101
|
Staurenghi E, Giannelli S, Testa G, Sottero B, Leonarduzzi G, Gamba P. Cholesterol Dysmetabolism in Alzheimer's Disease: A Starring Role for Astrocytes? Antioxidants (Basel) 2021; 10:antiox10121890. [PMID: 34943002 PMCID: PMC8750262 DOI: 10.3390/antiox10121890] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/19/2023] Open
Abstract
In recent decades, the impairment of cholesterol metabolism in the pathogenesis of Alzheimer’s disease (AD) has been intensively investigated, and it has been recognized to affect amyloid β (Aβ) production and clearance, tau phosphorylation, neuroinflammation and degeneration. In particular, the key role of cholesterol oxidation products, named oxysterols, has emerged. Brain cholesterol metabolism is independent from that of peripheral tissues and it must be preserved in order to guarantee cerebral functions. Among the cells that help maintain brain cholesterol homeostasis, astrocytes play a starring role since they deliver de novo synthesized cholesterol to neurons. In addition, other physiological roles of astrocytes are to modulate synaptic transmission and plasticity and support neurons providing energy. In the AD brain, astrocytes undergo significant morphological and functional changes that contribute to AD onset and development. However, the extent of this contribution and the role played by oxysterols are still unclear. Here we review the current understanding of the physiological role exerted by astrocytes in the brain and their contribution to AD pathogenesis. In particular, we focus on the impact of cholesterol dysmetabolism on astrocyte functions suggesting new potential approaches to develop therapeutic strategies aimed at counteracting AD development.
Collapse
|
102
|
Sood A, Preeti K, Fernandes V, Khatri DK, Singh SB. Glia: A major player in glutamate-GABA dysregulation-mediated neurodegeneration. J Neurosci Res 2021; 99:3148-3189. [PMID: 34748682 DOI: 10.1002/jnr.24977] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
The imbalance between glutamate and γ-aminobutyric acid (GABA) results in the loss of synaptic strength leading to neurodegeneration. The dogma on the field considered neurons as the main players in this excitation-inhibition (E/I) balance. However, current strategies focusing only on neurons have failed to completely understand this condition, bringing up the importance of glia as an alternative modulator for neuroinflammation as glia alter the activity of neurons and is a source of both neurotrophic and neurotoxic factors. This review's primary goal is to illustrate the role of glia over E/I balance in the central nervous system and its interaction with neurons. Rather than focusing only on the neuronal targets, we take a deeper look at glial receptors and proteins that could also be explored as drug targets, as they are early responders to neurotoxic insults. This review summarizes the neuron-glia interaction concerning GABA and glutamate, possible targets, and its involvement in the E/I imbalance in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis.
Collapse
Affiliation(s)
- Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
103
|
Tang H, Harte M. Investigating Markers of the NLRP3 Inflammasome Pathway in Alzheimer's Disease: A Human Post-Mortem Study. Genes (Basel) 2021; 12:genes12111753. [PMID: 34828359 PMCID: PMC8622528 DOI: 10.3390/genes12111753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammatory mechanisms with glial cell activation have been implicated in the pathogenic process of Alzheimer’s disease (AD). Activation of the NLRP3 inflammasome is an essential component of the neuroinflammatory response. A role for NLRP3 activation in AD is supported by both in vitro and in vivo preclinical studies with little direct investigation of AD brain tissue. RNA expression of genes of three glial cell markers, HLA-DRA, AIF-1 and GFAP; the components of the NLRP3 inflammasome NLRP3, ASC, and caspase-1; and downstream pre-inflammatory cytokines IL-1 β and IL-18, were investigated in the temporal cortex of AD patients and age- and sex-matched controls. Protein expression of GFAP was also assessed. Increases in both mRNA and protein expression were observed for GFAP in AD. There were no significant changes in other NLRP3 activation markers between groups. Our results indicate the involvement of astrocyte activation in AD, particularly in more severe patients. We found no evidence for the specific involvement of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hao Tang
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming 650032, China
| | - Michael Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Correspondence:
| |
Collapse
|
104
|
Bowers Z, Maiti P, Bourcier A, Morse J, Jenrow K, Rossignol J, Dunbar GL. Tart Cherry Extract and Omega Fatty Acids Reduce Behavioral Deficits, Gliosis, and Amyloid-Beta Deposition in the 5xFAD Mouse Model of Alzheimer's Disease. Brain Sci 2021; 11:brainsci11111423. [PMID: 34827424 PMCID: PMC8615742 DOI: 10.3390/brainsci11111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Combined treatments using polyphenols and omega fatty acids provide several therapeutic benefits for a variety of age-related disorders, including Alzheimer's disease (AD). Previously, we found a commercial product, Total Body Rhythm (TBR), consisting of tart cherry extract, a potent polyphenol, and omega fatty acids, significantly reduced memory, and neuropathological deficits in the 192 IgG-saporin mouse model of AD. The present study assessed the efficacy of TBR for treating behavioral and neuropathological deficits in the 5xFAD model of AD. Both 6- and 12-month-old 5xFAD mice and age-matched wild-type controls received TBR (60 mg/kg) or the equivalent dose of vehicle (0.5% methylcellulose) via oral administration, every other day for two months. All mice were tested in the open field (OF), novel object recognition (NOR), and the Morris water maze (MWM) tasks. In addition, neuronal morphology, neurodegeneration, Aβ plaque load, and glial activation were assessed. TBR treatment reduced memory deficits in the MWM and NOR tests and lessened anxiety levels in the OF task, mostly in the 6-month-old male mice. TBR also protected against neuron loss, reduced activation of astrocytes and microglia, primarily in 6-month-old mice, and attenuated Aβ deposition. These results suggest that the combination of tart cherry extract and omega fatty acids in TBR can reduce AD-like deficits in 5xFAD mice.
Collapse
Affiliation(s)
- Zackary Bowers
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 58859, USA; (Z.B.); (P.M.); (K.J.); (J.R.)
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA
- College of Health and Human Services, Saginaw Valley State University, University Center, Saginaw, MI 48710, USA; (A.B.); (J.M.)
| | - Panchanan Maiti
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 58859, USA; (Z.B.); (P.M.); (K.J.); (J.R.)
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA
- College of Health and Human Services, Saginaw Valley State University, University Center, Saginaw, MI 48710, USA; (A.B.); (J.M.)
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859, USA
- Field Neuroscience Institute Laboratory of Restorative Neurology, Ascension St. Mary’s Hospital, Saginaw, MI 48604, USA
| | - Ali Bourcier
- College of Health and Human Services, Saginaw Valley State University, University Center, Saginaw, MI 48710, USA; (A.B.); (J.M.)
| | - Jarod Morse
- College of Health and Human Services, Saginaw Valley State University, University Center, Saginaw, MI 48710, USA; (A.B.); (J.M.)
| | - Kenneth Jenrow
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 58859, USA; (Z.B.); (P.M.); (K.J.); (J.R.)
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 58859, USA; (Z.B.); (P.M.); (K.J.); (J.R.)
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859, USA
- College of Medicine, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Gary L. Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 58859, USA; (Z.B.); (P.M.); (K.J.); (J.R.)
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859, USA
- Field Neuroscience Institute Laboratory of Restorative Neurology, Ascension St. Mary’s Hospital, Saginaw, MI 48604, USA
- Correspondence: ; Tel.: +1-(989)-774-3282
| |
Collapse
|
105
|
Pauls E, Bayod S, Mateo L, Alcalde V, Juan-Blanco T, Sánchez-Soto M, Saido TC, Saito T, Berrenguer-Llergo A, Attolini CSO, Gay M, de Oliveira E, Duran-Frigola M, Aloy P. Identification and drug-induced reversion of molecular signatures of Alzheimer's disease onset and progression in App NL-G-F, App NL-F, and 3xTg-AD mouse models. Genome Med 2021; 13:168. [PMID: 34702310 PMCID: PMC8547095 DOI: 10.1186/s13073-021-00983-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In spite of many years of research, our understanding of the molecular bases of Alzheimer's disease (AD) is still incomplete, and the medical treatments available mainly target the disease symptoms and are hardly effective. Indeed, the modulation of a single target (e.g., β-secretase) has proven to be insufficient to significantly alter the physiopathology of the disease, and we should therefore move from gene-centric to systemic therapeutic strategies, where AD-related changes are modulated globally. METHODS Here we present the complete characterization of three murine models of AD at different stages of the disease (i.e., onset, progression and advanced). We combined the cognitive assessment of these mice with histological analyses and full transcriptional and protein quantification profiling of the hippocampus. Additionally, we derived specific Aβ-related molecular AD signatures and looked for drugs able to globally revert them. RESULTS We found that AD models show accelerated aging and that factors specifically associated with Aβ pathology are involved. We discovered a few proteins whose abundance increases with AD progression, while the corresponding transcript levels remain stable, and showed that at least two of them (i.e., lfit3 and Syt11) co-localize with Aβ plaques in the brain. Finally, we found two NSAIDs (dexketoprofen and etodolac) and two anti-hypertensives (penbutolol and bendroflumethiazide) that overturn the cognitive impairment in AD mice while reducing Aβ plaques in the hippocampus and partially restoring the physiological levels of AD signature genes to wild-type levels. CONCLUSIONS The characterization of three AD mouse models at different disease stages provides an unprecedented view of AD pathology and how this differs from physiological aging. Moreover, our computational strategy to chemically revert AD signatures has shown that NSAID and anti-hypertensive drugs may still have an opportunity as anti-AD agents, challenging previous reports.
Collapse
Affiliation(s)
- Eduardo Pauls
- Joint IRB-BSC-CRG Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Sergi Bayod
- Joint IRB-BSC-CRG Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Lídia Mateo
- Joint IRB-BSC-CRG Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Víctor Alcalde
- Joint IRB-BSC-CRG Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Teresa Juan-Blanco
- Joint IRB-BSC-CRG Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Marta Sánchez-Soto
- Joint IRB-BSC-CRG Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Antoni Berrenguer-Llergo
- Biostatistics and Bioinformatics Unit, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Camille Stephan-Otto Attolini
- Biostatistics and Bioinformatics Unit, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Marina Gay
- Proteomics Unit, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | | | - Miquel Duran-Frigola
- Joint IRB-BSC-CRG Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Patrick Aloy
- Joint IRB-BSC-CRG Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
106
|
Role of Lipocalin-2 in Amyloid-Beta Oligomer-Induced Mouse Model of Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10111657. [PMID: 34829528 PMCID: PMC8614967 DOI: 10.3390/antiox10111657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022] Open
Abstract
Lipocalin-2 (LCN2) is an inflammatory protein with diverse functions in the brain. Although many studies have investigated the mechanism of LCN2 in brain injuries, the effect of LCN2 on amyloid-toxicity-related memory deficits in a mouse model of Alzheimer’s disease (AD) has been less studied. We investigated the role of LCN2 in human AD patients using a mouse model of AD. We created an AD mouse model by injecting amyloid-beta oligomer (AβO) into the hippocampus. In this model, animals exhibited impaired learning and memory. We found LCN2 upregulation in the human brain frontal lobe, as well as a positive correlation between white matter ischemic changes and serum LCN2. We also found increased astrocytic LCN2, microglia activation, iron accumulation, and blood–brain barrier disruption in AβO-treated hippocampi. These findings suggest that LCN2 is involved in a variety of amyloid toxicity mechanisms, especially neuroinflammation and oxidative stress.
