29112-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Along the coastline, urbanisation and industrialization pose significant challenges to marine habitats and biodiversity. Most wastewater that reaches the marine environment contains toxic metals, which, as they are non-biodegradable, accumulate in the biota and enter the marine food chain. This study presents the concentration of nine heavy metals (Fe, Zn, Cu, Co, Cr, Mn, Ni, Pb, and Cd) in zooplankton (copepods) during the Spring Intermonsoon/Pre-Monsoon (April 2019) in the western Bay of Bengal (BoB). Higher Fe concentrations were found in copepods both nearshore (42,352 µg/g) and offshore (9835 µg/g). However, the relative amounts of heavy metals in copepods from 16 locations (eight nearshore and eight offshore) varied in the order of Fe > Zn > Cu > Co > Cr > Mn > Ni > Pb > Cd. The copepods in the nearshore locations had higher concentrations of heavy metals than those offshore. Compared to earlier data on heavy metals, particularly those that are physiologically non-essential and toxic, the current study demonstrates higher amounts of these metals in copepods in the inshore BoB [Ni (avg. 58.7 ± 5.5 µg/g), Pb (avg. 25.6 ± 4.7 µg/g), and Cd (avg. 16.4 ± 0.9 µg/g)]. Considering the strong East India Coastal Currents in the western BoB, trace metal-concentrated copepods could be transported too far along the Indian coastline from the current study area.
Collapse
Affiliation(s)
- Parthasarathi Singaram
- CSIR- National Institute of Oceanography, Regional Centre, Kochi, India
- Research Student, Bharathidasan University, Tiruchirappalli, India
| | | | - Rashid Cheruparambil
- CSIR- National Institute of Oceanography, Regional Centre, Kochi, India
- Research Student, Bharathidasan University, Tiruchirappalli, India
| | | | - Jagadeesan Loganathan
- CSIR- National Institute of Oceanography, Regional Centre, Kochi, India
- CSIR- National Institute of Oceanography, Regional Centre, Vishakhapatnam, India
| | | | | |
Collapse
|
119
|
Mafulul SG, Joel EB, Gushit J. Health risk assessment of potentially toxic elements (PTEs) concentrations in soil and fruits of selected perennial economic trees growing naturally in the vicinity of the abandoned mining ponds in Kuba, Bokkos Local Government Area (LGA) Plateau State, Nigeria. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5893-5914. [PMID: 37183215 DOI: 10.1007/s10653-023-01600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
This study was designed to determine the level of potentially toxic elements (PTEs) contamination in soil and selected fruits and assesses the health risk of inhabitants in the abandoned tin mining community in Kuba, Bokkos LGA. Samples of the abandoned mine soil and selected fruits mango (Magnifera indica), guava (Psidium guajava), avocado pear (Persea americana), and banana (Musa spp)) from the vicinity of the abandoned mine were analyzed for the presence of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the levels of all the PTEs analysed in the abandoned mine soil samples were significantly (p < 0.05) higher than their corresponding values in the control soil from the non-mining area. Except for Cd, the mean concentrations of As, Cr, Cu, Mn, Ni, and Pb were significantly higher than the FAO/WHO maximum permissible limit. Except for Zn in guava fruits and Cd in avocado fruits, the mean concentration of PTEs in fruits from abandoned mines was significantly (p < 0.05) higher than their corresponding control values. In contrast, the mean levels of As, Cr, Cu, Mn, Ni, and Pb in the investigated fruits were significantly (p < 0.05) higher than FAO/WHO maximum permissible limits established for fruits. The studied fruits remarkably took up and bioaccumulated PTEs from the abandoned mine soil. Mango fruit significantly bioaccumulated As (5.40), Cd (3.40), and Zn (2.81). Guava fruit bioaccumulated As (1.50) and Cd (4.60), while avocado bioaccumulated As (3.53), Cd (3.80), and Zn (6.48). Banana bioaccumulated As (0.96), Cd (0.80), and Zn (6.78). The hazard quotient values for PTEs investigated in fruits for adults, and children were several folds greater than 1. The hazard index (HI) for the PTEs through consuming fruits for children and adults was greater than 1, indicating that possible health risks exist for both local children and adults. However, the HI values for the children were higher than those for adults, implying that children were exposed to more potential noncarcinogenic health risks from PTEs than adults. The total cancer risk (TCR) values for Cr and Ni for all the fruits studied were within 10-3-10-1, which is several-fold higher than the permissible limits (10-6 and < 10-4), indicating high carcinogenic risk. TCR values for Cd and Pb in all the fruits, except for Cd in guava and avocado fruits for children, were within the range of 10-5-10-4, indicating that they are associated with moderate risk. The CR values for all the PTEs in all the fruits for adults and children except for mango fruit adults were within 10-2-10-1, indicating high carcinogenic risk. In conclusion, the results and risk assessment provided by this study indicate that human exposure to fruits from abandoned mines suggests a high vulnerability of the local community to PTE toxicity. Long-term preventive measures to safeguard the health of the residents need to be put in place.
Collapse
Affiliation(s)
- Simon Gabriel Mafulul
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, P.M.B. 2084, Jos, Plateau State, Nigeria.
| | - Enoch Banbilbwa Joel
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, P.M.B. 2084, Jos, Plateau State, Nigeria
| | - John Gushit
- Department of Science Laboratory Technology, Faculty of Natural Sciences, University of Jos, P.M.B. 2084, Jos, Plateau State, Nigeria
| |
Collapse
|
120
|
Hamouda AF, Felemban S. A Bio-Indicator Pilot Study Screening Selected Heavy Metals in Female Hair, Nails, and Serum from Lifestyle Cosmetic, Canned Food, and Manufactured Drink Choices. Molecules 2023; 28:5582. [PMID: 37513454 PMCID: PMC10386365 DOI: 10.3390/molecules28145582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Lifestyles, genetic predispositions, environmental factors, and geographical regions are considered key factors of heavy metals initiatives related to health issues. Heavy metals enter the body via the environment, daily lifestyle, foods, beverages, cosmetics, and other products. The accumulation of heavy metals in the human body leads to neurological issues, carcinogenesis, failure of multiple organs in the body, and a reduction in sensitivity to treatment. We screened for Cr, Al, Pb, and Cd in selected foods, beverages, and cosmetics products depending on questionnaire outcomes from female volunteers. We also screened for Cr, Al, Pb, and Cd on hair, nails, and serum samples using inductively coupled plasma mass spectrometry (ICP-MS) from the same volunteers, and we analyzed the serum cholinesterase and complete blood picture (CBC). We performed an AutoDock study on Cr, Al, Pb, and Cd as potential ligands. Our results indicate that the most elevated heavy metal in the cosmetic sample was Al. In addition, in the food and beverages samples, it was Pb and Al, respectively. The results of the questionnaire showed that 71 percent of the female volunteers used the studied cosmetics, food, and beverages, which were contaminated with Cr, Al, Pb, and Cd, reflecting the high concentration of Cr, Al, Cd, and Pb in the three different types of biological samples of sera, nails, and hair of the same females, with 29 percent of the female volunteers not using the products in the studied samples. Our results also show an elevated level of cholinesterase in the serum of group 1 that was greater than group 2, and this result was confirmed by AutoDock. Moreover, the negative variation in the CBC result was compared with the reference ranges. Future studies should concentrate on the actions of these heavy metal contaminations and their potential health consequences for various human organs individually.
Collapse
Affiliation(s)
- Asmaa Fathi Hamouda
- Department of Biochemistry, Faculty of Science, University of Alexandria, Alexandria 21111, Egypt
| | - Shifa Felemban
- Department of Chemistry, Faculty of Applied Science, University College-Al Leith, University of Umm Al-Qura, Makkah 21955, Saudi Arabia
| |
Collapse
|
121
|
Saputri M, Yusnaini Y, Sara L, Widowati I, Guyot T, Fichet D, Radenac G. Multi-Year Monitoring of the Toxicological Risk of Heavy Metals Related to Fish Consumption by the Population of the Kendari Region (Southeast Sulawesi, Indonesia). TOXICS 2023; 11:592. [PMID: 37505558 PMCID: PMC10383168 DOI: 10.3390/toxics11070592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
This study measured the concentrations of Hg, As, Ni, Cd, and Pb in six fish species commonly consumed in Kendari. Samples were bought within local markets from 2012 to 2017 at the end of the dry season. Results showed that mercury concentrations fluctuated between years and within species, except in the Caranx sexfasciatus, which showed no significant differences (Kruskall-Wallis, p-value > 0.05, df = 5) and an average concentration of 0.371 ± 0.162 µg g-1 DW. Arsenic was found in high concentrations across species and years and varied widely in C. sexfasciatus, the lowest value being 0.32 ± 0.01 µg g-1 DW in 2012 and the highest was 5.63 ± 1.89 µg g-1 DW in 2017. The highest nickel concentrations were found in 2016 across four of the six species. The fish samples displayed very low cadmium and lead concentrations throughout the study. In addition, the potential human health risk due to fish consumption was assessed. This showed that mercury is the only one of the five metals present in concentrations high enough to individually pose a potential hazard, the only metal likely to be accumulated beyond a safe concentration in Kendari. Chanos chanos never posed a toxicological risk based on the results of this research.
