101
|
Fuhr L, Abreu M, Carbone A, El-Athman R, Bianchi F, Laukkanen MO, Mazzoccoli G, Relógio A. The Interplay between Colon Cancer Cells and Tumour-Associated Stromal Cells Impacts the Biological Clock and Enhances Malignant Phenotypes. Cancers (Basel) 2019; 11:cancers11070988. [PMID: 31311174 PMCID: PMC6678177 DOI: 10.3390/cancers11070988] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 01/20/2023] Open
Abstract
Cancer cells interrelate with the bordering host microenvironment that encompasses the extracellular matrix and a nontumour cellular component comprising fibroblasts and immune-competent cells. The tumour microenvironment modulates cancer onset and progression, but the molecular factors managing this interaction are not fully understood. Malignant transformation of a benign tumour is among the first crucial events in colorectal carcinogenesis. The role of tumour stroma fibroblasts is well-described in cancer, but less well-characterized in benign tumours. In the current work we utilized fibroblasts isolated from tubulovillous adenoma, which has high risk for malignant transformation, to study the interaction between benign tumour stroma and the circadian clock machinery. We explored the role of the biological clock in this interplay taking advantage of an experimental model, represented by the co-culture of colon cancer cells with normal fibroblasts or tumour-associated fibroblasts, isolated from human colorectal tumour specimens. When co-cultured with tumour-associated fibroblasts, colon cancer cells showed alterations in their circadian and metabolic parameters, with decreased apoptosis, increased colon cancer cell viability, and increased resistance to chemotherapeutic agents. In conclusion, the interactions among colon cancer cells and tumour-associated fibroblasts affect the molecular clockwork and seem to aggravate malignant cell phenotypes, suggesting a detrimental effect of this interplay on cancer dynamics.
Collapse
Affiliation(s)
- Luise Fuhr
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Molekulares Krebsforschungszentrum (MKFZ), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Mónica Abreu
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Molekulares Krebsforschungszentrum (MKFZ), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Annalucia Carbone
- Division of Internal Medicine and Chronobiology Unit, Fondazione IRCCS (Istituto di Ricerca a Carattere Clinico e Scientifico) Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy
| | - Rukeia El-Athman
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Fabrizio Bianchi
- Unit of Oncology Biomarkers, Fondazione IRCCS (Istituto di Ricerca a Carattere Clinico e Scientifico) Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy
| | | | - Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, Fondazione IRCCS (Istituto di Ricerca a Carattere Clinico e Scientifico) Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany.
- Molekulares Krebsforschungszentrum (MKFZ), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany.
| |
Collapse
|
102
|
Besedovsky L, Lange T, Haack M. The Sleep-Immune Crosstalk in Health and Disease. Physiol Rev 2019; 99:1325-1380. [PMID: 30920354 PMCID: PMC6689741 DOI: 10.1152/physrev.00010.2018] [Citation(s) in RCA: 781] [Impact Index Per Article: 130.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/08/2023] Open
Abstract
Sleep and immunity are bidirectionally linked. Immune system activation alters sleep, and sleep in turn affects the innate and adaptive arm of our body's defense system. Stimulation of the immune system by microbial challenges triggers an inflammatory response, which, depending on its magnitude and time course, can induce an increase in sleep duration and intensity, but also a disruption of sleep. Enhancement of sleep during an infection is assumed to feedback to the immune system to promote host defense. Indeed, sleep affects various immune parameters, is associated with a reduced infection risk, and can improve infection outcome and vaccination responses. The induction of a hormonal constellation that supports immune functions is one likely mechanism underlying the immune-supporting effects of sleep. In the absence of an infectious challenge, sleep appears to promote inflammatory homeostasis through effects on several inflammatory mediators, such as cytokines. This notion is supported by findings that prolonged sleep deficiency (e.g., short sleep duration, sleep disturbance) can lead to chronic, systemic low-grade inflammation and is associated with various diseases that have an inflammatory component, like diabetes, atherosclerosis, and neurodegeneration. Here, we review available data on this regulatory sleep-immune crosstalk, point out methodological challenges, and suggest questions open for future research.
Collapse
Affiliation(s)
- Luciana Besedovsky
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| | - Tanja Lange
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| | - Monika Haack
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
103
|
Alloy LB, Nusslock R. Future Directions for Understanding Adolescent Bipolar Spectrum Disorders: A Reward Hypersensitivity Perspective. JOURNAL OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY : THE OFFICIAL JOURNAL FOR THE SOCIETY OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY, AMERICAN PSYCHOLOGICAL ASSOCIATION, DIVISION 53 2019; 48:669-683. [PMID: 30908092 PMCID: PMC6588455 DOI: 10.1080/15374416.2019.1567347] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The idea that bipolar spectrum disorders (BSDs) are characterized by enhanced sensitivity to rewarding stimuli is at the core of the reward hypersensitivity model, one of the most prominent and well-supported theories of BSDs. In this article, we present the reward hypersensitivity model of BSDs, review evidence supporting it, discuss its relevance to explaining why BSDs typically begin and consolidate during the period of adolescence, and consider three major unresolved issues for this model that provide important directions for future research. Finally, we present integrations of the reward hypersensitivity model with circadian rhythm and immune system models that should provide greater understanding of the mechanisms involved in BSDs, and then suggest additional directions for future research deriving from these integrated models.
Collapse
Affiliation(s)
| | - Robin Nusslock
- b Department of Psychology , Northwestern University , Evanston
| |
Collapse
|
104
|
Chaves-Filho AJM, Macedo DS, de Lucena DF, Maes M. Shared microglial mechanisms underpinning depression and chronic fatigue syndrome and their comorbidities. Behav Brain Res 2019; 372:111975. [PMID: 31136774 DOI: 10.1016/j.bbr.2019.111975] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/09/2019] [Accepted: 05/23/2019] [Indexed: 12/24/2022]
Abstract
In 2011, it was reviewed that a) there is a strong co-occurrence between major depression and chronic fatigue syndrome (CFS), with fatigue and physio-somatic symptoms being key symptoms of depression, and depressive symptoms appearing during the course of CFS; and b) the comorbidity between both disorders may in part be explained by activated immune-inflammatory pathways, including increased translocation of Gram-negative bacteria and increased levels of pro-inflammatory cytokines, such as interleukin (IL)-1. Nevertheless, the possible involvement of activated microglia in this comorbidity has remained unclear. This paper aims to review microglial disturbances in major depression, CFS and their comorbidity. A comprehensive literature search was conducted using the PubMed / MEDLINE database to identify studies, which are relevant to this current review. Depressed patients present neuroinflammatory alterations, probably related to microglial activation, while animal models show that a microglial response to immune challenges including lipopolysaccharides is accompanied by depressive-like behaviors. Recent evidence from preclinical studies indicates that activated microglia have a key role in the onset of fatigue. In chronic inflammatory conditions, such as infections and senescence, microglia orchestrate an inflammatory microenvironment thereby causing fatigue. In conclusion, based on our review we may posit that shared immune-inflammatory pathways and especially activated microglia underpin comorbid depression and CFS. As such, microglial activation and neuro-inflammation may be promising targets to treat the overlapping manifestations of both depression and CFS.
Collapse
Affiliation(s)
- Adriano José Maia Chaves-Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
| | - Danielle S Macedo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil.
| | - David Freitas de Lucena
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; IMPACT Strategic Research Center, Deakin University, Geelong, Australia.
| |
Collapse
|
105
|
Aging renders desynchronization between clock and immune genes in male Wistar rat kidney: chronobiotic role of curcumin. Biogerontology 2019; 20:515-532. [PMID: 31098769 DOI: 10.1007/s10522-019-09813-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/26/2019] [Indexed: 12/29/2022]
Abstract
Suprachiasmatic nucleus (SCN) contains the central clock that orchestrate circadian rhythms in physiology and behavior in mammals. Tightly interlocked transcriptional and translational feedback loops (TTFLs) comprising of various clock genes such as Clock, Bmal1, Periods, Cryptochromes etc. in the SCN, send the timing signals to peripheral clocks that governs local metabolism with similar TTFLs. Peripheral clocks in kidney regulates several circadian rhythms like blood pressure, immunity etc. However, aging leads to circadian and inflammatory disorders in kidney. Though there are increasing evidences on age associated perturbations, studies elucidating the rhythmic expression of clock and immune genes across aging in kidney are obscure. We therefore studied changes in daily rhythms of clock and immune genes in kidney. In this study we measured mRNA expression of clock genes rBmal1, rPer1, rPer2, rCry1, rCry2, rRev-erbα, rRorα, and inflammatory genes rNfκb1, rTnfα, rIl6, rTlr4 and rTlr9 in 3, 12 and 24 months male Wistar rat kidney using qRT-PCR. From our study, we did not observe significant changes in clock genes expression except rRorα, but immune genes showed significant phase alterations as well as increase in mean 24 h levels. Pearson correlation analysis of data showed desynchronization between immune and clock genes expression. We further studied the effect of administration of curcumin which has anti-aging, anti-inflammatory, anti-oxidant etc. properties, and evaluated its chronobiotic properties. We here report differential effects of curcumin administration on daily rhythms of clock and immune genes expression.
Collapse
|
106
|
Li HX. The role of circadian clock genes in tumors. Onco Targets Ther 2019; 12:3645-3660. [PMID: 31190867 PMCID: PMC6526167 DOI: 10.2147/ott.s203144] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Circadian rhythms are generated via variations in the expression of clock genes that are organized into a complex transcriptional–translational autoregulatory network and regulate the diverse physiological and behavioral activities that are required to adapt to periodic environmental changes. Aberrant clock gene expression is associated with a heightened risk of diseases that affect all aspects of human health, including cancers. Within the past several years, a number of studies have indicated that clock genes contribute to carcinogenesis by altering the expression of clock-controlled and tumor-related genes downstream of many cellular pathways. This review comprehensively summarizes how clock genes affect the development of tumors and their prognosis. In addition, the review provides a full description of the current state of oral cancer research that aims to optimize cancer diagnosis and treatment modalities.
