101
|
Irfan M, Delgado RZR, Frias-Lopez J. The Oral Microbiome and Cancer. Front Immunol 2020; 11:591088. [PMID: 33193429 PMCID: PMC7645040 DOI: 10.3389/fimmu.2020.591088] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
There is mounting evidence that members of the human microbiome are highly associated with a wide variety of cancer types. Among oral cancers, oral squamous cell carcinoma (OSCC) is the most prevalent and most commonly studied, and it is the most common malignancy of the head and neck worldwide. However, there is a void regarding the role that the oral microbiome may play in OSCC. Previous studies have not consistently found a characteristic oral microbiome composition associated with OSCC. Although a direct causality has not been proven, individual members of the oral microbiome are capable of promoting various tumorigenic functions related to cancer development. Two prominent oral pathogens, Porphyromonas gingivalis, and Fusobacterium nucleatum can promote tumor progression in mice. P. gingivalis infection has been associated with oro-digestive cancer, increased oral cancer invasion, and proliferation of oral cancer stem cells. The microbiome can influence the evolution of the disease by directly interacting with the human body and significantly altering the response and toxicity to various forms of cancer therapy. Recent studies have shown an association of certain phylogenetic groups with the immunotherapy treatment outcomes of certain tumors. On the other side of the coin, recently it has been a resurgence in interest on the potential use of bacteria to cure cancer. These kinds of treatments were used in the late nineteenth and early twentieth centuries as the first line of defense against cancer in some hospitals but later displaced by other types of treatments such as radiotherapy. Currently, organisms such as Salmonella typhimurium and Clostridium spp. have been used for targeted strategies as potential vectors to treat cancer. In this review, we briefly summarize our current knowledge of the role of the oral microbiome, focusing on its bacterial fraction, in cancer in general and in OSCC more precisely, and a brief description of the potential use of bacteria to target tumors.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | | | - Jorge Frias-Lopez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
102
|
Guo X, Yuan J, Song X, Wang X, Sun Q, Tian J, Li X, Ding M, Liu Y. Bacteria metabolites from Peganum harmala L. polysaccharides inhibits polyQ aggregation through proteasome-mediated protein degradation in C. elegans. Int J Biol Macromol 2020; 161:681-691. [PMID: 32544588 DOI: 10.1016/j.ijbiomac.2020.06.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/30/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is a relentlessly progressive neurodegenerative disease featured by the over-expanded polyglutamine (polyQ)-induced protein aggregation. Using Caenorhabditis elegans (C. elegans) as a model system, we show that water soluble polysaccharide extracted from the herb Peganum harmala L. (PS1) not only reduces polyQ aggregation but also alleviates the associated neurotoxicity. Genetic and pharmacologic analysis suggested that PS1 treatment acts though proteasome-mediated protein degradation pathway to inhibit polyQ aggregation. Notably, the efficacy of PS1 is aroused specifically by co-incubation with live Escherichia coli OP50, which is the sole food source for worms. Further UPLC-Q-TOF/MS analysis determined the bioactivity of polyQ inhibition, which is composed of several oligosaccharides, including stachyoses, verbascoses, trisaccharides and tetrasaccharides composed of galacturonic acids. Together, our study revealed a potential drug target for further HD treatment and pinpointed the possibility that the secreted metabolites produced from bacteria treated with various compounds may provide direct beneficial effect to human bodies.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiang Yuan
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xingzhuo Song
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xirui Wang
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qianqian Sun
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jingyun Tian
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xia Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yonggang Liu
- Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
103
|
The Macrophages-Microbiota Interplay in Colorectal Cancer (CRC)-Related Inflammation: Prognostic and Therapeutic Significance. Int J Mol Sci 2020; 21:ijms21186866. [PMID: 32962159 PMCID: PMC7558485 DOI: 10.3390/ijms21186866] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are the main population of myeloid cells infiltrating solid tumors and the pivotal orchestrators of cancer-promoting inflammation. However, due to their exceptional plasticity, macrophages can be also key effector cells and powerful activators of adaptive anti-tumor immunity. This functional heterogeneity is emerging in human tumors, colorectal cancer (CRC) in particular, where the dynamic co-existence of different macrophage subtypes influences tumor development, outcome, and response to therapies. Intestinal macrophages are in close interaction with enteric microbiota, which contributes to carcinogenesis and affects treatment outcomes. This interplay may be particularly relevant in CRC, one of the most prevalent and lethal cancer types in the world. Therefore, both macrophages and intestinal microbiota are considered promising prognostic indicators and valuable targets for new therapeutic approaches. Here, we discuss the current understanding of the molecular circuits underlying the interplay between macrophages and microbiota in CRC development, progression, and response to both conventional therapies and immunotherapies.
Collapse
|
104
|
Miller PL, Carson TL. Mechanisms and microbial influences on CTLA-4 and PD-1-based immunotherapy in the treatment of cancer: a narrative review. Gut Pathog 2020; 12:43. [PMID: 32944086 PMCID: PMC7488430 DOI: 10.1186/s13099-020-00381-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023] Open
Abstract
Background The relationship between gastrointestinal (GI) bacteria and the response to anti-CTLA-4 and anti-PD-1 immunotherapy in the treatment of cancer can potentially be enhanced to allow patients to maximally respond to these treatments. Insight into the complex interaction between gut microbiota and the human adaptive immune system will help guide future immunotherapeutic cancer treatments to allow a more robust clinical response and fewer adverse effects in patients requiring these drugs. This review highlights these interactions as well as the potential for the creation of “oncomicrobiotics” that would selectively tailor one’s GI bacteria to maximally respond to anti-CTLA-4 and anti-PD-1 treatments will fewer adverse effects. Main body CTLA-4 is an antigen on the surface of T cells which, upon stimulation, leads to inhibition of activated T cells to terminate the immune response. However, many types of tumor cells can upregulate CTLA-4 in the tumor microenvironment, allowing these cells to evade targeting and destruction by the body’s immune system by prematurely inhibiting T cells. Increased representation of Bacteroides fragilis, Burkholderia cepacia and the Faecalibacterium genus in the GI tract of patients receiving CTLA-4-based immunotherapy led to a stronger therapeutic effect while minimizing adverse side effects such as colitis. In addition, by introducing bacteria involved in vitamin B and polyamine transport to the GI tracts of patients treated with anti-CTLA-4 drugs led to increased resistance to colitis while maintaining therapeutic efficacy. PD-1 is another molecule upregulated in many tumor microenvironments which acts in a similar manner to CTLA-4 to tone down the anti-neoplastic actions of T cells. Antibodies to PD-1 have shown promise to help allow the body’s natural immune response to appropriately target and destroy tumor cells. The presence of Bifidobacterium breve and longum, Akkermansia muciniphila and Faecalibacterium prausnitzii in the GI tracts of cancer patients has the potential to create a more robust immune response to anti-PD-1 drugs and prolonged survival. The development of “oncomicrobiotics” has the potential to help tailor one’s gut microbiota to allow patients to maximally respond to immunotherapy without sacrificing increases in toxicity. These oncomicrobiotics may possibly include antibiotics, probiotics, postbiotics and/or prebiotics. However, many challenges lie ahead in the creation of oncomicrobiotics. Conclusion The creation of oncomicrobiotics may allow many patients receiving anti-CTLA-4 and PD-1 immunotherapy to experience prolonged survival and a better quality of life.