Collapse
|
107
|
Brown D, Altermatt M, Dobreva T, Chen S, Wang A, Thomson M, Gradinaru V. Deep Parallel Characterization of AAV Tropism and AAV-Mediated Transcriptional Changes via Single-Cell RNA Sequencing. Front Immunol 2021; 12:730825. [PMID: 34759919 PMCID: PMC8574206 DOI: 10.3389/fimmu.2021.730825] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Engineered variants of recombinant adeno-associated viruses (rAAVs) are being developed rapidly to meet the need for gene-therapy delivery vehicles with particular cell-type and tissue tropisms. While high-throughput AAV engineering and selection methods have generated numerous variants, subsequent tropism and response characterization have remained low throughput and lack resolution across the many relevant cell and tissue types. To fully leverage the output of these large screening paradigms across multiple targets, we have developed an experimental and computational single-cell RNA sequencing (scRNA-seq) pipeline for in vivo characterization of barcoded rAAV pools at high resolution. Using this platform, we have both corroborated previously reported viral tropisms and discovered unidentified AAV capsid targeting biases. As expected, we observed that the tropism profile of AAV.CAP-B10 in mice was shifted toward neurons and away from astrocytes when compared with AAV-PHP.eB. Transcriptomic analysis revealed that this neuronal bias is due mainly to increased targeting efficiency for glutamatergic neurons, which we confirmed by RNA fluorescence in situ hybridization. We further uncovered cell subtype tropisms of AAV variants in vascular and glial cells, such as low transduction of pericytes and Myoc+ astrocytes. Additionally, we have observed cell-type-specific transitory responses to systemic AAV-PHP.eB administration, such as upregulation of genes involved in p53 signaling in endothelial cells three days post-injection, which return to control levels by day twenty-five. The presented experimental and computational approaches for parallel characterization of AAV tropism will facilitate the advancement of safe and precise gene delivery vehicles, and showcase the power of understanding responses to gene therapies at the single-cell level.
Collapse
Affiliation(s)
- David Brown
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Michael Altermatt
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Tatyana Dobreva
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Sisi Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Alexander Wang
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, United States
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
108
|
IKK2/NF-κB Activation in Astrocytes Reduces amyloid β Deposition: A Process Associated with Specific Microglia Polarization. Cells 2021; 10:cells10102669. [PMID: 34685649 PMCID: PMC8534251 DOI: 10.3390/cells10102669] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that is accompanied by pronounced neuroinflammatory responses mainly characterized by marked microgliosis and astrogliosis. However, it remains open as to how different aspects of astrocytic and microglial activation affect disease progression. Previously, we found that microglia expansion in the spinal cord, initiated by IKK2/NF-κB activation in astrocytes, exhibits stage-dependent beneficial effects on the progression of amyotrophic lateral sclerosis. Here, we investigated the impact of NF-κB-initiated neuroinflammation on AD pathogenesis using the APP23 mouse model of AD in combination with conditional activation of IKK2/NF-κB signaling in astrocytes. We show that NF-κB activation in astrocytes triggers a distinct neuroinflammatory response characterized by striking astrogliosis as well as prominent microglial reactivity. Immunohistochemistry and Congo red staining revealed an overall reduction in the size and number of amyloid plaques in the cerebral cortex and hippocampus. Interestingly, isolated primary astrocytes and microglia cells exhibit specific marker gene profiles which, in the case of microglia, point to an enhanced plaque clearance capacity. In contrast, direct IKK2/NF-κB activation in microglia results in a pro-inflammatory polarization program. Our findings suggest that IKK2/NF-κB signaling in astrocytes may activate paracrine mechanisms acting on microglia function but also on APP processing in neurons.
Collapse
|
109
|
Nguyen H, Zerimech S, Baltan S. Astrocyte Mitochondria in White-Matter Injury. Neurochem Res 2021; 46:2696-2714. [PMID: 33527218 PMCID: PMC8935665 DOI: 10.1007/s11064-021-03239-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
This review summarizes the diverse structure and function of astrocytes to describe the bioenergetic versatility required of astrocytes that are situated at different locations. The intercellular domain of astrocyte mitochondria defines their roles in supporting and regulating astrocyte-neuron coupling and survival against ischemia. The heterogeneity of astrocyte mitochondria, and how subpopulations of astrocyte mitochondria adapt to interact with other glia and regulate axon function, require further investigation. It has become clear that mitochondrial permeability transition pores play a key role in a wide variety of human diseases, whose common pathology may be based on mitochondrial dysfunction triggered by Ca2+ and potentiated by oxidative stress. Reactive oxygen species cause axonal degeneration and a reduction in axonal transport, leading to axonal dystrophies and neurodegeneration including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Developing new tools to allow better investigation of mitochondrial structure and function in astrocytes, and techniques to specifically target astrocyte mitochondria, can help to unravel the role of mitochondrial health and dysfunction in a more inclusive context outside of neuronal cells. Overall, this review will assess the value of astrocyte mitochondria as a therapeutic target to mitigate acute and chronic injury in the CNS.
Collapse
Affiliation(s)
- Hung Nguyen
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sarah Zerimech
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA
| | - Selva Baltan
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
110
|
Amro Z, Yool AJ, Collins-Praino LE. The potential role of glial cells in driving the prion-like transcellular propagation of tau in tauopathies. Brain Behav Immun Health 2021; 14:100242. [PMID: 34589757 PMCID: PMC8474563 DOI: 10.1016/j.bbih.2021.100242] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Dementia is one of the leading causes of death worldwide, with tauopathies, a class of diseases defined by pathology associated with the microtubule-enriched protein, tau, as the major contributor. Although tauopathies, such as Alzheimer's disease and Frontotemporal dementia, are common amongst the ageing population, current effective treatment options are scarce, primarily due to the incomplete understanding of disease pathogenesis. The mechanisms via which aggregated forms of tau are able to propagate from one anatomical area to another to cause disease spread and progression is yet unknown. The prion-like hypothesis of tau propagation proposes that tau can propagate along neighbouring anatomical areas in a similar manner to prion proteins in prion diseases, such as Creutzfeldt-Jacob disease. This hypothesis has been supported by a plethora of studies that note the ability of tau to be actively secreted by neurons, propagated and internalised by neighbouring neuronal cells, causing disease spread. Surfacing research suggests a role of reactive astrocytes and microglia in early pre-clinical stages of tauopathy through their inflammatory actions. Furthermore, both glial types are able to internalise and secrete tau from the extracellular space, suggesting a potential role in tau propagation; although understanding the physiological mechanisms by which this can occur remains poorly understood. This review will discuss the current literature around the prion-like propagation of tau, with particular emphasis on glial-mediated neuroinflammation and the contribution it may play in this propagation process.
Collapse
Affiliation(s)
- Zein Amro
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | | |
Collapse
|
111
|
Yeung JHY, Palpagama TH, Wood OWG, Turner C, Waldvogel HJ, Faull RLM, Kwakowsky A. EAAT2 Expression in the Hippocampus, Subiculum, Entorhinal Cortex and Superior Temporal Gyrus in Alzheimer's Disease. Front Cell Neurosci 2021; 15:702824. [PMID: 34588956 PMCID: PMC8475191 DOI: 10.3389/fncel.2021.702824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is a neuropathological disorder characterized by the presence and accumulation of amyloid-beta plaques and neurofibrillary tangles. Glutamate dysregulation and the concept of glutamatergic excitotoxicity have been frequently described in the pathogenesis of a variety of neurodegenerative disorders and are postulated to play a major role in the progression of AD. In particular, alterations in homeostatic mechanisms, such as glutamate uptake, have been implicated in AD. An association with excitatory amino acid transporter 2 (EAAT2), the main glutamate uptake transporter, dysfunction has also been described. Several animal and few human studies examined EAAT2 expression in multiple brain regions in AD but studies of the hippocampus, the most severely affected brain region, are scarce. Therefore, this study aims to assess alterations in the expression of EAAT2 qualitatively and quantitatively through DAB immunohistochemistry (IHC) and immunofluorescence within the hippocampus, subiculum, entorhinal cortex, and superior temporal gyrus (STG) regions, between human AD and control cases. Although no significant EAAT2 density changes were observed between control and AD cases, there appeared to be increased transporter expression most likely localized to fine astrocytic branches in the neuropil as seen on both DAB IHC and immunofluorescence. Therefore, individual astrocytes are not outlined by EAAT2 staining and are not easily recognizable in the CA1–3 and dentate gyrus regions of AD cases, but the altered expression patterns observed between AD and control hippocampal cases could indicate alterations in glutamate recycling and potentially disturbed glutamatergic homeostasis. In conclusion, no significant EAAT2 density changes were found between control and AD cases, but the observed spatial differences in transporter expression and their functional significance will have to be further explored.
Collapse
Affiliation(s)
- Jason H Y Yeung
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Oliver W G Wood
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
112
|
Monterey MD, Wei H, Wu X, Wu JQ. The Many Faces of Astrocytes in Alzheimer's Disease. Front Neurol 2021; 12:619626. [PMID: 34531807 PMCID: PMC8438135 DOI: 10.3389/fneur.2021.619626] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/20/2021] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and is the most common cause of dementia in an aging population. The majority of research effort has focused on the role of neurons in neurodegeneration and current therapies have limited ability to slow disease progression. Recently more attention has been given to the role of astrocytes in the process of neurodegeneration. Specifically, reactive astrocytes have both advantageous and adverse effects during neurodegeneration. The ability to isolate and depict astrocyte phenotype has been challenging. However, with the recent development of single-cell sequencing technologies researchers are provided with the resource to delineate specific biomarkers associated with reactive astrocytes in AD. In this review, we will focus on the role of astrocytes in normal conditions and the pathological development of AD. We will further review recent developments in the understanding of astrocyte heterogeneity and associated biomarkers. A better understanding of astrocyte contributions and phenotypic changes in AD can ultimately lead to more effective therapeutic targets.
