101
|
Zhu Y, Jin L, Shi R, Li J, Wang Y, Zhang L, Liang CZ, Narayana VK, De Souza DP, Thorne RF, Zhang LR, Zhang XD, Wu M. The long noncoding RNA glycoLINC assembles a lower glycolytic metabolon to promote glycolysis. Mol Cell 2022; 82:542-554.e6. [PMID: 35081364 DOI: 10.1016/j.molcel.2021.11.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/03/2021] [Accepted: 11/15/2021] [Indexed: 01/27/2023]
Abstract
Non-covalent complexes of glycolytic enzymes, called metabolons, were postulated in the 1970s, but the concept has been controversial. Here we show that a c-Myc-responsive long noncoding RNA (lncRNA) that we call glycoLINC (gLINC) acts as a backbone for metabolon formation between all four glycolytic payoff phase enzymes (PGK1, PGAM1, ENO1, and PKM2) along with lactate dehydrogenase A (LDHA). The gLINC metabolon enhances glycolytic flux, increases ATP production, and enables cell survival under serine deprivation. Furthermore, gLINC overexpression in cancer cells promotes xenograft growth in mice fed a diet deprived of serine, suggesting that cancer cells employ gLINC during metabolic reprogramming. We propose that gLINC makes a functional contribution to cancer cell adaptation and provide the first example of a lncRNA-facilitated metabolon.
Collapse
Affiliation(s)
- Youming Zhu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China; Department of Dental Implant Center, Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Lei Jin
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - Ronghua Shi
- The Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Cell and Molecular Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Jinming Li
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China
| | - Yan Wang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230031, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230031, China
| | - Vinod K Narayana
- Bio21 Institute and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia; Metabolomics Australia, University of Melbourne, Parkville, VIC 3010, Australia
| | - David P De Souza
- Bio21 Institute and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia; Metabolomics Australia, University of Melbourne, Parkville, VIC 3010, Australia
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China; School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW 2258, Australia
| | - Li Rong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China.
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China; School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW 2308, Australia.
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450003, China; The Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Cell and Molecular Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
102
|
Albertsen LN, Jaensch C, Tornbjerg SM, Teil J, Madsen AH. Correlation between incidental focal colorectal FDG uptake on PET/CT and colonoscopic and histopathological results. Scand J Gastroenterol 2022; 57:246-252. [PMID: 34735311 DOI: 10.1080/00365521.2021.1998602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE AND AIMS The primary aim of this study was to evaluate the correlation between incidental focal colorectal foci on fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) with colonoscopic and histopathological results. The secondary aim was to determine to what extent these findings led to a change in patient management. MATERIALS AND METHODS A retrospective study was performed among 5850 patients who had an FDG-PT/CT scan from July 2015 to July 2018. Among these patients, we identified patients with a PET/CT description of incidental colorectal FDG uptake, and a colonoscopy within 90 days from the PET/CT scan. PET/CT findings were compared with colonoscopy-detected lesions and eventually histopathology on a per-lesion analysis and a per-person analysis. RESULTS A total of 145 patients were included in the study. A total of 180 foci of colorectal FDG uptake were detected on FDG-PET/CT. Of these, 86 foci corresponded to advanced colorectal neoplasia (ACRN), positive predictive value (PPV) 47.8%; 95% CI: 40.5-55.1%). On a per-patient analysis 81 patients had a least one ACRN at colonoscopy (PPV 55.9%; 95% CI: 47.6-63.8), this group included 20 patients (13.8%) diagnosed with cancer. There was a small positive correlation between focal FDG-uptake and the finding of ACRN at the same colonic segment at colonoscopy, which was statistically significant, rho = 0.2565, p = .002. The findings changed patient management in 67 (46.2%) cases. CONCLUSIONS Incidental focal colorectal FDG uptake on PET/CT is associated with a high risk of ACRN and is affecting subsequent patient management. Further evaluation with colonoscopy is recommended when the patient is considered suitable for further treatment.
Collapse
Affiliation(s)
| | - Claudia Jaensch
- Surgical Research Department, Regional Hospital West, Herning, Denmark
| | | | - Jørn Teil
- Department of Nuclear Medicine, Regional Hospital West, Herning, Denmark
| | | |
Collapse
|
103
|
|
104
|
Dynamic whole-body FDG-PET imaging for oncology studies. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Introduction
Recent PET/CT systems have improved sensitivity and spatial resolution by smaller PET detectors and improved reconstruction software. In addition, continuous-bed-motion mode is now available in some PET systems for whole-body PET imaging. In this review, we describe the advantages of dynamic whole-body FDG-PET in oncology studies.
Methods
PET–CT imaging was obtained at 60 min after FDG administration. Dynamic whole-body imaging with continuous bed motion in 3 min each with flow motion was obtained over 400 oncology cases. For routine image analysis, these dynamic phases (usually four phases) were summed as early FDG imaging. The image quality of each serial dynamic imaging was visually evaluated. In addition, changes in FDG uptake were analyzed in consecutive dynamic imaging and also in early delayed (90 min after FDG administration) time point imaging (dual-time-point imaging; DTPI). Image interpretation was performed by consensus of two nuclear medicine physicians.
Result
All consecutive dynamic whole-body PET images of 3 min duration had acceptable image quality. Many of the areas with physiologically high FDG uptake had altered uptake on serial images. On the other hand, most of the benign and malignant lesions did not show visual changes on serial images. In the study of 60 patients with suspected colorectal cancer, unchanged uptake was noted in almost all regions with pathologically proved FDG uptake, indicating high sensitivity with high negative predictive value on both serial dynamic imaging and on DTPI. We proposed another application of serial dynamic imaging for minimizing motion artifacts for patients who may be likely to move during PET studies.
Discussion
Dynamic whole-body imaging has several advantages over the static imaging. Serial assessment of changes in FDG uptake over a short period of time is useful for distinguishing pathological from physiological uptake, especially in the abdominal regions. These dynamic PET studies may minimize the need for DPTI. In addition, continuous dynamic imaging has the potential to reduce motion artifacts in patients who are likely to move during PET imaging. Furthermore, kinetic analysis of the FDG distribution in tumor areas has a potential for precise tissue characterization.
Conclusion
Dynamic whole-body FDG-PET imaging permits assessment of serial FDG uptake change which is particularly useful for differentiation of pathological uptake from physiological uptake with high diagnostic accuracy. This imaging can be applied for minimizing motion artifacts. Wide clinical applications of such serial, dynamic whole-body PET imaging is expected in oncological studies in the near future.
Collapse
|
105
|
Akamatsu G, Shimada N, Matsumoto K, Daisaki H, Suzuki K, Watabe H, Oda K, Senda M, Terauchi T, Tateishi U. New standards for phantom image quality and SUV harmonization range for multicenter oncology PET studies. Ann Nucl Med 2022; 36:144-161. [PMID: 35029817 DOI: 10.1007/s12149-021-01709-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/05/2021] [Indexed: 11/01/2022]
Abstract
Not only visual interpretation for lesion detection, staging, and characterization, but also quantitative treatment response assessment are key roles for 18F-FDG PET in oncology. In multicenter oncology PET studies, image quality standardization and SUV harmonization are essential to obtain reliable study outcomes. Standards for image quality and SUV harmonization range should be regularly updated according to progress in scanner performance. Accordingly, the first aim of this study was to propose new image quality reference levels to ensure small lesion detectability. The second aim was to propose a new SUV harmonization range and an image noise criterion to minimize the inter-scanner and intra-scanner SUV variabilities. We collected a total of 37 patterns of images from 23 recent PET/CT scanner models using the NEMA NU2 image quality phantom. PET images with various acquisition durations of 30-300 s and 1800 s were analyzed visually and quantitatively to derive visual detectability scores of the 10-mm-diameter hot sphere, noise-equivalent count (NECphantom), 10-mm sphere contrast (QH,10 mm), background variability (N10 mm), contrast-to-noise ratio (QH,10 mm/N10 mm), image noise level (CVBG), and SUVmax and SUVpeak for hot spheres (10-37 mm diameters). We calculated a reference level for each image quality metric, so that the 10-mm sphere can be visually detected. The SUV harmonization range and the image noise criterion were proposed with consideration of overshoot due to point-spread function (PSF) reconstruction. We proposed image quality reference levels as follows: QH,10 mm/N10 mm ≥ 2.5 and CVBG ≤ 14.1%. The 10th-90th percentiles in the SUV distributions were defined as the new SUV harmonization range. CVBG ≤ 10% was proposed as the image noise criterion, because the intra-scanner SUV variability significantly depended on CVBG. We proposed new image quality reference levels to ensure small lesion detectability. A new SUV harmonization range (in which PSF reconstruction is applicable) and the image noise criterion were also proposed for minimizing the SUV variabilities. Our proposed new standards will facilitate image quality standardization and SUV harmonization of multicenter oncology PET studies. The reliability of multicenter oncology PET studies will be improved by satisfying the new standards.
Collapse
Affiliation(s)
- Go Akamatsu
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Naoki Shimada
- Cancer Institute Hospital, 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan.
| | - Keiichi Matsumoto
- Kyoto College of Medical Science, 1-3 Imakita, Oyamahigashi-cho, Sonobe-cho, Nantan, Kyoto, 622-0041, Japan
| | - Hiromitsu Daisaki
- Gunma Prefectural College of Health Sciences, 323-1 Kamioki-machi, Maebashi, Gunma, 371-0052, Japan
| | - Kazufumi Suzuki
- Dokkyo Medical University Hospital, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi, 321-0293, Japan
| | - Hiroshi Watabe
- Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Keiichi Oda
- Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido, 006-8585, Japan
| | - Michio Senda
- Kobe City Medical Center General Hospital, 2-1-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Takashi Terauchi
- Cancer Institute Hospital, 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan
| | - Ukihide Tateishi
- Tokyo Medical and Dental University School of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
106
|
Scott AM, Lee ST, Senko C, Ciprotti M, Kee D. Diagnostic Applications of Nuclear Medicine: Malignant Melanoma. NUCLEAR ONCOLOGY 2022:1235-1269. [DOI: 10.1007/978-3-031-05494-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
107
|
Fowler AM, Strigel RM. Clinical advances in PET-MRI for breast cancer. Lancet Oncol 2022; 23:e32-e43. [PMID: 34973230 PMCID: PMC9673821 DOI: 10.1016/s1470-2045(21)00577-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023]
Abstract
Imaging is paramount for the early detection and clinical staging of breast cancer, as well as to inform management decisions and direct therapy. PET-MRI is a quantitative hybrid imaging technology that combines metabolic and functional PET data with anatomical detail and functional perfusion information from MRI. The clinical applicability of PET-MRI for breast cancer is an active area of research. In this Review, we discuss the rationale and summarise the clinical evidence for the use of PET-MRI in the diagnosis, staging, prognosis, tumour phenotyping, and assessment of treatment response in breast cancer. The continued development and approval of targeted radiopharmaceuticals, together with radiomics and automated analysis tools, will further expand the opportunity for PET-MRI to provide added value for breast cancer imaging and patient care.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| | - Roberta M Strigel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
108
|
PET imaging in breast cancer. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
109
|
Kastelik-Hryniewiecka A, Jewula P, Bakalorz K, Kramer-Marek G, Kuźnik N. Targeted PET/MRI Imaging Super Probes: A Critical Review of Opportunities and Challenges. Int J Nanomedicine 2022; 16:8465-8483. [PMID: 35002239 PMCID: PMC8733213 DOI: 10.2147/ijn.s336299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Recently, the demand for hybrid PET/MRI imaging techniques has increased significantly, which has sparked the investigation into new ways to simultaneously track multiple molecular targets and improve the localization and expression of biochemical markers. Multimodal imaging probes have recently emerged as powerful tools for improving the detection sensitivity and accuracy-both important factors in disease diagnosis and treatment; however, only a limited number of bimodal probes have been investigated in preclinical models. Herein, we briefly describe the strengths and limitations of PET and MRI modalities and highlight the need for the development of multimodal molecularly-targeted agents. We have tried to thoroughly summarize data on bimodal probes available on PubMed. Emphasis was placed on their design, safety profiles, pharmacokinetics, and clearance properties. The challenges in PET/MR probe development using a number of illustrative examples are also discussed, along with future research directions for these novel conjugates.