Collapse
Affiliation(s)
- Peter L Miller
- University of Alabama at Birmingham School of Medicine, Birmingham, AL USA
| | - Tiffany L Carson
- Department of Medicine, Division of Preventive Medicine, University of Alabama Birmingham School of Medicine, 1717 11th Ave S, Birmingham, AL 35205 USA
| |
Collapse
|
105
|
Galan-Ros J, Ramos-Arenas V, Conesa-Zamora P. Predictive values of colon microbiota in the treatment response to colorectal cancer. Pharmacogenomics 2020; 21:1045-1059. [PMID: 32896201 DOI: 10.2217/pgs-2020-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The crosstalk between the colon mucosa and the microbiota represents a complex and delicate equilibrium. Gastrointestinal diseases such as inflammatory bowel disease and colorectal cancer (CRC) are associated with a state of altered microbiota composition known as dysbiosis, which seems to play a causative role in some of these illnesses. Recent reports have shown that the colorectal microbiome is responsible for the response and safety to treatments against CRC, especially immunotherapy, hence opening the possibility to use bacteria as a predictive marker and also as a therapeutic agent. The review objective is to summarize updated reports about the the implication of the colorectal microbiome in the development of CRC, in treatment response and its potential as a therapeutic approach.
Collapse
Affiliation(s)
- Jorge Galan-Ros
- Microbiology Department, Santa Lucia University Hospital (HGUSL), Cartagena, 30202, Spain
| | - Verónica Ramos-Arenas
- Clinical Analysis Department, Santa Lucia University Hospital (HGUSL), Cartagena, 30202, Spain
| | - Pablo Conesa-Zamora
- Clinical Analysis Department, Santa Lucia University Hospital (HGUSL), Cartagena, 30202, Spain.,Department of Histology & Pathology, Faculty of Life Sciences, Universidad Católica de Murcia (UCAM), Murcia, 30107, Spain.,Research Group on Molecular Pathology & Pharmacogenetics, Institute for Biomedical Research of Murcia (IMIB), Calle Mezquita sn, Cartagena, 30202, Spain
| |
Collapse
|
106
|
Bai J, Bruner DW, Fedirko V, Beitler JJ, Zhou C, Gu J, Zhao H, Lin IH, Chico CE, Higgins KA, Shin DM, Saba NF, Miller AH, Xiao C. Gut Microbiome Associated with the Psychoneurological Symptom Cluster in Patients with Head and Neck Cancers. Cancers (Basel) 2020; 12:cancers12092531. [PMID: 32899975 PMCID: PMC7563252 DOI: 10.3390/cancers12092531] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 01/04/2023] Open
Abstract
Cancer patients experience a cluster of co-occurring psychoneurological symptoms (PNS) related to cancer treatments. The gut microbiome may affect severity of the PNS via neural, immune, and endocrine signaling pathways. However, the link between the gut microbiome and PNS has not been well investigated in cancer patients, including those with head and neck cancers (HNCs). This pilot study enrolled 13 patients with HNCs, who reported PNS using the Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (CTCAEs). Stool specimens were collected to analyze patients' gut microbiome. All data were collected pre- and post-radiation therapy (RT). Associations between the bacterial abundances and the PNS clusters were analyzed using the linear discriminant analysis effect size; functional pathway analyses of 16S rRNA V3-V4 bacterial communities were conducted using Tax4fun. The high PNS cluster had a greater decrease in microbial evenness than the low PNS cluster from pre- to post-RT. The high and low PNS clusters showed significant differences using weighted UniFrac distance. Those individuals with the high PNS cluster were more likely to have higher abundances in phylum Bacteroidetes, order Bacteroidales, class Bacteroidia, and four genera (Ruminiclostridium9, Tyzzerella, Eubacterium_fissicatena, and DTU089), while the low PNS cluster had higher abundances in family Acidaminococcaceae and three genera (Lactococcus, Phascolarctobacterium, and Desulfovibrio). Both glycan metabolism (Lipopolysaccharide biosynthesis) and vitamin metabolism (folate biosynthesis and lipoic acid metabolism) were significantly different between the high and low PNS clusters pre- and post-RT. Our preliminary data suggest that the diversity and abundance of the gut microbiome play a potential role in developing PNS among cancer patients.
Collapse
Affiliation(s)
- Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA;
- Correspondence: ; Tel.: +1-404-727-2466
| | | | - Veronika Fedirko
- Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
| | - Jonathan J. Beitler
- Department of Radiation Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (J.J.B.); (K.A.H.)
| | - Chao Zhou
- Department Biostatistics, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.Z.); (J.G.); (H.Z.)
| | - Jianlei Gu
- Department Biostatistics, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.Z.); (J.G.); (H.Z.)
| | - Hongyu Zhao
- Department Biostatistics, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.Z.); (J.G.); (H.Z.)
| | - I-Hsin Lin
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY 10017, USA;
| | - Cynthia E. Chico
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.E.C.); (A.H.M.)
| | - Kristin A. Higgins
- Department of Radiation Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (J.J.B.); (K.A.H.)