Collapse
Affiliation(s)
- Han-Xue Li
- Department of Preventive Dentistry, Stomatological Hospital of Chongqing Medical University, Chongqing 400015, People's Republic of China
| |
Collapse
|
107
|
Is it Time to Change Radiotherapy: The Dawning of Chronoradiotherapy? Clin Oncol (R Coll Radiol) 2019; 31:326-335. [DOI: 10.1016/j.clon.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 11/23/2022]
|
108
|
Engert LC, Weiler U, Pfaffinger B, Stefanski V, Schmucker SS. Photoperiodic Effects on Diurnal Rhythms in Cell Numbers of Peripheral Leukocytes in Domestic Pigs. Front Immunol 2019; 10:393. [PMID: 30915069 PMCID: PMC6422931 DOI: 10.3389/fimmu.2019.00393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/14/2019] [Indexed: 11/13/2022] Open
Abstract
The photoperiod is known to modulate immune cell number and function and is regarded essential for seasonal disease susceptibility. In addition, diurnal variations in the immune system are regarded important for immune competence. Whereas few studies investigated the influence of season, none investigated the specific effect of the photoperiod on these diurnal immune rhythms until now. Therefore, the present study compared diurnal rhythms in cell numbers of peripheral leukocyte types in domestic pigs held either under long day conditions (LD) or short day conditions (SD). Cosinor analyses of cell numbers of various peripheral leukocyte subtypes investigated over periods of 50 h revealed distinct photoperiodic differences in diurnal immune rhythms. Relative amplitudes of cell numbers of total leukocytes, NK cells, T cells, and monocytes in blood were higher under SD than LD. In addition, cell counts of total leukocytes, NK cells, T cells including various T cell subtypes, and eosinophils peaked earlier relative to the time of lights-on under SD than LD. In contrast, diurnal rhythms of neutrophil counts did not show photoperiodic differences. Mesor values did not differ in any leukocyte type. Generalized linear mixed model analyses revealed associations of leukocyte counts with plasma cortisol concentration and activity behavior in most investigated cell types. Moreover, the present study demonstrated photoperiodic effects on diurnal rhythms in plasma cortisol concentrations and activity behavior, which is in agreement with human and primate studies. The results of the present study imply stronger rhythmicity in leukocyte counts in general under SD. Common intrinsic mechanisms seem to regulate photoperiodic effects on diurnal rhythms in leukocyte counts, except for neutrophils, in domestic pigs. Our results reveal considerable insights into the regulation of immune rhythms in diurnally active species.
Collapse
Affiliation(s)
- Larissa C Engert
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Ulrike Weiler
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Birgit Pfaffinger
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Volker Stefanski
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Sonja S Schmucker
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
109
|
Burish MJ, Chen Z, Yoo SH. Emerging relevance of circadian rhythms in headaches and neuropathic pain. Acta Physiol (Oxf) 2019; 225:e13161. [PMID: 29969187 DOI: 10.1111/apha.13161] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/29/2018] [Indexed: 12/13/2022]
Abstract
Circadian rhythms of physiology are the keys to health and fitness, as dysregulation, by genetic mutations or environmental factors, increases disease risk and aggravates progression. Molecular and physiological studies have shed important light on an intrinsic clock that drives circadian rhythms and serves essential roles in metabolic homoeostasis, organ physiology and brain functions. One exciting new area in circadian research is pain, including headache and neuropathic pain for which new mechanistic insights have recently emerged. For example, cluster headache is an intermittent pain disorder with an exceedingly precise circadian timing, and preliminary evidence is emerging linking several circadian components (eg, Clock and Nr1d1) with the disease. In this review, we first discuss the broad metabolic and physiological relevance of the circadian timing system. We then provide a detailed review of the circadian relevance in pain disease and physiology, including cluster headache, migraine, hypnic headache and neuropathic pain. Finally, we describe potential therapeutic implications, including existing pain medicines and novel clock-modulating compounds. The physiological basis for the circadian rhythms in pain is an exciting new area of research with profound basic and translational impact.
Collapse
Affiliation(s)
- Mark J. Burish
- Department of Neurosurgery; University of Texas Health Science Center at Houston; Houston Texas
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology; University of Texas Health Science Center at Houston; Houston Texas
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology; University of Texas Health Science Center at Houston; Houston Texas
| |
Collapse
|
110
|
Agorastos A, Nicolaides NC, Bozikas VP, Chrousos GP, Pervanidou P. Multilevel Interactions of Stress and Circadian System: Implications for Traumatic Stress. Front Psychiatry 2019; 10:1003. [PMID: 32047446 PMCID: PMC6997541 DOI: 10.3389/fpsyt.2019.01003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
The dramatic fluctuations in energy demands by the rhythmic succession of night and day on our planet has prompted a geophysical evolutionary need for biological temporal organization across phylogeny. The intrinsic circadian timing system (CS) represents a highly conserved and sophisticated internal "clock," adjusted to the 24-h rotation period of the earth, enabling a nyctohemeral coordination of numerous physiologic processes, from gene expression to behavior. The human CS is tightly and bidirectionally interconnected to the stress system (SS). Both systems are fundamental for survival and regulate each other's activity in order to prepare the organism for the anticipated cyclic challenges. Thereby, the understanding of the temporal relationship between stressors and stress responses is critical for the comprehension of the molecular basis of physiology and pathogenesis of disease. A critical loss of the harmonious timed order at different organizational levels may affect the fundamental properties of neuroendocrine, immune, and autonomic systems, leading to a breakdown of biobehavioral adaptative mechanisms with increased stress sensitivity and vulnerability. In this review, following an overview of the functional components of the SS and CS, we present their multilevel interactions and discuss how traumatic stress can alter the interplay between the two systems. Circadian dysregulation after traumatic stress exposure may represent a core feature of trauma-related disorders mediating enduring neurobiological correlates of trauma through maladaptive stress regulation. Understanding the mechanisms susceptible to circadian dysregulation and their role in stress-related disorders could provide new insights into disease mechanisms, advancing psychochronobiological treatment possibilities and preventive strategies in stress-exposed populations.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,VA Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, United States
| | - Nicolas C Nicolaides
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Vasilios P Bozikas
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George P Chrousos
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Panagiota Pervanidou
- Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
111
|
Barrios BE, Maccio-Maretto L, Nazar FN, Correa SG. A selective window after the food-intake period favors tolerance induction in mesenteric lymph nodes. Mucosal Immunol 2019; 12:108-116. [PMID: 30327533 DOI: 10.1038/s41385-018-0095-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/03/2018] [Accepted: 09/16/2018] [Indexed: 02/04/2023]
Abstract
Biological rhythms are periodic oscillations that occur in the physiology of the organism and the cells. The rhythms of the immune system are strictly regulated and the circadian alteration seems to have serious consequences. Even so, it is not clear how the immune cells of the intestinal mucosa synchronize with the external environment. Besides, little is known about the way in which biological rhythms affect the critical functions of intestinal immunity, such as oral tolerance. We studied fluctuations in the relevant parameters of intestinal immunity at four different times throughout the day. By using multivariate statistical tools, we found that these oscillations represent at least three different time frames with different conditions for tolerance induction that are altered in Per2ko mice lacking one of the clock genes. Our results allowed us to characterize a window in the final stage of the dark phase that promotes the induction of specific regulatory populations and favors its location in the lamina propria. We show here that, at the end of the intake, the entry of luminal antigens, soluble factors, and leukocyte populations converge in the mesenteric lymph nodes (MLN) and display the greatest potential of the tolerogenic machinery.
Collapse
Affiliation(s)
- Bibiana E Barrios
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - Lisa Maccio-Maretto
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - F Nicolás Nazar
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC) e Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - Silvia G Correa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina.
| |
Collapse
|
112
|
REV-ERBα integrates colon clock with experimental colitis through regulation of NF-κB/NLRP3 axis. Nat Commun 2018; 9:4246. [PMID: 30315268 PMCID: PMC6185905 DOI: 10.1038/s41467-018-06568-5] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
The roles of Rev-erbα and circadian clock in colonic inflammation remain unclarified. Here we show colon clock genes (including Rev-erbα) are dysregulated in mice with DSS-induced colitis. In turn, disruption of the circadian clock exacerbates experimental colitis. Rev-erbα-deficient mice are more sensitive to DSS-induced colitis, supporting a critical role of Rev-erbα in disease development. Further, Rev-erbα ablation causes activation of Nlrp3 inflammasome in mice. Cell-based experiments reveal Rev-erbα inactivates Nlrp3 inflammasome mainly at the priming stage. Rev-erbα directly represses Nlrp3 transcription through specific binding to the promoter region. Additionally, Rev-erbα represses p65 transcription and indirectly repressed Nlrp3 via the NF-κB pathway. Interestingly, Rev-erbα activation in wild-type mice by SR9009 attenuates DSS-induced colitis, whereas the protective effects are lost in Nlrp3−/− and Rev-erbα−/− mice. Taken together, Rev-erbα regulates experimental colitis through its repressive action on the NF-κB/Nlrp3 axis. Targeting Rev-erbα may represent a promising approach for prevention and management of colitis. REV-ERBα is a nuclear receptor that links the circadian pathways with those of metabolism. Here the authors show REV-ERBα is also involved with linking the circadian system with the inflammatory pathways of an experimental model of colitis through regulation of the NF-κB/NLRP3 axis.