Collapse
Affiliation(s)
- Michael D Monterey
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, United States
| | - Xizi Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, United States
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
113
|
Wang P, Ye Y. Astrocytes in Neurodegenerative Diseases: A Perspective from Tauopathy and α-Synucleinopathy. Life (Basel) 2021; 11:life11090938. [PMID: 34575087 PMCID: PMC8471224 DOI: 10.3390/life11090938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases are aging-associated chronic pathological conditions affecting primarily neurons in humans. Inclusion bodies containing misfolded proteins have emerged as a common pathologic feature for these diseases. In many cases, misfolded proteins produced by a neuron can be transmitted to another neuron or a non-neuronal cell, leading to the propagation of disease-associated pathology. While undergoing intercellular transmission, misfolded proteins released from donor cells can often change the physiological state of recipient cells. Accumulating evidence suggests that astrocytes are highly sensitive to neuron-originated proteotoxic insults, which convert them into an active inflammatory state. Conversely, activated astrocytes can release a plethora of factors to impact neuronal functions. This review summarizes our current understanding of the complex molecular interplays between astrocyte and neuron, emphasizing on Tau and α-synuclein (α-syn), the disease-driving proteins for Alzheimer's and Parkinson's diseases, respectively.
Collapse
Affiliation(s)
| | - Yihong Ye
- Correspondence: ; Tel.: +1-301-594-0845; Fax: +1-301-496-0201
| |
Collapse
|
114
|
Vogels T, Vargová G, Brezováková V, Quint WH, Hromádka T. Viral Delivery of Non-Mutated Human Truncated Tau to Neurons Recapitulates Key Features of Human Tauopathy in Wild-Type Mice. J Alzheimers Dis 2021; 77:551-568. [PMID: 32675411 DOI: 10.3233/jad-200047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Neuronal accumulation of hyperphosphorylated and truncated tau aggregates is one of the major defining factors and key drivers of neurodegeneration in Alzheimer's disease and other tauopathies. OBJECTIVE We developed an AAV-induced model of tauopathy mediated by human truncated tau protein without familial frontotemporal dementia-related mutations to study tau propagation and the functional consequences of tau pathology. METHODS We performed targeted transductions of the hippocampus or entorhinal cortex in adult mice followed by histological analysis to study the progression of hippocampal tau pathology and tau spreading. We performed behavioral analysis of mice with AAV-induced hippocampal tau pathology. RESULTS AAV-induced hippocampal tau pathology was characterized by tau hyperphosphorylation (AT8 positivity), sarkosyl insolubility, and the presence of neurofibrillary tangles. AAV-induced tau pathology was associated with microgliosis and hypertrophic astrocytes in the absence of cognitive deficits. Additionally, the co-expression of mCherry fluorescent protein and human truncated tau enabled us to detect both local spreading of human tau and spreading from the entorhinal cortex to the synaptically connected dentate gyrus. CONCLUSION Targeted delivery of AAV with truncated tau protein into subcortical and cortical structures of mammalian brains represents an efficient approach for creating temporally and spatially well-defined tau pathology suitable for in vivo studies of tau propagation and neuronal circuit deficits in Alzheimer's disease.
Collapse
Affiliation(s)
- Thomas Vogels
- Axon Neuroscience R & D Services SE, Bratislava, Slovakia
| | - Gréta Vargová
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | - Tomáš Hromádka
- Axon Neuroscience R & D Services SE, Bratislava, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
115
|
Gerasimov E, Erofeev A, Borodinova A, Bolshakova A, Balaban P, Bezprozvanny I, Vlasova OL. Optogenetic Activation of Astrocytes-Effects on Neuronal Network Function. Int J Mol Sci 2021; 22:9613. [PMID: 34502519 PMCID: PMC8431749 DOI: 10.3390/ijms22179613] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
Optogenetics approach is used widely in neurobiology as it allows control of cellular activity with high spatial and temporal resolution. In most studies, optogenetics is used to control neuronal activity. In the present study optogenetics was used to stimulate astrocytes with the aim to modulate neuronal activity. To achieve this goal, light stimulation was applied to astrocytes expressing a version of ChR2 (ionotropic opsin) or Opto-α1AR (metabotropic opsin). Optimal optogenetic stimulation parameters were determined using patch-clamp recordings of hippocampal pyramidal neurons' spontaneous activity in brain slices as a readout. It was determined that the greatest increase in the number of spontaneous synaptic currents was observed when astrocytes expressing ChR2(H134R) were activated by 5 s of continuous light. For the astrocytes expressing Opto-α1AR, the greatest response was observed in the pulse stimulation mode (T = 1 s, t = 100 ms). It was also observed that activation of the astrocytic Opto-a1AR but not ChR2 results in an increase of the fEPSP slope in hippocampal neurons. Based on these results, we concluded that Opto-a1AR expressed in hippocampal astrocytes provides an opportunity to modulate the long-term synaptic plasticity optogenetically, and may potentially be used to normalize the synaptic transmission and plasticity defects in a variety of neuropathological conditions, including models of Alzheimer's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Evgenii Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| | - Alexander Erofeev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| | - Anastasia Borodinova
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, Butlerova St. 5A, 117485 Moscow, Russia; (A.B.); (P.B.)
| | - Anastasia Bolshakova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| | - Pavel Balaban
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, Butlerova St. 5A, 117485 Moscow, Russia; (A.B.); (P.B.)
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Olga L. Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (A.E.); (A.B.); (I.B.)
| |
Collapse
|
116
|
Prieto-Villalobos J, Alvear TF, Liberona A, Lucero CM, Martínez-Araya CJ, Balmazabal J, Inostroza CA, Ramírez G, Gómez GI, Orellana JA. Astroglial Hemichannels and Pannexons: The Hidden Link between Maternal Inflammation and Neurological Disorders. Int J Mol Sci 2021; 22:ijms22179503. [PMID: 34502412 PMCID: PMC8430734 DOI: 10.3390/ijms22179503] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
Maternal inflammation during pregnancy causes later-in-life alterations of the offspring’s brain structure and function. These abnormalities increase the risk of developing several psychiatric and neurological disorders, including schizophrenia, intellectual disability, bipolar disorder, autism spectrum disorder, microcephaly, and cerebral palsy. Here, we discuss how astrocytes might contribute to postnatal brain dysfunction following maternal inflammation, focusing on the signaling mediated by two families of plasma membrane channels: hemi-channels and pannexons. [Ca2+]i imbalance linked to the opening of astrocytic hemichannels and pannexons could disturb essential functions that sustain astrocytic survival and astrocyte-to-neuron support, including energy and redox homeostasis, uptake of K+ and glutamate, and the delivery of neurotrophic factors and energy-rich metabolites. Both phenomena could make neurons more susceptible to the harmful effect of prenatal inflammation and the experience of a second immune challenge during adulthood. On the other hand, maternal inflammation could cause excitotoxicity by producing the release of high amounts of gliotransmitters via astrocytic hemichannels/pannexons, eliciting further neuronal damage. Understanding how hemichannels and pannexons participate in maternal inflammation-induced brain abnormalities could be critical for developing pharmacological therapies against neurological disorders observed in the offspring.
Collapse
Affiliation(s)
- Juan Prieto-Villalobos
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Tanhia F. Alvear
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Andrés Liberona
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Claudia M. Lucero
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (C.M.L.); (G.I.G.)
| | - Claudio J. Martínez-Araya
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Javiera Balmazabal
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Carla A. Inostroza
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Gigliola Ramírez
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Gonzalo I. Gómez
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (C.M.L.); (G.I.G.)
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
- Correspondence: ; Tel.: +56-23548105
| |
Collapse
|
117
|
Cuestas Torres DM, Cardenas FP. Synaptic plasticity in Alzheimer's disease and healthy aging. Rev Neurosci 2021; 31:245-268. [PMID: 32250284 DOI: 10.1515/revneuro-2019-0058] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
The strength and efficiency of synaptic connections are affected by the environment or the experience of the individual. This property, called synaptic plasticity, is directly related to memory and learning processes and has been modeled at the cellular level. These types of cellular memory and learning models include specific stimulation protocols that generate a long-term strengthening of the synapses, called long-term potentiation, or a weakening of the said long-term synapses, called long-term depression. Although, for decades, researchers have believed that the main cause of the cognitive deficit that characterizes Alzheimer's disease (AD) and aging was the loss of neurons, the hypothesis of an imbalance in the cellular and molecular mechanisms of synaptic plasticity underlying this deficit is currently widely accepted. An understanding of the molecular and cellular changes underlying the process of synaptic plasticity during the development of AD and aging will direct future studies to specific targets, resulting in the development of much more efficient and specific therapeutic strategies. In this review, we classify, discuss, and describe the main findings related to changes in the neurophysiological mechanisms of synaptic plasticity in excitatory synapses underlying AD and aging. In addition, we suggest possible mechanisms in which aging can become a high-risk factor for the development of AD and how its development could be prevented or slowed.
Collapse
Affiliation(s)
- Diana Marcela Cuestas Torres
- Departamento de Psicología and Departamento de Biología, Laboratorio de Neurociencia y Comportamiento, Universidad de los Andes, Cra 1 N° 18A-12, CP 111711, Bogotá, Colombia
| | - Fernando P Cardenas
- Departamento de Psicología, Laboratorio de Neurociencia y Comportamiento, Universidad de los Andes, Cra 1 N° 18A-12, CP 111711, Bogotá, Colombia
| |
Collapse
|
118
|
Chung DEC, Roemer S, Petrucelli L, Dickson DW. Cellular and pathological heterogeneity of primary tauopathies. Mol Neurodegener 2021; 16:57. [PMID: 34425874 PMCID: PMC8381569 DOI: 10.1186/s13024-021-00476-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Microtubule-associated protein tau is abnormally aggregated in neuronal and glial cells in a range of neurodegenerative diseases that are collectively referred to as tauopathies. Multiple studies have suggested that pathological tau species may act as a seed that promotes aggregation of endogenous tau in naïve cells and contributes to propagation of tau pathology. While they share pathological tau aggregation as a common feature, tauopathies are distinct from one another with respect to predominant tau isoforms that accumulate and the selective vulnerability of brain regions and cell types that have tau inclusions. For instance, primary tauopathies present with glial tau pathology, while it is mostly neuronal in Alzheimer's disease (AD). Also, morphologies of tau inclusions can greatly vary even within the same cell type, suggesting distinct mechanisms or distinct tau conformers in each tauopathy. Neuropathological heterogeneity across tauopathies challenges our understanding of pathophysiology behind tau seeding and aggregation, as well as our efforts to develop effective therapeutic strategies for AD and other tauopathies. In this review, we describe diverse neuropathological features of tau inclusions in neurodegenerative tauopathies and discuss what has been learned from experimental studies with mouse models, advanced transcriptomics, and cryo-electron microscopy (cryo-EM) on the biology underlying cell type-specific tau pathology.