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (D.M.S.); (N.F.S.)
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (D.M.S.); (N.F.S.)
| | - Andrew H. Miller
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.E.C.); (A.H.M.)
| | - Canhua Xiao
- School of Nursing, Yale University, New Haven, CT 06477, USA;
| |
Collapse
|
107
|
Katongole P, Sande OJ, Joloba M, Reynolds SJ, Niyonzima N. The human microbiome and its link in prostate cancer risk and pathogenesis. Infect Agent Cancer 2020; 15:53. [PMID: 32884579 PMCID: PMC7460756 DOI: 10.1186/s13027-020-00319-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
There is growing evidence of the microbiome's role in human health and disease since the human microbiome project. The microbiome plays a vital role in influencing cancer risk and pathogenesis. Several studies indicate microbial pathogens to account for over 15-20% of all cancers. Furthermore, the interaction of the microbiota, especially the gut microbiota in influencing response to chemotherapy, immunotherapy, and radiotherapy remains an area of active research. Certain microbial species have been linked to the improved clinical outcome when on different cancer therapies. The recent discovery of the urinary microbiome has enabled the study to understand its connection to genitourinary malignancies, especially prostate cancer. Prostate cancer is the second most common cancer in males worldwide. Therefore research into understanding the factors and mechanisms associated with prostate cancer etiology, pathogenesis, and disease progression is of utmost importance. In this review, we explore the current literature concerning the link between the gut and urinary microbiome and prostate cancer risk and pathogenesis.
Collapse
Affiliation(s)
- Paul Katongole
- Department of Medical Microbiology, College of Health Sciences Makerere University, Kampala, Uganda
- Department of Medical Biochemistry, College of Health Sciences Makerere University, Kampala, Uganda
| | - Obondo J. Sande
- Department of Immunology and Molecular biology, College of Health Sciences Makerere University, Kampala, Uganda
| | - Moses Joloba
- Department of Immunology and Molecular biology, College of Health Sciences Makerere University, Kampala, Uganda
| | - Steven J. Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | | |
Collapse
|
108
|
Special Issue: Mining human microbiome bringing newer paradigms to anticancer therapeutics. Semin Cancer Biol 2020; 70:1-2. [PMID: 32822862 DOI: 10.1016/j.semcancer.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
109
|
Kowalska J, Tyburski J, Matysiak K, Tylkowski B, Malusá E. Field Exploitation of Multiple Functions of Beneficial Microorganisms for Plant Nutrition and Protection: Real Possibility or Just a Hope? Front Microbiol 2020; 11:1904. [PMID: 32849475 PMCID: PMC7419637 DOI: 10.3389/fmicb.2020.01904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/20/2020] [Indexed: 02/01/2023] Open
Abstract
Bioproducts, i.e., microbial based pesticides or fertilizers (biopesticides and biofertilizers), should be expected to play an ever-increasing role and application in agricultural practices world-wide in the effort to implement policies concerned with sustainable agriculture. However, several microbial strains have proven the capacity to augment plant productivity by enhancing crop nutrition and functioning as biopesticides, or vice-versa. This multifunctionality is an issue that is still not included as a concept and possibility in any legal provision regarding the placing on the market of bioproducts, and indicates difficulties in clearly classifying the purpose of their suitability. In this review, we overview the current understanding of the mechanisms in plant-microbe interactions underlining the dual function of microbial strains toward plant nutrition and protection. The prospects of market development for multifunctional bioproducts are then considered in view of the current regulatory approach in the European Union, in an effort that wants to stimulate a wider adoption of the new knowledge on the role played by microorganisms in crop production.
Collapse
Affiliation(s)
| | - Józef Tyburski
- Department of Agroecosystems, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | | | - Eligio Malusá
- Research Institute of Horticulture, Skierniewice, Poland
| |
Collapse
|
110
|
Sharma VR, Singh M, Kumar V, Yadav M, Sehrawat N, Sharma DK, Sharma AK. Microbiome dysbiosis in cancer: Exploring therapeutic strategies to counter the disease. Semin Cancer Biol 2020; 70:61-70. [PMID: 32693015 DOI: 10.1016/j.semcancer.2020.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/11/2020] [Accepted: 07/11/2020] [Indexed: 02/09/2023]
Abstract
Cancer being a multiplex disease which involves many genomic and physiological alterations that occur consistently in the cancerous tissue, making the treatment and management of the disease even more complicated. The human gut microbiota (GM) harbors collective genomes of microbes comprising of trillions of bacteria along with fungi, archaea, and viruses that have the tendency to affect the development and progression of cancer. Moreover, inter-microbial interactions, diversity and distinct differences among the GM populations could influence the course of disease, making the microbiome an ideal target or to be modulated in such a way so as to improve cancer therapeutics with better efficacy and reduced toxicity. Current review focuses upon exploring the association of gut microbiota with the progression of cancer for which a structured search of bibliographic databases for peer-reviewed research literature has been carried out using focused review questions and inclusion/exclusion criteria. Through this review one could envisage a wide-spectrum role of microbiota in maintaining host metabolism, immune homeostasis paving the way for an anticancer diagnostic and therapeutic solution that has the potential to counter the menace of anti-cancer drug resistance as well.