Collapse
|
113
|
Yeung J, Naef F. Rhythms of the Genome: Circadian Dynamics from Chromatin Topology, Tissue-Specific Gene Expression, to Behavior. Trends Genet 2018; 34:915-926. [PMID: 30309754 DOI: 10.1016/j.tig.2018.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 11/18/2022]
Abstract
Circadian rhythms in physiology and behavior evolved to resonate with daily cycles in the external environment. In mammals, organs orchestrate temporal physiology over the 24-h day, which requires extensive gene expression rhythms targeted to the right tissue. Although a core set of gene products oscillates across virtually all cell types, gene expression profiling across tissues over the 24-h day showed that rhythmic gene expression programs are tissue specific. We highlight recent progress in uncovering how the circadian clock interweaves with tissue-specific gene regulatory networks involving functions such as xenobiotic metabolism, glucose homeostasis, and sleep. This progress hinges on not only comprehensive experimental approaches but also computational methods for multivariate analysis of periodic functional genomics data. We emphasize dynamic chromatin interactions as a novel regulatory layer underlying circadian gene transcription, core clock functions, and ultimately behavior. Finally, we discuss perspectives on extending the knowledge of the circadian clock in animals to human chronobiology.
Collapse
Affiliation(s)
- Jake Yeung
- The Institute of Bioengineering (IBI), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Felix Naef
- The Institute of Bioengineering (IBI), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
114
|
Cutolo M. Circadian rhythms and rheumatoid arthritis. Joint Bone Spine 2018; 86:327-333. [PMID: 30227223 DOI: 10.1016/j.jbspin.2018.09.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/03/2018] [Indexed: 12/18/2022]
Abstract
Circadian rhythms (Nobel prize for Medicine 2017) regulate, under action of biological clocks located both at the level of central nervous system and inside peripheral cells, several daily activities, embracing sleep, feeding times, energy metabolism, endocrine and immune functions with related pathological conditions, including rheumatoid arthritis (RA). In RA the circadian rhythms impact on cellular functions, involving night synthesis and release of pro-inflammatory cytokines and chemokines, cell migration to inflamed tissues, phagocytosis, proliferative cell response and all are peaking at late night. In chronic inflammatory conditions such as RA, the amplitude of the circadian rhythm of the anti-inflammatory endogenous cortisol availability is not increased as expected and requested, which indicate a reduced night cortisol secretion under the adrenal chronic stress induced by the disease. Therefore, the prevention/treatment of the immune cell night hyperactivity, with related flare of cytokine synthesis and morning RA clinical symptoms, has been shown more effective when the availability of the exogenous glucocorticoids is obtained in the middle of the night (night release). The impressive positive results observed in RA patients treated with modified-night release prednisone with a low-dose chronotherapy, seem applicable even for other agents such as conventional NSAIDs and DMARDs, including the positive experimental and clinical results obtained by the night time daily administration of methotrexate. Interestingly, a very recent study showed that methotrexate upregulates important cell circadian genes, resulting in induction of apoptosis in synovial fibroblasts. The link between the circadian rhythms of the disease and the chronotherapy of RA is promising.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Research Laboratories and Academic Division of Rheumatology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; Postgraduate School of Rheumatology, University of Genova, 16132 Genova, Italy; Department of Internal Medicine, IRCCS Polyclinic Hospital San Martino, 16132 Genova, Italy.
| |
Collapse
|
115
|
Tognini P, Murakami M, Sassone-Corsi P. Interplay between Microbes and the Circadian Clock. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028365. [PMID: 29038112 DOI: 10.1101/cshperspect.a028365] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Circadian rhythms influence virtually all life forms on our planet, a notion that opens the question on how the circadian cycles of individual organisms may interplay with each other. In mammals, a potentially dangerous environmental stress is represented by encounters with infectious agents. Microbial attack is a major risk for organismal homeostasis and therefore needs to be efficiently counteracted by mechanisms implemented by the host immune system. Accumulating evidence shows that the immune system may anticipate an emerging pathogenic exposure through an enhanced inflammatory state. Notably, the circadian clock orchestrates these anticipatory responses to fluctuating conditions in the external world. In this article, we review the current knowledge about the relationship between the circadian clock and pathogenic infections. We discuss the role of the circadian clock against infection and specific pathogens, the core clock proteins involved in the defense mechanisms, and the specific tissue or cell type in which they function to counteract the infection. Finally, circadian oscillations in the gut microbiome composition and its possible role in protecting against foodborne pathogen colonization are presented.
Collapse
Affiliation(s)
- Paola Tognini
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Biological Chemistry, University of California, Irvine California 92617
| | - Mari Murakami
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Biological Chemistry, University of California, Irvine California 92617
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Biological Chemistry, University of California, Irvine California 92617
| |
Collapse
|
116
|
Emmer KM, Russart KL, Walker WH, Nelson RJ, DeVries AC. Effects of light at night on laboratory animals and research outcomes. Behav Neurosci 2018; 132:302-314. [PMID: 29952608 PMCID: PMC6062441 DOI: 10.1037/bne0000252] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Light has substantial influences on the physiology and behavior of most laboratory animals. As such, lighting conditions within animal rooms are potentially significant and often underappreciated variables within experiments. Disruption of the light/dark cycle, primarily by exposing animals to light at night (LAN), disturbs biological rhythms and has widespread physiological consequences because of mechanisms such as melatonin suppression, sympathetic stimulation, and altered circadian clock gene expression. Thus, attention to the lighting environment of laboratory animals and maintaining consistency of a light/dark cycle is imperative for study reproducibility. Light intensity, as well as wavelength, photoperiod, and timing, are all important variables. Although modern rodent facilities are designed to facilitate appropriate light cycling, there are simple ways to modify rooms to prevent extraneous light exposure during the dark period. Attention to lighting conditions of laboratory animals by both researchers and research care staff ensures best practices for maintaining animal welfare, as well as reproducibility of research results. (PsycINFO Database Record
Collapse
Affiliation(s)
- Kathryn M. Emmer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, 43210 USA
- Department of Veterinary Preventative Medicine, The Ohio State University, Columbus, Ohio, 43210 USA
| | - Kathryn L.G. Russart
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, 43210 USA
| | - William H. Walker
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, 43210 USA
| | - Randy J. Nelson
- Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, West Virginia, 26505 USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, 26505 USA
| | - A. Courtney DeVries
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, 26505 USA
- Department of Medicine, West Virginia University, Morgantown, West Virginia, 26505 USA
| |
Collapse
|
117
|
Gordon CJ, Comas M, Postnova S, Miller CB, Roy D, J. Bartlett D, R. Grunstein R. The effect of consecutive transmeridian flights on alertness, sleep–wake cycles and sleepiness: A case study. Chronobiol Int 2018; 35:1471-1480. [DOI: 10.1080/07420528.2018.1493597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Christopher J. Gordon
- Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Maria Comas
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
- Central Clinical School, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Svetlana Postnova
- School of Physics, Faculty of Science, University of Sydney, Sydney, NSW, Australia
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, Australia
| | - Christopher B. Miller
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Dibyendu Roy
- School of Physics, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Delwyn J. Bartlett
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
- Central Clinical School, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Ronald R. Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
- Central Clinical School, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
118
|
Christ P, Sowa AS, Froy O, Lorentz A. The Circadian Clock Drives Mast Cell Functions in Allergic Reactions. Front Immunol 2018; 9:1526. [PMID: 30034393 PMCID: PMC6043637 DOI: 10.3389/fimmu.2018.01526] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
Allergic diseases are known to vary in the severity of their symptoms throughout the day/night cycle. This rhythmicity is also observed in mast cell function and responsiveness. Mast cells are key effector cells of allergic reactions and release cytokines, chemokines, and important inflammatory mediators such as histamine, which have been shown to display diurnal variation. Recent research clarified that mast cells are controlled by their internal clock-which is regulated by a specific set of clock genes-as well as external factors such as light sensed by the suprachiasmatic nuclei, hormonal status, or diet. Here, we give an overview of the connections between circadian clock, mast cells, and allergic disease. Further work aimed at studying the role of chronotherapy/chronomedicine should take into account this rhythmic nature of not only mast cells but also the immune responses generated by mast cell signaling.
Collapse
Affiliation(s)
- Pia Christ
- Institute for Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Anna Sergeevna Sowa
- Institute for Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Oren Froy
- Food Science and Nutrition, the Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, The Hebrew University, Rehovot, Israel
| | - Axel Lorentz
- Institute for Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
119
|
Circadian Rhythm and Alzheimer's Disease. Med Sci (Basel) 2018; 6:medsci6030052. [PMID: 29933646 PMCID: PMC6164904 DOI: 10.3390/medsci6030052] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder with a growing epidemiological importance characterized by significant disease burden. Sleep-related pathological symptomatology often accompanies AD. The etiology and pathogenesis of disrupted circadian rhythm and AD share common factors, which also opens the perspective of viewing them as a mutually dependent process. This article focuses on the bi-directional relationship between these processes, discussing the pathophysiological links and clinical aspects. Common mechanisms linking both processes include neuroinflammation, neurodegeneration, and circadian rhythm desynchronization. Timely recognition of sleep-specific symptoms as components of AD could lead to an earlier and correct diagnosis with an opportunity of offering treatments at an earlier stage. Likewise, proper sleep hygiene and related treatments ought to be one of the priorities in the management of the patient population affected by AD. This narrative review brings a comprehensive approach to clearly demonstrate the underlying complexities linking AD and circadian rhythm disruption. Most clinical data are based on interventions including melatonin, but larger-scale research is still scarce. Following a pathophysiological reasoning backed by evidence gained from AD models, novel anti-inflammatory treatments and those targeting metabolic alterations in AD might prove useful for normalizing a disrupted circadian rhythm. By restoring it, benefits would be conferred for immunological, metabolic, and behavioral function in an affected individual. On the other hand, a balanced circadian rhythm should provide greater resilience to AD pathogenesis.