Collapse
Affiliation(s)
- Mimie Saputri
- UMRi LIENSs 7266 CNRS, La Rochelle Université, 17000 La Rochelle, France; (T.G.); (D.F.); (G.R.)
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Semarang 50275, Indonesia;
- Faculty of Teacher Training and Education, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Yusnaini Yusnaini
- Faculty of Fisheries and Marine Sciences, Universitas Halu Oleo, Kendari 93232, Indonesia; (Y.Y.); (L.S.)
| | - La Sara
- Faculty of Fisheries and Marine Sciences, Universitas Halu Oleo, Kendari 93232, Indonesia; (Y.Y.); (L.S.)
| | - Ita Widowati
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Semarang 50275, Indonesia;
| | - Thierry Guyot
- UMRi LIENSs 7266 CNRS, La Rochelle Université, 17000 La Rochelle, France; (T.G.); (D.F.); (G.R.)
| | - Denis Fichet
- UMRi LIENSs 7266 CNRS, La Rochelle Université, 17000 La Rochelle, France; (T.G.); (D.F.); (G.R.)
| | - Gilles Radenac
- UMRi LIENSs 7266 CNRS, La Rochelle Université, 17000 La Rochelle, France; (T.G.); (D.F.); (G.R.)
| |
Collapse
|
122
|
Masbough F, Shadnia S, Rahimi M, Roshanzamiri S, Evini PE, Mostafazadeh B. A rare case report of lead encephalopathy due to high blood lead level. Clin Case Rep 2023; 11:e7663. [PMID: 37415586 PMCID: PMC10320365 DOI: 10.1002/ccr3.7663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/27/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Here we report a case of lead poisoning having a serum lead level of 412 mcg dL-1 who presented with decreasing level of consciousness and recurrent seizures. He responded well to treatment with chelation therapy.
Collapse
Affiliation(s)
- Farnoosh Masbough
- Department of Clinical Pharmacy, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Shahin Shadnia
- Toxicological Research Center, Excellence Center & Department of Clinical Toxicology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Mitra Rahimi
- Toxicological Research Center, Excellence Center & Department of Clinical Toxicology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Soheil Roshanzamiri
- Department of Clinical Pharmacy, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Peyman Erfantalab Evini
- Toxicological Research Center, Excellence Center & Department of Clinical Toxicology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Babak Mostafazadeh
- Toxicological Research Center, Excellence Center & Department of Clinical Toxicology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
123
|
Peivasteh-roudsari L, Barzegar-bafrouei R, Sharifi KA, Azimisalim S, Karami M, Abedinzadeh S, Asadinezhad S, Tajdar-oranj B, Mahdavi V, Alizadeh AM, Sadighara P, Ferrante M, Conti GO, Aliyeva A, Mousavi Khaneghah A. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023; 9:e18140. [PMID: 37539203 PMCID: PMC10395372 DOI: 10.1016/j.heliyon.2023.e18140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are a growing public health concern worldwide. Consumption of foodstuffs is currently thought to be one of the principal exposure routes to EDCs. However, alternative ways of human exposure are through inhalation of chemicals and dermal contact. These compounds in food products such as canned food, bottled water, dairy products, fish, meat, egg, and vegetables are a ubiquitous concern to the general population. Therefore, understanding EDCs' properties, such as origin, exposure, toxicological impact, and legal aspects are vital to control their release to the environment and food. The present paper provides an overview of the EDCs and their possible disrupting impact on the endocrine system and other organs.
Collapse
Affiliation(s)
| | - Raziyeh Barzegar-bafrouei
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kurush Aghbolagh Sharifi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Shamimeh Azimisalim
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marziyeh Karami
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Abedinzadeh
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Asadinezhad
- Department of Food Science and Engineering, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Behrouz Tajdar-oranj
- Food and Drug Administration of Iran, Ministry of Health and Medical Education, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 1475744741, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parisa Sadighara
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
| |
Collapse
|
124
|
Liu M, Liu R, Yang M, Ba Y, Deng Q, Zhang Y, Han L, Gao L, Huang H. Combined exposure to lead and high-fat diet induced neuronal deficits in rats: Anti-neuroinflammatory role of SIRT1. Food Chem Toxicol 2023; 177:113857. [PMID: 37244597 DOI: 10.1016/j.fct.2023.113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Lead (Pb) exposure and high-fat diet (HFD) trigger neurotoxicity, which may involve neuroinflammation. However, the mechanism by which combined Pb and HFD exposure induces nucleotide oligomerization domain-like receptor family pyrin domain 3 (NLRP3) inflammasome activation has not been fully elucidated. MATERIAL AND METHODS The Sprague-Dawley (SD) rat model of exposure to Pb and HFD was established to reveal the influence of co-exposure on cognition and identify signaling clues that mediate neuroinflammation and synaptic dysregulation. PC12 cells was treated with Pb and PA in vitro. Silent information regulator 1 (SIRT1) agonist (SRT 1720) was employed as intervention agent. RESULTS Our results showed that Pb and HFD exposure induced cognitive impairment and lead to neurological damage in rats. Meanwhile, Pb and HFD could stimulate the NLRP3 inflammasome assembly and activate caspase 1, releasing proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18), further promoting neuronal cell activation and amplifying neuroinflammatory responses. Additionally, our findings suggest that SIRT1 plays a role in Pb and HFD induced neuroinflammation. However, the use of SRT 1720 agonists showed some potential in alleviating these impairments. CONCLUSION Pb exposure and HFD intake could induce neuronal damage through activation of the NLRP3 inflammasome pathway and synaptic dysregulation, while the NLRP3 inflammasome pathway may be rescued via activating SIRT1.
Collapse
Affiliation(s)
- Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China.
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China.
| | - Mingzhi Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China.
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China.
| | - Qihong Deng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China.
| | - Yu Zhang
- State Key Laboratory of Microbial Technology, Qingdao, Shandong, 266000, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong, 250100, China; Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266000, China.
| | - Lin Han
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong, 250100, China; Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266000, China.
| | - Lihua Gao
- Zhengzhou Center for Disease Control and Prevention, Zhengzhou, Henan, 450052, China.
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China.
| |
Collapse
|
125
|
Lei Y, Xie J, Quan W, Chen Q, Long X, Wang A. Advances in the adsorption of heavy metal ions in water by UiO-66 composites. Front Chem 2023; 11:1211989. [PMID: 37408555 PMCID: PMC10318541 DOI: 10.3389/fchem.2023.1211989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
The innovative adsorbents known as the Metal-organic Framework (MOFs) had a high specific surface area, various structural types, and good chemical stability. MOFs have been produced through hydrothermal, mechanochemical, microwave-assisted, gelation, and other synthesis methods, and the solvothermal process is one of them that researchers frequently utilize. The UiO materials have a more comprehensive application potential than different subtypes of MOFs among the numerous MOFs that have been synthesized. The synthesis of MOFs and their composites, as well as the adsorption characteristics of UiO materials in the adsorption of various heavy metal ions, have all been examined and summarized in this study.