Collapse
Affiliation(s)
- Var Ruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College Sector-26, Chandigarh UT, 160019, India
| | - Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala Haryana, 133207, India
| | - Vikas Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala Haryana, 133207, India
| | - Mukesh Yadav
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala Haryana, 133207, India
| | - Nirmala Sehrawat
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala Haryana, 133207, India
| | | | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala Haryana, 133207, India.
| |
Collapse
|
111
|
Intestinal Macrophages at the Crossroad between Diet, Inflammation, and Cancer. Int J Mol Sci 2020; 21:ijms21144825. [PMID: 32650452 PMCID: PMC7404402 DOI: 10.3390/ijms21144825] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
Intestinal macrophages are key players in the regulation of the oral tolerance, controlling gut homeostasis by discriminating innocuous antigens from harmful pathogens. Diet exerts a significant impact on human health, influencing the composition of gut microbiota and the developing of several non-communicable diseases, including cancer. Nutrients and microbiota are able to modify the profile of intestinal macrophages, shaping their key function in the maintenance of the gut homeostasis. Intestinal disease often occurs as a breakdown of this balance: defects in monocyte-macrophage differentiation, wrong dietary habits, alteration of microbiota composition, and impairment in the resolution of inflammation may contribute to the development of intestinal chronic inflammation and colorectal cancer. Accordingly, dietary interventions and macrophage-targeted therapies are emerging as innovative tools for the treatment of several intestinal pathologies. In this review, we will describe the delicate balance between diet, microbiota and intestinal macrophages in homeostasis and how the perturbation of this equilibrium may lead to the occurrence of inflammatory conditions in the gut. The understanding of the molecular pathways and dietary factors regulating the activity of intestinal macrophages might result in the identification of innovative targets for the treatments of intestinal pathologies.
Collapse
|
112
|
Sulaiman I, Schuster S, Segal LN. Perspectives in lung microbiome research. Curr Opin Microbiol 2020; 56:24-29. [PMID: 32623064 DOI: 10.1016/j.mib.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/05/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Abstract
Our understanding of the existence and role of the lung microbiome has grown at a slower pace than other microbiome research areas. This is likely a consequence of the original dogma that the lung was a sterile environment although there are other barriers that are worth discussing. Here we will not be conducting an exhaustive review of the current literature on the lung microbiome, but rather we will focus on what we see as some important challenges that the field needs to face in order to improve our mechanistic understanding of the lung microbiome and its role on human health.
Collapse
Affiliation(s)
- Imran Sulaiman
- Division of Pulmonary, Critical Care, & Sleep Medicine, Department of Medicine, New York University School of Medicine, NY, United States
| | - Sheeja Schuster
- Division of Pulmonary, Critical Care, & Sleep Medicine, Department of Medicine, New York University School of Medicine, NY, United States
| | - Leopoldo N Segal
- Division of Pulmonary, Critical Care, & Sleep Medicine, Department of Medicine, New York University School of Medicine, NY, United States.
| |
Collapse
|
113
|
Sommariva M, Le Noci V, Bianchi F, Camelliti S, Balsari A, Tagliabue E, Sfondrini L. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cell Mol Life Sci 2020; 77:2739-2749. [PMID: 31974656 PMCID: PMC7326824 DOI: 10.1007/s00018-020-03452-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/29/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022]
Abstract
Like other body districts, lungs present a complex bacteria community. An emerging function of lung microbiota is to promote and maintain a state of immune tolerance, to prevent uncontrolled and not desirable inflammatory response caused by inhalation of harmless environmental stimuli. This effect is mediated by a continuous dialog between commensal bacteria and immune cells resident in lungs, which express a repertoire of sensors able to detect microorganisms. The same receptors are also involved in the recognition of pathogens and in mounting a proper immune response. Due to its important role in preserving lung homeostasis, the lung microbiota can be also considered a mirror of lung health status. Indeed, several studies indicate that lung bacterial composition drastically changes during the occurrence of pulmonary pathologies, such as lung cancer, and the available data suggest that the modifications of lung microbiota can be part of the etiology of tumors in lungs and can influence their progression and response to therapy. These results provide the scientific rationale to analyze lung microbiota composition as biomarker for lung cancer and to consider lung microbiota a new potential target for therapeutic intervention to reprogram the antitumor immune microenvironment. In the present review, we discussed about the role of lung microbiota in lung physiology and summarized the most relevant data about the relationship between lung microbiota and cancer.
Collapse
Affiliation(s)
- Michele Sommariva
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, via Mangiagalli 31, 20133, Milano, Italy
| | - Valentino Le Noci
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, via Mangiagalli 31, 20133, Milano, Italy
| | - Francesca Bianchi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS, Istituto Nazionale Dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Simone Camelliti
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, via Mangiagalli 31, 20133, Milano, Italy
| | - Andrea Balsari
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, via Mangiagalli 31, 20133, Milano, Italy
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS, Istituto Nazionale Dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS, Istituto Nazionale Dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Lucia Sfondrini
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, via Mangiagalli 31, 20133, Milano, Italy.
| |
Collapse
|
114
|
Carr DF, Turner RM, Pirmohamed M. Pharmacogenomics of anticancer drugs: Personalising the choice and dose to manage drug response. Br J Clin Pharmacol 2020; 87:237-255. [PMID: 32501544 DOI: 10.1111/bcp.14407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
The field of pharmacogenomics has made great strides in oncology over the last 20 years and indeed a significant number of pre-emptive genetic tests are now routinely undertaken prior to anticancer drug administration. Many of these gene-drug interactions are the fruits of candidate gene and genome-wide association studies, which have largely focused on common genetic variants (allele frequency>1%). Examples where there is clinical utility include genotyping or phenotyping for G6PD to prevent rasburicase-induced RBC haemolysis, and TPMT to prevent thiopurine-induced bone marrow suppression. Other associations such as CYP2D6 status in determining the efficacy of tamoxifen are more controversial because of contradictory evidence from different sources, which has led to variability in the implementation of testing. As genomic technology becomes ever cheaper and more accessible, we must look to the additional data our genome can provide to explain interindividual variability in anticancer drug response. Clearly genes do not act on their own and it is therefore important to investigate genetic factors in conjunction with clinical factors, interacting concomitant drug therapies and other factors such as the microbiome, which can all affect drug disposition. Taking account of all of these factors, in conjunction with the somatic genome, is more likely to provide better predictive accuracy in determining anticancer drug response, both efficacy and safety. This review summarises the existing knowledge related to the pharmacogenomics of anticancer drugs and discusses areas of opportunity for further advances in personalisation of therapy in order to improve both drug safety and efficacy.