Collapse
Affiliation(s)
- Anna Kastelik-Hryniewiecka
- Silesian University of Technology, Faculty of Chemistry, Gliwice, Poland
- Radiopharmacy and Preclinical PET Imaging Unit, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Pawel Jewula
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Karolina Bakalorz
- Silesian University of Technology, Faculty of Chemistry, Gliwice, Poland
| | - Gabriela Kramer-Marek
- Radiopharmacy and Preclinical PET Imaging Unit, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Nikodem Kuźnik
- Silesian University of Technology, Faculty of Chemistry, Gliwice, Poland
| |
Collapse
|
110
|
Kolinger GD, Vállez García D, Kramer GM, Frings V, Zwezerijnen GJC, Smit EF, De Langen AJ, Buvat I, Boellaard R. Effects of tracer uptake time in non-small cell lung cancer 18F-FDG PET radiomics. J Nucl Med 2021; 63:919-924. [PMID: 34933890 DOI: 10.2967/jnumed.121.262660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Positron emission tomography (PET) radiomics applied to oncology allows the measurement of intra-tumoral heterogeneity. This quantification can be affected by image protocols hence there is an increased interest in understanding how radiomic expression on PET images is affected by different imaging conditions. To address that, this study explores how radiomic features are affected by changes in 18F-FDG uptake time, image reconstruction, lesion delineation, and radiomics binning settings. Methods: Ten non-small cell lung cancer (NSCLC) patients underwent 18F-FDG PET scans on two consecutive days. On each day, scans were obtained at 60min and 90min post-injection and reconstructed following EARL version 1 (EARL1) and with point-spread-function resolution modelling (PSF-EARL2). Lesions were delineated using thresholds at SUV=4.0, 40% of SUVmax, and with a contrast-based isocontour. PET image intensity was discretized with both fixed bin width (FBW) and fixed bin number (FBN) before the calculation of the radiomic features. Repeatability of features was measured with intraclass correlation (ICC), and the change in feature value over time was calculated as a function of its repeatability. Features were then classified on use-case scenarios based on their repeatability and susceptibility to tracer uptake time. Results: With PSF-EARL2 reconstruction, 40% of SUVmax lesion delineation, and FBW intensity discretization, most features (94%) were repeatable at both uptake times (ICC>0.9), 39% being classified for dual-time-point use-case for being sensitive to changes in uptake time, 39% were classified for cross-sectional studies with unclear dependency on time, 20% classified for cross-sectional use while being robust to tracer uptake time changes, and 6% were discarded for poor repeatability. EARL1 images had one less repeatable feature than PSF-EARL2 (Neighborhood Gray-Level Different Matrix Coarseness), the contrast-based delineation had the poorest repeatability of the delineation methods with 45% features being discarded, and FBN resulted in lower repeatability than FBW (45% and 6% features were discarded, respectively). Conclusion: Repeatability was maximized with PSF-EARL2 reconstruction, lesion delineation at 40% of SUVmax, and FBW intensity discretization. Based on their susceptibility to tracer uptake time, radiomic features were classified into specific NSCLC PET radiomics use-cases.
Collapse
Affiliation(s)
| | - David Vállez García
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Netherlands
| | - Gerbrand Maria Kramer
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location VU Medical Center, Netherlands
| | - Virginie Frings
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location VU Medical Center, Netherlands
| | | | - Egbert F Smit
- Department of Pulmonology, Amsterdam University Medical Center, location VU Medical Center, Netherlands
| | | | - Irène Buvat
- Laboratoire d'Imagerie Translationnelle en Oncologie, INSERM, Institut Curie, Université Paris-Saclay, France
| | - Ronald Boellaard
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Netherlands
| |
Collapse
|
111
|
Kotani T, Nishimura M, Tamaki N, Matsushima S, Akiyama S, Kanayama T, Bamba C, Tanada Y, Nii T, Yamada K. Comparison between dynamic whole-body FDG-PET and early-delayed imaging for the assessment of motion in focal uptake in colorectal area. Ann Nucl Med 2021; 35:1305-1311. [PMID: 34426890 DOI: 10.1007/s12149-021-01671-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Serial changes of focal uptake in whole-body dynamic positron emission tomography (PET) imaging were assessed and compared with those in early-delayed imaging to differentiate pathological uptake from physiological uptake in the colorectal area, based on the change in uptake shape. METHODS In 60 patients with at least 1 pathologically diagnosed colorectal cancer or adenoma, a serial 3 min dynamic whole-body PET/computed tomography imaging was performed four times around 60 min after the administration of 18F-fluorodeoxyglucose (FDG) to create a conventional (early) image by summation. Delayed imaging was performed separately at 110 min after FDG administration. High focal uptake lesions in the colorectal area were visually assessed as "changed" or "unchanged" on serial dynamic imaging and early-delayed imaging, based on the alteration in uptake shape over time. These criteria on the images were used to differentiate pathological uptake from physiological uptake. RESULTS In this study, 334 lesions with high focal FDG uptake were observed. Among 73 histologically proven pathological FDG uptakes, no change was observed in 69 on serial dynamic imaging and 72 on early-delayed imaging (sensitivity of 95 vs. 99%, respectively; ns). In contrast, out of 261 physiological FDG uptakes, a change in uptake shape was seen in 159 on dynamic PET imaging and 66 on early-delayed imaging (specificity of 61 vs. 25%, respectively; p < 0.01). High and similar negative predictive values for identifying pathological uptake were obtained by both methods (98 vs 99%, respectively). Thus, the overall accuracy for differentiating pathological from physiological FDG uptake based on change in uptake shape tended to be higher on serial dynamic imaging (68%) than on early-delayed imaging (41%; p < 0.01). CONCLUSIONS Dynamic whole-body FDG imaging enables differentiation of pathological uptake from physiological uptake based on the serial changes in uptake shape in the colorectal area. It may provide greater diagnostic value than early-delayed PET imaging. Thus, this technique holds a promise for minimizing the need for delayed imaging.
Collapse
Affiliation(s)
- Tomoya Kotani
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Motoki Nishimura
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nagara Tamaki
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigenori Matsushima
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shimpei Akiyama
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taisei Kanayama
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chisa Bamba
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasutomo Tanada
- Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Radiological Technology, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Nii
- Department of Radiological Technology, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
| | - Kei Yamada
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
112
|
Zhang Z, Liu S, Ma H, Xiang X, Nie D, Hu P, Tang G. Propionic Acid-Based PET Imaging of Prostate Cancer. Mol Imaging Biol 2021; 23:836-845. [PMID: 33876336 DOI: 10.1007/s11307-021-01608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE This study aimed to evaluate the potential value of 2-[18F]fluoropropionic acid ([18F]FPA) for PET imaging of prostate cancer (PCa) and to explore the relationship between [18F]FPA accumulation and fatty acid synthase (FASN) levels in PCa models. The results of the first [18F]FPA PET study of a PCa patient are reported. PROCEDURES The LNCaP, PC-3 cell lines with high FASN expression, and DU145 cell lines with low FASN expression were selected for cell culture. A PET imaging comparison of [18F]FDG and [18F]FPA was performed in LNCaP, PC-3, and DU145 tumors. Additionally, in vivo inhibition experiments in those models were conducted with orlistat. In a human PET study, a patient with PCa before surgery was examined with [18F]FPA PET and [18F]FDG PET. RESULTS The uptake of [18F]FPA in the LNCaP and PC-3 tumors was higher than that of [18F]FDG (P<0.05 and P<0.05), but was lower in DU145 tumors (P<0.05). The accumulation (% ID/g) of [18F]FPA in the LNCaP, PC-3, and DU145 tumors decreased by 27.6, 40.5, and 11.7 %, respectively, after treatment with orlistat. The [18F]FPA showed higher radioactive uptake than [18F]FDG in the first PCa patient. CONCLUSIONS The [18F]FPA uptake in PCa models may be varies with fatty acid synthase activity and could be reduced after administration of a single FASN inhibitor, albeit the activity that is not measured directly. The [18F]FPA seems to be a potential broad-spectrum PET imaging agent and may serve as a valuable tool in the diagnosis of PCa in humans.
Collapse
Affiliation(s)
- Zhanwen Zhang
- Department of Nuclear Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Department of Nuclear Medicine and Medical Imaging, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shaoyu Liu
- Department of Nuclear Medicine and Medical Imaging, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hui Ma
- Department of Nuclear Medicine and Medical Imaging, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xianhong Xiang
- Department of Nuclear Medicine and Medical Imaging, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dahong Nie
- Department of Nuclear Medicine and Medical Imaging, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ping Hu
- Department of Nuclear Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| | - Ganghua Tang
- Department of Nuclear Medicine and Medical Imaging, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Nanfang PET Center and Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
113
|
Xu T, Liu J, Xia Y, Wang Z, Li X, Gao Q. Integrated analysis reveals the participation of IL4I1, ITGB7, and FUT7 in reshaping the TNBC immune microenvironment by targeting glycolysis. Ann Med 2021; 53:916-928. [PMID: 34134578 PMCID: PMC8604452 DOI: 10.1080/07853890.2021.1937694] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The overall response rate of immunotherapy in triple-negative breast cancer (TNBC) remains unsatisfactory. Accumulating evidence indicated that glucose metabolic reprogramming could modulate immunotherapy efficacy. However, transcriptomic evidence remains insufficient. METHODS Genes' relationship with glucose metabolism and TNBC-specific immune was demonstrated by weighted gene co-expression network analysis (WGCNA). The glucose metabolic capability was estimated by standardised uptake value (SUV), an indicator of glucose uptake in 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET), and a reflection of cancer metabolic behaviour. PD-(L)1 expression was used to reflect the efficacy of immunotherapy. Additionally, immune infiltration, survival, and gene coexpression profiles were provided. RESULTS Comprehensive analysis revealing that IL4I1, ITGB7, and FUT7 hold the potential to reinforce immunotherapy by reshaping glucose metabolism in TNBC. These results were verified by functional enrichment analysis, which demonstrated their relationships with immune-related signalling pathways and extracellular microenvironment reprogramming. Their expressions have potent positive correlations with Treg and Macrophage cell infiltration and exhausted T cell markers. Meanwhile, their overexpression also lead to poor prognosis. CONCLUSION IL4I1, ITGB7, and FUT7 may be the hub genes that link glucose metabolism, and cancer-specific immunity. They may be potential targets for enhancing ICB treatment by reprogramming the tumour microenvironment and remodelling tumour metabolism.
Collapse
Affiliation(s)
- Tao Xu
- Key Laboratory of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahao Liu
- Key Laboratory of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xia
- Key Laboratory of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Key Laboratory of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Key Laboratory of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
114
|
Meng J, Deshayes E, Zhang L, Shi W, Zhang X, Chen X, Mei X, Ma J, Jiang Y, Wu J, Shao Z, Yu X, Yang Z, Guo X. Prognostic value of metabolic signature on 18F-FDG uptake in breast cancer patients after radiotherapy. Mol Ther Oncolytics 2021; 23:412-419. [PMID: 34853812 PMCID: PMC8605077 DOI: 10.1016/j.omto.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022] Open
Abstract
Radiotherapy (RT) is a major modality of postoperative treatment in breast cancer. The maximal standardized value (SUVmax) is 18FDG-PET/CT derived parameter that reported to be a valuable prognostic factor in cancer patients. Herein, we aimed to identify a prognostic gene signature associated with glucose uptake for breast cancer patients after RT by leveraging the mRNA expression profiling on public datasets. The glucose uptake signature was constructed using the single sample gene set enrichment analysis (ssGSEA) algorithm and evaluated in GSE21217 where SUVmax value was measured by PET-CT directly. The prognostic value was validated in three post-RT breast cancer cohorts (GSE103744, NKI, and FUSCC databases). The patients were stratified into glucose uptake signature score-high and low groups. Patients with a higher score had worse survival than those with a lower score. Mechanistically, the glucose uptake signature was calculated in each cell type of a single-cell RNA-seq database from five breast cancer patients. Glucose uptake signature score was significantly elevated in the malignant epithelial cells compared with normal ones. The immunosuppression markers including PDCD1, TIGIT, LAG3, and HAVCR2 were significantly upregulated in the T cells bearing a high glucose uptake signature score. Collectively, our results demonstrated the potential prognostic value of a glucose uptake signature in the post-RT breast cancer patients.
Collapse
Affiliation(s)
- Jin Meng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Emmanuel Deshayes
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut régional du Cancer de Montpellier (ICM), University of Montpellier, 34298 Montpellier Cedex 5, France
- Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), University of Montpellier, 34298 Montpellier Cedex 5, France
| | - Li Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Wei Shi
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xiaomeng Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xingxing Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xin Mei
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Jinli Ma
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Yizhou Jiang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jiong Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zhimin Shao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xiaoli Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Zhaozhi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
- Corresponding author: Zhaozhi Yang, MD, PhD, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, China.