Collapse
Affiliation(s)
- Yuanhang Lei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, China
| | - Jiangqin Xie
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, China
| | - Wenxuan Quan
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China
| | - Qi Chen
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, China
| | - Xingyu Long
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, Guizhou, China
| | - Anping Wang
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, China
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China
| |
Collapse
|
126
|
Guermazi W, Boukhris S, Annabi-Trabelsi N, Rebai T, Sellami-Kamoun A, Aldahmash W, Plavan GI, Harrath AH, Ayadi H. Hyperhalophilic Diatom Extract Protects against Lead-Induced Oxidative Stress in Rats and Human HepG2 and HEK293 Cells. Pharmaceuticals (Basel) 2023; 16:875. [PMID: 37375822 PMCID: PMC10300844 DOI: 10.3390/ph16060875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
This work investigated the protective effects of microalga Halamphora sp. extract (HExt), a nutraceutical and pharmacological natural product, on human lead-intoxicated liver and kidney cells in vitro and in vivo in Wistar rats. The human hepatocellular carcinoma cell line HepG2 and the human embryonic kidney cell line HEK293 were used for the in vitro study. The analysis of the fatty acid methyl esters in the extract was performed via GC/MS. The cells were pretreated with HExt at 100 µg mL-1, followed by treatment with different concentrations of lead acetate, ranging from 25 to 200 µM for 24 h. The cultures were incubated (5% CO, 37 °C) for 24 h. Four groups, each containing six rats, were used for the in vivo experiment. The rats were exposed to subchronic treatment with a low dose of lead acetate (5 mg kg-1 b.w. per day). Pretreating HepG2 and HEK293 cells with the extract (100 µg mL-1) significantly (p < 0.05) protected against the cytotoxicity induced by lead exposure. For the in vivo experiment, the biochemical parameters in serum-namely, the level of malondialdehyde (MDA), and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)-were measured in the organ homogenate supernatants. HExt was found to be rich in fatty acids, mainly palmitic and palmitoleic acids (29.464% and 42.066%, respectively). In both the in vitro and in vivo experiments, cotreatment with HExt protected the liver and kidney cell structures and significantly preserved the normal antioxidant and biochemical parameters in rats. This study discovered the possible protective effect of HExt, which could be beneficial for Pb-intoxicated cells.
Collapse
Affiliation(s)
- Wassim Guermazi
- Laboratory of Marine Biodiversity and Environment, Department of Life Sciences, Faculty of Sciences, University of Sfax, Street of Soukra Km 3.5, Sfax CP 3000, Tunisia
| | - Saoussan Boukhris
- Laboratory of Enzyme Engineering and Microbiology, Department of Life Sciences, National Engineering School of Sfax, University of Sfax, Sfax CP 3038, Tunisia
| | - Neila Annabi-Trabelsi
- Laboratory of Marine Biodiversity and Environment, Department of Life Sciences, Faculty of Sciences, University of Sfax, Street of Soukra Km 3.5, Sfax CP 3000, Tunisia
| | - Tarek Rebai
- Laboratory of Histology-Embryology, Faculty of Medicine, Magida Boulila Street, Sfax CP 3028, Tunisia
| | - Alya Sellami-Kamoun
- Laboratory of Enzyme Engineering and Microbiology, Department of Life Sciences, National Engineering School of Sfax, University of Sfax, Sfax CP 3038, Tunisia
| | - Waleed Aldahmash
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Habib Ayadi
- Laboratory of Marine Biodiversity and Environment, Department of Life Sciences, Faculty of Sciences, University of Sfax, Street of Soukra Km 3.5, Sfax CP 3000, Tunisia
| |
Collapse
|
127
|
Abu-Elala NM, Khattab MS, AbuBakr HO, Helmy S, Hesham A, Younis NA, Dawood MAO, El Basuini MF. Neem leaf powder (Azadirachta indica) mitigates oxidative stress and pathological alterations triggered by lead toxicity in Nile tilapia (Oreochromis niloticus). Sci Rep 2023; 13:9170. [PMID: 37280317 DOI: 10.1038/s41598-023-36121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
This study investigated the clinical and pathological symptoms of waterborne lead toxicity in wild Nile tilapia collected from a lead-contaminated area (the Mariotteya Canal: Pb = 0.6 ± 0.21 mg L-1) and a farmed fish after 2 weeks of experimental exposure to lead acetate (5-10 mg L-1) in addition to evaluating the efficacy of neem leaf powder (NLP) treatment in mitigating symptoms of lead toxicity. A total of 150 fish (20 ± 2 g) were alienated into five groups (30 fish/group with three replicates). G1 was assigned as a negative control without any treatments. Groups (2-5) were exposed to lead acetate for 2 weeks at a concentration of 5 mg L-1 (G2 and G3) or 10 mg L-1 (G4 and G5). During the lead exposure period, all groups were reared under the same conditions, while G3 and G5 were treated with 1 g L-1 NLP. Lead toxicity induced DNA fragmentation and lipid peroxidation and decreased the level of glutathione and expression of heme synthesis enzyme delta aminolaevulinic acid dehydratase (ALA-D) in wild tilapia, G2, and G4. NLP could alleviate the oxidative stress stimulated by lead in G3 and showed an insignificant effect in G5. The pathological findings, including epithelial hyperplasia in the gills, edema in the gills and muscles, degeneration and necrosis in the liver and muscle, and leukocytic infiltration in all organs, were directly correlated with lead concentration. Thus, the aqueous application of NLP at 1 g L-1 reduced oxidative stress and lowered the pathological alterations induced by lead toxicity.
Collapse
Affiliation(s)
- Nermeen M Abu-Elala
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Faculty of Veterinary Medicine, King Salman International University, South Sinai, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Samah Helmy
- Department of Immunology, Animal Health Research Institute, Dokki, Giza, Egypt
| | - Ahmed Hesham
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
- Middle East for Veterinary Vaccine (MEVAC), El-Salihya El-Gededa, 44671, El-Sharkia, Egypt
| | - Nehal A Younis
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo, 11835, Egypt
| | - Mohammed F El Basuini
- Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt.
- Faculty of Desert Agriculture, King Salman International University, South Sinai, 46618, Egypt.
| |
Collapse
|
128
|
Manwani S, Devi P, Singh T, Yadav CS, Awasthi KK, Bhoot N, Awasthi G. Heavy metals in vegetables: a review of status, human health concerns, and management options. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71940-71956. [PMID: 35921005 DOI: 10.1007/s11356-022-22210-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/21/2022] [Indexed: 06/14/2023]
Abstract
For sustainable global growth, food security is a prime concern issue, both quantitatively and qualitatively. Adverse effects on crop quality from contaminants like heavy metals have affected food security and human health. Vegetables comprise the essential and nutritious part of the human diet as they contain a lot of health-promoting minerals and vitamins. However, the inadvertent excess accumulation of heavy metals (As, Cd, Hg, and Pb) in vegetables and their subsequent intake by humans may affect their physiology and metabolomics and has been associated with diseases like cancer, mental retardation, and immunosuppression. Many known sources of hazardous metals are volcano eruptions, soil erosion, use of chemical fertilizers in agriculture, the use of pesticides and herbicides, and irrigation with wastewater, industrial effluents, etc. that contaminate the vegetables through the soil, air and water. In this review, the problem of heavy metal contamination in vegetables is discussed along with the prospective management strategies like soil amendments, application of bioadsorbents, membrane filtration, bioremediation, and nanoremediation.
Collapse
Affiliation(s)
- Seema Manwani
- Department of Life Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Pooja Devi
- Department of Life Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Tanvi Singh
- Department of Zoology, Delhi University, Delhi, 110007, India
| | - Chandra Shekhar Yadav
- Department of Life Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
- School of Forensic Science, National Forensic Science University, Gandhinagar, 382007, India
| | - Kumud Kant Awasthi
- Department of Life Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Narain Bhoot
- Central Laboratory, Rajasthan State Pollution Control Board, Jaipur, Rajasthan, 302004, India
| | - Garima Awasthi
- Department of Life Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India.
| |
Collapse
|
129
|
Schiavo B, Meza-Figueroa D, Vizuete-Jaramillo E, Robles-Morua A, Angulo-Molina A, Reyes-Castro PA, Inguaggiato C, Gonzalez-Grijalva B, Pedroza-Montero M. Oxidative potential of metal-polluted urban dust as a potential environmental stressor for chronic diseases. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3229-3250. [PMID: 36197533 DOI: 10.1007/s10653-022-01403-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 06/01/2023]
Abstract
Oxidative stress (OS) associated with metals in urban dust has become a public health concern. Chronic diseases linked to general inflammation are particularly affected by OS. This research analyzes the spatial distribution of metals associated with OS, the urban dust´s oxidative potential (OP), and the occurrence of diseases whose treatments are affected by OS. We collected 70 urban dust samples during pre- and post-monsoon seasons to achieve this. We analyzed particle size distribution and morphology by scanning electron microscopy, as well as metal(loid)s by portable X-ray fluorescence, and OP of dust in artificial lysosomal fluid by using an ascorbic acid depletion assay. Our results show that the mean concentration of Fe, Pb, As, Cr, Cu, and V in pre-monsoon was 83,984.6, 98.4, 23.5, 165.8, 301.3, and 141.9 mg kg-1, while during post-monsoon was 50,638.8, 73.9, 16.7, 124.3, 178.9, and 133.5 mg kg-1, respectively. Impoverished areas with the highest presence of cardiovascular, cancer, diabetes, and respiratory diseases coincide with contaminated areas where young adults live. We identified significant differences in the OP between seasons. OP increases during the pre-monsoon (from 7.8 to 237.5 nmol AA min-1) compared to the post-monsoon season (from 1.6 to 163.2 nmol AA min-1). OP values are much higher than measured standards corresponding to contaminated soil and urban particulate matter, which means that additional sources beside metals cause the elevated OP. The results show no risk from chronic exposure to metals; however, our results highlight the importance of studying dust as an environmental factor that may potentially increase oxidative stress.