Collapse
|
120
|
Cooper JM, Halter KA, Prosser RA. Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiol Sleep Circadian Rhythms 2018; 5:15-36. [PMID: 31236509 PMCID: PMC6584685 DOI: 10.1016/j.nbscr.2018.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/06/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023] Open
Abstract
The mammalian circadian and sleep-wake systems are closely aligned through their coordinated regulation of daily activity patterns. Although they differ in their anatomical organization and physiological processes, they utilize overlapping regulatory mechanisms that include an assortment of proteins and molecules interacting within the extracellular space. These extracellular factors include proteases that interact with soluble proteins, membrane-attached receptors and the extracellular matrix; and cell adhesion molecules that can form complex scaffolds connecting adjacent neurons, astrocytes and their respective intracellular cytoskeletal elements. Astrocytes also participate in the dynamic regulation of both systems through modulating neuronal appositions, the extracellular space and/or through release of gliotransmitters that can further contribute to the extracellular signaling processes. Together, these extracellular elements create a system that integrates rapid neurotransmitter signaling across longer time scales and thereby adjust neuronal signaling to reflect the daily fluctuations fundamental to both systems. Here we review what is known about these extracellular processes, focusing specifically on areas of overlap between the two systems. We also highlight questions that still need to be addressed. Although we know many of the extracellular players, far more research is needed to understand the mechanisms through which they modulate the circadian and sleep-wake systems.
Collapse
Key Words
- ADAM, A disintegrin and metalloproteinase
- AMPAR, AMPA receptor
- Astrocytes
- BDNF, brain-derived neurotrophic factor
- BMAL1, Brain and muscle Arnt-like-1 protein
- Bmal1, Brain and muscle Arnt-like-1 gene
- CAM, cell adhesion molecules
- CRY, cryptochrome protein
- Cell adhesion molecules
- Circadian rhythms
- Cry, cryptochrome gene
- DD, dark-dark
- ECM, extracellular matrix
- ECS, extracellular space
- EEG, electroencephalogram
- Endo N, endoneuraminidase N
- Extracellular proteases
- GFAP, glial fibrillary acidic protein
- IL, interleukin
- Ig, immunoglobulin
- LC, locus coeruleus
- LD, light-dark
- LH, lateral hypothalamus
- LRP-1, low density lipoprotein receptor-related protein 1
- LTP, long-term potentiation
- MMP, matrix metalloproteinases
- NCAM, neural cell adhesion molecule protein
- NMDAR, NMDA receptor
- NO, nitric oxide
- NST, nucleus of the solitary tract
- Ncam, neural cell adhesion molecule gene
- Nrl, neuroligin gene
- Nrx, neurexin gene
- P2, purine type 2 receptor
- PAI-1, plasminogen activator inhibitor-1
- PER, period protein
- PPT, peduculopontine tegmental nucleus
- PSA, polysialic acid
- Per, period gene
- REMS, rapid eye movement sleep
- RSD, REM sleep disruption
- SCN, suprachiasmatic nucleus
- SWS, slow wave sleep
- Sleep-wake system
- Suprachiasmatic nucleus
- TNF, tumor necrosis factor
- TTFL, transcriptional-translational negative feedback loop
- VIP, vasoactive intestinal polypeptide
- VLPO, ventrolateral preoptic
- VP, vasopressin
- VTA, ventral tegmental area
- dNlg4, drosophila neuroligin-4 gene
- nNOS, neuronal nitric oxide synthase gene
- nNOS, neuronal nitric oxide synthase protein
- tPA, tissue-type plasminogen activator
- uPA, urokinase-type plasminogen activator
- uPAR, uPA receptor
Collapse
|
121
|
Ren DL, Zhang JL, Yang LQ, Wang XB, Wang ZY, Huang DF, Tian C, Hu B. Circadian genes period1b and period2 differentially regulate inflammatory responses in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2018; 77:139-146. [PMID: 29605504 DOI: 10.1016/j.fsi.2018.03.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The circadian clock has been shown to regulate various immune processes in different animals. Our previous report demonstrated that the innate immune responses in zebrafish show significant rhythmicity that could be regulated by melatonin. Here, we used diurnal zebrafish to determine the role of circadian genes in the inflammatory responses. Our results indicate that circadian genes exhibit rhythmic oscillations in zebrafish leukocytes, and mutations of the clock genes period1b (per1b) and period2 (per2) considerably affect these oscillations. Using a wounded zebrafish inflammation model, we found that under constant dark conditions (DD), the expression of pro-inflammatory cytokines is significantly downregulated in per1b gene mutant zebrafish and significantly upregulated in the per2 gene mutant zebrafish. Furthermore, using real-time imaging technology, we found that the per1b gene markedly disturbs the rhythmic recruitment of neutrophils toward the injury, whereas the per2 gene does not show a significant effect. Taken together, our results reveal differential functions of the circadian genes per1b and per2 in the inflammatory responses, serving as evidence that circadian rhythms play a vital role in immune processes.
Collapse
Affiliation(s)
- Da-Long Ren
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China.
| | - Jun-Long Zhang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Lei-Qing Yang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Xiao-Bo Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Zong-Yi Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Deng-Feng Huang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Chen Tian
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Bing Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China.
| |
Collapse
|
122
|
De Somma E, Jain RW, Poon KW, Tresidder KA, Segal JP, Ghasemlou N. Chronobiological regulation of psychosocial and physiological outcomes in multiple sclerosis. Neurosci Biobehav Rev 2018; 88:73-83. [DOI: 10.1016/j.neubiorev.2018.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/10/2018] [Accepted: 03/10/2018] [Indexed: 12/18/2022]
|
123
|
Sundar IK, Sellix MT, Rahman I. Redox regulation of circadian molecular clock in chronic airway diseases. Free Radic Biol Med 2018; 119:121-128. [PMID: 29097215 PMCID: PMC5910271 DOI: 10.1016/j.freeradbiomed.2017.10.383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/12/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
At the cellular level, circadian timing is maintained by the molecular clock, a family of interacting clock gene transcription factors, nuclear receptors and kinases called clock genes. Daily rhythms in pulmonary function are dictated by the circadian timing system, including rhythmic susceptibility to the harmful effects of airborne pollutants, exacerbations in patients with chronic airway disease and the immune-inflammatory response to infection. Further, evidence strongly suggests that the circadian molecular clock has a robust reciprocal interaction with redox signaling and plays a considerable role in the response to oxidative/carbonyl stress. Disruption of the circadian timing system, particularly in airway cells, impairs pulmonary rhythms and lung function, enhances oxidative stress due to airway inhaled pollutants like cigarette smoke and airborne particulate matter and leads to enhanced inflammosenescence, inflammasome activation, DNA damage and fibrosis. Herein, we briefly review recent evidence supporting the role of the lung molecular clock and redox signaling in regulating inflammation, oxidative stress, and DNA damage responses in lung diseases and their exacerbations. We further describe the potential for clock genes as novel biomarkers and therapeutic targets for the treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
124
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches. Int J Mol Sci 2018; 19:ijms19041212. [PMID: 29659554 PMCID: PMC5979570 DOI: 10.3390/ijms19041212] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022] Open
Abstract
Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4+ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4+ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4+ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions.
Collapse
Affiliation(s)
- Alexandre Vallée
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, 92150 Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France.
| | - Rémy Guillevin
- Data Analysis and Computations Through Imaging Modeling-Mathématiques (DACTIM), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348 (Laboratoire de Mathématiques et Application), University of Poitiers, Centre Hospitalier Universitaire (CHU) de Poitiers, 86000 Poitiers, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France.
- LMA (Laboratoire de Mathématiques et Applications), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, Université de Poitiers, 86000 Poitiers, France.
| |
Collapse
|
125
|
The putative role of oxidative stress and inflammation in the pathophysiology of sleep dysfunction across neuropsychiatric disorders: Focus on chronic fatigue syndrome, bipolar disorder and multiple sclerosis. Sleep Med Rev 2018; 41:255-265. [PMID: 29759891 DOI: 10.1016/j.smrv.2018.03.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/20/2018] [Accepted: 03/27/2018] [Indexed: 12/29/2022]
Abstract
Sleep and circadian abnormalities are prevalent and burdensome manifestations of diverse neuro-immune diseases, and may aggravate the course of several neuropsychiatric disorders. The underlying pathophysiology of sleep abnormalities across neuropsychiatric disorders remains unclear, and may involve the inter-play of several clinical variables and mechanistic pathways. In this review, we propose a heuristic framework in which reciprocal interactions of immune, oxidative and nitrosative stress, and mitochondrial pathways may drive sleep abnormalities across potentially neuroprogressive disorders. Specifically, it is proposed that systemic inflammation may activate microglial cells and astrocytes in brain regions involved in sleep and circadian regulation. Activated glial cells may secrete pro-inflammatory cytokines (for example, interleukin-1 beta and tumour necrosis factor alpha), nitric oxide and gliotransmitters, which may influence the expression of key circadian regulators (e.g., the Circadian Locomotor Output Cycles Kaput (CLOCK) gene). Furthermore, sleep disruption may further aggravate oxidative and nitrosative, peripheral immune activation, and (neuro) inflammation across these disorders in a vicious pathophysiological loop. This review will focus on chronic fatigue syndrome, bipolar disorder, and multiple sclerosis as exemplars of neuro-immune disorders. We conclude that novel therapeutic targets exploring immune and oxidative & nitrosative pathways (p.e. melatonin and molecular hydrogen) hold promise in alleviating sleep and circadian dysfunction in these disorders.