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
- Corresponding author: Xiaomao Guo, MD, PhD, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, China.
| |
Collapse
|
115
|
Zukotynski KA, Gaudet VC, Uribe CF, Chiam K, Bénard F, Gerbaudo VH. Clinical Applications of Artificial Intelligence in Positron Emission Tomography of Lung Cancer. PET Clin 2021; 17:77-84. [PMID: 34809872 DOI: 10.1016/j.cpet.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ability of a computer to perform tasks normally requiring human intelligence or artificial intelligence (AI) is not new. However, until recently, practical applications in medical imaging were limited, especially in the clinic. With advances in theory, microelectronic circuits, and computer architecture as well as our ability to acquire and access large amounts of data, AI is becoming increasingly ubiquitous in medical imaging. Of particular interest to our community, radiomics tries to identify imaging features of specific pathology that can represent, for example, the texture or shape of a region in the image. This is conducted based on a review of mathematical patterns and pattern combinations. The difficulty is often finding sufficient data to span the spectrum of disease heterogeneity because many features change with pathology as well as over time and, among other issues, data acquisition is expensive. Although we are currently in the early days of the practical application of AI to medical imaging, research is ongoing to integrate imaging, molecular pathobiology, genetic make-up, and clinical manifestations to classify patients into subgroups for the purpose of precision medicine, or in other words, predicting a priori treatment response and outcome. Lung cancer is a functionally and morphologically heterogeneous disease. Positron emission tomography (PET) is an imaging technique with an important role in the precision medicine of patients with lung cancer that helps predict early response to therapy and guides the selection of appropriate treatment. Although still in its infancy, early results suggest that the use of AI in PET of lung cancer has promise for the detection, segmentation, and characterization of disease as well as for outcome prediction.
Collapse
Affiliation(s)
- Katherine A Zukotynski
- Departments of Radiology and Medicine, McMaster University, 1200 Main St.W., Hamilton, ON L8N 3Z5, Canada; School of Biomedical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1 Canada; Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd., Toronto, ON M5S 3G8, Canada.
| | - Vincent C Gaudet
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave.W., Waterloo, ON N2L 3G1, Canada
| | - Carlos F Uribe
- PET Functional Imaging, BC Cancer, 600W. 10th Ave., Vancouver, V5Z 4E6, Canada
| | - Katarina Chiam
- Division of Engineering Science, University of Toronto, 40 St. George St., Toronto, ON M5S 2E4, Canada
| | - François Bénard
- Department of Radiology, University of British Columbia, 2775 Laurel St., 11th floor, Vancouver, BC V5Z 1M9, Canada
| | - Victor H Gerbaudo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02492, USA
| |
Collapse
|
116
|
Whi W, Choi H, Paeng JC, Cheon GJ, Kang KW, Lee DS. Fully automated identification of brain abnormality from whole-body FDG-PET imaging using deep learning-based brain extraction and statistical parametric mapping. EJNMMI Phys 2021; 8:79. [PMID: 34778923 PMCID: PMC8590988 DOI: 10.1186/s40658-021-00424-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/29/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The whole brain is often covered in [18F]Fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) in oncology patients, but the covered brain abnormality is typically screened by visual interpretation without quantitative analysis in clinical practice. In this study, we aimed to develop a fully automated quantitative interpretation pipeline of brain volume from an oncology PET image. METHOD We retrospectively collected 500 oncologic [18F]FDG-PET scans for training and validation of the automated brain extractor. We trained the model for extracting brain volume with two manually drawn bounding boxes on maximal intensity projection images. ResNet-50, a 2-D convolutional neural network (CNN), was used for the model training. The brain volume was automatically extracted using the CNN model and spatially normalized. For validation of the trained model and an application of this automated analytic method, we enrolled 24 subjects with small cell lung cancer (SCLC) and performed voxel-wise two-sample T test for automatic detection of metastatic lesions. RESULT The deep learning-based brain extractor successfully identified the existence of whole-brain volume, with an accuracy of 98% for the validation set. The performance of extracting the brain measured by the intersection-over-union of 3-D bounding boxes was 72.9 ± 12.5% for the validation set. As an example of the application to automatically identify brain abnormality, this approach successfully identified the metastatic lesions in three of the four cases of SCLC patients with brain metastasis. CONCLUSION Based on the deep learning-based model, extraction of the brain volume from whole-body PET was successfully performed. We suggest this fully automated approach could be used for the quantitative analysis of brain metabolic patterns to identify abnormalities during clinical interpretation of oncologic PET studies.
Collapse
Affiliation(s)
- Wonseok Whi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| |
Collapse
|
117
|
Bailey JJ, Wuest M, Wagner M, Bhardwaj A, Wängler C, Wängler B, Valliant JF, Schirrmacher R, Wuest F. Synthesis and Preclinical Evaluation of [ 18F]SiFA-PSMA Inhibitors in a Prostate Cancer Model. J Med Chem 2021; 64:15671-15689. [PMID: 34672630 DOI: 10.1021/acs.jmedchem.1c00812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Positron emission tomography (PET) imaging of prostate-specific membrane antigen (PSMA) with gallium-68 (68Ga) and fluorine-18 (18F) radiotracers has aroused tremendous interest over the past few years. The use of organosilicon-[18F]fluoride acceptors (SiFA) conjugated to urea-based peptidomimetic PSMA inhibitors provides a "kit-like" multidose synthesis technology. Nine novel 18F-labeled SiFA-bearing PSMA inhibitors with different linker moieties were synthesized and analyzed for their in vitro binding against [125I]I-TAAG-PSMA in LNCaP cells. IC50 values ranged from 58-570 nM. Among all compounds, [18F]SiFA-Asp2-PEG3-PSMA (IC50 = 125 nM) showed the highest tumor uptake in LNCaP tumors (SUV60min 0.73). A substantial increase in molar activity (Am) (from 7.5 ± 0.5 to 86 ± 3 GBq/μmol) led to a significant increase in LNCaP tumor uptake (SUV60min 1.18; Δ 0.45 corresponding to +62%). In vivo blocking with DCFPyL resulted in -32% uptake after 60 min. The SiFA-isotopic exchange chemistry offers a method that is readily adaptable for a "kit-type" labeling procedure and clinical translation.
Collapse
Affiliation(s)
- Justin J Bailey
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Michael Wagner
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Atul Bhardwaj
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Carmen Wängler
- Clinic of Radiology and Nuclear Medicine, Biomedical Chemistry and Clinic of Radiology and Nuclear Medicine, Molecular Imaging and Radiochemistry, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Bjoern Wängler
- Clinic of Radiology and Nuclear Medicine, Biomedical Chemistry and Clinic of Radiology and Nuclear Medicine, Molecular Imaging and Radiochemistry, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - John F Valliant
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4K1, Canada
| | - Ralf Schirrmacher
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
118
|
Sagara H, Inoue K, Yaku H, Ohsawa A, Someya T, Yanagisawa K, Ohashi S, Ishigaki R, Wakabayashi M, Muramatsu Y, Fujii H. Optimization of injection dose in 18F-FDG PET/CT based on the 2020 national diagnostic reference levels for nuclear medicine in Japan. Ann Nucl Med 2021; 35:1177-1186. [PMID: 34287782 PMCID: PMC8494693 DOI: 10.1007/s12149-021-01656-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Recently, the national diagnostic reference levels (DRLs) in Japan were revised as the DRLs 2020, wherein the body weight-based injection dose optimization in positron emission tomography/computed tomography using 18F-fluoro-2-deoxy-D-glucose (18F-FDG PET/CT) was first proposed. We retrospectively investigated the usefulness of this optimization method in improving image quality and reducing radiation dose. METHODS A total of 1,231 patients were enrolled in this study. A fixed injection dose of 240 MBq was administered to 624 patients, and a dose adjusted to 3.7 MBq/kg body weight was given to 607 patients. The patients with body weight-based injection doses were further divided according to body weight: group 1 (≤ 49 kg), group 2 (50-59 kg), group 3 (60-69 kg), and group 4 (≥ 70 kg). The effective radiation dose of FDG PET was calculated using the conversion factor of 0.019 mSv/MBq, per the International Commission on Radiological Protection publication 106. Image quality was assessed using noise equivalent count density (NECdensity), which was calculated by excluding the counts of the brain and bladder. The usefulness of the injection dose optimization in terms of radiation dose and image quality was analyzed. RESULTS The body weight-based injection dose optimization significantly decreased the effective dose by 11%, from 4.54 ± 0.1 mSv to 4.05 ± 0.8 mSv (p < 0.001). Image quality evaluated by NECdensity was also significantly improved by 10%, from 0.39 ± 0.1 to 0.43 ± 0.2 (p < 0.001). In no case did NECdensity deteriorate when the effective dose was decreased. In group 1, the dose decreased by 32%, while there was no significant deterioration in NECdensity (p = 0.054). In group 2, the dose decreased by 17%, and the NECdensity increased significantly (p < 0.01). In group 3, the dose decreased by 3%, and the NECdensity increased significantly (p < 0.01). In group 4, the dose increased by 14%, but there was no significant change in the NECdensity (p = 0.766). CONCLUSION Body weight-based FDG injection dose optimization contributed to not only the reduction of effective dose but also the improvement of image quality in patients weighing between 50 and 69 kg.
Collapse
Affiliation(s)
- Hiroaki Sagara
- Department of Radiologic Technology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Arakawa‑ku, Tokyo, 116‑8551, Japan
| | - Kazumasa Inoue
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Arakawa‑ku, Tokyo, 116‑8551, Japan
| | - Hideki Yaku
- RYUKYU ISG Co., Ltd, 3-78-4 Nantan, Kyoto, 622-0041, Japan
- Optical Information Engineering, Systems Innovation Engineering, Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan
| | - Amon Ohsawa
- Department of Radiologic Technology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Takashi Someya
- Department of Radiologic Technology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Kaori Yanagisawa
- Department of Radiologic Technology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Shuhei Ohashi
- Department of Radiologic Technology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Rikuta Ishigaki
- Department of Radiation Technology, Faculty of Medical Science, Kyoto College of Medical Science, 1-2 Nantan, Kyoto, 622‑0041, Japan
| | - Masashi Wakabayashi
- Clinical Research Support Office, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Yoshihisa Muramatsu
- Department of Radiologic Technology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Hirofumi Fujii
- Division of Functional Imaging, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Japan.
| |
Collapse
|
119
|
McAteer MA, O'Connor JPB, Koh DM, Leung HY, Doran SJ, Jauregui-Osoro M, Muirhead N, Brew-Graves C, Plummer ER, Sala E, Ng T, Aboagye EO, Higgins GS, Punwani S. Introduction to the National Cancer Imaging Translational Accelerator (NCITA): a UK-wide infrastructure for multicentre clinical translation of cancer imaging biomarkers. Br J Cancer 2021; 125:1462-1465. [PMID: 34316019 PMCID: PMC8313668 DOI: 10.1038/s41416-021-01497-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
The National Cancer Imaging Translational Accelerator (NCITA) is creating a UK national coordinated infrastructure for accelerated translation of imaging biomarkers for clinical use. Through the development of standardised protocols, data integration tools and ongoing training programmes, NCITA provides a unique scalable infrastructure for imaging biomarker qualification using multicentre clinical studies.
Collapse
Affiliation(s)
- M A McAteer
- Department of Oncology, University of Oxford, Oxford, UK.
| | - J P B O'Connor
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - D M Koh
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - H Y Leung
- Beatson Institute for Cancer Research, University of Glasgow, Glasgow, UK
| | - S J Doran
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - M Jauregui-Osoro
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - N Muirhead
- Centre for Medical Imaging, University College London, London, UK
| | - C Brew-Graves
- Centre for Medical Imaging, University College London, London, UK
| | - E R Plummer
- Northern Institute for Cancer Care, Freeman Hospital and Newcastle University, Newcastle upon Tyne, UK
| | - E Sala
- Department of Radiology, University of Cambridge and CRUK Cambridge Centre, Cambridge, UK
| | - T Ng
- UCL Cancer Institute, University College London, London, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - E O Aboagye
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - G S Higgins
- Department of Oncology, University of Oxford, Oxford, UK
| | - S Punwani
- Centre for Medical Imaging, University College London, London, UK
| |
Collapse
|
120
|
Achievements of true whole-body imaging using a faster acquisition of the lower extremities in variable-speed continuous bed motion. Radiol Phys Technol 2021; 14:373-380. [PMID: 34697782 DOI: 10.1007/s12194-021-00640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Variable-speed continuous bed motion 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT), a reliable imaging technique, allows setting the bed motion speed for arbitrary sections of the body. The purpose of this study was to evaluate the relationship between the PET image quality and the bed speed following shortening of the scanning time for the lower extremities to achieve whole-body acquisition optimization of the examination time. Four sets of images were created by editing four-phase dynamic whole-body PET/CT images acquired at a bed speed of 6 and 14 mm/s in the trunk and lower extremities, respectively. The signal-to-noise ratio (SNR) was calculated using regions of interest in the liver, gluteus muscles, thigh, and lower legs, and the relationship between the bed speed and the SNR was assessed. The number of patients with findings in the lower extremities among 967 cases was evaluated. Based on this relationship between the SNR and bed motion speed, it is reasonable to increase the speed of the lower extremities by up to three times that of the trunk. The findings from whole-body FDG-PET imaging revealed that the number of patients with detected lesions in the lower extremities was 6.6% (64/967), bone metastases were found in 2.6%, soft lesions in 1.8%, and inflammation in 2.3%. Images of the lower extremities, which have a better SNR than the trunk, can be acquired at a faster bed speed using the variable-speed continuous bed motion PET.