Collapse
Affiliation(s)
- Dah-eun Chloe Chung
- Department of Neuroscience, Mayo Clinic, 32224 Jacksonville, FL USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, 77030 Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 77030 Houston, TX USA
| | - Shanu Roemer
- Department of Neuroscience, Mayo Clinic, 32224 Jacksonville, FL USA
| | | | | |
Collapse
|
119
|
Diaz-Castro B, Bernstein AM, Coppola G, Sofroniew MV, Khakh BS. Molecular and functional properties of cortical astrocytes during peripherally induced neuroinflammation. Cell Rep 2021; 36:109508. [PMID: 34380036 PMCID: PMC8418871 DOI: 10.1016/j.celrep.2021.109508] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/14/2021] [Accepted: 07/20/2021] [Indexed: 01/30/2023] Open
Abstract
Astrocytic contributions to neuroinflammation are widely implicated in disease, but they remain incompletely explored. We assess medial prefrontal cortex (PFC) and visual cortex (VCX) astrocyte and whole-tissue gene expression changes in mice following peripherally induced neuroinflammation triggered by a systemic bacterial endotoxin, lipopolysaccharide, which produces sickness-related behaviors, including anhedonia. Neuroinflammation-mediated behavioral changes and astrocyte-specific gene expression alterations peak when anhedonia is greatest and then reverse to normal. Notably, region-specific molecular identities of PFC and VCX astrocytes are largely maintained during reactivity changes. Gene pathway analyses reveal alterations of diverse cell signaling pathways, including changes in cell-cell interactions of multiple cell types that may underlie the central effects of neuroinflammation. Certain astrocyte molecular signatures accompanying neuroinflammation are shared with changes reported in Alzheimer's disease and mouse models. However, we find no evidence of altered neuronal survival or function in the PFC even when neuroinflammation-induced astrocyte reactivity and behavioral changes are significant.
Collapse
Affiliation(s)
- Blanca Diaz-Castro
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA; UK Dementia Research Institute and Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, Scotland EH16 4SB, UK.
| | - Alexander M Bernstein
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA.
| |
Collapse
|
120
|
Wang M, Cao J, Gong C, Amakye WK, Yao M, Ren J. Exploring the microbiota-Alzheimer's disease linkage using short-term antibiotic treatment followed by fecal microbiota transplantation. Brain Behav Immun 2021; 96:227-238. [PMID: 34111528 DOI: 10.1016/j.bbi.2021.06.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota is proven to be involved in the development of beta amyloid (Aβ) pathology in Alzheimer's disease (AD). Since there are difficulties in translating microbiota findings based on germ-free mice into clinical practice, here, we used short-term antibiotic cocktail treatment to develop a novel model with a near-germ-free status and without impacting Aβ pathology. Three months old APPSWE/PS1ΔE9 mice were fed with antibiotic cocktails for two weeks by gavage to obtain a near "germ-free" status, and then received the donor fecal matter from the 16 months old APPSWE/PS1ΔE9 mice for 7 consecutive days. Fecal pellets were collected prior to antibiotics treatment, following antibiotic exposure, prior to and following fecal microbiota transplantation for gut microbiota analysis. Also, Aβ pathology, astrocyte and microglia morphology were further explored. Pre-antibiotic-treated mice successfully allowed engraftment of gut microbiota following 7 consecutive days gavage with aged APPSWE/PS1ΔE9 mice microbiota. Microbiota reconstitution by transplantation was largely attributable to the donor source (e.g. g_Coriobacteriaceae and g_Clostridium) and led to a significant increase in Aβ plaques. Surprisingly, astrocyte activation around Aβ plaques was suppressed rather than microglia, the well-recognized plaque phagocytic cell type in Aβ clearance, following microbiota engraftment. Our findings provide a novel framework for understanding the mechanisms of AD through the gut-brain axis and the translation of gut microbiota manipulation from bench to clinical practice.
Collapse
Affiliation(s)
- Min Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Jianing Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Congcong Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Maojin Yao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China; Sino-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou, Guangdong 510555, China.
| |
Collapse
|
121
|
Yu TW, Lane HY, Lin CH. Novel Therapeutic Approaches for Alzheimer's Disease: An Updated Review. Int J Mol Sci 2021; 22:8208. [PMID: 34360973 PMCID: PMC8348485 DOI: 10.3390/ijms22158208] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and accounts for most cases of dementia. The prevalence of AD has increased in the current rapidly aging society and contributes to a heavy burden on families and society. Despite the profound impact of AD, current treatments are unable to achieve satisfactory therapeutic effects or stop the progression of the disease. Finding novel treatments for AD has become urgent. In this paper, we reviewed novel therapeutic approaches in five categories: anti-amyloid therapy, anti-tau therapy, anti-neuroinflammatory therapy, neuroprotective agents including N-methyl-D-aspartate (NMDA) receptor modulators, and brain stimulation. The trend of therapeutic development is shifting from a single pathological target to a more complex mechanism, such as the neuroinflammatory and neurodegenerative processes. While drug repositioning may accelerate pharmacological development, non-pharmacological interventions, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), also have the potential for clinical application. In the future, it is possible for physicians to choose appropriate interventions individually on the basis of precision medicine.
Collapse
Affiliation(s)
- Tien-Wei Yu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
| | - Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
122
|
Tournier B, Ceyzériat K, Bouteldja FN, Millet P. Amyloid and Tau Induce Cell Death Independently of TSPO Polymerization and Density Changes. ACS OMEGA 2021; 6:18719-18727. [PMID: 34337211 PMCID: PMC8319921 DOI: 10.1021/acsomega.1c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Apoptosis-dependent cell death of astrocytes has been described in Alzheimer's disease and is linked to the presence of two markers of the pathology: the β-amyloid peptide (Aβ) and the hyperphosphorylated Tau protein. Astrocytes also show reactive states characterized by the overexpression of the 18 kDa translocator protein (TSPO). However, TSPO is also known, in other areas of research, to participate in cell proliferation and death. Regulation of its function by autopolymerization has been described, but its involvement in apoptosis remains unknown. The aim was to determine the effects of Aβ, Tau, and TSPO antagonists on proliferation/cell death and TSPO polymerization in the C6 astrocytic cell line. The dose-effect on cell death in response to Aβ and Tau was observed but without alterations of TSPO density and polymerization. In contrast, nanomolar doses of antagonists stimulated cell proliferation, although micromolar doses induced cell death with a reduction in TSPO density and an increase in the ratio between the 36 and the 72 kDa TSPO polymers. Therefore, an alteration in the density and polymerization of TSPO appears to be related to cell death induced by TSPO antagonisms. In contrast, Aβ- and Tau-induced death seems to be independent of TSPO alterations. In conclusion, even if its role in cell death and proliferation is demonstrated, TSPO seems to, in the context of Alzheimer's disease, rather represent a marker of the activity of astrocytes than of cell death.
Collapse
Affiliation(s)
- Benjamin
B. Tournier
- Department
of Psychiatry, University Hospitals of Geneva, 1205 Genève, Switzerland
- Department
of Psychiatry, University of Geneva, 1211 Genève, Switzerland
| | - Kelly Ceyzériat
- Department
of Psychiatry, University Hospitals of Geneva, 1205 Genève, Switzerland
- Department
of Psychiatry, University of Geneva, 1211 Genève, Switzerland
- Division
of Nuclear Medicine and Molecular Imaging, Diagnostic Department, University Hospitals of Geneva, 1205 Genève, Switzerland
- Division
of Radiation Oncology, Department of Oncology, University Hospitals of Geneva, 1205 Genève, Switzerland
| | - Farha N. Bouteldja
- Department
of Psychiatry, University Hospitals of Geneva, 1205 Genève, Switzerland
- Department
of Psychiatry, University of Geneva, 1211 Genève, Switzerland
| | - Philippe Millet
- Department
of Psychiatry, University Hospitals of Geneva, 1205 Genève, Switzerland
- Department
of Psychiatry, University of Geneva, 1211 Genève, Switzerland
| |
Collapse
|
123
|
Viejo L, Noori A, Merrill E, Das S, Hyman BT, Serrano-Pozo A. Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 48:e12753. [PMID: 34297416 PMCID: PMC8766893 DOI: 10.1111/nan.12753] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
AIMS Reactive astrocytes in Alzheimer's disease (AD) have traditionally been demonstrated by increased glial fibrillary acidic protein (GFAP) immunoreactivity; however, astrocyte reaction is a complex and heterogeneous phenomenon involving multiple astrocyte functions beyond cytoskeletal remodelling. To better understand astrocyte reaction in AD, we conducted a systematic review of astrocyte immunohistochemical studies in post-mortem AD brains followed by bioinformatics analyses on the extracted reactive astrocyte markers. METHODS NCBI PubMed, APA PsycInfo and WoS-SCIE databases were interrogated for original English research articles with the search terms 'Alzheimer's disease' AND 'astrocytes.' Bioinformatics analyses included protein-protein interaction network analysis, pathway enrichment, and transcription factor enrichment, as well as comparison with public human -omics datasets. RESULTS A total of 306 articles meeting eligibility criteria rendered 196 proteins, most of which were reported to be upregulated in AD vs control brains. Besides cytoskeletal remodelling (e.g., GFAP), bioinformatics analyses revealed a wide range of functional alterations including neuroinflammation (e.g., IL6, MAPK1/3/8 and TNF), oxidative stress and antioxidant defence (e.g., MT1A/2A, NFE2L2, NOS1/2/3, PRDX6 and SOD1/2), lipid metabolism (e.g., APOE, CLU and LRP1), proteostasis (e.g., cathepsins, CRYAB and HSPB1/2/6/8), extracellular matrix organisation (e.g., CD44, MMP1/3 and SERPINA3), and neurotransmission (e.g., CHRNA7, GABA, GLUL, GRM5, MAOB and SLC1A2), among others. CTCF and ESR1 emerged as potential transcription factors driving these changes. Comparison with published -omics datasets validated our results, demonstrating a significant overlap with reported transcriptomic and proteomic changes in AD brains and/or CSF. CONCLUSIONS Our systematic review of the neuropathological literature reveals the complexity of AD reactive astrogliosis. We have shared these findings as an online resource available at www.astrocyteatlas.org.
Collapse
Affiliation(s)
- Lucía Viejo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ayush Noori
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Harvard College, Cambridge, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
| | - Emily Merrill
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
124
|
Nanclares C, Baraibar AM, Araque A, Kofuji P. Dysregulation of Astrocyte-Neuronal Communication in Alzheimer's Disease. Int J Mol Sci 2021; 22:7887. [PMID: 34360652 PMCID: PMC8346080 DOI: 10.3390/ijms22157887] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Recent studies implicate astrocytes in Alzheimer's disease (AD); however, their role in pathogenesis is poorly understood. Astrocytes have well-established functions in supportive functions such as extracellular ionic homeostasis, structural support, and neurovascular coupling. However, emerging research on astrocytic function in the healthy brain also indicates their role in regulating synaptic plasticity and neuronal excitability via the release of neuroactive substances named gliotransmitters. Here, we review how this "active" role of astrocytes at synapses could contribute to synaptic and neuronal network dysfunction and cognitive impairment in AD.