Collapse
|
126
|
Mazzoccoli G, De Cosmo S, Mazza T. The Biological Clock: A Pivotal Hub in Non-alcoholic Fatty Liver Disease Pathogenesis. Front Physiol 2018; 9:193. [PMID: 29662454 PMCID: PMC5890189 DOI: 10.3389/fphys.2018.00193] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/23/2018] [Indexed: 12/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequent hepatic pathology in the Western world and may evolve into steatohepatitis (NASH), increasing the risk of cirrhosis, portal hypertension and hepatocellular carcinoma. NAFLD derives from the accumulation of hepatic fat due to discrepant free fatty acid metabolism. Other factors contributing to this are deranged nutrients and bile acids fluxes as well as alterations in nuclear receptors, hormones, and intermediary metabolites, which impact on signaling pathways involved in metabolism and inflammation. Autophagy and host gut-microbiota interplay are also relevant to NAFLD pathogenesis. Notably, liver metabolic pathways and bile acid synthesis as well as autophagic and immune/inflammatory processes all show circadian patterns driven by the biological clock. Gut microbiota impacts on the biological clock, at the same time as the appropriate timing of metabolic fluxes, hormone secretion, bile acid turnover, autophagy and inflammation with behavioural cycles of fasting/feeding and sleeping/waking is required to circumvent hepatosteatosis, indicating significant interactions of the gut and circadian processes in NAFLD pathophysiology. Several time-related factors and processes interplay in NAFLD development, with the biological clock proposed to act as a network level hub. Deranged physiological rhythms (chronodisruption) may also play a role in liver steatosis pathogenesis. The current article reviews how the circadian clock circuitry intimately interacts with several mechanisms involved in the onset of hepatosteatosis and its progression to NASH, thereby contributing to the global NAFLD epidemic.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Salvatore De Cosmo
- Division of Internal Medicine and Chronobiology Unit, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| |
Collapse
|
127
|
Circadian Regulation of Hippocampal-Dependent Memory: Circuits, Synapses, and Molecular Mechanisms. Neural Plast 2018; 2018:7292540. [PMID: 29593785 PMCID: PMC5822921 DOI: 10.1155/2018/7292540] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
Circadian modulation of learning and memory efficiency is an evolutionarily conserved phenomenon, occurring in organisms ranging from invertebrates to higher mammalian species, including humans. While the suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master mammalian pacemaker, recent evidence suggests that forebrain regions, including the hippocampus, exhibit oscillatory capacity. This finding, as well as work on the cellular signaling events that underlie learning and memory, has opened promising new avenues of investigation into the precise cellular, molecular, and circuit-based mechanisms by which clock timing impacts plasticity and cognition. In this review, we examine the complex molecular relationship between clock timing and memory, with a focus on hippocampal-dependent tasks. We evaluate how the dysregulation of circadian timing, both at the level of the SCN and at the level of ancillary forebrain clocks, affects learning and memory. Further, we discuss experimentally validated intracellular signaling pathways (e.g., ERK/MAPK and GSK3β) and potential cellular signaling mechanisms by which the clock affects learning and memory formation. Finally, we examine how long-term potentiation (LTP), a synaptic process critical to the establishment of several forms of memory, is regulated by clock-gated processes.
Collapse
|
128
|
Engert LC, Weiler U, Pfaffinger B, Stefanski V, Schmucker SS. Diurnal rhythms in peripheral blood immune cell numbers of domestic pigs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:11-20. [PMID: 29017838 DOI: 10.1016/j.dci.2017.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/05/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Diurnal rhythms within the immune system are considered important for immune competence. Until now, they were mostly studied in humans and rodents. However, as the domestic pig is regarded as suitable animal model and due to its importance in agriculture, this study aimed to characterize diurnal rhythmicity in porcine circulating leukocyte numbers. Eighteen pigs were studied over periods of up to 50 h. Cosinor analyses revealed diurnal rhythms in cell numbers of most investigated immune cell populations in blood. Whereas T cell, dendritic cell, and eosinophil counts peaked during nighttime, NK cell and neutrophil counts peaked during daytime. Relative amplitudes of cell numbers in blood differed in T helper cell subtypes with distinctive differentiation states. Mixed model analyses revealed that plasma cortisol concentration was negatively associated with cell numbers of most leukocyte types, except for NK cells and neutrophils. The observed rhythms mainly resemble those found in humans and rodents.
Collapse
Affiliation(s)
- Larissa C Engert
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Ulrike Weiler
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Birgit Pfaffinger
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Volker Stefanski
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Sonja S Schmucker
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany.
| |
Collapse
|
129
|
Mazzoccoli G, Colangelo T, Panza A, Rubino R, Tiberio C, Palumbo O, Carella M, Trombetta D, Gentile A, Tavano F, Valvano MR, Storlazzi CT, Macchia G, De Cata A, Bisceglia G, Capocefalo D, Colantuoni V, Sabatino L, Piepoli A, Mazza T. Analysis of clock gene-miRNA correlation networks reveals candidate drivers in colorectal cancer. Oncotarget 2018; 7:45444-45461. [PMID: 27323779 PMCID: PMC5216733 DOI: 10.18632/oncotarget.9989] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/29/2016] [Indexed: 12/20/2022] Open
Abstract
Altered functioning of the biological clock is involved in cancer onset and progression. MicroRNAs (miRNAs) interact with the clock genes modulating the function of genetically encoded molecular clockworks. Collaborative interactions may take place within the coding-noncoding RNA regulatory networks. We aimed to evaluate the cross-talk among miRNAs and clock genes in colorectal cancer (CRC). We performed an integrative analysis of miRNA-miRNA and miRNA-mRNA interactions on high-throughput molecular profiling of matched human CRC tissue and non-tumor mucosa, pinpointing core clock genes and their targeting miRNAs. Data obtained in silico were validated in CRC patients and human colon cancer cell lines. In silico we found severe alterations of clock gene–related coding-noncoding RNA regulatory networks in tumor tissues, which were later corroborated by the analysis of human CRC specimens and experiments performed in vitro. In conclusion, specific miRNAs target and regulate the transcription/translation of clock genes and clock gene-related miRNA-miRNA as well as mRNA-miRNA interactions are altered in colorectal cancer. Exploration of the interplay between specific miRNAs and genes, which are critically involved in the functioning of the biological clock, provides a better understanding of the importance of the miRNA-clock genes axis and its derangement in colorectal cancer.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Tommaso Colangelo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Anna Panza
- Division of Gastroenterology and Research Laboratory, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Rosa Rubino
- Division of Internal Medicine and Chronobiology Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Cristiana Tiberio
- Division of Internal Medicine and Chronobiology Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Orazio Palumbo
- Medical Genetics Service, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Massimo Carella
- Medical Genetics Service, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Domenico Trombetta
- Oncology-Research Laboratory, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Annamaria Gentile
- Division of Gastroenterology and Research Laboratory, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Maria Rosa Valvano
- Division of Gastroenterology and Research Laboratory, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | | | - Gemma Macchia
- Department of Biology, University of Bari, Bari, Italy
| | - Angelo De Cata
- Division of Internal Medicine and Chronobiology Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Giovanni Bisceglia
- Department of Surgical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Daniele Capocefalo
- Bioinformatics Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Vittorio Colantuoni
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Ada Piepoli
- Division of Epidemiology and Health Statistics, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| |
Collapse
|
130
|
Paganelli R, Petrarca C, Di Gioacchino M. Biological clocks: their relevance to immune-allergic diseases. Clin Mol Allergy 2018; 16:1. [PMID: 29344005 PMCID: PMC5763605 DOI: 10.1186/s12948-018-0080-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/02/2018] [Indexed: 01/24/2023] Open
Abstract
The 2017 Nobel Prize for Physiology or Medicine, awarded for the discoveries made in the past 15 years on the genetic and molecular mechanisms regulating many physiological functions, has renewed the attention to the importance of circadian rhythms. These originate from a central pacemaker in the suprachiasmatic nucleus in the brain, photoentrained via direct connection with melanopsin containing, intrinsically light-sensitive retinal ganglion cells, and it projects to periphery, thus creating an inner circadian rhythm. This regulates several activities, including sleep, feeding times, energy metabolism, endocrine and immune functions. Disturbances of these rhythms, mainly of wake/sleep, hormonal secretion and feeding, cause decrease in quality of life, as well as being involved in development of obesity, metabolic syndrome and neuropsychiatric disorders. Most immunological functions, from leukocyte numbers, activity and cytokine secretion undergo circadian variations, which might affect susceptibility to infections. The intensity of symptoms and disease severity show a 24 h pattern in many immunological and allergic diseases, including rheumatoid arthritis, bronchial asthma, atopic eczema and chronic urticaria. This is accompanied by altered sleep duration and quality, a major determinant of quality of life. Shift work and travel through time zones as well as artificial light pose new health threats by disrupting the circadian rhythms. Finally, the field of chronopharmacology uses these concepts for delivering drugs in synchrony with biological rhythms.