Collapse
|
121
|
Usmani S, Al-Ramadhan F, Al-Kandari F, Ahmed N. Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Hodgkin's Lymphoma: Diagnostic Challenge during COVID Vaccination. Indian J Nucl Med 2021; 36:343-346. [PMID: 34658564 PMCID: PMC8481852 DOI: 10.4103/ijnm.ijnm_31_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 11/10/2022] Open
Abstract
Benign metabolic uptake on fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) is not uncommonly seen after immunization. We report a case of 30-year-old man with Hodgkin's lymphoma who underwent two cycles of chemotherapy. Interim 18F-FDG PET/computed tomography demonstrated complete metabolic response of prior hypermetabolic bilateral supraclavicular and mediastinal lymph nodes. Although multiple new normal-sized hypermetabolic left axillary and subpectoral lymph nodes are noted, relevant history revealed COVID vaccine 7 days prior scan with mild FDG uptake at the left deltoid muscle. These new findings at the left axilla are likely related to recent vaccination. 18F-FDG PET uptake in the lymph nodes is not so uncommon after immunization; relevant history is very important especially in the phase of massive immunization to avoid false interpretation.
Collapse
Affiliation(s)
- Sharjeel Usmani
- Department of Nuclear Medicine, Castle Hill Hospital, Cottingham, UK
| | | | | | - Najeeb Ahmed
- Jack Brignall PET/CT Centre, Castle Hill Hospital, Cottingham, UK
| |
Collapse
|
122
|
Khessib T, Itani M, Hippe D, Akaike G, Bermo M, Zare M, Behnia F. Testicular FDG Uptake on PET/CT in Patients with Lymphoma: Correlation with Age. Curr Probl Diagn Radiol 2021; 51:474-477. [PMID: 34756775 DOI: 10.1067/j.cpradiol.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/29/2021] [Accepted: 07/18/2021] [Indexed: 11/22/2022]
Abstract
The purpose of this observational study was to investigate whether the standard uptake value (SUV) measurement has practical utility in distinguishing secondary testicular involvement from physiologic uptake in patients with lymphoma. A Radiology Information System (RIS) search was conducted for all PET/CT studies performed from 2010-2016 on adult male patients with a diagnosis of lymphoma. Patients with clinical or pathologic diagnosis of testicular lymphoma were excluded to undergo a separate analysis. PET/CT images of 606 patients with 1087 scans, in which 2045 testes were included in the field of view, were reviewed and measurements were performed for standardized uptake values of both testicles (SUVmax) as well as of the liver (SUVmax and SUVmean). The mean SUVmax of the testicles was 3.75 ± 0.90 (range 1.16-8.38). The mean ratio of testis SUVmax / liver SUVmean (T/L) was 1.78 ± 0.43. Trends in SUVmax and age were significant for a negative correlation by a small magnitude of 0.066 per 10 years (P < 0.001). T/L had similar changes with significant low magnitude decrease with increasing age (0.059 per 10-year increase, P < 0.001). In our separate analysis of 3 patients with clinical or pathology proven testicular lymphoma, the average pathologic SUVmax was 13.47 (range 11.39-15.97). This study has the largest known sample size for quantifying physiologic uptake in the testes. SUV measurements to quantify F-18 Fluorodeoxyglucose (FDG) uptake on PET/CT likely have practical utility in discriminating between physiologic and pathologic uptake of FDG in cases of secondary testicular lymphoma.
Collapse
Affiliation(s)
- Tasnim Khessib
- Department of Radiology, Stanford Health Care, Palo Alto, CA.
| | - Malak Itani
- Mallinckrodt Institute of Radiology, Washington University Medical Center, St. Louis, MO
| | - Daniel Hippe
- Department of Radiology, University of Washington Medical Center, Seattle, WA
| | - Gensuke Akaike
- Department of Radiology, University of Washington Medical Center, Seattle, WA
| | - Mohammed Bermo
- Department of Radiology, Texas Tech University Health Sciences Center, El Paso, TX
| | - Megan Zare
- Department of Radiology, University of Washington Medical Center, Seattle, WA
| | - Fatemeh Behnia
- Department of Radiology, University of Washington Medical Center, Seattle, WA
| |
Collapse
|
123
|
Wang D, Liu X, Wang W, Huo L, Pan Q, Ren X, Zhang F, Hu K. The Role of the Metabolic Parameters of 18F-FDG PET/CT in Patients With Locally Advanced Cervical Cancer. Front Oncol 2021; 11:698744. [PMID: 34490094 PMCID: PMC8417436 DOI: 10.3389/fonc.2021.698744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose To evaluate the role of the pre-treatment cervical and lymph node (LN) metabolic parameters of 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) for locally advanced cervical cancer (LACC) patients receiving concurrent chemoradiotherapy or radiotherapy. Methods we reviewed 125 consecutive patients with LACC who underwent pre-treatment 18F-FDG PET/CT examination and concurrent chemoradiotherapy or radiotherapy from February 2010 to December 2015 at our institute. The mean standardized uptake value (SUVmean), maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) of cervical lesion and lymph node (LN) were recorded. Receiver operator characteristic curve, C-index, Kaplan-Meier method, and Cox proportional hazards models were performed. Results The median follow-up was 62 months (range, 4-114 months). For 125 included patients with cervical cancer, the 5-year overall survival (OS), disease-free survival (DFS), local control (LC) and distant metastasis-free survival (DMFS) rates were 83.6%, 75.1%, 92.3% and 79.9%, respectively. Cervical MTV (c-index 0.59-0.61) and cervical TLG (c-index 0.60-0.62) values calculated with a threshold of 40% SUVmax presented stronger prediction capability than cervical SUVmean (c-index 0.51-0.58) and cervical SUVmax (c-index 0.53-0.57) for OS, DFS, LC, and DMFS. In univariate analysis, cervical TLG ≥ 113.4 had worse DFS and DMFS. Cervical MTV ≥ 18.3 cm3 had worse OS and DMFS. In multivariate analysis, cervical TLG ≥ 113.4 implied worse OS, DFS, and DMFS. In either univariate or multivariate analyses, cervical SUVmean and cervical SUVmax had no statistically significant correlation with OS, DFS, LC and DMFS. For 55 cervical cancer patients with positive LN, LN SUVmax presented strongest prediction capability for OS (c-index = 0.79), DFS (c-index = 0.72), LC (c-index = 0.62), and DMFS (c-index = 0.79). In multivariate analysis, LN SUVmax remained significant biomarker linked to OS, DFS, and DMFS. Conclusion Pre-treatment cervical and LN metabolic parameters were associated with survival outcomes in patients with LACC. In our study, we found that pre-treatment cervical TLG and LN SUVmax may be important prognostic biomarkers for OS, DFS, and DMFS. However, further prospective studies with a large number of patients are required to evaluate the value of the metabolic parameters in survival outcomes prediction.
Collapse
Affiliation(s)
- Dunhuang Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China.,Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoliang Liu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weiping Wang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Huo
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qingqing Pan
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue Ren
- Department of Radiology, Xiamen Humanity Hospital, Xiamen, China
| | - Fuquan Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ke Hu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
124
|
Nissan E, Amit U, Baron L, Zabatani A, Urban D, Barshack I, Davidson T. The usefulness of [18F]FDG-PET/CT in detecting and managing cancers with unknown primary site depends on histological subtype. Sci Rep 2021; 11:17732. [PMID: 34489490 PMCID: PMC8421436 DOI: 10.1038/s41598-021-96451-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
We assessed the role of [18F]FDG-PET/CT in identifying and managing cancer of unknown primary site (CUP syndrome). We reviewed [18F]FDG-PET/CT scans of individuals with CUP syndrome recorded in clinical referral letters from 2012 to 2019. We evaluated the identification of primary tumor (PT) by [18F]FDG-PET/CT, according to histological subtype, and the impact on clinical management. The median age was 65 years, 36/64 males (56%). PTs were detected in 28/64 (44%) patients. Detection was significantly lower in patients with squamous cell carcinoma (SCC) than with other histologies combined, p = 0.034. Mean age, mean SUVmax (10.6 ± 6.0) and organ involvement were similar between patients with and without discovered PTs; and between patients with SCC and with other histologies combined. However, those with SCC were less likely than the others to present with multi-lesion involvement, p < 0.001. [18F]FDG-PET/CT interpretations apparently affected treatment of 8/28 (29%) patients with PT detected, and in none of the 35 whose PT was not discovered, p < 0.001. [18F]FDG-PET/CT appeared helpful in detecting PT in almost half the patients with CUP syndrome; the lowest rate was for patients with SCC pathology. PET/CT showed limited overall value in guiding clinical management, however benefited those with discovered PT.
Collapse
Affiliation(s)
- Ella Nissan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Uri Amit
- Radiation Oncology Department, Chaim Sheba Medical Center, Tel Hashomer, Israel.,The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Leo Baron
- Department of Orthopedic Surgery, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Amit Zabatani
- Department of Orthopedic Surgery, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Damien Urban
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Oncology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Iris Barshack
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pathology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Tima Davidson
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Department of Nuclear Medicine, Chaim Sheba Medical Center, Tel Hashomer, Israel.
| |
Collapse
|
125
|
Peukert C, Langer LNB, Wegener SM, Tutov A, Bankstahl JP, Karge B, Bengel FM, Ross TL, Brönstrup M. Optimization of Artificial Siderophores as 68Ga-Complexed PET Tracers for In Vivo Imaging of Bacterial Infections. J Med Chem 2021; 64:12359-12378. [PMID: 34370949 DOI: 10.1021/acs.jmedchem.1c01054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diagnosis of bacterial infections at deep body sites benefits from noninvasive imaging of molecular probes that can be traced by positron emission tomography (PET). We specifically labeled bacteria by targeting their iron transport system with artificial siderophores. The cyclen-based probes contain different binding sites for iron and the PET nuclide gallium-68. A panel of 11 siderophores with different iron coordination numbers and geometries was synthesized in up to 8 steps, and candidates with the best siderophore potential were selected by a growth recovery assay. The probes [68Ga]7 and [68Ga]15 were found to be suitable for PET imaging based on their radiochemical yield, radiochemical purity, and complex stability in vitro and in vivo. Both showed significant uptake in mice infected with Escherichia coli and were able to discern infection from lipopolysaccharide-triggered, sterile inflammation. The study qualifies cyclen-based artificial siderophores as readily accessible scaffolds for the in vivo imaging of bacteria.
Collapse
Affiliation(s)
- Carsten Peukert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Laura N B Langer
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sophie M Wegener
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anna Tutov
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Bianka Karge
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Tobias L Ross
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Center for Biomolecular Drug Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
126
|
Zukotynski KA, Hasan OK, Lubanovic M, Gerbaudo VH. Update on Molecular Imaging and Precision Medicine in Lung Cancer. Radiol Clin North Am 2021; 59:693-703. [PMID: 34392913 DOI: 10.1016/j.rcl.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Precision medicine integrates molecular pathobiology, genetic make-up, and clinical manifestations of disease in order to classify patients into subgroups for the purposes of predicting treatment response and suggesting outcome. By identifying those patients who are most likely to benefit from a given therapy, interventions can be tailored to avoid the expense and toxicity of futile treatment. Ultimately, the goal is to offer the right treatment, to the right patient, at the right time. Lung cancer is a heterogeneous disease both functionally and morphologically. Further, over time, clonal proliferations of cells may evolve, becoming resistant to specific therapies. PET is a sensitive imaging technique with an important role in the precision medicine algorithm of lung cancer patients. It provides anatomo-functional insight during diagnosis, staging, and restaging of the disease. It is a prognostic biomarker in lung cancer patients that characterizes tumoral heterogeneity, helps predict early response to therapy, and may direct the selection of appropriate treatment.