Collapse
Affiliation(s)
- Benedetto Schiavo
- Instituto de Geofísica, Universidad Nacional Autónoma de México, 04150, Mexico City, Mexico.
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico.
| | - Efrain Vizuete-Jaramillo
- Departamento de Ciencias del Agua y del Medio Ambiente, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico
| | - Agustin Robles-Morua
- Departamento de Ciencias del Agua y del Medio Ambiente, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico
| | - Aracely Angulo-Molina
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| | - Pablo A Reyes-Castro
- Centro de Estudios en Salud y Sociedad, El Colegio de Sonora, Hermosillo, Mexico
| | - Claudio Inguaggiato
- Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Ensenada, Mexico
| | - Belem Gonzalez-Grijalva
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| | - Martin Pedroza-Montero
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| |
Collapse
|
130
|
Martín-Carrasco I, Carbonero-Aguilar P, Dahiri B, Moreno IM, Hinojosa M. Comparison between pollutants found in breast milk and infant formula in the last decade: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162461. [PMID: 36868281 DOI: 10.1016/j.scitotenv.2023.162461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Since ancient times, breastfeeding has been the fundamental way of nurturing the newborn. The benefits of breast milk are widely known, as it is a source of essential nutrients and provides immunological protection, as well as developmental benefits, among others. However, when breastfeeding is not possible, infant formula is the most appropriate alternative. Its composition meets the nutritional requirements of the infant, and its quality is subject to strict control by the authorities. Nonetheless, the presence of different pollutants has been detected in both matrices. Thus, the aim of the present review is to make a comparison between the findings in both breast milk and infant formula in terms of contaminants in the last decade, in order to choose the most convenient option depending on the environmental conditions. For that, the emerging pollutants including metals, chemical compounds derived from heat treatment, pharmaceutical drugs, mycotoxins, pesticides, packaging materials, and other contaminants were described. While in breast milk the most concerning contaminants found were metals and pesticides, in infant formula pollutants such as metals, mycotoxins, and packaging materials were the most outstanding. In conclusion, the convenience of using a feeding diet based on breast milk or either infant formula depends on the maternal environmental circumstances. However, it is important to take into account the immunological benefits of the breast milk compared to the infant formula, and the possibility of using breast milk in combination with infant formula when the nutritional requirements are not fulfilled only with the intake of breast milk. Therefore, more attention should be paid in terms of analyzing these conditions in each case to be able to make a proper decision, as it will vary depending on the maternal and newborn environment.
Collapse
Affiliation(s)
- I Martín-Carrasco
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - P Carbonero-Aguilar
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - B Dahiri
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - I M Moreno
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain.
| | - M Hinojosa
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain; Department of Biochemistry and Biophysics, Stockholm University, Institutionen för biokemi och biofysik, 106 91 Stockholm, Sweden
| |
Collapse
|
131
|
Hossain MA, Chowdhury T, Chowdhury G, Schneider P, Hussain M, Das B, Iqbal MM. Impact of Pb Toxicity on the Freshwater Pearl Mussel, Lamellidens marginalis: Growth Metrics, Hemocyto-Immunology, and Histological Alterations in Gill, Kidney, and Muscle Tissue. TOXICS 2023; 11:475. [PMID: 37368575 DOI: 10.3390/toxics11060475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
Pb is one of the most extensively used harmful heavy metals in Bangladesh, and its occurrence in waters affects aquatic organisms significantly. The tropical pearl mussel, Lamellidens marginalis, was exposed to different concentrations (T1 21.93 mgL-1, T2 43.86 mgL-1, and T3 87.72 mgL-1) of Pb(NO3)2 and was evaluated against a control C 0 mgL-1 of Pb(NO3)2, followed by a 96 h acute toxicity test. The LC50 value was recorded as 219.32 mgL-1. The physicochemical parameters were documented regularly for each treatment unit. The values of % SGR, shell weight, soft tissue wet weight, and weight gain remained statistically higher for the control group in comparison with the treatment. No mortality was noted for control units, while a gradually decreased survival rate was recorded for the different treatment groups. Fulton's condition factor was recorded as highest in the control and lowest in the T3 unit, while the condition indices did not vary between the control and treatment groups. The hemocyte was accounted as maximum in the control and T1, while minimum in T2 and T3. The serum lysosomal parameters also followed a similar pattern, and a significantly low level of lysosomal membrane stability, and serum lysosome activity was noted for T3 and T2 units in comparison to the control group. The histology of the gill, kidney, and muscle was well structured in the control group, while distinct pathologies were observed in the gill, kidney, and muscle tissue of different treatment groups. The quantitative comparison revealed that the intensity of pathological alteration increased as the dosage of Pb increased. The current study, therefore, indicated that intrusion of Pb(NO3)2 in the living medium significantly alters growth performance and hemocyte counts, and chronic toxicity induces histomorphological abnormalities in vital organs.
Collapse
Affiliation(s)
- Mohammad Amzad Hossain
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Toma Chowdhury
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Gourab Chowdhury
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Petra Schneider
- Department for Water, Environment, Civil Engineering and Safety, Magdeburg-Stendal University of Applied Sciences, Breitscheidstraße 2, 39114 Magdeburg, Germany
| | - Monayem Hussain
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Bipresh Das
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mohammed Mahbub Iqbal
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
132
|
Nunes EA, Silva HCD, Duarte NDAA, de Lima LE, Maraslis FT, Araújo MLD, Pedron T, Lange C, Freire BM, Matias AC, Batista BL, Barcelos GRM. Impact of DNA repair polymorphisms on DNA instability biomarkers induced by lead (Pb) in workers exposed to the metal. CHEMOSPHERE 2023:138897. [PMID: 37182709 DOI: 10.1016/j.chemosphere.2023.138897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Although the mechanisms of Pb-induced genotoxicity are well established, a wide individual's variation response is seen in biomarkers related to Pb toxicity, despite similar levels of metal exposure. This may be related to intrinsic variations, such as genetic polymorphisms; moreover, very little is known about the impact of genetic variations related to DNA repair system on DNA instability induced by Pb. In this context, the present study aimed to assess the impact of SNPs in enzymes related to DNA repair system on biomarkers related to acute toxicity and DNA damage induced by Pb exposure, in individuals occupationally exposed to the metal. A cross-sectional study was run with 154 adults (males, >18 years) from an automotive batteries' factory, in Brazil. Blood lead levels (BLL) were determined by ICP-MS; biomarkers related to acute toxicity and DNA instability were monitored by the buccal micronucleus cytome (BMNCyt) assay and genotyping of polymorphisms of MLH1 (rs1799977), OGG1 (rs1052133), PARP1 (rs1136410), XPA (rs1800975), XPC (rs2228000) and XRCC1 (rs25487) were performed by TaqMan assays. BLL ranged from 2.0 to 51 μg dL-1 (mean 20 ± 12 μg dL-1) and significant associations between BLL and BMNCyt biomarkers related to cellular proliferation and cytokinetic, cell death and DNA damage were observed. Furthermore, SNPs from the OGG1, XPA and XPC genes were able to modulate interactions in nuclear bud formation (NBUDs) and micronucleus (MNi) events. Taken together, our data provide further evidence that polymorphisms related to DNA repair pathways may modulate Pb-induced DNA damage; studies that investigate the association between injuries to genetic material and susceptibilities in the workplace can provide additional information on the etiology of diseases and the determination of environmentally responsive genes.