Collapse
Affiliation(s)
- Roberto Paganelli
- 1Dipartimento di Medicina e Scienze dell'invecchiamento, Università "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 5, 66013 Chieti, Italy.,Ce.S.I.-Me.T., Chieti, Italy
| | - Claudia Petrarca
- 1Dipartimento di Medicina e Scienze dell'invecchiamento, Università "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 5, 66013 Chieti, Italy.,Ce.S.I.-Me.T., Chieti, Italy
| | - Mario Di Gioacchino
- 1Dipartimento di Medicina e Scienze dell'invecchiamento, Università "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 5, 66013 Chieti, Italy.,Ce.S.I.-Me.T., Chieti, Italy
| |
Collapse
|
131
|
Cissé YM, Borniger JC, Lemanski E, Walker WH, Nelson RJ. Time-Restricted Feeding Alters the Innate Immune Response to Bacterial Endotoxin. THE JOURNAL OF IMMUNOLOGY 2017; 200:681-687. [PMID: 29203514 DOI: 10.4049/jimmunol.1701136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/30/2017] [Indexed: 12/27/2022]
Abstract
An important entraining signal for the endogenous circadian clock, independent of light, is food intake. The circadian and immune systems are linked; forced desynchrony of the circadian clock via nighttime light exposure or genetic ablation of core clock components impairs immune function. The timing of food intake affects various aspects of the circadian clock, but its effects on immune function are unknown. We tested the hypothesis that temporal desynchrony of food intake alters innate immune responses. Adult male Swiss Webster mice were provided with food during the night, the day, or ad libitum for 4 wk, followed by administration of LPS prior to the onset of either the active phase (zeitgeber time [ZT]12: Experiment 1) or the inactive phase (ZT0: Experiment 2). Three hours after LPS administration, blood was collected, and serum was tested for bacteria-killing capacity against Escherichia coli, as a functional assay of immune function. Additionally, cytokine expression was examined in the serum (protein), spleen, and hypothalamus (mRNA). Day-fed mice suppressed bacteria-killing capacity and serum cytokine responses to LPS during the active phase (ZT12). Night-fed mice increased bactericidal capacity, as well as serum and hypothalamic mRNA responses of certain proinflammatory cytokines during the active phase. Only day-fed mice enhanced serum cytokine responses when LPS challenge occurred during the inactive phase (ZT0); this did not result in enhanced bactericidal capacity. These data suggest that mistimed feeding has functional relevance for immune function and provide further evidence for the integration of the circadian, metabolic, and immune systems.
Collapse
Affiliation(s)
- Yasmine M Cissé
- Neuroscience Research Institute, Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210; and Behavioral Neuroendocrinology Group, The Ohio State University, Columbus, OH 43210
| | - Jeremy C Borniger
- Neuroscience Research Institute, Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210; and Behavioral Neuroendocrinology Group, The Ohio State University, Columbus, OH 43210
| | - Elise Lemanski
- Neuroscience Research Institute, Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210; and Behavioral Neuroendocrinology Group, The Ohio State University, Columbus, OH 43210
| | - William H Walker
- Neuroscience Research Institute, Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210; and Behavioral Neuroendocrinology Group, The Ohio State University, Columbus, OH 43210
| | - Randy J Nelson
- Neuroscience Research Institute, Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210; and Behavioral Neuroendocrinology Group, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
132
|
The physiological constellation of deprivation: Immunological strategies and health outcomes. Behav Brain Sci 2017; 40:e327. [DOI: 10.1017/s0140525x17000978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPhysiology and behavior are best thought of as two aspects of the same biological process, shaped simultaneously by natural selection. Like behavioral strategies, ecological conditions may affect physiological strategies, leading to changes in immunity and hormonal regulation. These alternate strategies help explain the health correlations of deprivation and provide additional pathways for feedback from early-life experiences.
Collapse
|
133
|
Polidarová L, Houdek P, Sumová A. Chronic disruptions of circadian sleep regulation induce specific proinflammatory responses in the rat colon. Chronobiol Int 2017; 34:1273-1287. [DOI: 10.1080/07420528.2017.1361436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Lenka Polidarová
- Department of Neurohumoral Regulations, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Houdek
- Department of Neurohumoral Regulations, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Sumová
- Department of Neurohumoral Regulations, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
134
|
Comas M, Gordon CJ, Oliver BG, Stow NW, King G, Sharma P, Ammit AJ, Grunstein RR, Phillips CL. A circadian based inflammatory response – implications for respiratory disease and treatment. SLEEP SCIENCE AND PRACTICE 2017. [DOI: 10.1186/s41606-017-0019-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
135
|
Adam EK, Quinn ME, Tavernier R, McQuillan MT, Dahlke KA, Gilbert KE. Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology 2017; 83:25-41. [PMID: 28578301 PMCID: PMC5568897 DOI: 10.1016/j.psyneuen.2017.05.018] [Citation(s) in RCA: 579] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 01/20/2023]
Abstract
Changes in levels of the stress-sensitive hormone cortisol from morning to evening are referred to as diurnal cortisol slopes. Flatter diurnal cortisol slopes have been proposed as a mediator between chronic psychosocial stress and poor mental and physical health outcomes in past theory and research. Surprisingly, neither a systematic nor a meta-analytic review of associations between diurnal cortisol slopes and health has been conducted to date, despite extensive literature on the topic. The current systematic review and meta-analysis examined associations between diurnal cortisol slopes and physical and mental health outcomes. Analyses were based on 179 associations from 80 studies for the time period up to January 31, 2015. Results indicated a significant association between flatter diurnal cortisol slopes and poorer health across all studies (average effect size, r=0.147). Further, flatter diurnal cortisol slopes were associated with poorer health in 10 out of 12 subtypes of emotional and physical health outcomes examined. Among these subtypes, the effect size was largest for immune/inflammation outcomes (r=0.288). Potential moderators of the associations between diurnal cortisol slopes and health outcomes were examined, including type of slope measure and study quality indices. The possible roles of flatter slopes as either a marker or a mechanism for disease etiology are discussed. We argue that flatter diurnal cortisol slopes may both reflect and contribute to stress-related dysregulation of central and peripheral circadian mechanisms, with corresponding downstream effects on multiple aspects of biology, behavior, and health.
Collapse
Affiliation(s)
- Emma K. Adam
- School of Education and Social Policy and Institute for Policy Research, Northwestern University, 2120 Campus Drive, Evanston, IL, 60208, USA,Corresponding author: , 847-467-2010
| | - Meghan E. Quinn
- Department of Psychology, Northwestern University, 2029 Sheridan Rd., Evanston, IL 60208, USA and Department of Psychiatry, University of Illinois at Chicago, 912 S. Wood St., Chicago, IL, 60612, USA
| | - Royette Tavernier
- Department of Psychology, Wesleyan University, 207 High Street, Middletown, CT, 06459, USA.
| | - Mollie T. McQuillan
- School of Education and Social Policy and Institute for Policy Research, Northwestern University, 2120 Campus Drive, Evanston, IL, 60208, USA
| | - Katie A. Dahlke
- American Institutes for Research, 1120 E. Diehl Road, Suite 200, Naperville, IL, USA, 60563
| | - Kirsten E. Gilbert
- Department of Psychiatry, Washington University School of Medicine, 4444 Forest Park Parkway, Suite 2100, St. Louis, MO, USA
| |
Collapse
|
136
|
Abstract
PURPOSE OF REVIEW Cancer anorexia is a negative prognostic factor and is broadly defined as the loss of the interest in food. However, multiple clinical domains contribute to the phenotype of cancer anorexia. The characterization of the clinical and molecular pathophysiology of cancer anorexia may enhance the efficacy of preventive and therapeutic strategies. RECENT FINDINGS Clinical trials showed that cancer anorexia should be considered as an umbrella encompassing different signs and symptoms contributing to appetite disruption in cancer patients. Loss of appetite, early satiety, changes in taste and smell are determinants of cancer anorexia, whose presence should be assessed in cancer patients. Interestingly, neuronal correlates of cancer anorexia-related symptoms have been revealed by brain imaging techniques. SUMMARY The pathophysiology of cancer anorexia is complex and involves different domains influencing eating behavior. Limiting the assessment of cancer anorexia to questions investigating changes in appetite may impede correct identification of the targets to address.
Collapse
Affiliation(s)
- Alessandro Laviano
- aDepartment of Clinical Medicine bDepartment of Clinical and Molecular Medicine, Sapienza University, Rome, Italy cCancer Metabolism Research Group, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
137
|
Circadian clock-dependent increase in salivary IgA secretion modulated by sympathetic receptor activation in mice. Sci Rep 2017; 7:8802. [PMID: 28821839 PMCID: PMC5562870 DOI: 10.1038/s41598-017-09438-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/27/2017] [Indexed: 01/23/2023] Open
Abstract
The salivary gland is rhythmically controlled by sympathetic nerve activation from the suprachiasmatic nucleus (SCN), which functions as the main oscillator of circadian rhythms. In humans, salivary IgA concentrations reflect circadian rhythmicity, which peak during sleep. However, the mechanisms controlling this rhythmicity are not well understood. Therefore, we examined whether the timing of parasympathetic (pilocarpine) or sympathetic (norepinephrine; NE) activation affects IgA secretion in the saliva. The concentrations of saliva IgA modulated by pilocarpine activation or by a combination of pilocarpine and NE activation were the highest in the middle of the light period, independent of saliva flow rate. The circadian rhythm of IgA secretion was weakened by an SCN lesion and Clock gene mutation, suggesting the importance of the SCN and Clock gene on this rhythm. Adrenoceptor antagonists blocked both NE- and pilocarpine-induced basal secretion of IgA. Dimeric IgA binds to the polymeric immunoglobulin receptor (pIgR) on the basolateral surface of epithelial cells and forms the IgA-pIgR complex. The circadian rhythm of Pigr abundance peaked during the light period, suggesting pIgR expression upon rhythmic secretion of IgA. We speculate that activation of sympathetic nerves during sleep may protect from bacterial access to the epithelial surface through enhanced secretion of IgA.