Collapse
Affiliation(s)
- Daniel F Carr
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Richard M Turner
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
115
|
Bello S, Vengoechea JJ, Ponce-Alonso M, Figueredo AL, Mincholé E, Rezusta A, Gambó P, Pastor JM, Javier Galeano, Del Campo R. Core Microbiota in Central Lung Cancer With Streptococcal Enrichment as a Possible Diagnostic Marker. Arch Bronconeumol 2020; 57:S0300-2896(20)30192-7. [PMID: 32620417 DOI: 10.1016/j.arbres.2020.05.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Dysbiosis in lung cancer has been underexplored. The aim of this study was to define the bacterial and fungal microbiota of the bronchi in central lung cancer and to compare it with that of the oral and intestinal compartments. METHODS Twenty-five patients with central lung cancer and sixteen controls without antimicrobial intake during the previous month were recruited. Bacterial and fungal distribution was determined by massive sequencing of bronchial biopsies and saliva and faecal samples. Complex computational analysis was performed to define the core lung microbiota. RESULTS Affected and contralateral bronchi of patients have almost identical microbiota dominated by Streptococcus, whereas Pseudomonas was the dominant genera in controls. Oral and pulmonary ecosystems were significantly more similar in patients, probably due to microaspirations. Streptococcal abundance in the bronchi differentiated patients from controls according to a ROC curve analysis (90.9% sensitivity, 83.3% specificity, AUC=0.897). The saliva of patients characteristically showed a greater abundance of Streptococcus, Rothia, Gemella and Lactobacillus. The mycobiome of controls (Candida) was significantly different from that of patients (Malassezia). Cancer patients' bronchial mycobiome was similar to their saliva, but different from their contralateral bronchi. CONCLUSIONS The central lung cancer microbiome shows high levels of Streptococcus, and differs significantly in its composition from that of control subjects. Changes are not restricted to tumour tissue, and seem to be the consequence of microaspirations from the oral cavity. These findings could be useful in the screening and even diagnosis of this disease.
Collapse
Affiliation(s)
- Salvador Bello
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Zaragoza, Spain.
| | - José J Vengoechea
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Zaragoza, Spain
| | - Manuel Ponce-Alonso
- Department of Microbiology, Ramón y Cajal Health Investigation Institute (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Ana L Figueredo
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Zaragoza, Spain
| | - Elisa Mincholé
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Zaragoza, Spain
| | - Antonio Rezusta
- Department of Microbiology, Miguel Servet University Hospital, Instituto de Investigación Sanitaria (ISS) Aragón, Zaragoza, Spain
| | - Paula Gambó
- Department of Pathology, Miguel Servet University Hospital, Instituto de Investigación Sanitaria (ISS) Aragón, Zaragoza, Spain
| | | | - Javier Galeano
- Complex Systems Group, Universidad Politécnica de Madrid, Madrid, Spain
| | - Rosa Del Campo
- Department of Microbiology, Ramón y Cajal Health Investigation Institute (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain; University Alfonso X El Sabio, Villanueva de la Cañada, Madrid, Spain
| |
Collapse
|
116
|
Manzoor SS, Doedens A, Burns MB. The promise and challenge of cancer microbiome research. Genome Biol 2020; 21:131. [PMID: 32487228 PMCID: PMC7265652 DOI: 10.1186/s13059-020-02037-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Many microbial agents have been implicated as contributors to cancer genesis and development, and the search to identify and characterize new cancer-related organisms is ongoing. Modern developments in methodologies, especially culture-independent approaches, have accelerated and driven this research. Recent work has shed light on the multifaceted role that the community of organisms in and on the human body plays in cancer onset, development, detection, treatment, and outcome. Much remains to be discovered, however, as methodological variation and functional testing of statistical correlations need to be addressed for the field to advance.
Collapse
Affiliation(s)
| | - Annemiek Doedens
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Michael B Burns
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660, USA.
| |
Collapse
|
117
|
Joseph NT, Shankar SR, Narasimhamurthy RK, Rao SBS, Mumbrekar KD. Bi-Directional interactions between microbiota and ionizing radiation in head and neck and pelvic radiotherapy - clinical relevance. Int J Radiat Biol 2020; 96:961-971. [PMID: 32420768 DOI: 10.1080/09553002.2020.1770361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose: Rapid developments in high throughput screening technology for the detection and identification of the human microbiota have helped in understanding its influence on human health and disease. In the recent past, several seminal studies have demonstrated the influence of microbiota on outcomes of therapy-associated radiation exposure. In this review, we highlight the concepts related to the mechanisms by which radiation alters the microbiota composition linked with radiation-associated toxicity in head and neck and pelvic regions. We further discuss specific microbial changes that can be employed as a biomarker for radiation and tumor response.Conclusion: Knowledge of the influence of microbiota in radiation response and advances in microbiota manipulation techniques would help to design personalized treatment augmenting the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Nidhya Teresa Joseph
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Saligrama R Shankar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Rekha K Narasimhamurthy
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Satish Bola Sadashiva Rao
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
118
|
Singh A, Nayak N, Rathi P, Verma D, Sharma R, Chaudhary A, Agarwal A, Tripathi YB, Garg N. Microbiome and host crosstalk: A new paradigm to cancer therapy. Semin Cancer Biol 2020; 70:71-84. [PMID: 32479952 DOI: 10.1016/j.semcancer.2020.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022]
Abstract
The commensal microbiome of humans has co-evolved for thousands of years. The microbiome regulates human health and is also linked to several diseases, including cancer. The advances in next-generation sequencing have significantly contributed to our understanding of the microbiome and its association with cancer and cancer therapy. Recent studies have highlighted a close relationship of the microbiome to the pharmacological effect of chemotherapy and immunotherapy. The chemo-drugs usually interfere with the host immune system and reduces the microbiome diversity inside the body, which in turn leads to decreased efficacy of these drugs. The human microbiome, specifically the gut microbiome, increases the potency of chemo-drugs through metabolism, enzymatic degradation, ecological differences, and immunomodulation. Recent research exploits the involvement of microbiome to shape the efficacy and decrease the toxicity of these chemo-drugs. In this review, we have highlighted the recent development in understanding the relationship of the human microbiome with cancer and also emphasize on various roles of the microbiome in the modulation of cancer therapy. Additionally, we also summarize the ongoing research focussed on the improved efficacy of chemotherapy and immunotherapy using the host microbiome.