Collapse
Affiliation(s)
- Katherine A Zukotynski
- Department of Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario L9G 4X5, Canada; Department of Radiology, McMaster University, 1200 Main Street West, Hamilton, Ontario L9G 4X5, Canada
| | - Olfat Kamel Hasan
- Department of Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario L9G 4X5, Canada; Department of Radiology, McMaster University, 1200 Main Street West, Hamilton, Ontario L9G 4X5, Canada
| | - Matthew Lubanovic
- Department of Radiology, McMaster University, 1200 Main Street West, Hamilton, Ontario L9G 4X5, Canada
| | - Victor H Gerbaudo
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02492, USA.
| |
Collapse
|
127
|
Abstract
Primary thyroid cancers demonstrate distinct biological behaviors depending on their histologic characteristics. The ability to accumulate radioiodine by differentiated thyroid cancer cells is lost in primary aggressive, poorly differentiated and dedifferentiated tumor cells. PET imaging comes into play in these challenging situations where it can provide additive information to radioiodine scintigraphy and conventional imaging. This review focuses on the current guidelines and future prospects of PET imaging in thyroid cancers.
Collapse
|
128
|
Cui J, Gong K, Guo N, Wu C, Kim K, Liu H, Li Q. Populational and individual information based PET image denoising using conditional unsupervised learning. Phys Med Biol 2021; 66. [PMID: 34198277 DOI: 10.1088/1361-6560/ac108e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/01/2021] [Indexed: 11/12/2022]
Abstract
Our study aims to improve the signal-to-noise ratio of positron emission tomography (PET) imaging using conditional unsupervised learning. The proposed method does not require low- and high-quality pairs for network training which can be easily applied to existing PET/computed tomography (CT) and PET/magnetic resonance (MR) datasets. This method consists of two steps: populational training and individual fine-tuning. As for populational training, a network was first pre-trained by a group of patients' noisy PET images and the corresponding anatomical prior images from CT or MR. As for individual fine-tuning, a new network with initial parameters inherited from the pre-trained network was fine-tuned by the test patient's noisy PET image and the corresponding anatomical prior image. Only the last few layers were fine-tuned to take advantage of the populational information and the pre-training efforts. Both networks shared the same structure and took the CT or MR images as the network input so that the network output was conditioned on the patient's anatomic prior information. The noisy PET images were used as the training and fine-tuning labels. The proposed method was evaluated on a68Ga-PPRGD2 PET/CT dataset and a18F-FDG PET/MR dataset. For the PET/CT dataset, with the original noisy PET image as the baseline, the proposed method has a significantly higher contrast-to noise ratio (CNR) improvement (71.85% ± 27.05%) than Gaussian (12.66% ± 6.19%,P= 0.002), nonlocal mean method (22.60% ± 13.11%,P= 0.002) and conditional deep image prior method (52.94% ± 21.79%,P= 0.0039). For the PET/MR dataset, compared to Gaussian (18.73% ± 9.98%,P< 0.0001), NLM (26.01% ± 19.40%,P< 0.0001) and CDIP (47.48% ± 25.36%,P< 0.0001), the CNR improvement ratio of the proposed method (58.07% ± 28.45%) is the highest. In addition, the denoised images using both datasets also showed that the proposed method can accurately restore tumor structures while also smoothing out the noise.
Collapse
Affiliation(s)
- Jianan Cui
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.,Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Kuang Gong
- Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital, Boston, MA 02114, United States of America.,Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Ning Guo
- Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital, Boston, MA 02114, United States of America.,Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Chenxi Wu
- Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Kyungsang Kim
- Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital, Boston, MA 02114, United States of America.,Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Quanzheng Li
- Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital, Boston, MA 02114, United States of America.,Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| |
Collapse
|
129
|
Hu P, Lin X, Zhuo W, Tan H, Xie T, Liu G, Chen S, Chen X, Yu H, Zhang Y, Shi H, Liu H. Internal dosimetry in F-18 FDG PET examinations based on long-time-measured organ activities using total-body PET/CT: does it make any difference from a short-time measurement? EJNMMI Phys 2021; 8:51. [PMID: 34264416 PMCID: PMC8282883 DOI: 10.1186/s40658-021-00395-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/21/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE A 2-m axial field-of-view, total-body PET/CT scanner (uEXPLORER) has been recently developed to provide total-body coverage and ultra-high sensitivity, which together, enables opportunities for in vivo time-activity curve (TAC) measurement of all investigated organs simultaneously with high temporal resolution. This study aims at quantifying the cumulated activity and patient dose of 2-[F-18]fluoro-2-deoxy-D-glucose (F-18 FDG ) imaging by using delayed time-activity curves (TACs), measured out to 8-h post-injection, for different organs so that the comparison between quantifying approaches using short-time method (up to 75 min post-injection) or long-time method (up to 8 h post-injection) could be performed. METHODS Organ TACs of 10 healthy volunteers were collected using total-body PET/CT in 4 periods after the intravenous injection of F-18 FDG. The 8-h post-injection TACs of 6 source organs were fitted using a spline method (based on Origin (version 8.1)). To compare with cumulated activity estimated from spline-fitted curves, the cumulated activity estimated from multi-exponential curve was also calculated. Exponential curve was fitted with shorter series of data consistent with clinical procedure and previous dosimetry works. An 8-h dynamic bladder wall dose model considering 2 voiding were employed to illustrate the differences in bladder wall dose caused by the different measurement durations. Organ absorbed doses were further estimated using Medical Internal Radiation Dose (MIRD) method and voxel phantoms. RESULTS A short-time measurement could lead to significant bias in estimated cumulated activity for liver compared with long-time-measured spline fitted method, and the differences of cumulated activity were 18.38% on average. For the myocardium, the estimated cumulated activity difference was not statistically significant due to large variation in metabolism among individuals. The average residence time differences of brain, heart, kidney, liver, and lungs were 8.38%, 15.13%, 25.02%, 23.94%, and 16.50% between short-time and long-time methods. Regarding effective dose, the maximum differences of residence time between long-time-measured spline fitted curve and short-time-measured multi-exponential fitted curve was 9.93%. When using spline method, the bladder revealed the most difference in the effective dose among all the investigated organs with a bias up to 21.18%. The bladder wall dose calculated using a long-time dynamic model was 13.79% larger than the two-voiding dynamic model, and at least 50.17% lower than previous studies based on fixed bladder content volume. CONCLUSIONS Long-time measurement of multi-organ TACs with high temporal resolution enabled by a total-body PET/CT demonstrated that the clinical procedure with 20 min PET scan at 1 h after injection could be used for retrospective dosimetry analysis in most organs. As the bladder content contributed the most to the effective dose, a long-time dynamic model was recommended for the bladder wall dose estimation.
Collapse
Affiliation(s)
- Pengcheng Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 1069 Xietu Road, Shanghai, 200032, China
| | - Xin Lin
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai, 200032, China
| | - Weihai Zhuo
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai, 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 1069 Xietu Road, Shanghai, 200032, China
| | - Tianwu Xie
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai, 200032, China
| | - Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 1069 Xietu Road, Shanghai, 200032, China
| | - Shuguang Chen
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 1069 Xietu Road, Shanghai, 200032, China
| | - Xin Chen
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai, 200032, China
| | - Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 1069 Xietu Road, Shanghai, 200032, China
| | - Yiqiu Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 1069 Xietu Road, Shanghai, 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 1069 Xietu Road, Shanghai, 200032, China.
| | - Haikuan Liu
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai, 200032, China.
| |
Collapse
|
130
|
Liu Q, Li C, Liu J, Krish K, Fu X, Zhao J, Chen JC. Technical Note: Performance evaluation of a small-animal PET/CT system based on NEMA NU 4-2008 standards. Med Phys 2021; 48:5272-5282. [PMID: 34252215 DOI: 10.1002/mp.15088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/01/2021] [Accepted: 06/22/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The MetisTM PET/CT is a self-developed, silicon photomultiplier (SiPM) detector-based, rodent PET/CT system. The objective of this study was to evaluate the performance of the system using the National Electrical Manufacturers Association (NEMA) NU 4-2008 standard protocol. METHODS Energy resolution, spatial resolution, sensitivity, scatter fraction (SF), noise-equivalent count rate (NECR), and image quality (IQ) characteristics were measured. A micro Derenzo phantom experiment was performed to evaluate the spatial resolution using three-dimensional ordered-subsets expectation maximization (3D-OSEM) and maximum likelihood expectation maximization (MLEM) reconstructed images. In addition, the CT imaging agent Ioverol 350 was mixed with fluorine-18 (18 F)-fluorodeoxyglucose (FDG) and then injected into the micro Derenzo phantom to evaluate the PET/CT imaging. In vivo PET/CT imaging studies were also conducted in a healthy mouse and rat using 18 F-FDG. RESULTS The mean energy resolution of the system was 15.3%. The tangential resolution was 0.82 mm full-width half-maximum (FWHM) at the center of the field of the view (FOV), and the radial and axial resolution were generally lower than 2.0 mm FWHM. The spatial resolution was significantly improved when using 3D-OSEM, especially the axial FWHM could be improved by up to about 57%. The system absolute sensitivity was 7.7% and 6.8% for an energy window of 200-750 and 350-750 keV respectively. The scatter fraction was 8.2% and 12.1% for the mouse- and rat-like phantom respectively. The peak NECR was 1343.72 kcps at 69 MBq and 640.32 kcps at 53 MBq for the mouse- and rat-like phantom respectively. The 1-mm fillable rod in the IQ phantom can be clearly observed. We can identify the 0.6-mm aperture of the micro Derenzo phantom image clearly using 3D-OSEM (10 subsets, 5 iterations). We also performed the fusion of the PET and CT images of the mouse and the brain imaging of the rat. CONCLUSIONS The results show that the system has the characteristics of high-resolution, high-sensitivity, and excellent IQ and is suitable for rodent imaging-based research.
Collapse
Affiliation(s)
- Qiong Liu
- School of Medical Imaging, Xuzhou Medical University, Jiangsu, China
| | - Chaofan Li
- School of Medical Information and Engineering, Xuzhou Medical University, Jiangsu, China
| | - Jiguo Liu
- Shandong Madic Technology Co., Ltd., Shandong, China
| | - Kishore Krish
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Xinlei Fu
- Shandong Madic Technology Co., Ltd., Shandong, China
| | - Jie Zhao
- School of Medical Imaging, Xuzhou Medical University, Jiangsu, China
| | - Jyh-Cheng Chen
- School of Medical Imaging, Xuzhou Medical University, Jiangsu, China.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Imaging and Radiological Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| |
Collapse
|
131
|
Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin 2021; 71:333-358. [PMID: 33982817 PMCID: PMC8298088 DOI: 10.3322/caac.21670] [Citation(s) in RCA: 391] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer has myriad effects on metabolism that include both rewiring of intracellular metabolism to enable cancer cells to proliferate inappropriately and adapt to the tumor microenvironment, and changes in normal tissue metabolism. With the recognition that fluorodeoxyglucose-positron emission tomography imaging is an important tool for the management of many cancers, other metabolites in biological samples have been in the spotlight for cancer diagnosis, monitoring, and therapy. Metabolomics is the global analysis of small molecule metabolites that like other -omics technologies can provide critical information about the cancer state that are otherwise not apparent. Here, the authors review how cancer and cancer therapies interact with metabolism at the cellular and systemic levels. An overview of metabolomics is provided with a focus on currently available technologies and how they have been applied in the clinical and translational research setting. The authors also discuss how metabolomics could be further leveraged in the future to improve the management of patients with cancer.