Collapse
|
138
|
Zeiler FA, Thelin EP, Czosnyka M, Hutchinson PJ, Menon DK, Helmy A. Cerebrospinal Fluid and Microdialysis Cytokines in Aneurysmal Subarachnoid Hemorrhage: A Scoping Systematic Review. Front Neurol 2017; 8:379. [PMID: 28848487 PMCID: PMC5550693 DOI: 10.3389/fneur.2017.00379] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/18/2017] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To perform two scoping systematic reviews of the literature on cytokine measurement in cerebral microdialysis (CMD) and cerebrospinal fluid (CSF) in aneurysmal subarachnoid hemorrhage (SAH) patients, aiming to summarize the evidence relating cytokine levels to pathophysiology, disease progression, and outcome. METHODS Two separate systematic reviews were conducted: one for CMD cytokines and the second for CSF cytokines. DATA SOURCES Articles from MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library (inception to October 2016), reference lists of relevant articles, and gray literature were searched. STUDY SELECTION Two reviewers independently identified all manuscripts utilizing predefined inclusion/exclusion criteria. A two-tier filter of references was conducted. DATA EXTRACTION Patient demographic and study data were extracted to tables. RESULTS There were 9 studies identified describing the analysis of cytokines via CMD in 246 aneurysmal SAH patients. Similarly, 20 studies were identified describing the analysis of CSF cytokines in 630 patients. The two scoping systematic reviews demonstrated the following: (1) limited literature available on CMD cytokine measurement in aneurysmal SAH with some preliminary data supporting feasibility of measurement and potential association between interleukin (IL)-6 and patient outcome. (2) Various CSF measured cytokines may be associated with patient outcome at 3-6 months, including IL-1ra, IL-6, IL-8, and tumor necrosis factor-alpha. (3) There is a small literature body supporting an association between acute/subacute CSF transforming growth factor levels and the development of chronic hydrocephalus at 2-3 months. CONCLUSION The evaluation of CMD and CSF cytokines is an emerging area of the literature in aneurysmal SAH. Further large prospective multicenter studies on cytokines in CMD and CSF need to be conducted.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Rady Faculty of Health Sciences, Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
- Clinician Investigator Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Anesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Peter J. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David K. Menon
- Department of Anesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
139
|
Zubidat AE, Haim A. Artificial light-at-night - a novel lifestyle risk factor for metabolic disorder and cancer morbidity. J Basic Clin Physiol Pharmacol 2017; 28:295-313. [PMID: 28682785 DOI: 10.1515/jbcpp-2016-0116] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
Both obesity and breast cancer are already recognized worldwide as the most common syndromes in our modern society. Currently, there is accumulating evidence from epidemiological and experimental studies suggesting that these syndromes are closely associated with circadian disruption. It has been suggested that melatonin (MLT) and the circadian clock genes both play an important role in the development of these syndromes. However, we still poorly understand the molecular mechanism underlying the association between circadian disruption and the modern health syndromes. One promising candidate is epigenetic modifications of various genes, including clock genes, circadian-related genes, oncogenes, and metabolic genes. DNA methylation is the most prominent epigenetic signaling tool for gene expression regulation induced by environmental exposures, such as artificial light-at-night (ALAN). In this review, we first provide an overview on the molecular feedback loops that generate the circadian regulation and how circadian disruption by ALAN can impose adverse impacts on public health, particularly metabolic disorders and breast cancer development. We then focus on the relation between ALAN-induced circadian disruption and both global DNA methylation and specific loci methylation in relation to obesity and breast cancer morbidities. DNA hypo-methylation and DNA hyper-methylation, are suggested as the most studied epigenetic tools for the activation and silencing of genes that regulate metabolic and monostatic responses. Finally, we discuss the potential clinical and therapeutic roles of MLT suppression and DNA methylation patterns as novel biomarkers for the early detection of metabolic disorders and breast cancer development.
Collapse
|
140
|
Kim WH, Jung DY, Lee JY, Chang SM, Jeon HJ, Lee JY, Cho SJ, Lee DW, Bae JN, Hong JP, Cho MJ, Hahm BJ. Lifetime prevalence of psychiatric morbidities, suicidality, and quality of life in a community population with the bimodal chronotype: A nationwide epidemiologic study. Chronobiol Int 2017; 34:732-739. [DOI: 10.1080/07420528.2017.1316733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Won-Hyoung Kim
- Inha University Hospital, Department of Psychiatry, Incheon, Republic of Korea
| | - Doo-young Jung
- Department of Human Factors Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Joo-Young Lee
- Department of Health Management, Armed Forces Medical Command, Seongnam, Korea
| | - Sung-Man Chang
- Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hong-Jin Jeon
- Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jun-Young Lee
- Seoul Metropolitan Boramae Medical Center, Department of Psychiatry, Seoul, Republic of Korea
| | - Seong-Jin Cho
- Gachon Medical School, Department of Psychiatry, Incheon, Republic of Korea
| | - Dong-Woo Lee
- Inje University College of Medicine, Department of Psychiatry, Seoul, Republic of Korea
| | - Jae-Nam Bae
- Inha University Hospital, Department of Psychiatry, Incheon, Republic of Korea
| | - Jin Pyo Hong
- Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Maeng-Je Cho
- Department of Psychiatry and Behavioral Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Bong-Jin Hahm
- Department of Psychiatry and Behavioral Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
141
|
Abstract
The molecular clockwork drives rhythmic oscillations of signaling pathways managing intermediate metabolism; the circadian timing system synchronizes behavioral cycles and anabolic/catabolic processes with environmental cues, mainly represented by light/darkness alternation. Metabolic pathways, bile acid synthesis, and autophagic and immune/inflammatory processes are driven by the biological clock. Proper timing of hormone secretion, metabolism, bile acid turnover, autophagy, and inflammation with behavioral cycles is necessary to avoid dysmetabolism. Disruption of the biological clock and mistiming of body rhythmicity with respect to environmental cues provoke loss of internal synchronization and metabolic derangements, causing liver steatosis, obesity, metabolic syndrome, and diabetes mellitus.
Collapse
Affiliation(s)
- Roberto Tarquini
- Department of Clinical and Experimental Medicine, School of Medicine, University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy; Inter-institutional Department for Continuity of Care of Empoli, School of Medicine, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Gianluigi Mazzoccoli
- Chronobiology Unit, Division of Internal Medicine, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", Cappuccini Avenue, San Giovanni Rotondo, Foggia 71013, Italy.
| |
Collapse
|
142
|
Man GCW, Zhang T, Chen X, Wang J, Wu F, Liu Y, Wang CC, Cheong Y, Li TC. The regulations and role of circadian clock and melatonin in uterine receptivity and pregnancy-An immunological perspective. Am J Reprod Immunol 2017; 78. [DOI: 10.1111/aji.12715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Gene Chi Wai Man
- Department of Orthopaedics and Traumatology; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
- Department of Obstetrics and Gynaecology; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
| | - Tao Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation; Fertility Center; Shenzhen Zhongshan Urology Hospital; Shenzhen China
| | - Xiaoyan Chen
- Department of Obstetrics and Gynaecology; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
| | - Jianzhang Wang
- Department of Obstetrics and Gynaecology; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
| | - Fangrong Wu
- Department of Obstetrics and Gynaecology; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
| | - Yingyu Liu
- Department of Obstetrics and Gynaecology; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
- Li Ka Shing Institute of Health Sciences; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
- School of Biomedical Sciences; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
| | - Ying Cheong
- Human Development and Health; Princess Anne Hospital; University of Southampton Faculty of Medicine; Southampton UK
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology; Faculty of Medicine; The Prince of Wales Hospital; The Chinese University of Hong Kong; Shatin Hong Kong SAR
| |
Collapse
|
143
|
Hou W, Jiang Z, Ying J, Ding L, Li X, Qi F, Yang S, Cheng S, Wang Y, Liu Y, Xiao J, Guo H, Li Z, Wang Z. Clock gene affect the noncanonical NF-κB pathway via circadian variation of Otud7b. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1323422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wang Hou
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhou Jiang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Junjie Ying
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Lu Ding
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Xiaoxue Li
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Fang Qi
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Shuhong Yang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Shuting Cheng
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Yuhui Wang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Yanyou Liu
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Jing Xiao
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Huiling Guo
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhilin Li
- Sichuan Cancer Hospital, Chengdu, P.R. China
| | - Zhengrong Wang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
144
|
Meltzer E, Sguigna PV, Subei A, Beh S, Kildebeck E, Conger D, Conger A, Lucero M, Frohman BS, Frohman AN, Saidha S, Galetta S, Calabresi PA, Rennaker R, Frohman TC, Kardon RH, Balcer LJ, Frohman EM. Retinal Architecture and Melanopsin-Mediated Pupillary Response Characteristics: A Putative Pathophysiologic Signature for the Retino-Hypothalamic Tract in Multiple Sclerosis. JAMA Neurol 2017; 74:574-582. [PMID: 28135360 PMCID: PMC5822208 DOI: 10.1001/jamaneurol.2016.5131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/21/2016] [Indexed: 12/19/2022]
Abstract
Importance A neurophysiologic signature of the melanopsin-mediated persistent constriction phase of the pupillary light reflex may represent a surrogate biomarker for the integrity of the retinohypothalamic tract, with potential utility for investigating alterations in homeostatic mechanisms associated with brain disorders and implications for identifying new treatments. Objective To characterize abnormalities of retinal architecture in patients with multiple sclerosis (MS) and corresponding alterations in the melanopsin-mediated sustained pupillary constriction response. Design, Setting, and Participants The case-control study was an experimental assessment of various stimulus-induced pupillary response characteristics and was conducted at a university clinical center for MS from September 6, 2012, to February 2015. Twenty-four patients with MS (48 eyes) and 15 individuals serving as controls (30 eyes) participated. The melanopsin-mediated, sustained pupillary constriction phase response following cessation of a blue light stimulus was compared with the photoreceptor-mediated pupillary constriction phase response following cessation of a red light stimulus. Optical coherence tomography was used to characterize the association between pupillary response characteristics and alterations in retinal architecture, specifically, the thickness of the retinal ganglion cell layer and inner plexiform layer (GCL + IPL). Main Outcomes and Measures Association of pupillary response characteristics with alterations in retinal architecture. Results Of 24 patients with MS included in the analysis, 17 were women (71%); mean (SD) age was 47 (11) years. Compared with eyes from individuals with MS who had normal optical coherence tomography-derived measures of retinal GCL + IPL thickness, eyes of patients who had GCL + IPL thickness reductions to less than the first percentile exhibited a correspondingly significant attenuation of the melanopsin-mediated sustained pupillary response (mean [SD] pupillary diameter ratios at a point in time, 0.18 [0.1] vs 0.33 [0.09]; P < .001, generalized estimating equation models accounting for age and within-patient intereye correlations). Conclusions and Relevance In this case-control study, attenuation of the melanopsin-mediated sustained pupillary constriction response was significantly associated with thinning of the GCL + IPL sector of the retina in the eyes of patients with MS, particularly those with a history of acute optic neuritis. Melanopsin-containing ganglion cells in the retina represent, at least in part, the composition of the retinohypothalamic tract. As such, our findings may signify the ability to elucidate a putative surrogate neurophysiologic signature that correlates with a constellation of homeostatic mechanisms in both health and illness.