Collapse
Affiliation(s)
| | | | | | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; (C.N.); (A.M.B.); (A.A.)
| |
Collapse
|
125
|
Gaikwad S, Puangmalai N, Bittar A, Montalbano M, Garcia S, McAllen S, Bhatt N, Sonawane M, Sengupta U, Kayed R. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer's disease and frontotemporal dementia. Cell Rep 2021; 36:109419. [PMID: 34289368 PMCID: PMC8341760 DOI: 10.1016/j.celrep.2021.109419] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/03/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Aging, pathological tau oligomers (TauO), and chronic inflammation in the brain play a central role in tauopathies, including Alzheimer's disease (AD) and frontotemporal dementia (FTD). However, the underlying mechanism of TauO-induced aging-related neuroinflammation remains unclear. Here, we show that TauO-associated astrocytes display a senescence-like phenotype in the brains of patients with AD and FTD. TauO exposure triggers astrocyte senescence through high mobility group box 1 (HMGB1) release and inflammatory senescence-associated secretory phenotype (SASP), which mediates paracrine senescence in adjacent cells. HMGB1 release inhibition using ethyl pyruvate (EP) and glycyrrhizic acid (GA) prevents TauO-induced senescence through inhibition of p38-mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB)-the essential signaling pathways for SASP development. Despite the developed tauopathy in 12-month-old hTau mice, EP+GA treatment significantly decreases TauO and senescent cell loads in the brain, reduces neuroinflammation, and thus ameliorates cognitive functions. Collectively, TauO-induced HMGB1 release promotes cellular senescence and neuropathology, which could represent an important common pathomechanism in tauopathies including AD and FTD.
Collapse
Affiliation(s)
- Sagar Gaikwad
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alice Bittar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Stephanie Garcia
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Salome McAllen
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Minal Sonawane
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
126
|
Price BR, Johnson LA, Norris CM. Reactive astrocytes: The nexus of pathological and clinical hallmarks of Alzheimer's disease. Ageing Res Rev 2021; 68:101335. [PMID: 33812051 PMCID: PMC8168445 DOI: 10.1016/j.arr.2021.101335] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
Astrocyte reactivity is a hallmark of neuroinflammation that arises with Alzheimer’s disease (AD) and nearly every other neurodegenerative condition. While astrocytes certainly contribute to classic inflammatory processes (e.g. cytokine release, waste clearance, and tissue repair), newly emerging technologies for measuring and targeting cell specific activities in the brain have uncovered essential roles for astrocytes in synapse function, brain metabolism, neurovascular coupling, and sleep/wake patterns. In this review, we use a holistic approach to incorporate, and expand upon, classic neuroinflammatory concepts to consider how astrocyte dysfunction/reactivity modulates multiple pathological and clinical hallmarks of AD. Our ever-evolving understanding of astrocyte signaling in neurodegeneration is not only revealing new drug targets and treatments for dementia but is suggesting we reimagine AD pathophysiological mechanisms.
Collapse
Affiliation(s)
- Brittani R Price
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA, 02111, USA
| | - Lance A Johnson
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY, 40356, USA; Department of Physiology, University of Kentucky, College of Medicine, UK Medical Center MN 150, Lexington, KY, 40536, USA
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY, 40356, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, College of Medicine, UK Medical Center MN 150, Lexington, KY, 40536, USA.
| |
Collapse
|
127
|
Lin LE, Miao K, Qian C, Wei L. High spatial-resolution imaging of label-free in vivo protein aggregates by VISTA. Analyst 2021; 146:4135-4145. [PMID: 33949430 PMCID: PMC8238904 DOI: 10.1039/d1an00060h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Amyloid aggregation, formed by aberrant proteins, is a pathological hallmark for neurodegenerative diseases, including Alzheimer's disease and Huntington's disease. High-resolution holistic mapping of the fine structures from these aggregates should facilitate our understanding of their pathological roles. Here, we achieved label-free high-resolution imaging of the polyQ and the amyloid-beta (Aβ) aggregates in cells and tissues utilizing a sample-expansion stimulated Raman strategy. We further focused on characterizing the Aβ plaques in 5XFAD mouse brain tissues. 3D volumetric imaging enabled visualization of the whole plaques, resolving both the fine protein filaments and the surrounding components. Coupling our expanded label-free Raman imaging with machine learning, we obtained specific segmentation of aggregate cores, peripheral filaments together with cell nuclei and blood vessels by pre-trained convolutional neural network models. Combining with 2-channel fluorescence imaging, we achieved a 6-color holistic view of the same sample. This ability for precise and multiplex high-resolution imaging of the protein aggregates and their micro-environment without the requirement of labeling would open new biomedical applications.
Collapse
Affiliation(s)
- Li-En Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | |
Collapse
|
128
|
Bellaver B, Ferrari-Souza JP, Uglione da Ros L, Carter SF, Rodriguez-Vieitez E, Nordberg A, Pellerin L, Rosa-Neto P, Leffa DT, Zimmer ER. Astrocyte Biomarkers in Alzheimer Disease: A Systematic Review and Meta-analysis. Neurology 2021; 96:e2944-e2955. [PMID: 33952650 DOI: 10.1212/wnl.0000000000012109] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/19/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To perform a systematic review and meta-analysis to determine whether fluid and imaging astrocyte biomarkers are altered in Alzheimer disease (AD). METHODS PubMed and Web of Science databases were searched for articles reporting fluid or imaging astrocyte biomarkers in AD. Pooled effect sizes were determined with standardized mean differences (SMDs) using the Hedge G method with random effects to determine biomarker performance. Adapted questions from the Quality Assessment of Diagnostic Accuracy Studies were applied for quality assessment. A protocol for this study has been previously registered in PROSPERO (registration number: CRD42020192304). RESULTS The initial search identified 1,425 articles. After exclusion criteria were applied, 33 articles (a total of 3,204 individuals) measuring levels of glial fibrillary acidic protein (GFAP), S100B, chitinase-3-like protein 1 (YKL-40), and aquaporin 4 in the blood and CSF, as well as monoamine oxidase-B indexed by PET 11C-deuterium-l-deprenyl, were included. GFAP (SMD 0.94, 95% confidence interval [CI] 0.71-1.18) and YKL-40 (SMD 0.76, 95% CI 0.63-0.89) levels in the CSF and S100B levels in the blood (SMD 2.91, 95% CI 1.01-4.8) were found to be significantly increased in patients with AD. CONCLUSIONS Despite significant progress, applications of astrocyte biomarkers in AD remain in their early days. This meta-analysis demonstrated that astrocyte biomarkers are consistently altered in AD and supports further investigation for their inclusion in the AD clinical research framework for observational and interventional studies.
Collapse
Affiliation(s)
- Bruna Bellaver
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - João Pedro Ferrari-Souza
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Lucas Uglione da Ros
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Stephen F Carter
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Elena Rodriguez-Vieitez
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Agneta Nordberg
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Luc Pellerin
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Pedro Rosa-Neto
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Douglas Teixeira Leffa
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Eduardo R Zimmer
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil.
| |
Collapse
|
129
|
Park S, Kim HY, Oh HA, Shin J, Park IW, Yoon S, Woo DH, Kim Y. Quinacrine directly dissociates amyloid plaques in the brain of 5XFAD transgenic mouse model of Alzheimer's disease. Sci Rep 2021; 11:12043. [PMID: 34103615 PMCID: PMC8187640 DOI: 10.1038/s41598-021-91563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/28/2021] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia characterized by the abnormal accumulation of amyloid-β (Aβ) in the brain. Aβ misfolding is associated with neuroinflammation and synaptic dysfunction, leading to learning and memory deficits. Therefore, Aβ production and aggregation have been one of the most popular drug targets for AD. Failures of drug candidates regulating the aforementioned Aβ cascade stimulated development of immunotherapy agents for clearance of accumulated Aβ in the brain. Here, we report that quinacrine, a blood-brain barrier penetrating antimalarial chemical drug, dissociates Aβ plaques in the brain of AD transgenic mice. When co-incubated with pre-formed Aβ fibrils, quinacrine decreased thioflavin T-positive β-sheets in vitro, on top of its inhibitory function on the fibril formation. We confirmed that quinacrine induced dissociation of high-molecular-weight Aβ aggregates into low-molecular-weight species by dot blots in association with size cut-off filtrations. Quinacrine was then administered to adult 5XFAD transgenic mice via weekly intravenous injections for 6 weeks, and we found a significant reduction of Aβ plaques and astrocytosis in their cortex and hippocampus. In western blots of quinacrine-administered mouse brains, amelioration of AD-related biomarkers, glial fibrillary acidic protein, postsynaptic protein 95, phosphorylated cAMP response element-binding protein, phosphorylated c-Jun N-terminal kinase were observed. Lastly, quinacrine-stimulated dissociation of misfolded aggregates induced recovery of synaptic function associated with Aβ in excitatory post-synaptic current recordings of primary rat cortical neurons treated with Aβ aggregates and quinacrine. Collectively, quinacrine can directly dissociate Aβ fibrils and alleviate decreased synaptic functions.
Collapse
Affiliation(s)
- Sohui Park
- Department of Pharmacy, Department of Integrative Biotechnology and Translational Medicine, and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hye Yun Kim
- Department of Pharmacy, Department of Integrative Biotechnology and Translational Medicine, and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hyun-A Oh
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Jisu Shin
- Department of Pharmacy, Department of Integrative Biotechnology and Translational Medicine, and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - In Wook Park
- Department of Pharmacy, Department of Integrative Biotechnology and Translational Medicine, and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Soljee Yoon
- Department of Pharmacy, Department of Integrative Biotechnology and Translational Medicine, and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Dong Ho Woo
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy, Department of Integrative Biotechnology and Translational Medicine, and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea.
| |
Collapse
|
130
|
Liang Y, Raven F, Ward JF, Zhen S, Zhang S, Sun H, Miller SJ, Choi SH, Tanzi RE, Zhang C. Upregulation of Alzheimer's Disease Amyloid-β Protein Precursor in Astrocytes Both in vitro and in vivo. J Alzheimers Dis 2021; 76:1071-1082. [PMID: 32597805 DOI: 10.3233/jad-200128] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The amyloid cascade hypothesis of Alzheimer's disease (AD) posits that amyloid-β (Aβ) protein accumulation underlies the pathogenesis of the disease by leading to the formation of amyloid plaques, a pathologic hallmark of AD. Aβ is a proteolytic product of amyloid-β protein precursor (AβPP; APP), which is expressed in both neurons and astrocytes. Although considerable evidence shows that astrocytes may play critical roles in the pathogenesis of AD, the longitudinal changes of amyloid plaques in relationship to AβPP expression in astrocytes and cellular consequences are largely unknown. OBJECTIVE Here, we aimed to investigate astrocyte-related pathological changes of Aβ and AβPP using immunohistochemistry and biochemical studies in both animal and cell models. METHODS/RESULTS We utilized 5XFAD transgenic mice and found age-dependent upregulation of AβPP in astrocytes demonstrated with astrocytic reactive properties, which followed appearance of amyloid plaques in the brain. We also observed that AβPP proteins presented well-defined punctate immuno reactivity in young animals, whereas AβPP staining showed disrupted structures surrounding amyloid plaques in older mice. Moreover, we utilized astrocyte cell models and showed that pretreatment of Aβ42 resulted in downstream astrocyte autonomous changes, including up regulation in AβPP and BACE1 levels, as well as prolonged amyloidogenesis that could be reduced by pharmacological inhibition of BACE1. CONCLUSION Collectively, our results show that age-dependent AβPP up regulation in astrocytes is a key feature in AD, which will not only provide novel insights for understanding AD progression, but also may offer new therapeutic strategies for treating AD.