Collapse
Affiliation(s)
- Daniel R. Schmidt
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Rutulkumar Patel
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27708 USA
| | - David G. Kirsch
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27708 USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708 USA
| | - Caroline A. Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Matthew G. Vander Heiden
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jason W. Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708 USA
| |
Collapse
|
132
|
Ghergurovich JM, Lang JD, Levin MK, Briones N, Facista SJ, Mueller C, Cowan AJ, McBride MJ, Rodriguez ESR, Killian A, Dao T, Lamont J, Barron A, Su X, Hendricks WP, Espina V, Von Hoff DD, O’Shaughnessy J, Rabinowitz JD. Local production of lactate, ribose phosphate, and amino acids within human triple-negative breast cancer. MED 2021; 2:736-754. [PMID: 34223403 PMCID: PMC8248508 DOI: 10.1016/j.medj.2021.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Upregulated glucose metabolism is a common feature of tumors. Glucose can be broken down by either glycolysis or the oxidative pentose phosphate pathway (oxPPP). The relative usage within tumors of these catabolic pathways remains unclear. Similarly, the extent to which tumors make biomass precursors from glucose, versus take them up from the circulation, is incompletely defined. METHODS We explore human triple negative breast cancer (TNBC) metabolism by isotope tracing with [1,2-13C]glucose, a tracer that differentiates glycolytic versus oxPPP catabolism and reveals glucose-driven anabolism. Patients enrolled in clinical trial NCT03457779 and received IV infusion of [1,2-13C]glucose during core biopsy of their primary TNBC. Tumor samples were analyzed for metabolite labeling by liquid chromatography-mass spectrometry (LC-MS). Genomic and proteomic analyses were performed and related to observed metabolic fluxes. FINDINGS TNBC ferments glucose to lactate, with glycolysis dominant over the oxPPP. Most ribose phosphate is nevertheless produced by oxPPP. Glucose also feeds amino acid synthesis, including of serine, glycine, aspartate, glutamate, proline and glutamine (but not asparagine). Downstream in glycolysis, tumor pyruvate and lactate labeling exceeds that found in serum, indicating that lactate exchange via monocarboxylic transporters is less prevalent in human TNBC compared with most normal tissues or non-small cell lung cancer. CONCLUSIONS Glucose directly feeds ribose phosphate, amino acid synthesis, lactate, and the TCA cycle locally within human breast tumors.
Collapse
Affiliation(s)
- Jonathan M. Ghergurovich
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jessica D. Lang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Maren K. Levin
- Baylor Scott & White Research Institute, Dallas, TX 75204, USA
| | - Natalia Briones
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Salvatore J. Facista
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Claudius Mueller
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Alexis J. Cowan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Matthew J. McBride
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | - Aaron Killian
- Baylor Scott & White Research Institute, Dallas, TX 75204, USA
| | - Tuoc Dao
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, TX 75246, USA
| | - Jeffrey Lamont
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, TX 75246, USA
| | - Alison Barron
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, TX 75246, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901 USA
| | - William P.D. Hendricks
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Daniel D. Von Hoff
- Molecular Medicine Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Joyce O’Shaughnessy
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, TX 75246, USA
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
133
|
Ahmed N, Muzaffar S, Binns C, Ilyas MW, Usmani S. COVID-19 Vaccination Manifesting as Incidental Lymph Nodal Uptake on 18F-FDG PET/CT. Clin Nucl Med 2021; 46:435-436. [PMID: 33661193 DOI: 10.1097/rlu.0000000000003635] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Benign uptake on 18F-FDG PET can be seen with inflammatory conditions. We report a case of an 86-year-old woman with successfully treated nasal melanoma who underwent routine follow-up 18F-FDG PET, day 6 after the second dose of Pfizer-BioNTech COVID-19 vaccine inoculated in the left deltoid muscle. 18F-FDG PET showed increase tracer uptake in the left deltoid muscle and in 2 normal-sized left subpectoral nodes. These findings were considered secondary to vaccination. With the current drive of global COVID-19 immunization, this case highlights the importance of documenting vaccination history at the time of scanning to avoid false-positive results.
Collapse
Affiliation(s)
| | - Samreen Muzaffar
- From the Cancer Research Group, Hull York Medical School, University of Hull, Hull
| | - Corinne Binns
- Jack Brignall PET/CT Centre, Castle Hill Hospital, Cottingham, United Kingdom
| | | | | |
Collapse
|
134
|
Vali R, Alessio A, Balza R, Borgwardt L, Bar-Sever Z, Czachowski M, Jehanno N, Kurch L, Pandit-Taskar N, Parisi M, Piccardo A, Seghers V, Shulkin BL, Zucchetta P, Lim R. SNMMI Procedure Standard/EANM Practice Guideline on Pediatric 18F-FDG PET/CT for Oncology 1.0. J Nucl Med 2021; 62:99-110. [PMID: 33334912 PMCID: PMC8679588 DOI: 10.2967/jnumed.120.254110] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional nonprofit medical association founded in 1985 to facilitate communication worldwide among individuals pursuing clinical and academic excellence in nuclear medicine. SNMMI and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine. The SNMMI and EANM will periodically put forth new standards/guidelines for nuclear medicine practice to help advance the science of nuclear medicine and improve service to patients. Existing standards/guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each standard/guideline, representing a policy statement by the SNMMI/EANM, has undergone a thorough consensus process, entailing extensive review. The SNMMI and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging requires particular training and skills, as described in each document. These standards/guidelines are educational tools designed to assist practitioners in providing appropriate and effective nuclear medicine care for patients. These guidelines are consensus documents, and are not inflexible rules or requirements of practice. They are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the SNMMI and the EANM cautions against the use of these standards/guidelines in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by medical professionals taking into account the unique circumstances of each case. Thus, there is no implication that action differing from what is laid out in the standards/guidelines, standing alone, is below standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the standards/guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the standards/guidelines. The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible for general guidelines to consistently allow for an accurate diagnosis to be reached or a particular treatment response to be predicted. Therefore, it should be recognized that adherence to these standards/guidelines will not ensure a successful outcome. All that should be expected is that the practitioner follows a reasonable course of action, based on their level of training, the current knowledge, the available resources, and the needs/context of the particular patient being treated. PET and computerized tomography (CT) have been widely used in oncology. 18F-FDG is the most common radiotracer used for PET imaging. The purpose of this document is to provide imaging specialists and clinicians guidelines for recommending, performing, and interpreting 18F-FDG PET/CT in pediatric patients in oncology. There is not a high level of evidence for all recommendations suggested in this paper. These recommendations represent the expert opinions of experienced leaders in this field. Further studies are needed to have evidence-based recommendations for the application of 18F-FDG PET/CT in pediatric oncology. These recommendations should be viewed in the context of good practice of nuclear medicine and are not intended to be a substitute for national and international legal or regulatory provisions.
Collapse
Affiliation(s)
- Reza Vali
- Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Adam Alessio
- Michigan State University, East Lansing, Michigan
| | - Rene Balza
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lise Borgwardt
- Department for Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Zvi Bar-Sever
- Schneider Children's Medical Center, Petach Tikva, Israel
| | | | - Nina Jehanno
- Department of Nuclear Medicine, Institut Curie, Paris, France
| | - Lars Kurch
- University Hospital Leipzig, Department of Nuclear Medicine, Leipzig, Germany
| | | | - Marguerite Parisi
- University of Washington School of Medicine and Seattle Children's Hospital, Seattle, Washington
| | | | - Victor Seghers
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Barry L Shulkin
- St. Jude Children's Research Hospital, Memphis, Tennessee; and
| | | | - Ruth Lim
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
135
|
Hu P, Zhang Y, Yu H, Chen S, Tan H, Qi C, Dong Y, Wang Y, Deng Z, Shi H. Total-body 18F-FDG PET/CT scan in oncology patients: how fast could it be? Eur J Nucl Med Mol Imaging 2021; 48:2384-2394. [PMID: 33866409 DOI: 10.1007/s00259-021-05357-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/04/2021] [Indexed: 02/01/2023]
Abstract
PURPOSE The aim of the study was to determine a faster PET acquisition protocol for a total-body PET/CT scanner by assessing the image quality that is equivalent to a conventional digital PET/CT scanner from both a phantom and a clinical perspective. METHODS A phantom study using a NEMA/IEC NU-2 body phantom was first performed in both a total-body PET/CT (uEXPLORER) and a routine digital PET/CT (uMI 780), with a hot sphere to background activity concentration ratio of 4:1. The contrast recovery coefficient (CRC), background variability (BV), and recovery coefficient (RC: RCmax and RCmean) were assessed in the uEXPLORER with different scanning durations and reconstruction protocols, which were compared to those acquired from the uMI 780 with clinical acquisition settings. The coefficient of variation (COV) of the uMI 780 with clinical settings was calculated and used as a threshold reference to determine the optimized scanning duration and reconstruction protocol for the uEXPLORER. The obtained protocol from the phantom study was subsequently tested and validated in 30 oncology patients. Images acquired from the uMI 780 with 2-3 min per bed position were referred as G780 and served as the reference for comparison. All PET raw data from the uEXPLORER were reconstructed using the data-cutting technique to simulate a 30-s, 45-s, or 60-s acquisition duration, respectively. The iterations were 2 and 3 for the uEXPLORER, referred as G30s_3i, G45s_2i, G45s_3i, G60s_2i, and G60s_3i, respectively. A 5-point Likert scale was used in the qualitative analysis to assess the image quality. The image quality was also evaluated by the liver COV, the lesion target-to-background ratio (TBR), and the lesion signal-to-noise ratio (SNR). RESULTS In the phantom study, CRC, BV, RCmax, and RCmean in the uEXPLORER with different scanning durations and reconstruction iterations were compared with those in the uMI 780 with clinical settings. A minor fluctuation was found among different scanning durations. COV of the uMI 780 with clinical settings was 11.6%, and a protocol with a 30-45-s scanning duration and 2 or 3 iterations for the uEXPLORER was found to provide an equivalent image quality as the uMI 780. An almost perfect agreement was shown with a kappa value of 0.875. The qualitative score of the G30s_3i in the uEXPLORER was inferior to the G780 reference (p = 0.001); however, the scores of other groups in the uEXPLORER with a 45-s and above acquisition time were higher than the G780 in the uMI 780. In quantitative analysis, the delay time between the two scans in the two orders was not significantly different. There was no significant difference of the liver COV between the G780 and G30s_3i (p = 0.162). A total of 33 lesions were analyzed in the clinical patient study. There was no significant difference in lesion TBR between the reference G780 and the G45s_2i obtained from the uEXPLORER (p = 0.072), while the latter showed a higher lesion SNR value compared to that in uMI 780 with clinical settings (p < 0.001). CONCLUSIONS This study showed that a fast PET protocol with a 30-45-s acquisition time in the total-body uEXPLORER PET/CT can provide an equivalent image quality as the conventional digital uMI 780 PET/CT with longer clinical acquisition settings.
Collapse
Affiliation(s)
- Pengcheng Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Yiqiu Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Shuguang Chen
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Chi Qi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Yun Dong
- United Imaging Healthcare Co., Ltd., Shanghai, China
| | - Ying Wang
- United Imaging Healthcare Co., Ltd., Shanghai, China
| | - Zilin Deng
- United Imaging Healthcare Co., Ltd., Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
136
|
Chen D, Fan Q, Xu T, Dong J, Cui J, Wang Z, Wang J, Meng Q, Li S. Design, Synthesis and Binding Affinity Evaluation of Cytochrome P450 1B1 Targeted Chelators. Anticancer Agents Med Chem 2021; 22:261-269. [PMID: 33820523 DOI: 10.2174/1871520621666210405091645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cytochrome P450 1B1 (CYP1B1) is specifically expressed in a variety of tumors which makes it a promise imaging target of tumor. OBJECTIVE We aimed to design and synthesize CYP1B1 targeted chelators for the potential application in positron emission tomography (PET) imaging of tumor. METHODS 1,4,7-triazacyclononane-1,4-diiacetic acid (NODA) was connected to the CYP1B1 selective inhibitor we developed before through polyethylene glycol (PEG) linkers with different lengths. The inhibitory activities of chelators 6a-c against CYP1 family were evaluated by 7-ethoxyresorufin o-deethylation (EROD) assay. The manual docking between the chelators and the CYP1B1 are conducted subsequently. To determine the binding affinities of 6a-c to CYP1B1 in cells, we further performed a competition study at the cell level. RESULTS Among three chelators, 6a with the shortest linker showed the best inhibitory activity against CYP1B1. In the following molecular simulation study, protein-inhibitor complex of 6a showed the nearest F-heme distance which is consistent with the results of enzymatic assay. Finally, the cell based competitive assay proved the binding affinity of 6a-c to CYP1B1 enzyme. CONCLUSION We designed and synthesized a series of chelators which can bind to CYP1B1 enzyme in cancer cells.To our knowledge, this work is the first attempt to construct CYP1B1 targeted chelators for radiolabeling and we hope it will prompt the application of CYP1B1 imaging in tumor detection.