Collapse
Affiliation(s)
- Ethan Meltzer
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas
| | - Peter V. Sguigna
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas
| | - Adnan Subei
- Department of Neurology, Michigan State University, East Lansing
| | - Shin Beh
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas
| | - Eric Kildebeck
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas
- Center for Engineering Innovation, University of Texas at Dallas
| | - Darrel Conger
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas
| | - Amy Conger
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas
| | - Marlen Lucero
- Student, Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas
| | - Benjamin S. Frohman
- Student, Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas
| | - Ashley N. Frohman
- Student, Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas
| | - Shiv Saidha
- Department of Neurology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Steven Galetta
- Department of Neurology, Population Health, New York University School of Medicine, New York
| | | | | | - Teresa C. Frohman
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas
| | - Randy H. Kardon
- Department of Ophthalmology, University of Iowa, Iowa City
- Iowa City Veterans Affairs Center for Prevention and Treatment of Visual Loss, Iowa City
| | - Laura J. Balcer
- Department of Neurology, Population Health, New York University School of Medicine, New York
- Department of Ophthalmology, New York University School of Medicine, New York
| | - Elliot M. Frohman
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas
- Department of Bioengineering, University of Texas at Dallas
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas
| |
Collapse
|
145
|
Bae SA, Androulakis IP. The Synergistic Role of Light-Feeding Phase Relations on Entraining Robust Circadian Rhythms in the Periphery. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017702393. [PMID: 28469414 PMCID: PMC5404903 DOI: 10.1177/1177625017702393] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/02/2017] [Indexed: 01/05/2023]
Abstract
The feeding and fasting cycles are strong behavioral signals that entrain biological rhythms of the periphery. The feeding rhythms synchronize the activities of the metabolic organs, such as liver, synergistically with the light/dark cycle primarily entraining the suprachiasmatic nucleus. The likely phase misalignment between the feeding rhythms and the light/dark cycles appears to induce circadian disruptions leading to multiple physiological abnormalities motivating the need to investigate the mechanisms behind joint light-feeding circadian entrainment of peripheral tissues. To address this question, we propose a semimechanistic mathematical model describing the circadian dynamics of peripheral clock genes in human hepatocyte under the control of metabolic and light rhythmic signals. The model takes the synergistically acting light/dark cycles and feeding rhythms as inputs and incorporates the activity of sirtuin 1, a cellular energy sensor and a metabolic enzyme activated by nicotinamide adenine dinucleotide. The clock gene dynamics was simulated under various light-feeding phase relations and intensities, to explore the feeding entrainment mechanism as well as the convolution of light and feeding signals in the periphery. Our model predicts that the peripheral clock genes in hepatocyte can be completely entrained to the feeding rhythms, independent of the light/dark cycle. Furthermore, it predicts that light-feeding phase relationship is a critical factor in robust circadian oscillations.
Collapse
Affiliation(s)
- Seul-A Bae
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
146
|
Cissé YM, Russart KLG, Nelson RJ. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity. Sci Rep 2017; 7:45497. [PMID: 28361901 PMCID: PMC5374442 DOI: 10.1038/srep45497] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/28/2017] [Indexed: 11/09/2022] Open
Abstract
Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues.
Collapse
Affiliation(s)
- Yasmine M Cissé
- Department of Neuroscience, Neuroscience Research Institute, Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kathryn L G Russart
- Department of Neuroscience, Neuroscience Research Institute, Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Randy J Nelson
- Department of Neuroscience, Neuroscience Research Institute, Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
147
|
Vinod C, Jagota A. Daily Socs1 rhythms alter with aging differentially in peripheral clocks in male Wistar rats: therapeutic effects of melatonin. Biogerontology 2017; 18:333-345. [DOI: 10.1007/s10522-017-9687-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/22/2017] [Indexed: 12/12/2022]
|
148
|
Kiehn JT, Tsang AH, Heyde I, Leinweber B, Kolbe I, Leliavski A, Oster H. Circadian Rhythms in Adipose Tissue Physiology. Compr Physiol 2017; 7:383-427. [PMID: 28333377 DOI: 10.1002/cphy.c160017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins. Tissue-specific clock-controlled transcriptional programs translate time-of-day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383-427, 2017.
Collapse
Affiliation(s)
- Jana-Thabea Kiehn
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Anthony H Tsang
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isabel Heyde
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Brinja Leinweber
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isa Kolbe
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Alexei Leliavski
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
149
|
Kiessling S, Beaulieu-Laroche L, Blum ID, Landgraf D, Welsh DK, Storch KF, Labrecque N, Cermakian N. Enhancing circadian clock function in cancer cells inhibits tumor growth. BMC Biol 2017; 15:13. [PMID: 28196531 PMCID: PMC5310078 DOI: 10.1186/s12915-017-0349-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/13/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Circadian clocks control cell cycle factors, and circadian disruption promotes cancer. To address whether enhancing circadian rhythmicity in tumor cells affects cell cycle progression and reduces proliferation, we compared growth and cell cycle events of B16 melanoma cells and tumors with either a functional or dysfunctional clock. RESULTS We found that clock genes were suppressed in B16 cells and tumors, but treatments inducing circadian rhythmicity, such as dexamethasone, forskolin and heat shock, triggered rhythmic clock and cell cycle gene expression, which resulted in fewer cells in S phase and more in G1 phase. Accordingly, B16 proliferation in vitro and tumor growth in vivo was slowed down. Similar effects were observed in human colon carcinoma HCT-116 cells. Notably, the effects of dexamethasone were not due to an increase in apoptosis nor to an enhancement of immune cell recruitment to the tumor. Knocking down the essential clock gene Bmal1 in B16 tumors prevented the effects of dexamethasone on tumor growth and cell cycle events. CONCLUSIONS Here we demonstrated that the effects of dexamethasone on cell cycle and tumor growth are mediated by the tumor-intrinsic circadian clock. Thus, our work reveals that enhancing circadian clock function might represent a novel strategy to control cancer progression.
Collapse
Affiliation(s)
- Silke Kiessling
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
- Present address: ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
| | | | - Ian D Blum
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
| | - Dominic Landgraf
- Center for Circadian Biology and Department of Psychiatry, University of California, San Diego, CA, 92037, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA
| | - David K Welsh
- Center for Circadian Biology and Department of Psychiatry, University of California, San Diego, CA, 92037, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Kai-Florian Storch
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada
- Department of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada.
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada.
| |
Collapse
|
150
|
De Pablo-Fernández E, Breen DP, Bouloux PM, Barker RA, Foltynie T, Warner TT. Neuroendocrine abnormalities in Parkinson's disease. J Neurol Neurosurg Psychiatry 2017; 88:176-185. [PMID: 27799297 DOI: 10.1136/jnnp-2016-314601] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022]
Abstract
Neuroendocrine abnormalities are common in Parkinson's disease (PD) and include disruption of melatonin secretion, disturbances of glucose, insulin resistance and bone metabolism, and body weight changes. They have been associated with multiple non-motor symptoms in PD and have important clinical consequences, including therapeutics. Some of the underlying mechanisms have been implicated in the pathogenesis of PD and represent promising targets for the development of disease biomarkers and neuroprotective therapies. In this systems-based review, we describe clinically relevant neuroendocrine abnormalities in Parkinson's disease to highlight their role in overall phenotype. We discuss pathophysiological mechanisms, clinical implications, and pharmacological and non-pharmacological interventions based on the current evidence. We also review recent advances in the field, focusing on the potential targets for development of neuroprotective drugs in Parkinson's disease and suggest future areas for research.
Collapse
Affiliation(s)
- Eduardo De Pablo-Fernández
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, London, UK
| | - David P Breen
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Pierre M Bouloux
- Centre for Neuroendocrinology, Royal Free Campus, UCL Institute of Neurology, London, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, London, UK
| | - Thomas T Warner
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, London, UK
| |
Collapse
|