Collapse
Affiliation(s)
- Yingxia Liang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Frank Raven
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Joseph F Ward
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Sherri Zhen
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Siyi Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Haoqi Sun
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Sean J Miller
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Se Hoon Choi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
131
|
Wang SM, Park SH, Kim NY, Kang DW, Na HR, Um YH, Han S, Park SS, Lim HK. Association between Dementia and Clinical Outcome after COVID-19: A Nationwide Cohort Study with Propensity Score Matched Control in South Korea. Psychiatry Investig 2021; 18:523-529. [PMID: 34218641 PMCID: PMC8256148 DOI: 10.30773/pi.2021.0064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/31/2021] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Despite a high prevalence of dementia in older adults hospitalized with severe acute respiratory syndrome coronavirus 2 infection (SARS-CoV-2), or so called COVID-19, research investigating association between preexisting diagnoses of dementia and prognosis of COVID-19 is scarce. We aimed to investigate treatment outcome of patients with dementia after COVID-19. METHODS We explored a nationwide cohort with a total of 2,800 subjects older than 50 years who were diagnosed with COVID-19 between January and April 2020. Among them, 223 patients had underlying dementia (dementia group). We matched 1:1 for each dementia- non-dementia group pair yielding 223 patients without dementia (no dementia group) using propensity score matching. RESULTS Mortality rate after COVID-19 was higher in dementia group than in no dementia group (33.6% vs. 20.2%, p=0.002). Dementia group had higher proportion of patients requiring invasive ventilatory support than no dementia group (34.1% vs. 22.0%, p=0.006). Multivariable analysis showed that dementia group had a higher risk of mortality than no dementia group (odds ratio=3.05, p<0.001). We also found that patients in dementia group had a higher risk of needing invasive ventilatory support than those in no dementia group. CONCLUSION Our results suggest that system including strengthen quarantines are required for patients with dementia during the COVID- 19 pandemic.
Collapse
Affiliation(s)
- Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - See Hyun Park
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nak-Young Kim
- Department of Psychiatry, Keyo Hospital, Uiwang, Republic of Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hae-Ran Na
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Seunghoon Han
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Soo Park
- Department of Hematology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
132
|
Chiareli RA, Carvalho GA, Marques BL, Mota LS, Oliveira-Lima OC, Gomes RM, Birbrair A, Gomez RS, Simão F, Klempin F, Leist M, Pinto MCX. The Role of Astrocytes in the Neurorepair Process. Front Cell Dev Biol 2021; 9:665795. [PMID: 34113618 PMCID: PMC8186445 DOI: 10.3389/fcell.2021.665795] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Astrocytes are highly specialized glial cells responsible for trophic and metabolic support of neurons. They are associated to ionic homeostasis, the regulation of cerebral blood flow and metabolism, the modulation of synaptic activity by capturing and recycle of neurotransmitters and maintenance of the blood-brain barrier. During injuries and infections, astrocytes act in cerebral defense through heterogeneous and progressive changes in their gene expression, morphology, proliferative capacity, and function, which is known as reactive astrocytes. Thus, reactive astrocytes release several signaling molecules that modulates and contributes to the defense against injuries and infection in the central nervous system. Therefore, deciphering the complex signaling pathways of reactive astrocytes after brain damage can contribute to the neuroinflammation control and reveal new molecular targets to stimulate neurorepair process. In this review, we present the current knowledge about the role of astrocytes in brain damage and repair, highlighting the cellular and molecular bases involved in synaptogenesis and neurogenesis. In addition, we present new approaches to modulate the astrocytic activity and potentiates the neurorepair process after brain damage.
Collapse
Affiliation(s)
| | | | | | - Lennia Soares Mota
- Department of Pharmacology, Federal University of Goias, Goiânia, Brazil
| | | | | | - Alexander Birbrair
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Renato Santiago Gomez
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício Simão
- Research Division, Vascular Cell Biology, Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| | | | - Marcel Leist
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
133
|
Neuroinflammation in Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9050524. [PMID: 34067173 PMCID: PMC8150909 DOI: 10.3390/biomedicines9050524] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease associated with human aging. Ten percent of individuals over 65 years have AD and its prevalence continues to rise with increasing age. There are currently no effective disease modifying treatments for AD, resulting in increasingly large socioeconomic and personal costs. Increasing age is associated with an increase in low-grade chronic inflammation (inflammaging) that may contribute to the neurodegenerative process in AD. Although the exact mechanisms remain unclear, aberrant elevation of reactive oxygen and nitrogen species (RONS) levels from several endogenous and exogenous processes in the brain may not only affect cell signaling, but also trigger cellular senescence, inflammation, and pyroptosis. Moreover, a compromised immune privilege of the brain that allows the infiltration of peripheral immune cells and infectious agents may play a role. Additionally, meta-inflammation as well as gut microbiota dysbiosis may drive the neuroinflammatory process. Considering that inflammatory/immune pathways are dysregulated in parallel with cognitive dysfunction in AD, elucidating the relationship between the central nervous system and the immune system may facilitate the development of a safe and effective therapy for AD. We discuss some current ideas on processes in inflammaging that appear to drive the neurodegenerative process in AD and summarize details on a few immunomodulatory strategies being developed to selectively target the detrimental aspects of neuroinflammation without affecting defense mechanisms against pathogens and tissue damage.
Collapse
|
134
|
Garg J, Lakhani A, Dave V. Effects of the Involvement of Calcium Channels on Neuronal Hyperexcitability Related to Alzheimer’s Disease: A Computational Model. NEUROPHYSIOLOGY+ 2021. [DOI: 10.1007/s11062-021-09890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
135
|
Lim D, Jeong JH, Song J. Lipocalin 2 regulates iron homeostasis, neuroinflammation, and insulin resistance in the brains of patients with dementia: Evidence from the current literature. CNS Neurosci Ther 2021; 27:883-894. [PMID: 33945675 PMCID: PMC8265939 DOI: 10.1111/cns.13653] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022] Open
Abstract
Dementia accompanied by memory loss is considered one of the most common neurodegenerative diseases worldwide, and its prevalence is gradually increasing. Known risk factors for dementia include genetic background, certain lifestyle and dietary patterns, smoking, iron overload, insulin resistance, and impaired glucose metabolism in the brain. Here, we review recent evidence on the regulatory role of lipocalin 2 (LCN2) in dementia from various perspectives. LCN2 is a neutrophil gelatinase-associated protein that influences diverse cellular processes, including the immune system, iron homeostasis, lipid metabolism, and inflammatory responses. Although its functions within the peripheral system are most widely recognized, recent findings have revealed links between LCN2 and central nervous system diseases, as well as novel roles for LCN2 in neurons and glia. Furthermore, LCN2 may modulate diverse pathological mechanisms involved in dementia. Taken together, LCN2 is a promising therapeutic target with which to address the neuropathology of dementia.
Collapse
Affiliation(s)
- Daejin Lim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Chonnam National University, Gwangju, Korea
| |
Collapse
|
136
|
Amyloid β Clearance Is Disrupted by Depletion of Low-Density Lipoprotein Receptor-Related Protein 4 (LRP4) in Astrocytes. J Neurosci 2021; 41:3749-3751. [PMID: 33910985 DOI: 10.1523/jneurosci.2352-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/24/2020] [Accepted: 02/01/2020] [Indexed: 11/21/2022] Open
|
137
|
Halford JJ, Sperling MR, Arkilo D, Asgharnejad M, Zinger C, Xu R, During M, French JA. A phase 1b/2a study of soticlestat as adjunctive therapy in participants with developmental and/or epileptic encephalopathies. Epilepsy Res 2021; 174:106646. [PMID: 33940389 DOI: 10.1016/j.eplepsyres.2021.106646] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/22/2021] [Accepted: 04/20/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To evaluate the safety, tolerability, and pharmacokinetics of soticlestat, a first-in-class cholesterol 24-hydroxylase inhibitor, in adults with developmental and/or epileptic encephalopathies (DEE). METHODS The study comprised a 30-day, randomized, double-blind, placebo-controlled phase (Part A), followed by a 55-day open-label phase (Part B) (ClinicalTrials.gov ID: NCT03166215) . In Part A, patients with DEE and at least one bilateral motor seizure during the 4-week prospective baseline period were randomized 4:1 to receive soticlestat or placebo, in addition to their usual antiseizure medication. In Part B, all patients received open-label soticlestat. Soticlestat doses were titrated according to tolerability to a maximum of 300 mg twice daily (BID). Safety evaluations included the incidence of treatment-emergent adverse events (TEAEs). Plasma soticlestat concentrations were measured at various times for determination of multiple-dose pharmacokinetics and 24S-hydroxycholesterol (24HC). Efficacy was assessed by evaluation of changes in seizure frequency from baseline. RESULTS Eighteen patients (median age, 28.5 years) were enrolled and randomized, and 14 (78 %) completed the study. In Part A, TEAEs occurred in 71.4 % of soticlestat-treated patients and 100 % of placebo-treated patients. In Part B, the overall incidence of TEAEs was 68.8 %. In Part A, TEAEs that occurred in more than one patient in the soticlestat group were dysarthria (n = 3, 21.4 %), lethargy (n = 2, 14.3 %), upper respiratory tract infection (n = 2, 14.3 %), fatigue (n = 2, 14.3 %), and headache (n = 2, 14.3 %). Four patients discontinued treatment because of TEAEs, of whom two reported drug-related seizure clusters as serious TEAEs. There were no deaths. Pharmacokinetic analysis showed dose-dependent increases in systemic exposure and peak plasma soticlestat concentrations. At the end of Part B, the overall mean percent change from baseline in plasma 24HC was -80.97 %. Changes from baseline in median seizure frequency were +16.71 % and +22.16 % in the soticlestat and placebo groups, respectively, in Part A, and -36.38 % in all participants in Part B. CONCLUSION Soticlestat was well tolerated at doses of up to 300 mg BID and was associated with a reduction in median seizure frequency over the study duration. Further studies are warranted to assess the possible efficacy of soticlestat as adjunctive therapy in patients with DEEs such as Dravet syndrome and Lennox-Gastaut syndrome.
Collapse
Affiliation(s)
| | | | | | | | | | - Rengyi Xu
- Takeda Pharmaceuticals, Bannockburn, IL, USA
| | | | | |
Collapse
|
138
|
Albert K, Niskanen J, Kälvälä S, Lehtonen Š. Utilising Induced Pluripotent Stem Cells in Neurodegenerative Disease Research: Focus on Glia. Int J Mol Sci 2021; 22:ijms22094334. [PMID: 33919317 PMCID: PMC8122303 DOI: 10.3390/ijms22094334] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism's somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer's disease and Parkinson's disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.