Collapse
Affiliation(s)
- Emilene Arusievicz Nunes
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Heliton Camargo da Silva
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Nathália de Assis Aguilar Duarte
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Lindiane Eloisa de Lima
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Flora Troina Maraslis
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Marília Ladeira de Araújo
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Tatiana Pedron
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Camila Lange
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Bruna Moreira Freire
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Andreza Cândido Matias
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1524, CEP 05508-000, São Paulo, Brazil.
| | - Bruno Lemos Batista
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Gustavo Rafael Mazzaron Barcelos
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| |
Collapse
|
133
|
Altynbaeva LS, Mashentseva AA, Aimanova NA, Zheltov DA, Shlimas DI, Nurpeisova DT, Barsbay M, Abuova FU, Zdorovets MV. Eco-Friendly Electroless Template Synthesis of Cu-Based Composite Track-Etched Membranes for Sorption Removal of Lead(II) Ions. MEMBRANES 2023; 13:membranes13050495. [PMID: 37233556 DOI: 10.3390/membranes13050495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
This paper reports the synthesis of composite track-etched membranes (TeMs) modified with electrolessly deposited copper microtubules using copper deposition baths based on environmentally friendly and non-toxic reducing agents (ascorbic acid (Asc), glyoxylic acid (Gly), and dimethylamine borane (DMAB)), and comparative testing of their lead(II) ion removal capacity via batch adsorption experiments. The structure and composition of the composites were investigated by X-ray diffraction technique and scanning electron and atomic force microscopies. The optimal conditions for copper electroless plating were determined. The adsorption kinetics followed a pseudo-second-order kinetic model, which indicates that adsorption is controlled by the chemisorption process. A comparative study was conducted on the applicability of the Langmuir, Freundlich, and Dubinin-Radushkevich adsorption models to define the equilibrium isotherms and the isotherm constants for the prepared composite TeMs. Based on the regression coefficients R2, it has been shown that the Freundlich model better describes the experimental data of the composite TeMs on the adsorption of lead(II) ions.
Collapse
Affiliation(s)
- Liliya Sh Altynbaeva
- The Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty 050032, Kazakhstan
- Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Anastassiya A Mashentseva
- The Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty 050032, Kazakhstan
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Nurgulim A Aimanova
- The Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty 050032, Kazakhstan
- Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Dmitriy A Zheltov
- The Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty 050032, Kazakhstan
| | - Dmitriy I Shlimas
- The Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty 050032, Kazakhstan
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Dinara T Nurpeisova
- Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Murat Barsbay
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Fatima U Abuova
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Maxim V Zdorovets
- The Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty 050032, Kazakhstan
- Department of Intelligent Information Technologies, The Ural Federal University, Yekaterinburg 620002, Russia
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
134
|
Behera S, Das S. Potential and prospects of Actinobacteria in the bioremediation of environmental pollutants: Cellular mechanisms and genetic regulations. Microbiol Res 2023; 273:127399. [PMID: 37150049 DOI: 10.1016/j.micres.2023.127399] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
Increasing industrialization and anthropogenic activities have resulted in the release of a wide variety of pollutants into the environment including pesticides, polycyclic aromatic hydrocarbons (PAHs), and heavy metals. These pollutants pose a serious threat to human health as well as to the ecosystem. Thus, the removal of these compounds from the environment is highly important. Mitigation of the environmental pollution caused by these pollutants via bioremediation has become a promising approach nowadays. Actinobacteria are a group of eubacteria mostly known for their ability to produce secondary metabolites. The morphological features such as spore formation, filamentous growth, higher surface area to volume ratio, and cellular mechanisms like EPS secretion, and siderophore production in Actinobacteria render higher resistance and biodegradation ability. In addition, these bacteria possess several oxidoreductase systems (oxyR, catR, furA, etc.) which help in bioremediation. Actinobacteria genera including Arthrobacter, Rhodococcus, Streptomyces, Nocardia, Microbacterium, etc. have shown great potential for the bioremediation of various pollutants. In this review, the bioremediation ability of these bacteria has been discussed in detail. The utilization of various genera of Actinobacteria for the biodegradation of organic pollutants, including pesticides and PAHs, and inorganic pollutants like heavy metals has been described. In addition, the cellular mechanisms in these microbes which help to withstand oxidative stress have been discussed. Finally, this review explores the Actinobacteria mediated strategies and recent technologies such as the utilization of mixed cultures, cell immobilization, plant-microbe interaction, utilization of biosurfactants and nanoparticles, etc., to enhance the bioremediation of various environmental pollutants.
Collapse
Affiliation(s)
- Shivananda Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| |
Collapse
|
135
|
Cunha M, Silva MG, De Marchi L, Morgado RG, Esteves VI, Meucci V, Battaglia F, Soares AM, Pretti C, Freitas R. Toxic effects of a mixture of pharmaceuticals in Mytilus galloprovincialis: The case of 17α-ethinylestradiol and salicylic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121070. [PMID: 36641066 DOI: 10.1016/j.envpol.2023.121070] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The impact of pharmaceuticals on marine invertebrates has been a topic of rising concern, with an increasing number of studies regarding the impacts on bivalves. However, very few investigated the toxicity of mixtures of pharmaceuticals. This knowledge gap was investigated in the present study, where the toxicity of 17α-ethinylestradiol (EE2) and salicylic acid (SA) mixture was evaluated. To this end, Mytilus galloprovincialis mussels were chronically subjected to both pharmaceuticals, acting alone and in combination, and the effects at the cellular level were measured. The Independent Action (IA) model was performed aiming to compare obtained with predicted responses. The integrated biomarker response (IBR) index was used to assess the overall biochemical response given by mussels. The results obtained revealed that the most stressful condition was caused by the combined effect of EE2 and SA, with the highest metabolic capacity, antioxidant (catalase activity) and biotransformation (carboxylesterases activity) activation and cellular damage in organisms exposed to the mixture of both drugs in comparison to responses observed when each drug was acting alone. Predicted responses obtained from the IA model indicate that caution should be paid as frequent deviations to observed responses were found. This study highlights the need for future studies considering the mixture of pollutants, mimicking the actual environmental conditions.
Collapse
Affiliation(s)
- Marta Cunha
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mónica G Silva
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), 57128, Livorno, Italy
| | - Rui G Morgado
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| | - Amadeu Mvm Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), 57128, Livorno, Italy; Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
136
|
Abedini Bajgiran F, Khazaei Koohpar Z, Salehzadeh A. Effects of N-Acetylcysteine Supplementation on Oxidative Stress and Expression of Apoptosis-Related Genes in Testicular Tissue of Rats Exposed to Lead. Biol Trace Elem Res 2023; 201:2407-2415. [PMID: 35761113 DOI: 10.1007/s12011-022-03325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Lead occupational exposure is now a main concern in the modern world. Lead is a non-biodegradable element with multi-devastating effects on different organs. Acute or chronic exposure to lead is reported to be one of the most important causes of infertility both in males and females basically by inducing oxidative stress and apoptosis. OBJECTIVES The current study scrutinized the mitigating effects of N-acetylcysteine (NAC) on lead toxicity, oxidative stress, and apoptotic/anti-apoptotic genes in the testis tissues of male rats. METHODS Rats were randomly divided into a control group (G1) and four study groups treated with single and continuous doses of lead with and without NAC administration. Malondialdehyde (MDA), total antioxidant capacity (TAC), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were analyzed as oxidative stress biomarkers and the expression of apoptosis-related genes was studied using RT-PCR. RESULTS Continuous exposure to lead caused a significant decrease in sperm count, motility, viability, and morphology (P < 0.001). Number of germinal cells, Leydig cells, spermatocytes, and the diameter of seminiferous tubule were significantly decreased (P < 0.001) in G3 group. Continuous exposure to lead significantly decreased TAC content, but increased the levels of MDA and 8-OHdG (P < 0.001). Administration of continuous dose of lead dramatically increased expression of Bax, Caspase-3, Caspase-8, Cytochrome-C, MMP2, and MMP9 genes in testicular tissue. NAC treatments not only improved morphological changes and sperm quality, but also enhanced antioxidant balance and modulated apoptosis process in testicular tissue of rats. CONCLUSION Lead exposure strongly motivated testicular cells towards apoptosis, caused an oxidant/antioxidant imbalance, and decreased sperm quality along with morphological changes in testis cells. NAC treatments was associated with protective effects on testicular tissue mainly by rebalancing of the antioxidants capacity, as well as downregulation of apoptosis-related genes.