Collapse
Affiliation(s)
- Dongmei Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Qiqi Fan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Ting Xu
- Department of Breast Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 1961 Huashan Road, Shanghai 200030. China
| | - Jinyun Dong
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Jiahua Cui
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Zengtao Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Jie Wang
- Department of Breast Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 1961 Huashan Road, Shanghai 200030. China
| | - Qingqing Meng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Shaoshun Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| |
Collapse
|
137
|
Ding N, Xu S, Zheng S, Ye Q, Xu L, Ling S, Xie S, Chen W, Zhang Z, Xue M, Lin Z, Xu X, Wang L. "Sweet tooth"-oriented SN38 prodrug delivery nanoplatform for targeted gastric cancer therapy. J Mater Chem B 2021; 9:2816-2830. [PMID: 33690741 DOI: 10.1039/d0tb02787a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Most cancer cells employ overexpression of glucose transports (GLUTs) to satisfy glucose demand ("Sweet Tooth") for increased aerobic glycolysis rates. GLUT1, one of the most widely expressed GLUTs in numerous cancers, was identified as a prognosis-related biomarker of gastric cancer via tissue array analysis. Herein, a "Sweet Tooth"-oriented SN38 prodrug delivery nanoplatform (Glu-SNP) was developed for targeted gastric cancer therapy. For this purpose, a SN38-derived prodrug (PLA-SN38) was synthesized by tethering 7-ethyl-10-hydroxycamptothecin (SN38) to biocompatible polylactic acid (PLA) with the appropriate degree of polymerization (n = 44). The PLA-SN38 conjugate was further assembled with glycosylated amphiphilic lipid to obtain glucosamine-decorated nanoparticles (Glu-SNP). Glu-SNP exhibited potent antitumor efficiency both in vitro and in vivo through enhanced cancer cell-specific targeting associated with the overexpression of GLUT1, which provides a promising approach for gastric cancer therapy.
Collapse
Affiliation(s)
- Ning Ding
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310020, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Early Monitoring Response to Therapy in Patients with Brain Lesions Using the Cumulative SUV Histogram. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11072999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gamma Knife treatment is an alternative to traditional brain surgery and whole-brain radiation therapy for treating cancers that are inaccessible via conventional treatments. To assess the effectiveness of Gamma Knife treatments, functional imaging can play a crucial role. The aim of this study is to evaluate new prognostic indices to perform an early assessment of treatment response to therapy using positron emission tomography imaging. The parameters currently used in nuclear medicine assessments can be affected by statistical fluctuation errors and/or cannot provide information on tumor extension and heterogeneity. To overcome these limitations, the Cumulative standardized uptake value (SUV) Histogram (CSH) and Area Under the Curve (AUC) indices were evaluated to obtain additional information on treatment response. For this purpose, the absolute level of [11C]-Methionine (MET) uptake was measured and its heterogeneity distribution within lesions was evaluated by calculating the CSH and AUC indices. CSH and AUC parameters show good agreement with patient outcomes after Gamma Knife treatments. Furthermore, no relevant correlations were found between CSH and AUC indices and those usually used in the nuclear medicine environment. CSH and AUC indices could be a useful tool for assessing patient responses to therapy.
Collapse
|
139
|
Zhao YM, Li YH, Chen T, Zhang WG, Wang LH, Feng J, Li C, Zhang X, Fan W, Hu YY. Image quality and lesion detectability in low-dose pediatric 18F-FDG scans using total-body PET/CT. Eur J Nucl Med Mol Imaging 2021; 48:3378-3385. [PMID: 33738519 DOI: 10.1007/s00259-021-05304-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To investigate the effects of dose reduction on image quality and lesion detectability of oncological 18F-FDG total-body PET/CT in pediatric oncological patients and explore the minimum threshold of administered tracer activity. METHODS A total of 33 pediatric patients (weight 8.5-58.5 kg; age 0.8-17.6 years) underwent total-body PET/CT using uEXPLORER scanner with an 18F-FDG administered dose of 3.7 MBq/kg and an acquisition time of 600 s were retrospectively enrolled. Low-dose images (0.12-1.85 MBq/kg) were simulated by truncating the list-mode PET data to reducing count density. Subjective image quality was rated on a 5-point scale. Semi-quantitative uptake metrics for low-dose images were assessed using region-of-interest (ROI) analysis of healthy liver and suspected lesions and were compared with full-dose images. The micro-lesion detectability was compared among the dose-dependent PET images. RESULTS Our analysis shows that sufficient subjective image quality and lesion conspicuity could be maintained down to 1/30th (0.12 MBq/kg) of the administered dose of 18F-FDG, where good image quality scores were given to 1/2- and 1/10- dose groups. The image noise was significantly more deranged than the overall quality and lesion conspicuity in 1/30- to 1/10-dose groups (all p < 0.05). With reduced doses, quantitative analysis of ROIs showed that SUVmax and SD in the liver increased gradually (p < 0.05), but SUVmax in the lesions and lesion-to-background ratio (LBR) showed no significant deviation down to 1/30-dose. One hundred percent of the 18F-FDG-avid micro-lesions identified in full-dose images were localized down to 1/15-dose images, while 97% of the lesion were localized in 1/30-dose images. CONCLUSION The total-body PET/CT might significantly decrease the administered dose upon maintaining the image quality and diagnostic performance of micro-lesions in pediatric patients. Data suggests that using total-body PET/CT, optimal image quality could be achieved with an administered dose-reduction down to 1/10-dose (0.37 MBq/kg).
Collapse
Affiliation(s)
- Yu-Mo Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
| | - Ying-He Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
| | - Tao Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
| | - Wei-Guang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
| | - Lin-Hao Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
| | - Jiatai Feng
- Central research institute, United Imaging Healthcare, Shanghai, China
| | - Chenwei Li
- Central research institute, United Imaging Healthcare, Shanghai, China
| | - Xu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China. .,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China.
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China. .,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China.
| | - Ying-Ying Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China. .,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
140
|
Li Q, Hou W, Li L, Su M, Ren Y, Wang W, Zou K, Tian R, Sun X. The use of systematic review evidence to support the development of guidelines for positron emission tomography: a cross-sectional survey. Eur Radiol 2021; 31:6992-7002. [PMID: 33683391 DOI: 10.1007/s00330-021-07756-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/06/2021] [Accepted: 02/04/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To examine to what degree guidelines for PET and PET/CT used systematic review evidence. METHODS The latest version of guidelines for PET, PET/CT or PET/MRI published in English in PubMed until December 2019 was analysed in two categories: (1) for indications, if mainly discussing the appropriate use of PET in diverse conditions; (2) for procedures, if providing step-by-step instructions for imaging. We surveyed the general characteristics and the use of systematic review evidence for developing recommendations across all guidelines, and surveyed the citation of evidence for five recommendation topics in guidelines for procedures. RESULTS Forty-seven guidelines, published between 2004 and 2020, were included. Guidelines for indications were developed mainly on systematic reviews (13 of 19, 68.4%). Among those, 12 (63.2%) reported the level of evidence, 4 (21.1%) reported the strength of recommendations, 3 (15.8%) described external review and 7 (36.8%) involved methodologists. Guidelines for procedures were seldom developed on systematic reviews (1 of 27, 3.7%). Among those, 1 (3.7%) reported the level of evidence, 1 (3.7%) reported the strength of recommendations, 3 (11.1%) described external review and 1 (3.7%) involved methodologists. Systematic review evidence was cited by 2 (7.4%) procedure guidelines per recommendation topic in median. CONCLUSION The use of systematic review evidence for developing recommendations among PET or PET/CT guidelines was suboptimal. While our survey is an icebreaking attempt to explore a key element (i.e. use of systematic review evidence) for developing nuclear medicine guidelines, assessments of other domains of guideline quality may help capture the entire picture. KEY POINTS • The use of systematic review evidence for developing recommendations among guidelines for PET or PET/CT was suboptimal. • Only 13 (68.4%) guidelines for indications and 1 (3.7%) guideline for procedures systematically reviewed the literature during guideline development. • For each recommendation topic we examined, only a median of 2 (7.4%) procedure guidelines cited systematic review evidence.
Collapse
Affiliation(s)
- Qianrui Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Chinese Evidence-based Medicine Centre, Cochrane China Centre and MAGIC China Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenxiu Hou
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Li
- Chinese Evidence-based Medicine Centre, Cochrane China Centre and MAGIC China Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Minggang Su
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Ren
- Chinese Evidence-based Medicine Centre, Cochrane China Centre and MAGIC China Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Wang
- Chinese Evidence-based Medicine Centre, Cochrane China Centre and MAGIC China Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kang Zou
- Chinese Evidence-based Medicine Centre, Cochrane China Centre and MAGIC China Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xin Sun
- Chinese Evidence-based Medicine Centre, Cochrane China Centre and MAGIC China Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
141
|
Ottenhof SR, Djajadiningrat RS, Versleijen MWJ, Donswijk ML, van der Noort V, Brouwer OR, Graafland NM, Vegt E, Horenblas S. F-18 Fluorodeoxyglucose Positron Emission Tomography with Computed Tomography Has High Diagnostic Value for Pelvic and Distant Staging in Patients with High-risk Penile Carcinoma. Eur Urol Focus 2021; 8:98-104. [PMID: 33685842 DOI: 10.1016/j.euf.2021.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/25/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND For penile cancer patients with pelvic metastases, multimodal treatment is advised, but pelvic lymph node metastases are often found upon surgical resection only. Early selection for multimodal treatment requires reliable noninvasive staging. OBJECTIVE To evaluate the diagnostic value of 18F-fluorodeoxyglucose positron emission tomography with computed tomography (FDG-PET/CT) for staging pelvic lymph nodes and distant metastases in high-risk penile cancer patients. DESIGN, SETTING, AND PARTICIPANTS FDG-PET/CT scans performed in patients with clinically overt inguinal lymph node metastases and/or high-risk primary tumors (bulky T3 or T4) were retrospectively analyzed. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS All scans were reviewed by two independent nuclear medicine physicians staging the pelvic nodes and distant metastases. FDG-PET/CT findings were compared with histology after node dissection if available, or with positive imaging or follow-up of at least 1 yr. RESULTS AND LIMITATIONS Between 2006 and 2016, 61 patients met the inclusion criteria. For staging of pelvic nodes, sensitivity was 85% (specificity 75%, negative predictive value [NPV] 90%, and positive predictive value [PPV] 65%). For the detection of distant metastases, FDG-PET/CT had a PPV of 93%. Results are limited by the retrospective design and the lack of direct comparison with CT scanning alone. CONCLUSIONS FDG-PET/CT has high sensitivity and a high NPV for staging of pelvic lymph nodes in high-risk penile cancer. It also has a high PPV for the detection of distant metastases, which were found in 23% of patients. Therefore, FDG-PET/CT enables early selection for multimodal treatment of patients with pelvic metastases and may help avoid futile treatment of patients with distant metastases. PATIENT SUMMARY We studied whether positron emission tomography with computed tomography (PET/CT) scans in patients with advanced penile cancer can detect metastases before lymph node surgery is done. PET/CT scans can detect or rule out pelvic lymph node metastases, and can detect distant metastases. This helps in making timely treatment decisions (before surgery).
Collapse
Affiliation(s)
- Sarah R Ottenhof
- Department of Urology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | - Maarten L Donswijk
- Department of Nuclear Medicine, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Oscar R Brouwer
- Department of Urology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Niels M Graafland
- Department of Urology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Erik Vegt
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Simon Horenblas
- Department of Urology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
142
|
Yadav D, Kumar R. Critical Role of 2-[18F]-fluoro-2-deoxy-glucose in Hormonally Active Malignancies. PET Clin 2021; 16:177-189. [PMID: 33648663 DOI: 10.1016/j.cpet.2020.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
2-[18F]-fluoro-2-deoxyglucose (FDG) is the most commonly used radiotracer and provides valuable information about glucose metabolism. With the advent of newer receptor-based tracers in the management of hormonally active malignancies, the focus has been shifted from FDG. These tracers might be more specific than FDG because they target specific hormone receptors. But because FDG is widely available, this review discusses what information still can be harnessed from this workhorse of molecular imaging. The personalized implementation of FDG imaging in undifferentiated malignancies will help in characterization of tumor and may aid in patient management.
Collapse
Affiliation(s)
- Divya Yadav
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Kumar
- Diagnostic Nuclear Medicine Division, Department of Nuclear Medicine, AIIMS, Ansari nagar, New Delhi 110029, India.
| |
Collapse
|
143
|
Stewart NJ, Matsumoto S. Biomedical Applications of the Dynamic Nuclear Polarization and Parahydrogen Induced Polarization Techniques for Hyperpolarized 13C MR Imaging. Magn Reson Med Sci 2021; 20:1-17. [PMID: 31902907 PMCID: PMC7952198 DOI: 10.2463/mrms.rev.2019-0094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
Since the first pioneering report of hyperpolarized [1-13C]pyruvate magnetic resonance imaging (MRI) of the Warburg effect in prostate cancer patients, clinical dissemination of the technique has been rapid; close to 10 sites worldwide now possess a polarizer fit for the clinic, and more than 30 clinical trials, predominantly for oncological applications, are already registered on the US and European clinical trials databases. Hyperpolarized 13C probes to study pathophysiological processes beyond the Warburg effect, including tricarboxylic acid cycle metabolism, intra-cellular pH and cellular necrosis have also been demonstrated in the preclinical arena and are pending clinical translation, and the simultaneous injection of multiple co-polarized agents is opening the door to high-sensitivity, multi-functional molecular MRI with a single dose. Here, we review the biomedical applications to date of the two polarization methods that have been used for in vivo hyperpolarized 13C molecular MRI; namely, dissolution dynamic nuclear polarization and parahydrogen-induced polarization. The basic concept of hyperpolarization and the fundamental theory underpinning these two key 13C hyperpolarization methods, along with recent technological advances that have facilitated biomedical realization, are also covered.