Collapse
Affiliation(s)
- Katrina Albert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Jonna Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (J.N.); (S.K.)
| | - Sara Kälvälä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (J.N.); (S.K.)
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (J.N.); (S.K.)
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
- Correspondence:
| |
Collapse
|
139
|
Xie W, Kim KH, Vince R, More SS. The Amyloid Aggregation Accelerator Diacetyl Prevents Cognitive Decline in Alzheimer's Mouse Models. Chem Res Toxicol 2021; 34:1355-1366. [PMID: 33857375 DOI: 10.1021/acs.chemrestox.1c00089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diacetyl (DA), a food flavorant, is linked with occupational lung disease. Our in vitro experiments described the formation of a covalent adduct by DA with Arg5 of the Aβ1-42 peptide, which resulted in only a transient increase in neurotoxicity in SH-SY5Y cells. However, in vivo implications of these effects on Alzheimer's disease (AD) pathogenesis and the underlying mechanisms remain poorly understood. In the APP/PS1 transgenic AD mouse model, DA treatment did not exacerbate learning and memory deficits in the Morris water maze test. Moreover, DA increased the Aβ1-42 plaque burden and decreased neuronal inflammation in the transgenic AD mice. Additionally, cognitive impairment induced by intracerebroventricular Aβ1-42 was restored by the DA treatment, as assessed by the T-maze test. A corresponding mitigation of neuronal inflammation was also observed in the hippocampus of these nontransgenic mice due to the acceleration of Aβ1-42 aggregation by DA into nontoxic plaques. The data from SDS-PAGE, dot-blot, and TEM in vitro experiments corroborated the acceleration of the Aβ1-42 aggregation observed in vivo in AD animal models and characterized the DA-induced formation of Aβ1-42 fibrils. Such Aβ1-42-DA fibrils were unstable in the presence of detergent and amenable to detection by the thioflavin T reagent, thus underscoring the distinct assembly of these fibrils compared to that of the fibrils of the native Aβ1-42. Taken together, the results of this study present for the first time the in vivo implications of the DA-induced acceleration of Aβ1-42 and may provide a strategy for the rational design of Aβ1-42 aggregation accelerators as AD therapeutics that promote oligomer-free Aβ1-42 fibril formation.
Collapse
Affiliation(s)
- Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kwan Hyun Kim
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Swati S More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
140
|
Lana D, Ugolini F, Nosi D, Wenk GL, Giovannini MG. The Emerging Role of the Interplay Among Astrocytes, Microglia, and Neurons in the Hippocampus in Health and Disease. Front Aging Neurosci 2021; 13:651973. [PMID: 33889084 PMCID: PMC8055856 DOI: 10.3389/fnagi.2021.651973] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
For over a century, neurons have been considered the basic functional units of the brain while glia only elements of support. Activation of glia has been long regarded detrimental for survival of neurons but more it appears that this is not the case in all circumstances. In this review, we report and discuss the recent literature on the alterations of astrocytes and microglia during inflammaging, the low-grade, slow, chronic inflammatory response that characterizes normal brain aging, and in acute inflammation. Becoming reactive, astrocytes and microglia undergo transcriptional, functional, and morphological changes that transform them into cells with different properties and functions, such as A1 and A2 astrocytes, and M1 and M2 microglia. This classification of microglia and astrocytes in two different, all-or-none states seems too simplistic, and does not correspond to the diverse variety of phenotypes so far found in the brain. Different interactions occur among the many cell populations of the central nervous system in health and disease conditions. Such interactions give rise to networks of morphological and functional reciprocal reliance and dependency. Alterations affecting one cell population reverberate to the others, favoring or dysregulating their activities. In the last part of this review, we present the modifications of the interplay between neurons and glia in rat models of brain aging and acute inflammation, focusing on the differences between CA1 and CA3 areas of the hippocampus, one of the brain regions most susceptible to different insults. With triple labeling fluorescent immunohistochemistry and confocal microscopy (TIC), it is possible to evaluate and compare quantitatively the morphological and functional alterations of the components of the neuron-astrocyte-microglia triad. In the contiguous and interconnected regions of rat hippocampus, CA1 and CA3 Stratum Radiatum, astrocytes and microglia show a different, finely regulated, and region-specific reactivity, demonstrating that glia responses vary in a significant manner from area to area. It will be of great interest to verify whether these differential reactivities of glia explain the diverse vulnerability of the hippocampal areas to aging or to different damaging insults, and particularly the higher sensitivity of CA1 pyramidal neurons to inflammatory stimuli.
Collapse
Affiliation(s)
- Daniele Lana
- Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Section of Anatomopatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gary L Wenk
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Maria Grazia Giovannini
- Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
141
|
Trujillo-Estrada L, Sanchez-Mejias E, Sanchez-Varo R, Garcia-Leon JA, Nuñez-Diaz C, Davila JC, Vitorica J, LaFerla FM, Moreno-Gonzalez I, Gutierrez A, Baglietto-Vargas D. Animal and Cellular Models of Alzheimer's Disease: Progress, Promise, and Future Approaches. Neuroscientist 2021; 28:572-593. [PMID: 33769131 DOI: 10.1177/10738584211001753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease affecting over 45 million people worldwide. Transgenic mouse models have made remarkable contributions toward clarifying the pathophysiological mechanisms behind the clinical manifestations of AD. However, the limited ability of these in vivo models to accurately replicate the biology of the human disease have precluded the translation of promising preclinical therapies to the clinic. In this review, we highlight several major pathogenic mechanisms of AD that were discovered using transgenic mouse models. Moreover, we discuss the shortcomings of current animal models and the need to develop reliable models for the sporadic form of the disease, which accounts for the majority of AD cases, as well as human cellular models to improve success in translating results into human treatments.
Collapse
Affiliation(s)
- Laura Trujillo-Estrada
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Elisabeth Sanchez-Mejias
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raquel Sanchez-Varo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Antonio Garcia-Leon
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Cristina Nuñez-Diaz
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jose Carlos Davila
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Vitorica
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.,Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Ines Moreno-Gonzalez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonia Gutierrez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - David Baglietto-Vargas
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
142
|
Park MW, Cha HW, Kim J, Kim JH, Yang H, Yoon S, Boonpraman N, Yi SS, Yoo ID, Moon JS. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer's diseases. Redox Biol 2021; 41:101947. [PMID: 33774476 PMCID: PMC8027773 DOI: 10.1016/j.redox.2021.101947] [Citation(s) in RCA: 382] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of Alzheimer's disease (AD). Mitochondrial dysfunction is linked to oxidative stress and reactive oxygen species (ROS) in neurotoxicity during AD. Impaired mitochondrial metabolism has been associated with mitochondrial dysfunction in brain damage of AD. While the role of NADPH oxidase 4 (NOX4), a major source of ROS, has been identified in brain damage, the mechanism by which NOX4 regulates ferroptosis of astrocytes in AD remains unclear. Here, we show that the protein levels of NOX4 were significantly elevated in impaired astrocytes of cerebral cortex from patients with AD and APP/PS1 double-transgenic mouse model of AD. The levels of 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), a marker of oxidative stress-induced lipid peroxidation, were significantly also elevated in impaired astrocytes of patients with AD and mouse AD. We demonstrate that the over-expression of NOX4 significantly increases the impairment of mitochondrial metabolism by inhibition of mitochondrial respiration and ATP production via the reduction of five protein complexes in the mitochondrial ETC in human astrocytes. Moreover, the elevation of NOX4 induces oxidative stress by mitochondrial ROS (mtROS) production, mitochondrial fragmentation, and inhibition of cellular antioxidant process in human astrocytes. Furthermore, the elevation of NOX4 increased ferroptosis-dependent cytotoxicity by the activation of oxidative stress-induced lipid peroxidation in human astrocytes. These results suggest that NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in AD.
Collapse
Affiliation(s)
- Min Woo Park
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea
| | - Hyeon Woo Cha
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea
| | - Junhyung Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea
| | - Jung Han Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea
| | - Haesung Yang
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea; BK21 Four Project, Department of Biomedical Laboratory Science, General Graduate School, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea
| | - Sunmi Yoon
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea; BK21 Four Project, Department of Biomedical Laboratory Science, General Graduate School, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea
| | - Napissara Boonpraman
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea; BK21 Four Project, Department of Biomedical Laboratory Science, General Graduate School, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea; BK21 Four Project, Department of Biomedical Laboratory Science, General Graduate School, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Chungcheongnam-do, Republic of Korea
| | - Ik Dong Yoo
- Department of Nuclear Medicine, Soonchunhyang University Hospital Cheonan, Cheonan, 31151, Chungcheongnam-do, Republic of Korea.
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, Republic of Korea.
| |
Collapse
|
143
|
Fleeman RM, Proctor EA. Astrocytic Propagation of Tau in the Context of Alzheimer's Disease. Front Cell Neurosci 2021; 15:645233. [PMID: 33815065 PMCID: PMC8010320 DOI: 10.3389/fncel.2021.645233] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/19/2021] [Indexed: 01/14/2023] Open
Abstract
More than 6 million Americans are currently living with Alzheimer's disease (AD), and the incidence is growing rapidly with our aging population. Numerous therapeutics have failed to make it to the clinic, potentially due to a focus on presumptive pathogenic proteins instead of cell-type-specific signaling mechanisms. The tau propagation hypothesis that inter-neuronal tau transfer drives AD pathology has recently garnered attention, as accumulation of pathological tau in the brain has high clinical significance in correlating with progression of cognitive AD symptoms. However, studies on tau pathology in AD are classically neuron-centric and have greatly overlooked cell-type specific effects of tau internalization, degradation, and propagation. While the contribution of microglia to tau processing and propagation is beginning to be recognized and understood, astrocytes, glial cells in the brain important for maintaining neuronal metabolic, synaptic, trophic, and immune function which can produce, internalize, degrade, and propagate tau are understudied in their ability to affect AD progression through tau pathology. Here, we showcase evidence for whether tau uptake by astrocytes may be beneficial or detrimental to neuronal health and how astrocytes and their immunometabolic functions may be key targets for future successful AD therapies.