Collapse
Affiliation(s)
| | - Zeinab Khazaei Koohpar
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
137
|
Silva NMD, Reis GF, Costa FDF, Grisolia ME, Geraldo MR, Lustosa BPR, Lima BJFDS, Weiss VA, de Souza EM, Li R, Song Y, Nascimento MMF, Robl D, Gomes RR, de Hoog GS, Vicente VA. Genome sequencing of Cladophialophora exuberans, a novel candidate for bioremediation of hydrocarbon and heavy metal polluted habitats. Fungal Biol 2023; 127:1032-1042. [PMID: 37142362 DOI: 10.1016/j.funbio.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 05/06/2023]
Abstract
Cladophialophora exuberans is a filamentous fungus related to black yeasts in the order Chaetothyriales. These melanized fungi are known for their 'dual ecology', often occurring in toxic environments and also being frequently involved in human infection. Particularly Cladophialophora exuberans, C. immunda, C. psammophila, and Exophiala mesophila have been described with a pronounced ability to degrade aromatic compounds and xenobiotic volatiles, such as benzene, toluene, ethyl-benzene, and xylene, and are candidates for bioremediation applications. The objective of the present study is the sequencing, assembly, and description of the whole genome of C. exuberans focusing on genes and pathways related to carbon and toxin management, assessing the tolerance and bioremediation of lead and copper, and verifying the presence of genes for metal homeostasis. Genomic evaluations were carried out through a comparison with sibling species including clinical and environmental strains. Tolerance of metals was evaluated via a microdilution method establishing minimum inhibitory (MIC) and fungicidal concentrations (MFC), and agar diffusion assays. Heavy metal bioremediation was evaluated via graphite furnace atomic absorption spectroscopy (GFAAS). The final assembly of C. exuberans comprised 661 contigs, with genome size of 38.10 Mb, coverage of 89.9X and a GC content of 50.8%. In addition, inhibition of growth was shown at concentrations of 1250 ppm for copper and at 625 ppm for lead, using the MIC method. In the agar tests, the strain grew at 2500 ppm of copper and lead. In GFAAS tests, uptake capacities were observed of 89.2% and 95.7% for copper and lead, respectively, after 21 experimental days. This study enabled the annotation of genes involved in heavy metal homeostasis and also contributed to a better understanding of the mechanisms used in tolerance of and adaptation to extreme conditions.
Collapse
Affiliation(s)
- Nickolas Menezes da Silva
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Paraná, Brazil; Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Guilherme Fonseca Reis
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Flávia de Fátima Costa
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Maria Eduarda Grisolia
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Paraná, Brazil; Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Marlon Roger Geraldo
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Bruno Paulo Rodrigues Lustosa
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Bruna Jacomel Favoreto de Souza Lima
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Vinicius Almir Weiss
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China; Research Center for Medical Mycology, Peking University, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yinggai Song
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China; Research Center for Medical Mycology, Peking University, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | | | - Diogo Robl
- Microbiology, Immunology and Parasitology Department, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Renata Rodrigues Gomes
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - G Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Vania Aparecida Vicente
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Paraná, Brazil; Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
138
|
Jiang Q, Feng X, Shen J, Wang Y, Zhang Y, Zhou R. Lead intoxication-induced exosomes promote autophagy and apoptosis in renal proximal tubule cells by activating the adenosine 5'-monophosphate-activated protein kinase signaling. ENVIRONMENTAL TOXICOLOGY 2023; 38:1011-1021. [PMID: 36840722 DOI: 10.1002/tox.23744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Lead (Pb) intoxication is known to damage the proximal tubules of kidney. Autophagy and apoptosis have been shown to be involved in a variety of renal injuries, but the underlying mechanisms remain largely unknown. In this study, we constructed a mice model of Pb intoxication and validated it against lead concentrations in blood and urine. Electron microscopy revealed that Pb promoted the accumulation of autophagosomes. Subsequent immunofluorescence and western blotting revealed that Pb intoxication suppressed the autophagic flux. Next, exosomes were isolated and extracted through ultracentrifugation, and were further identified by diameter analysis and marker detection. We also demonstrated that autophagy and apoptosis were enhanced in renal cells with exosomes of Pb expose. Furthermore, the specific mechanisms were explored by RNA sequencing and it was found that several targeted genes regulated by differential exosomal miRNAs and lncRNAs. Target genes accumulated in several signaling pathways, especially the adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling. We found that Pb intoxication-induced exosomes activated the AMPK signaling in renal proximal tubule cells. Furthermore, autophagy and apoptosis assays showed that GSK-690693, an AMPK inhibitor, significantly alleviated exosome-induced renal injuries by Pb intoxication. In conclusion, Pb-mediated exosome-induced autophagy and apoptosis via activating the AMPK signaling contributing to Pb-induced nephrotoxicity in renal cells.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuefang Feng
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Shen
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanan Wang
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yinghui Zhang
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong Zhou
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
139
|
Andreas AL, Bowser SS. Lead and cadmium exposure alters shell morphogenesis in a single-chambered, agglutinated foraminiferan protist. MARINE POLLUTION BULLETIN 2023; 190:114833. [PMID: 36989598 DOI: 10.1016/j.marpolbul.2023.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Changes to calcareous foraminiferal shell morphology are well documented in heavy metal-polluted marine environments, however less is known about how these toxicants affect agglutinated foraminifera, particularly single-chambered (monothalamid) species. Here we used an agglutinated monothalamic foraminifer, Astrammina rara, to study shell morphogenesis during exposure to lead (Pb) and cadmium (Cd). Isolated cell bodies incubated with artificial sediment and control, Pb-, or Cd-spiked artificial seawater constructed new agglutinated shells in four weeks. Time-lapse recordings showed normal motile behavior during treatments. SEM imaging of reconstructed shells, however, revealed dramatic deformations in the bioadhesive of Pb-exposed shells, and less so in Cd-exposed shells. ICP-MS analysis of the isolated shells showed elevated levels of Pb, but not Cd, in the bioadhesive of treated specimens, indicating that the two metals exert their effects differentially. These findings show that certain agglutinated foraminifera may be useful indicator species in studies of heavy metal-polluted benthic marine environments.
Collapse
Affiliation(s)
- Amanda L Andreas
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY 12237, United States of America.
| | - Samuel S Bowser
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY 12237, United States of America; Wadsworth Center, New York State Department of Health, Albany, NY 12237, United States of America
| |
Collapse
|
140
|
Kataba A, Yohannes YB, Nakata H, Yabe J, Toyomaki H, Muzandu K, Zyambo G, Ikenaka Y, Choongo K, Ishizuka M, Nakayama SMM. Association between Chronic Environmental Lead (Pb) Exposure and Cytokines in Males and Females of Reproductive Age from Kabwe, Zambia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085596. [PMID: 37107878 PMCID: PMC10138795 DOI: 10.3390/ijerph20085596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
Lead (Pb) poisoning remains a great public health challenge globally known to induce a wide range of ailments in both children and adults. The current study investigated the association of chronic environmental Pb exposure and immunomodulatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-8 (IL-8) in adult males and females living in Kabwe, Zambia. The standard human cytokine/chemokine Milliplex assay was used to quantify plasma cytokines from four groups categorized as low (<10 μg/dL) and high (>10 μg/dL) blood lead level (BLL) groups, namely, low BLL female (n = 47; BLL = 3.76 μg/dL), low BLL Male (n = 43; BLL = 4.13 μg/dL), high BLL female (n = 21; BLL = 23.5 μg/dL), and high BLL male (n = 18; BLL = 23.7 μg/dL), respectively. The low BLL group was associated with increased TNF-α levels, and the high BLL group was associated with reduced TNF-α levels in female subjects. No associations between BLL and the levels of IL-8 and TNF-α cytokines were observed in either females or males, respectively. A negative correlation between BLL and TNF-α was found in female subjects, suggesting that an increase in BLL accompanied by a reduction in TNF-α. The reduced levels of circulating TNF-α in female subjects suggest that chronic Pb exposure could predispose females to immune and inflammation-related disorders than their male counterparts. Further studies are recommended to ascertain the impact of chronic Pb exposure on immunomodulatory cytokines, especially in females.