Collapse
Affiliation(s)
- Ashutosh Singh
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Namyashree Nayak
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Preeti Rathi
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Deepanshu Verma
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi 221005, Uttar Pradesh, India
| | - Ashun Chaudhary
- Central University of Himachal Pradesh, Shahpur, Dist. Kangra, Himachal Pradesh 176206, India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi 221005, Uttar Pradesh, India
| | - Yamini Bhushan Tripathi
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi 221005, Uttar Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
119
|
Elsalem L, Jum'ah AA, Alfaqih MA, Aloudat O. The Bacterial Microbiota of Gastrointestinal Cancers: Role in Cancer Pathogenesis and Therapeutic Perspectives. Clin Exp Gastroenterol 2020; 13:151-185. [PMID: 32440192 PMCID: PMC7211962 DOI: 10.2147/ceg.s243337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
The microbiota has an essential role in the pathogenesis of many gastrointestinal diseases including cancer. This effect is mediated through different mechanisms such as damaging DNA, activation of oncogenic pathways, production of carcinogenic metabolites, stimulation of chronic inflammation, and inhibition of antitumor immunity. Recently, the concept of "pharmacomicrobiomics" has emerged as a new field concerned with exploring the interplay between drugs and microbes. Mounting evidence indicates that the microbiota and their metabolites have a major impact on the pharmacodynamics and therapeutic responses toward anticancer drugs including conventional chemotherapy and molecular-targeted therapeutics. In addition, microbiota appears as an attractive target for cancer prevention and treatment. In this review, we discuss the role of bacterial microbiota in the pathogenesis of different cancer types affecting the gastrointestinal tract system. We also scrutinize the evidence regarding the role of microbiota in anticancer drug responses. Further, we discuss the use of probiotics, fecal microbiota transplantation, and antibiotics, either alone or in combination with anticancer drugs for prevention and treatment of gastrointestinal tract cancers.
Collapse
Affiliation(s)
- Lina Elsalem
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad A Jum'ah
- Department of Conservative Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Mahmoud A Alfaqih
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Osama Aloudat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
120
|
Chen W, Wang S, Wu Y, Shen X, Guo Z, Li Q, Xing D. Immunogenic cell death: A link between gut microbiota and anticancer effects. Microb Pathog 2020; 141:103983. [DOI: 10.1016/j.micpath.2020.103983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
|
121
|
Serrano-Del Valle A, Naval J, Anel A, Marzo I. Novel Forms of Immunomodulation for Cancer Therapy. Trends Cancer 2020; 6:518-532. [PMID: 32460005 DOI: 10.1016/j.trecan.2020.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years immunotherapy has provided new hope for cancer patients. However, some patients eventually relapse. Immunological responses are thought to underlie the long-term effects of conventional or targeted therapies. Whether this influence emerges from direct effects on cancer cells through immunogenic cell death (ICD) or by modulating the immune environment requires further clarification. ICD-related molecular mechanisms are also shared by cell-intrinsic defense responses that combat foreign intrusions. Indeed, we could potentially mimic and harness these processes to improve cancer immunogenicity. In addition, the microbiome is materializing as a missing factor in the cancer-immune therapy axis. The emerging idea of manipulating the gut microbiota to improve responses to anticancer therapy is becoming increasingly popular, but further clinical authentication is needed.
Collapse
Affiliation(s)
- Alfonso Serrano-Del Valle
- Apoptosis, Immunity, and Cancer Group, Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, and Aragon Health Research Institute (IIS-Aragon), Zaragoza 50009, Spain.
| | - Javier Naval
- Apoptosis, Immunity, and Cancer Group, Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, and Aragon Health Research Institute (IIS-Aragon), Zaragoza 50009, Spain
| | - Alberto Anel
- Apoptosis, Immunity, and Cancer Group, Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, and Aragon Health Research Institute (IIS-Aragon), Zaragoza 50009, Spain
| | - Isabel Marzo
- Apoptosis, Immunity, and Cancer Group, Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, and Aragon Health Research Institute (IIS-Aragon), Zaragoza 50009, Spain
| |
Collapse
|
122
|
Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5:22. [PMID: 32296018 PMCID: PMC7082344 DOI: 10.1038/s41392-020-0116-z] [Citation(s) in RCA: 986] [Impact Index Per Article: 197.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is among the most lethal and prevalent malignancies in the world and was responsible for nearly 881,000 cancer-related deaths in 2018. Surgery and chemotherapy have long been the first choices for cancer patients. However, the prognosis of CRC has never been satisfying, especially for patients with metastatic lesions. Targeted therapy is a new optional approach that has successfully prolonged overall survival for CRC patients. Following successes with the anti-EGFR (epidermal growth factor receptor) agent cetuximab and the anti-angiogenesis agent bevacizumab, new agents blocking different critical pathways as well as immune checkpoints are emerging at an unprecedented rate. Guidelines worldwide are currently updating the recommended targeted drugs on the basis of the increasing number of high-quality clinical trials. This review provides an overview of existing CRC-targeted agents and their underlying mechanisms, as well as a discussion of their limitations and future trends.
Collapse
Affiliation(s)
- Yuan-Hong Xie
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China.