Collapse
Affiliation(s)
- Neil J. Stewart
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
144
|
Hirata K, Tamaki N. Quantitative FDG PET Assessment for Oncology Therapy. Cancers (Basel) 2021; 13:cancers13040869. [PMID: 33669531 PMCID: PMC7922629 DOI: 10.3390/cancers13040869] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary PET enables quantitative assessment of tumour biology in vivo. Accumulation of F-18 fluorodeoxyglucose (FDG) may reflect tumour metabolic activity. Quantitative assessment of FDG uptake can be applied for treatment monitoring. Numerous studies indicated biochemical change assessed by FDG-PET as a more sensitive marker than morphological change. Those with complete metabolic response after therapy may show better prognosis. Assessment of metabolic change may be performed using absolute FDG uptake or metabolic tumour volume. More recently, radiomics approaches have been applied to FDG PET. Texture analysis quantifies intratumoral heterogeneity in a voxel-by-voxel basis. Combined with various machine learning techniques, these new quantitative parameters hold a promise for assessing tissue characterization and predicting treatment effect, and could also be used for future prognosis of various tumours. Abstract Positron emission tomography (PET) has unique characteristics for quantitative assessment of tumour biology in vivo. Accumulation of F-18 fluorodeoxyglucose (FDG) may reflect tumour characteristics based on its metabolic activity. Quantitative assessment of FDG uptake can often be applied for treatment monitoring after chemotherapy or chemoradiotherapy. Numerous studies indicated biochemical change assessed by FDG PET as a more sensitive marker than morphological change estimated by CT or MRI. In addition, those with complete metabolic response after therapy may show better disease-free survival and overall survival than those with other responses. Assessment of metabolic change may be performed using absolute FDG uptake in the tumour (standardized uptake value: SUV). In addition, volumetric parameters such as metabolic tumour volume (MTV) have been introduced for quantitative assessment of FDG uptake in tumour. More recently, radiomics approaches that focus on image-based precision medicine have been applied to FDG PET, as well as other radiological imaging. Among these, texture analysis extracts intratumoral heterogeneity on a voxel-by-voxel basis. Combined with various machine learning techniques, these new quantitative parameters hold a promise for assessing tissue characterization and predicting treatment effect, and could also be used for future prognosis of various tumours, although multicentre clinical trials are needed before application in clinical settings.
Collapse
Affiliation(s)
- Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan;
| | - Nagara Tamaki
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Correspondence:
| |
Collapse
|
145
|
Fujii T, Tokuda S, Nakazawa Y, Kurozumi S, Obayashi S, Yajima R, Shirabe K. Relationship Between FDG Uptake and the Platelet/lymphocyte Ratio in Patients With Breast Invasive Ductal Cancer. In Vivo 2021; 34:1365-1369. [PMID: 32354932 DOI: 10.21873/invivo.11915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND/AIM We investigated the relationship between F18-fluorodeoxyglucose (FDG) uptake and the platelet/lymphocyte ratio (PLR), as both represent inflammation. PATIENTS AND METHODS We retrospectively analyzed the cases of 143 consecutive invasive ductal carcinoma patients who had undergone preoperative FDG-PET and surgery. We divided the patients into groups based on their maximum standardized uptake value (SUVmax) values: low (<2.5) and high (≥2.5) and based on their PLRs: low (<130) and high (≥130). We determined the relationships between the SUVmax or PLR and clinicopathological features. RESULTS Seventy-three patients (51.0%) had a high SUVmax in their primary tumor. There were significant associations between SUVmax and the PLR. A multivariate analysis revealed that high PLR, but not NLR, was independent factor associated with a high SUVmax. Seventy-four patients (51.7%) had a high PLR; The factors significantly associated with high PLR were large tumor size, presence of node metastasis, presence of vascular invasion, high NLR, and high SUVmax. CONCLUSION In breast cancer patients, the PLR is independently associated with the SUVmax, but not with recurrent disease. In breast cancer patients with a high SUVmax and/or PLR, these values may reflect the tumor microenvironment.
Collapse
Affiliation(s)
- Takaaki Fujii
- Division of Breast and Endocrine Surgery, Department of General Surgical Science, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Shoko Tokuda
- Division of Breast and Endocrine Surgery, Department of General Surgical Science, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Yuko Nakazawa
- Division of Breast and Endocrine Surgery, Department of General Surgical Science, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Sasagu Kurozumi
- Division of Breast and Endocrine Surgery, Department of General Surgical Science, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Sayaka Obayashi
- Division of Breast and Endocrine Surgery, Department of General Surgical Science, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Reina Yajima
- Division of Breast and Endocrine Surgery, Department of General Surgical Science, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Ken Shirabe
- Division of Breast and Endocrine Surgery, Department of General Surgical Science, Graduate School of Medicine, Gunma University, Gunma, Japan
| |
Collapse
|
146
|
A PET/CT nomogram incorporating SUVmax and CT radiomics for preoperative nodal staging in non-small cell lung cancer. Eur Radiol 2021; 31:6030-6038. [PMID: 33560457 PMCID: PMC8270849 DOI: 10.1007/s00330-020-07624-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/08/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Objectives To develop and validate a PET/CT nomogram for preoperative estimation of lymph node (LN) staging in patients with non-small cell lung cancer (NSCLC). Methods A total of 263 pathologically confirmed LNs from 124 patients with NCSLC were retrospectively analyzed. Positron-emission tomography/computed tomography (PET/CT) examination was performed before treatment according to the clinical schedule. In the training cohort (N = 185), malignancy-related features, such as SUVmax, short-axis diameter (SAD), and CT radiomics features, were extracted from the regions of LN based on the PET/CT scan. The Minimum-Redundancy Maximum-Relevance (mRMR) algorithm and the Least Absolute Shrinkage and Selection Operator (LASSO) regression model were used for feature selection and radiomics score building. The radiomics score (Rad-Score) and SUVmax were incorporated in a PET/CT nomogram using the multivariable logistic regression analysis. The performance of the proposed model was evaluated with discrimination, calibration, and clinical application in an independent testing cohort (N = 78). Results The radiomics scores consisting of 14 selected features were significantly associated with LN status for both training cohort with AUC of 0.849 (95% confidence interval (CI), 0.796–0.903) and testing cohort with AUC of 0.828 (95% CI, 0.782–0.919). The PET/CT nomogram incorporating radiomics score and SUVmax showed moderate improvement of the efficiency with AUC of 0.881 (95% CI, 0.834–0.928) in the training cohort and AUC of 0.872 (95% CI, 0.797–0.946) in the testing cohort. The decision curve analysis indicated that the PET/CT nomogram was clinically useful. Conclusion The PET/CT nomogram, which incorporates Rad-Score and SUVmax, can improve the diagnostic performance of LN metastasis. Key Points • The PET/CT nomogram (Int-Score) based on lymph node (LN) PET/CT images can reliably predict LN status in NSCLC. • Int-Score is a relatively objective diagnostic method, which can play an auxiliary role in the process of clinicians making treatment decisions. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-020-07624-9.
Collapse
|
147
|
van Sluis J, Yaqub M, Brouwers AH, Dierckx RAJO, Noordzij W, Boellaard R. Use of population input functions for reduced scan duration whole-body Patlak 18F-FDG PET imaging. EJNMMI Phys 2021; 8:11. [PMID: 33547518 PMCID: PMC7865035 DOI: 10.1186/s40658-021-00357-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/22/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract Whole-body Patlak images can be obtained from an acquisition of first 6 min of dynamic imaging over the heart to obtain the arterial input function (IF), followed by multiple whole-body sweeps up to 60 min pi. The use of a population-averaged IF (PIF) could exclude the first dynamic scan and minimize whole-body sweeps to 30–60 min pi. Here, the effects of (incorrect) PIFs on the accuracy of the proposed Patlak method were assessed. In addition, the extent of mitigating these biases through rescaling of the PIF to image-derived IF values at 30–60 min pi was evaluated. Methods Using a representative IF and rate constants from the literature, various tumour time-activity curves (TACs) were simulated. Variations included multiplication of the IF with a positive and negative gradual linear bias over 60 min of 5, 10, 15, 20, and 25% (generating TACs using an IF different from the PIF); use of rate constants (K1, k3, and both K1 and k2) multiplied by 2, 1.5, and 0.75; and addition of noise (μ = 0 and σ = 5, 10 and 15%). Subsequent Patlak analysis using the original IF (representing the PIF) was used to obtain the influx constant (Ki) for the differently simulated TACs. Next, the PIF was scaled towards the (simulated) IF value using the 30–60-min pi time interval, simulating scaling of the PIF to image-derived values. Influence of variabilities in IF and rate constants, and rescaling the PIF on bias in Ki was evaluated. Results Percentage bias in Ki observed using simulated modified IFs varied from − 16 to 16% depending on the simulated amplitude and direction of the IF modifications. Subsequent scaling of the PIF reduced these Ki biases in most cases (287 out of 290) to < 5%. Conclusions Simulations suggest that scaling of a (possibly incorrect) PIF to IF values seen in whole-body dynamic imaging from 30 to 60 min pi can provide accurate Ki estimates. Consequently, dynamic Patlak imaging protocols may be performed for 30–60 min pi making whole-body Patlak imaging clinically feasible.
Collapse
Affiliation(s)
- Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Walter Noordzij
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
148
|
Iqbal Z, Arafa ESA, Kanwal Z, Murtaza G. Smart solution of severe problems: Radiolabeled nanocarriers for cancer imaging and therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
149
|
Sun A, Liu S, Tang X, Pan Q, Zhang Z, Ma H, Nie D, Tang C, Tang G. N-(2-18F-fluoropropionyl)-l-glutamate as a potential oncology tracer for PET imaging of glioma. Appl Radiat Isot 2021; 168:109530. [PMID: 33285464 DOI: 10.1016/j.apradiso.2020.109530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/16/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
|
150
|
Predictive factors for dental inflammation with exacerbation during cancer therapy with FDG-PET/CT imaging. Support Care Cancer 2021; 29:4277-4284. [PMID: 33415364 PMCID: PMC8236470 DOI: 10.1007/s00520-020-05909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/23/2020] [Indexed: 10/27/2022]
Abstract
PURPOSE Oral adverse events, such as dental inflammation with exacerbation, are stressful and lead to poor nutrition in patients undergoing cancer therapy. Thus, the prediction of risk factors for dental inflammation with exacerbation is important before cancer therapy is initiated. We hypothesized that, during cancer therapy (DIECT), fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) imaging could be useful to predict dental inflammation with exacerbation. METHODS We enrolled 124 patients who underwent FDG-PET/CT for diagnostic staging before cancer treatment. We then assessed DIECT outcomes after basic perioperative oral treatment. Moreover, we evaluated clinical parameters, therapeutic strategies, periodontal examination (probing depth (PD) and bleeding on probing (BOP)), dental imaging, and FDG-PET/CT imaging results of patients with and without DIECT. Furthermore, PET/CT images were assessed as per the FDG accumulation of the dental lesion (PAD) grading system. RESULTS Univariate analysis demonstrated significant differences in age, periodontal examination (PD and BOP), and PAD grade between patients with and without DIECT. Furthermore, multivariate logistic regression analysis identified independent predictive factors for a positive periodontal examination (PD) (odds ratio (OR) 5.9, 95% confidence interval (CI) 1.8-19.7; P = 0.004) and PAD grade (OR 11.6, 95% CI 3.2-41.2; P = 0.0002). In patients with cancer, PAD grade using FDG-PET/CT imaging was an independent and informative risk factor for DIECT. CONCLUSION Our results suggested that, for patients with DIECT, periodontal examination and PAD grade were independent predictive factors. Hence, regardless of the presence or absence of any lesion on dental imaging, PAD grade might be an additional tool, in addition to periodontal examination that potentially improves oral care management.
Collapse
|