Collapse
Affiliation(s)
- Andrew Kataba
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
- School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Yared Beyene Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
- Department of Chemistry, College of Natural and Computational Science, University of Gondar, Gondar P.O. Box 196, Ethiopia
| | - Hokuto Nakata
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - John Yabe
- School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia
- School of Veterinary Medicine, University of Namibia, Windhoek P/B. 13301, Namibia
| | - Haruya Toyomaki
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Kaampwe Muzandu
- School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Golden Zyambo
- School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
- Water Research Group, School of Environmental Sciences and Development, North-West University, Potchefstroom 2531, South Africa
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
| | - Kennedy Choongo
- School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
- Correspondence: (M.I.); or (S.M.M.N.); Tel.: +81-11-706-6949 (M.I.); +81-11-706-5105 (S.M.M.N.); Fax: +81-11-706-5105 (M.I. & S.M.M.N.)
| | - Shouta M. M. Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
- School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia
- Correspondence: (M.I.); or (S.M.M.N.); Tel.: +81-11-706-6949 (M.I.); +81-11-706-5105 (S.M.M.N.); Fax: +81-11-706-5105 (M.I. & S.M.M.N.)
| |
Collapse
|
141
|
Azevedo R, Gennaro D, Duro M, Pinto E, Almeida A. Further Evidence on Trace Element Imbalances in Haemodialysis Patients-Paired Analysis of Blood and Serum Samples. Nutrients 2023; 15:nu15081912. [PMID: 37111132 PMCID: PMC10145991 DOI: 10.3390/nu15081912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Previous studies have shown that haemodialysis patients have an increased risk of trace element imbalances. Most studies have determined the concentration of trace elements in serum only, but most trace elements are not uniformly distributed between plasma and blood cells, which justifies separate analysis of the different compartments. In this study, we determined both the serum and whole blood concentration of a wide panel of trace elements (Li, B, Mn, Co, Ni, Cu, Zn, Se, Rb, Sr, Mo, Cd, Pb) in haemodialysis patients and compared them with those of a control group. Whole blood and serum samples were collected during routine laboratory testing of patients undergoing chronic haemodialysis. For comparison purposes, samples from individuals with normal renal function were also analysed. Statistically significant differences (p < 0.05) were found between the two groups for whole blood concentrations of all analysed elements except Zn (p = 0.347). For serum, the difference between groups was statistically significant for all elements (p < 0.05). This study confirms that patients on haemodialysis tend to present significant trace element imbalances. By determining the concentration of trace elements in both whole blood and serum, it was shown that chronic haemodialysis may affect intra- and extracellular blood compartments differently.
Collapse
Affiliation(s)
- Rui Azevedo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Davide Gennaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Mary Duro
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-ENAS-Fernando Pessoa Energy, Environment and Health Research Unit, Fernando Pessoa University, 4249-004 Porto, Portugal
- Laboratório de Análises Clínicas Dra. Matilde Sampaio, 5200-216 Mogadouro, Portugal
- Laboratório de Análises Clínicas Vale do Sousa, 4560-547 Penafiel, Portugal
| | - Edgar Pinto
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Department of Environmental Health, ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
142
|
Markowski M, Kaliński A, Wawrzyniak J, Glądalski M, Skwarska J, Bańbura J. Microsatellite Instability Assay as a Potential Approach to Evaluate Genotoxicity: Lead Exposure in a Nestling Passerine Bird at the Stage of Intensive Erythropoiesis. Animals (Basel) 2023; 13:ani13081325. [PMID: 37106888 PMCID: PMC10135023 DOI: 10.3390/ani13081325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Although many avian studies have investigated the toxic effects of lead on important biochemical and physiological processes, organ and system function, and behavior, studies evaluating the specific genotoxic effects of exposure to lead are scarce. Nowadays, rapid technological advances can provide new molecular techniques in this regard. In this study, as a novel approach in bird studies, we used a panel of ten microsatellite loci to investigate the microsatellite instability (MSI) in response to experimental lead intoxication in a common hole-nesting species, the great tit Parus major. For this purpose, an experiment based on an intentional single supplementation of a lead (II) acetate trihydrate compound was conducted, with the use of two different doses, applied to randomly chosen great tit nestlings from randomly selected broods, being at the stage of intensive erythropoiesis. Although this preliminary study did not find any MSI in the seven microsatellite markers retained for the final comparison, it contributes to the examination of this molecular technique in field conditions as being potentially applicable in ecotoxicological bird studies. We believe that certain issues should be considered in finding an explanation for our result. First, the single doses of lead used in this study may have been too weak to induce genetic instability. Second, the panel of microsatellite markers studied may have been unsusceptible to lead genotoxicity in general. Third, the relatively short time interval (5 days) between the experimental procedure (lead exposure) and the sampling of post-exposure material (blood) for genetic analyses could have limited the effect of lead genotoxicity. Further analyzes are needed to verify these findings and to evaluate the scope of application of the MSI analysis in wild bird population studies.
Collapse
Affiliation(s)
- Marcin Markowski
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Adam Kaliński
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Jarosław Wawrzyniak
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Michał Glądalski
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Joanna Skwarska
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Jerzy Bańbura
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
143
|
Shi L, Zhou J, Dong J, Gao F, Zhao W. Association of low-level blood lead with plasma homocysteine in US children and adolescents. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01526-7. [PMID: 37029846 DOI: 10.1007/s10653-023-01526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Although research in adults has revealed a positive relationship between blood lead levels (BLLs) and homocysteine (Hcy) levels in adults, few studies have investigated this relationship in children and adolescents. We evaluated the relationship between lowlevel blood lead and Hcy levels in US children and adolescents. A total of 8,313 children and adolescents aged 8-19 participated in this study via the National Health and Nutrition Examination Survey 1999-2006. Multivariable linear regression analyses were performed to examine the association between continuous BLLs and Hcy levels. The dose-dependent relationship between continuous BLLs and Hcy levels was analyzed using smooth curve fitting. The average age of participants was 14.1 ± 3.3 years (50.3% male). The mean values of BLLs and Hcy levels were 1.45 μg/dL and 5.77 μmol/L, respectively. In a multivariable adjusted model, an increase in 1.0 μg/dL of BLLs was associated with an elevation of 0.06 μmol/L in Hcy levels (β = 0.06, 95%CI:0.02-0.10, P = 0.001). A linear relationship between BLLs and Hcy levels was discovered using smooth curve fitting (P non-linearity = 0.464). The relationship between low-level blood lead and Hcy levels was stronger on participants with lower serum folate levels (P for interaction = 0.002). Low BLLs were positively associated with plasma Hcy levels in children and adolescents, which varies depending on the levels of folate, vitamin B, and dietary supplements involved in Hcy metabolism.
Collapse
Affiliation(s)
- Lingfei Shi
- Department of Geriatrics and Psychiatry, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Jia Zhou
- Cancer Center, Gamma Knife Treatment Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Jinjiang Dong
- Department of Neurosurgery, First People's Hospital of Chun'an City, Hangzhou, 311700, Zhejiang, China
| | - Faliang Gao
- Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| | - Wenyan Zhao
- Center for General Practice Medicine, Department of General Practice Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
144
|
Pasupuleti RR, Huang Y. Recent applications of atomic spectroscopy coupled with magnetic solid‐phase extraction techniques for heavy metal determination in environmental samples: A review. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Raghavendra Rao Pasupuleti
- Department of Medical Laboratory Science and Biotechnology Kaohsiung Medical University Kaohsiung Taiwan
| | - Yeou‐Lih Huang
- Department of Medical Laboratory Science and Biotechnology Kaohsiung Medical University Kaohsiung Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital Kaohsiung Medical University Kaohsiung Taiwan
- Graduate Institute of Medicine Kaohsiung Medical University Kaohsiung Taiwan
- Research Center for Precision Environmental Medicine Kaohsiung Medical University Kaohsiung Taiwan
- Department of Chemistry National Sun Yat‐sen University Kaohsiung Taiwan
| |
Collapse
|
145
|
Xu Y, Peng T, Zhou Q, Zhu J, Liao G, Zou F, Meng X. Evaluation of the oxidative toxicity induced by lead, manganese, and cadmium using genetically modified nrf2a-mutant zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109550. [PMID: 36717045 DOI: 10.1016/j.cbpc.2023.109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 01/30/2023]
Abstract
Heavy metal pollution has become a serious environmental concern and a threat to public health. Three of the most common heavy metals are cadmium (Cd), lead (Pb), and manganese (Mn). Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcription factor activated in the response to oxidative stress. In this study, mutant zebrafish with an nrf2a deletion of 7 bp were constructed by the CRISPR/Cas9 system to investigate the oxidative toxicity of these three heavy metals. The results of general toxicity tests showed that Pb exposure did not cause significant damage to mutant zebrafish compared with wild-type (WT) zebrafish. However, high Mn exposure increased mortality and malformation rates in mutant zebrafish. Of concern, Cd exposure caused significant toxic damage, including increased mortality and malformation rates, apoptosis of brain neurons, and severe locomotor behavior aberration in mutant zebrafish. The results of qRT-PCR indicated that Cd exposure could induce the activation of genes related to oxidative stress resistance in WT zebrafish, while the expression of these genes was inhibited in mutant zebrafish. This study showed that of the three heavy metals, Cd had the strongest oxidative toxicity, Mn had medium toxicity, and Pb had the weakest toxicity.