| |
Collapse
|
123
|
Veziant J, Poirot K, Chevarin C, Cassagnes L, Sauvanet P, Chassaing B, Robin F, Godfraind C, Barnich N, Pezet D, Pereira B, Gagniere J, Bonnet M. Prognostic value of a combination of innovative factors (gut microbiota, sarcopenia, obesity, metabolic syndrome) to predict surgical/oncologic outcomes following surgery for sporadic colorectal cancer: a prospective cohort study protocol (METABIOTE). BMJ Open 2020; 10:e031472. [PMID: 31915159 PMCID: PMC6955509 DOI: 10.1136/bmjopen-2019-031472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Colorectal cancer (CRC) is still associated with poor prognosis, especially in patients with advanced disease. Development of new prognostic tools replacing or supplementing those routinely used is definitely needed, with the aim to optimise and personalise treatment strategies. Gut microbiota composition and body composition profile (obesity, sarcopenia and metabolic syndrome) have recently been reported separately as new relevant prognostic factors for postoperative surgical and oncologic outcomes following CRC surgery. However interactions that exist between these factors have been poorly studied. The purpose of this translational prospective cohort study (METABIOTE) is to investigate potential interactions between gut microbiota, body composition profile and postoperative outcomes and recurrence in patients undergoing surgery for non-metastatic sporadic CRC. METHODS AND ANALYSIS This single-centre project aims to prospectively enrol 300 consecutive patients undergoing surgery for non-metastatic sporadic CRC at the University Hospital of Clermont-Ferrand, France for the identification of specific microbial signatures (from tumour, colonic mucosa and stools samples) associated with particular metabolic profiles that could impact postoperative morbidity and oncologic outcomes, using microbiological, molecular and imaging approaches. The primary outcome is the 5-year overall survival (OS). Other outcomes are 5-year CRC-related OS, 5-year disease-free survival, 30-day postoperative morbidity, 90-day postoperative mortality and length of hospital stay. ETHICS AND DISSEMINATION This study protocol was reviewed and approved by an independent French regional review board (n°2018-A00352-53, 'Comité de Protection des Personnes Ile de France VII' on 4 July 2018, declared to the competent French authority ('Agence Nationale de Sécurité du Médicament et des produits de santé', France), and registered on the Clinical Trials web-based platform (NCT03843905). Oral and written informed consent will be obtained from each included patient. Study results will be reported to the scientific community at conferences and in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER NCT03843905..
Collapse
Affiliation(s)
- Julie Veziant
- Department of Digestive and Hepatobiliary Surgery, University Hospital, Clermont-Ferrand, France
- U1071 Inserm, Clermont-Auvergne University, Clermont-Ferrand, France
| | - Karine Poirot
- Department of Digestive and Hepatobiliary Surgery, University Hospital, Clermont-Ferrand, France
| | - Caroline Chevarin
- U1071 Inserm, Clermont-Auvergne University, Clermont-Ferrand, France
| | - Lucie Cassagnes
- Department of Radiology, Universitary Hospital, Clermont Ferrand, France
| | - Pierre Sauvanet
- U1071 Inserm, Clermont-Auvergne University, Clermont-Ferrand, France
| | | | - Frederic Robin
- U1071 Inserm, Clermont-Auvergne University, Clermont-Ferrand, France
| | - Catherine Godfraind
- Department of Anatomopathology, Universitary Hospital, Clermont Ferrand, France
| | - Nicolas Barnich
- U1071 Inserm, Clermont-Auvergne University, Clermont-Ferrand, France
| | - Denis Pezet
- Department of Digestive and Hepatobiliary Surgery, University Hospital, Clermont-Ferrand, France
- U1071 Inserm, Clermont-Auvergne University, Clermont-Ferrand, France
| | - Bruno Pereira
- Department of Clinical research and Innovation (DRCI), Universitary Hospital, Clermont Ferrand, France
| | - Johan Gagniere
- Department of Digestive and Hepatobiliary Surgery, University Hospital, Clermont-Ferrand, France
- U1071 Inserm, Clermont-Auvergne University, Clermont-Ferrand, France
| | - Mathilde Bonnet
- U1071 Inserm, Clermont-Auvergne University, Clermont-Ferrand, France
| |
Collapse
|
124
|
Abstract
There is mounting evidence that members of the human microbiome are highly associated with a wide variety of cancer types. Among oral cancers, oral squamous cell carcinoma (OSCC) is the most prevalent and most commonly studied, and it is the most common malignancy of the head and neck worldwide. However, there is a void regarding the role that the oral microbiome may play in OSCC. Previous studies have not consistently found a characteristic oral microbiome composition associated with OSCC. Although a direct causality has not been proven, individual members of the oral microbiome are capable of promoting various tumorigenic functions related to cancer development. Two prominent oral pathogens, Porphyromonas gingivalis, and Fusobacterium nucleatum can promote tumor progression in mice. P. gingivalis infection has been associated with oro-digestive cancer, increased oral cancer invasion, and proliferation of oral cancer stem cells. The microbiome can influence the evolution of the disease by directly interacting with the human body and significantly altering the response and toxicity to various forms of cancer therapy. Recent studies have shown an association of certain phylogenetic groups with the immunotherapy treatment outcomes of certain tumors. On the other side of the coin, recently it has been a resurgence in interest on the potential use of bacteria to cure cancer. These kinds of treatments were used in the late nineteenth and early twentieth centuries as the first line of defense against cancer in some hospitals but later displaced by other types of treatments such as radiotherapy. Currently, organisms such as Salmonella typhimurium and Clostridium spp. have been used for targeted strategies as potential vectors to treat cancer. In this review, we briefly summarize our current knowledge of the role of the oral microbiome, focusing on its bacterial fraction, in cancer in general and in OSCC more precisely, and a brief description of the potential use of bacteria to target tumors.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | | | - Jorge Frias-Lopez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
125
|
Nie C, Wang B, Wang B, Lv N, Zhang E. Integrative Analysis of HNF1B mRNA in Human Cancers Based on Data Mining. Int J Med Sci 2020; 17:2895-2904. [PMID: 33173410 PMCID: PMC7646120 DOI: 10.7150/ijms.51213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/07/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer incidence is rapidly growing, and cancer is the leading cause of death worldwide in the 21st century. Hepatocyte nuclear factor 1B (HNF1B) is a transcription factor that involves the growth and development of multiple organs. The aim of this study was to explore the significance of HNF1B in human cancer by an integrative analysis of online databases. The UALCAN database, cBio cancer genomics portal, Cancer Regulome tools, Kaplan-Meier plotter and Tumor IMmune Estimation Resource (TIMER) website were used to perform the corresponding analysis. The results showed that HNF1B is dysregulated in various cancers and associated with the differential overall survival of cancer patients. HNF1B showed many mutation forms and high mutation levels in different cancer types. In addition, we found that HNF1B interacted with different genes in multiple aspects. Moreover, HNF1B expression is associated with many immune cell infiltration levels and influences the prognostic prediction of immune cells in some kinds of cancers. In conclusion, HNF1B plays a significant role in cancer and may be a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Chunhui Nie
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China.,Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang Province, China
| | - Bei Wang
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China.,Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang Province, China
| | - Baoquan Wang
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China.,Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang Province, China
| | - Ning Lv
- Department of Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
126
|
Huang R, Xiang J, Zhou P. Vitamin D, gut microbiota, and radiation-related resistance: a love-hate triangle. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:493. [PMID: 31843023 PMCID: PMC6915920 DOI: 10.1186/s13046-019-1499-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022]
Abstract
Radiation resistance is a serious issue in radiotherapy. Increasing evidence indicates that the human gut microbiome plays a role in the development of radiation resistance. Vitamin D is an important supplement for cancer patients treated with radiotherapy. Against this background, this paper reviewed research regarding the associations among vitamin D, microbiota dysbiosis, and radiation resistance. A hypothesis is developed to describe the relationships among vitamin D, the gut microbiota, and radiotherapy outcomes. Radiotherapy changes the composition of the gut microbiota, which in turn influence the serum level of vitamin D, and its distribution and metabolism in the body. Alteration of vitamin D level influences the patient response to radiotherapy, where the underlying mechanisms may be associated with the intestinal microenvironment, immune molecules in the intestines, gut microbiome metabolites, and signaling pathways associated with vitamin D receptors. Our understanding of the contribution of vitamin D and the gut microbiota to radiotherapy outcomes has been increasing gradually. A better understanding of the relationships among vitamin D, the gut microbiota, and radiotherapy outcomes will shed more light on radiation resistance, and also promote the development of new strategies for overcoming it, thus addressing an important challenge associated with the currently available radiotherapy modalities for cancer patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan Province, China
| | - Jing Xiang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan Province, China
| | - Pingkun Zhou
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China. .,Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850, China.