Collapse
Affiliation(s)
- Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Peng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zhu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Gengze Liao
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
146
|
Rahimpour F, Abdollahi O, Rafeemanesh E, Niroumand S. Evaluation the Effect of Serum Lead Levels on Thyroid Function in Battery Industry Workers. Indian J Occup Environ Med 2023; 27:120-125. [PMID: 37600642 PMCID: PMC10434806 DOI: 10.4103/ijoem.ijoem_64_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 08/22/2023] Open
Abstract
Objective To assess the relationships between blood lead levels and thyroid functional tests in battery industry workers. Methods and Materials This cross-sectional study was performed on 100 personnel of a battery factory in 2019. The checklist including demographic information of employees (age, sex, work experience, smoking, etc.) of the work shift, work environment, and duration of work was completed. Venous blood samples were also taken from the participants to check blood levels of lead and thyroid hormones. Results The mean age of participants was 36.1 ± 5.6 years and their mean TSH and lead levels were 3.69 ± 2.45 mIU/L and 297.9 ± 174.2 μg/L, respectively. Participants were divided into two groups based on job duties: administrative and working in the production line. Participants were divided into two groups based on blood lead levels: normal (less than 300 μg/L) and high lead level (more than 300 μg/L). Only the work experience between these two groups was significantly different and was higher in the high lead group compared to the normal lead group and no significant difference was observed between different groups based on lead level in terms of TSH level and thyroid hormones. Conclusion Our study showed that although the amount of whole blood lead concentration is not related to thyroid hormone levels and thyroid function, but with increasing work experience, the amount of whole blood lead also increases significantly and since lead poisoning can have many health hazards, employers must plan to minimize the lead exposure of workers and provide protective equipment for workers.
Collapse
Affiliation(s)
- Farzaneh Rahimpour
- Department of Occupational Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Orang Abdollahi
- Department of Occupational Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Rafeemanesh
- Department of Occupational Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shabnam Niroumand
- Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
147
|
Kim Y, Zoller HM. Engaging in Health Activism through Neighbor-to-Neighbor Communication. HEALTH COMMUNICATION 2023; 38:659-669. [PMID: 34384306 DOI: 10.1080/10410236.2021.1966180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Given the importance of local organizing to environmental health advocacy and activism, we need more understanding of how neighbors communicate about health risks. Individual residents in a neighborhood can be agents of social change, communicating about common health concerns and ways to cope with them, potentially leading to health activism. In this study, we used a grounded theory approach to analyze Pennsylvania residents' (N = 407) responses to open-ended questions that asked their thoughts on engaging in conversations with neighbors about the risk of lead exposure. Our findings describe (a) what respondents would want to share with neighbors about health risks and how they would communicate with their neighbors, (b) what actions they would like to promote to neighbors, and (c) what additional factors would facilitate conversations with neighbors. Based on the critical examination of the findings, we discuss communication strategies that can motivate health activism to bring about social structural changes.
Collapse
Affiliation(s)
- Youllee Kim
- Department of Communication Studies, University of Denver
| | | |
Collapse
|
148
|
Lakka N, Pai B, Mani MS, Dsouza HS. Potential diagnostic biomarkers for lead-induced hepatotoxicity and the role of synthetic chelators and bioactive compounds. Toxicol Res (Camb) 2023; 12:178-188. [PMID: 37125327 PMCID: PMC10141777 DOI: 10.1093/toxres/tfad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/27/2023] [Accepted: 02/19/2023] [Indexed: 03/14/2023] Open
Abstract
Lead (Pb2+) poisoning is a public health concern of global dimensions. Although several public health guidelines and workplace safety policies are existing and enforced, lead toxicity cases are drastically increasing. Lead exposure leads to numerous harmful consequences and causes adverse effects on different body organs and systems, mainly via the generation of reactive oxygen species, leading to augmented oxidative stress, competing with metal ions, and binding with the sulfhydryl groups. In several instances, lead poisoning cases remain undiagnosed and untreated or receive only symptomatic treatment. Estimation of blood lead levels reflects only a recent exposure, however, which does not reveal the total body burden. This review summarizes the effects of lead with special reference to hepatotoxicity and some of the potential diagnostic biomarkers. Furthermore, it also focuses on synthetic chelators used in the treatment of lead poisoning and the advantage of using bioactive compounds with an emphasis on the ameliorative effect of garlic.
Collapse
Affiliation(s)
- Netranandini Lakka
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Bhagyashree Pai
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Monica Shirley Mani
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
149
|
Hu L, Zhao Y, Liu S, Zhang J, Yuan H, Xu H. High-fat diet in mice led to increased severity of spermatogenesis impairment by lead exposure: perspective from gut microbiota and the efficacy of probiotics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2653-2663. [PMID: 36326575 DOI: 10.1002/jsfa.12309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/29/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The mechanism of multifactorial spermatogenesis impairment is unclear. This study aimed to investigate the reproductive toxicity of lead (Pb) in mice fed a high-fat diet (HFD) and to delineate the important role of gut microbiota. RESULTS Results showed that, compared with mice fed a normal diet (ND), Pb exposure caused more severe spermatogenesis impairment in HFD-fed mice, including decreased sperm count and motility, seminiferous tubule injury, serum and intratesticular testosterone decline, and downregulated expression level of spermatogenesis-related genes. Besides, 16S sequencing indicated that HFD-fed mice had increased severity of gut microbiota dysbiosis by Pb exposure compared to ND-fed mice. With fecal microbiota transplantation, the same trend of spermatogenesis impairment occurred in recipient mice, which confirmed the important role of gut microbiota. Moreover, probiotics supplementation restored the gut microbial ecosystem, and thus improved spermatogenic function. CONCLUSION Our work suggested that a population with HFD might face more reproductive health risks upon Pb exposure, and revealed an intimate linkage between microbiota dysbiosis and spermatogenesis impairment, accompanied by the potential usefulness of probiotics as prophylactic and therapeutic. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jinfeng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hongbin Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
150
|
Tahir I, Alkheraije KA. A review of important heavy metals toxicity with special emphasis on nephrotoxicity and its management in cattle. Front Vet Sci 2023; 10:1149720. [PMID: 37065256 PMCID: PMC10090567 DOI: 10.3389/fvets.2023.1149720] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Toxicity with heavy metals has proven to be a significant hazard with several health problems linked to it. Heavy metals bioaccumulate in living organisms, pollute the food chain, and possibly threaten the health of animals. Many industries, fertilizers, traffic, automobile, paint, groundwater, and animal feed are sources of contamination of heavy metals. Few metals, such as aluminum (Al), may be eliminated by the elimination processes, but other metals like lead (Pb), arsenic (As), and cadmium (Ca) accumulate in the body and food chain, leading to chronic toxicity in animals. Even if these metals have no biological purpose, their toxic effects are still present in some form that is damaging to the animal body and its appropriate functioning. Cadmium (Cd) and Pb have negative impacts on a number of physiological and biochemical processes when exposed to sub-lethal doses. The nephrotoxic effects of Pb, As, and Cd are well known, and high amounts of naturally occurring environmental metals as well as occupational populations with high exposures have an adverse relationship between kidney damage and toxic metal exposure. Metal toxicity is determined by the absorbed dosage, the route of exposure, and the duration of exposure, whether acute or chronic. This can lead to numerous disorders and can also result in excessive damage due to oxidative stress generated by free radical production. Heavy metals concentration can be decreased through various procedures including bioremediation, pyrolysis, phytoremediation, rhizofiltration, biochar, and thermal process. This review discusses few heavy metals, their toxicity mechanisms, and their health impacts on cattle with special emphasis on the kidneys.
Collapse
Affiliation(s)
- Ifrah Tahir
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Khalid Ali Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|