| |
Collapse
|
127
|
Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biol 2019; 29:101394. [PMID: 31790851 PMCID: PMC6909145 DOI: 10.1016/j.redox.2019.101394] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 02/08/2023] Open
Abstract
Doxorubicin (DOX), or Adriamycin, an anthracycline antibiotic discovered serendipitously as a chemotherapeutic drug several decades ago, is still one of the most effective drugs for treating various adult and pediatric cancers (breast cancer, Hodgkin's disease, lymphoblastic leukemia). However, one of the major side effects of the continuous use of DOX is dose-dependent, long-term, and potentially lethal cardiovascular toxicity (congestive heart failure and cardiomyopathy) in cancer survivors many years after cessation of chemotherapy. In addition, predisposition to cardiotoxicity varied considerably among individuals. The long-held notion that DOX cardiotoxicity is caused by reactive oxygen species formed from the redox-cycling of DOX semiquinone lacks rigorous proof in a chronic animal model, and administration of reactive oxygen species detoxifying agents failed to reverse DOX-induced cardiac problems. In this review, I discuss the pros and cons of the reactive oxygen species pathway as a primary or secondary mechanism of DOX cardiotoxicity, the role of topoisomerases, and the potential use of mitochondrial-biogenesis-enhancing compounds in reversing DOX-induced cardiomyopathy. New approaches for well-designed clinical trials that repurpose FDA-approved drugs and naturally occurring polyphenolic compounds prophylactically to prevent or mitigate cardiovascular complications in both pediatric and adult cancer survivors are needed. Essentially, the focus should be on enhancing mitochondrial biogenesis to prevent or mitigate DOX-induced cardiotoxicity.
Collapse
|
128
|
Villéger R, Lopès A, Carrier G, Veziant J, Billard E, Barnich N, Gagnière J, Vazeille E, Bonnet M. Intestinal Microbiota: A Novel Target to Improve Anti-Tumor Treatment? Int J Mol Sci 2019; 20:4584. [PMID: 31533218 PMCID: PMC6770123 DOI: 10.3390/ijms20184584] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022] Open
Abstract
Recently, preclinical and clinical studies targeting several types of cancer strongly supported the key role of the gut microbiota in the modulation of host response to anti-tumoral therapies such as chemotherapy, immunotherapy, radiotherapy and even surgery. Intestinal microbiome has been shown to participate in the resistance to a wide range of anticancer treatments by direct interaction with the treatment or by indirectly stimulating host response through immunomodulation. Interestingly, these effects were described on colorectal cancer but also in other types of malignancies. In addition to their role in therapy efficacy, gut microbiota could also impact side effects induced by anticancer treatments. In the first part of this review, we summarized the role of the gut microbiome on the efficacy and side effects of various anticancer treatments and underlying mechanisms. In the second part, we described the new microbiota-targeting strategies, such as probiotics and prebiotics, antibiotics, fecal microbiota transplantation and physical activity, which could be effective adjuvant therapies developed in order to improve anticancer therapeutic efficiency.
Collapse
Affiliation(s)
- Romain Villéger
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRA 2018, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
| | - Amélie Lopès
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRA 2018, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
- Biologics Research, Sanofi R&D, 94400 Vitry-Sur-Seine, France.
| | - Guillaume Carrier
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRA 2018, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
- Surgical Oncology Department, Institut du Cancer de Montpellier (ICM), Univ Montpellier, 34298 Montpellier, France.
| | - Julie Veziant
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRA 2018, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
- Service de Chirurgie Digestive, CHU Clermont-Ferrand, Inserm, Université Clermont Auvergne, 63003 Clermont-Ferrand, France.
- 3iHP, CHU Clermont-Ferrand, Inserm, Université Clermont Auvergne, 63003 Clermont-Ferrand, France.
| | - Elisabeth Billard
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRA 2018, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
| | - Nicolas Barnich
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRA 2018, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
| | - Johan Gagnière
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRA 2018, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
- Service de Chirurgie Digestive, CHU Clermont-Ferrand, Inserm, Université Clermont Auvergne, 63003 Clermont-Ferrand, France.
- 3iHP, CHU Clermont-Ferrand, Inserm, Université Clermont Auvergne, 63003 Clermont-Ferrand, France.
| | - Emilie Vazeille
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRA 2018, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
- 3iHP, CHU Clermont-Ferrand, Inserm, Université Clermont Auvergne, 63003 Clermont-Ferrand, France.
- Service d'Hépato-gastro-entérologie, CHU Clermont-Ferrand, Inserm, Université Clermont Auvergne, 63003 Clermont-Ferrand, France.
| | - Mathilde Bonnet
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRA 2018, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
| |
Collapse
|