Collapse
Affiliation(s)
- Rebecca M Fleeman
- Department of Neurosurgery, Department of Pharmacology, College of Medicine, Pennsylvania State University (PSU), Hershey, PA, United States.,Center for Neural Engineering, Pennsylvania State University (PSU), University Park, PA, United States
| | - Elizabeth A Proctor
- Department of Neurosurgery, Department of Pharmacology, College of Medicine, Pennsylvania State University (PSU), Hershey, PA, United States.,Department of Biomedical Engineering, Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University (PSU), University Park, PA, United States
| |
Collapse
|
144
|
Corsi-Zuelli F, Deakin B. Impaired regulatory T cell control of astroglial overdrive and microglial pruning in schizophrenia. Neurosci Biobehav Rev 2021; 125:637-653. [PMID: 33713699 DOI: 10.1016/j.neubiorev.2021.03.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/16/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
It is widely held that schizophrenia involves an active process of peripheral inflammation that induces or reflects brain inflammation with activation of microglia, the brain's resident immune cells. However, recent in vivo radioligand binding studies and large-scale transcriptomics in post-mortem brain report reduced markers of microglial inflammation. The findings suggest a contrary hypothesis; that microglia are diverted into their non-inflammatory synaptic remodelling phenotype that interferes with neurodevelopment and perhaps contributes to the relapsing nature of schizophrenia. Recent discoveries on the regulatory interactions between micro- and astroglial cells and immune regulatory T cells (Tregs) cohere with clinical omics data to suggest that: i) disinhibited astrocytes mediate the shift in microglial phenotype via the production of transforming growth factor-beta, which also contributes to the disturbances of dopamine and GABA function in schizophrenia, and ii) systemically impaired functioning of Treg cells contributes to the dysregulation of glial function, the low-grade peripheral inflammation, and the hitherto unexplained predisposition to auto-immunity and reduced life-expectancy in schizophrenia, including greater COVID-19 mortality.
Collapse
Affiliation(s)
- Fabiana Corsi-Zuelli
- Department of Neuroscience and Behaviour, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, São Paulo, Brazil
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
145
|
Song L, Wells EA, Robinson AS. Critical Molecular and Cellular Contributors to Tau Pathology. Biomedicines 2021; 9:190. [PMID: 33672982 PMCID: PMC7918468 DOI: 10.3390/biomedicines9020190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Tauopathies represent a group of neurodegenerative diseases including Alzheimer's disease (AD) that are characterized by the deposition of filamentous tau aggregates in the brain. The pathogenesis of tauopathies starts from the formation of toxic 'tau seeds' from hyperphosphorylated tau monomers. The presence of specific phosphorylation sites and heat shock protein 90 facilitates soluble tau protein aggregation. Transcellular propagation of pathogenic tau into synaptically connected neuronal cells or adjacent glial cells via receptor-mediated endocytosis facilitate disease spread through the brain. While neuroprotective effects of glial cells-including phagocytotic microglial and astroglial phenotypes-have been observed at the early stage of neurodegeneration, dysfunctional neuronal-glial cellular communication results in a series of further pathological consequences as the disease progresses, including abnormal axonal transport, synaptic degeneration, and neuronal loss, accompanied by a pro-inflammatory microenvironment. Additionally, the discovery of microtubule-associated protein tau (MAPT) gene mutations and the strongest genetic risk factor of tauopathies-an increase in the presence of the ε2 allele of apolipoprotein E (ApoE)-provide important clues to understanding tau pathology progression. In this review, we describe the crucial signaling pathways and diverse cellular contributors to the progression of tauopathies. A systematic understanding of disease pathogenesis provides novel insights into therapeutic targets within altered signaling pathways and is of great significance for discovering effective treatments for tauopathies.
Collapse
Affiliation(s)
| | | | - Anne Skaja Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (L.S.); (E.A.W.)
| |
Collapse
|
146
|
Rosa JM, Camargo A, Wolin IAV, Kaster MP, Rodrigues ALS. Physical exercise prevents amyloid β 1-40-induced disturbances in NLRP3 inflammasome pathway in the hippocampus of mice. Metab Brain Dis 2021; 36:351-359. [PMID: 33211258 DOI: 10.1007/s11011-020-00646-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Amyloid beta (Aβ), one of the main hallmarks of Alzheimer's Disease (AD), may stimulate pattern recognition receptors (PRR) such as the NLRP3 inflammasome, inducing a pro-inflammatory state in the brain that contributes to disease development. Physical exercise can have multiple beneficial effects on brain function, including anti-inflammatory and neuroprotective roles. The objective of this study was to investigate the prophylactic effect of moderate treadmill exercise for 4 weeks on inflammatory events related to NLRP3 signaling in the hippocampus of mice after intracerebroventricular Aβ1-40 administration. Our results show that Aβ1-40 administration (400 pmol/mouse, i.c.v.) significantly increased the immunocontent Iba-1 (a microglial reactivity marker), NLRP3, TXNIP, and caspase-1 in the hippocampus of mice. However, physical exercise prevented the hippocampal increase in Iba-1, TXNIP, and activation of the NLRP3 inflammasome pathway caused by Aβ1-40. Moreover, physical exercise per se reduced the TXNIP and caspase-1 immunocontent in the hippocampus. No alterations were observed on the immunocontent of GFAP, ASC, and IL-1β in the hippocampus after Aβ1-40 and/or physical exercise. These results reinforce the role of NLRP3 inflammasome pathway in AD and point to physical exercise as a possible non-pharmacological strategy to prevent inflammatory events triggered by Aβ1-40 in mice.
Collapse
Affiliation(s)
- Julia M Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Ingrid A V Wolin
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Manuella P Kaster
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil.
| |
Collapse
|
147
|
Leng K, Li E, Eser R, Piergies A, Sit R, Tan M, Neff N, Li SH, Rodriguez RD, Suemoto CK, Leite REP, Ehrenberg AJ, Pasqualucci CA, Seeley WW, Spina S, Heinsen H, Grinberg LT, Kampmann M. Molecular characterization of selectively vulnerable neurons in Alzheimer's disease. Nat Neurosci 2021; 24:276-287. [PMID: 33432193 PMCID: PMC7854528 DOI: 10.1038/s41593-020-00764-7] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/20/2020] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease (AD) is characterized by the selective vulnerability of specific neuronal populations, the molecular signatures of which are largely unknown. To identify and characterize selectively vulnerable neuronal populations, we used single-nucleus RNA sequencing to profile the caudal entorhinal cortex and the superior frontal gyrus-brain regions where neurofibrillary inclusions and neuronal loss occur early and late in AD, respectively-from postmortem brains spanning the progression of AD-type tau neurofibrillary pathology. We identified RORB as a marker of selectively vulnerable excitatory neurons in the entorhinal cortex and subsequently validated their depletion and selective susceptibility to neurofibrillary inclusions during disease progression using quantitative neuropathological methods. We also discovered an astrocyte subpopulation, likely representing reactive astrocytes, characterized by decreased expression of genes involved in homeostatic functions. Our characterization of selectively vulnerable neurons in AD paves the way for future mechanistic studies of selective vulnerability and potential therapeutic strategies for enhancing neuronal resilience.
Collapse
Affiliation(s)
- Kun Leng
- Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Emmy Li
- Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Rana Eser
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Antonia Piergies
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Rene Sit
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Song Hua Li
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Roberta Diehl Rodriguez
- Department of Neurology, Universidade de São Paulo, Faculdade de Medicina, São Paulo, Brazil
| | - Claudia Kimie Suemoto
- Department of Pathology, Universidade de São Paulo, Faculdade de Medicina, São Paulo, Brazil
- Division of Geriatrics, Department of Clinical Medicine, Universidade de São Paulo, Faculdade de Medicina, São Paulo, Brazil
| | | | - Alexander J Ehrenberg
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos A Pasqualucci
- Department of Pathology, Universidade de São Paulo, Faculdade de Medicina, São Paulo, Brazil
| | - William W Seeley
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Salvatore Spina
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Helmut Heinsen
- Department of Pathology, Universidade de São Paulo, Faculdade de Medicina, São Paulo, Brazil
- Department of Psychiatry, University of Würzburg, Würzburg, Germany
| | - Lea T Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, Universidade de São Paulo, Faculdade de Medicina, São Paulo, Brazil.
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Martin Kampmann
- Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
148
|
Sarkar S, Biswas SC. Astrocyte subtype-specific approach to Alzheimer's disease treatment. Neurochem Int 2021; 145:104956. [PMID: 33503465 DOI: 10.1016/j.neuint.2021.104956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/08/2023]
Abstract
Astrocytes respond to any pathological condition in the central nervous system (CNS) including Alzheimer's disease (AD), and this response is called astrocyte reactivity. Astrocyte reaction to a CNS insult is a highly heterogeneous phenomenon in which the astrocytes undergo a set of morphological, molecular and functional changes with a characteristic secretome profile. Such astrocytes are termed as 'reactive astrocytes'. Controversies regarding the reactive astrocytes abound. Recently, a continuum of reactive astrocyte profiles with distinct transcriptional states has been identified. Among them, disease-associated astrocytes (DAA) were uniquely present in AD mice and expressed a signature set of genes implicated in complement cascade, endocytosis and aging. Earlier, two stimulus-specific reactive astrocyte subtypes with their unique transcriptomic signatures were identified using mouse models of neuroinflammation and ischemia and termed as A1 astrocytes (detrimental) and A2 astrocytes (beneficial) respectively. Interestingly, although most of the A1 signature genes were also detected in DAA, as opposed to A2 astrocyte signatures, some of the A1 specific genes were expressed in other astrocyte subtypes, indicating that these nomenclature-based signatures are not very specific. In this review, we elaborate the disparate functions and cytokine profiles of reactive astrocyte subtypes in AD and tried to distinguish them by designating neurotoxic astrocytes as A1-like and neuroprotective ones as A2-like without directly referring to the A1/A2 original nomenclature. We have also focused on the dual nature from a functional perspective of some cytokines depending on AD-stage, highlighting a number of them as major candidates in AD therapy. Therefore, we suggest that promoting subtype-specific beneficial roles, inhibiting subtype-specific detrimental roles or targeting subtype-specific cytokines constitute a novel therapeutic approach to AD treatment.
Collapse
Affiliation(s)
- Sukanya Sarkar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Subhas C Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700 032, India.
| |
Collapse
|
149
|
Abstract
The history of Alzheimer's disease (AD) started in 1907, but we needed to wait until the end of the century to identify the components of pathological hallmarks and genetic subtypes and to formulate the first pathogenic hypothesis. Thanks to biomarkers and new technologies, the concept of AD then rapidly changed from a static view of an amnestic dementia of the presenium to a biological entity that could be clinically manifested as normal cognition or dementia of different types. What is clearly emerging from studies is that AD is heterogeneous in each aspect, such as amyloid composition, tau distribution, relation between amyloid and tau, clinical symptoms, and genetic background, and thus it is probably impossible to explain AD with a single pathological process. The scientific approach to AD suffers from chronological mismatches between clinical, pathological, and technological data, causing difficulty in conceiving diagnostic gold standards and in creating models for drug discovery and screening. A recent mathematical computer-based approach offers the opportunity to study AD in real life and to provide a new point of view and the final missing pieces of the AD puzzle.
Collapse
Affiliation(s)
- Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
150
|
Sahu B, Mackos AR, Floden AM, Wold LE, Combs CK. Particulate Matter Exposure Exacerbates Amyloid-β Plaque Deposition and Gliosis in APP/PS1 Mice. J Alzheimers Dis 2021; 80:761-774. [PMID: 33554902 PMCID: PMC8100996 DOI: 10.3233/jad-200919] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) plaques, neuroinflammation, and neuronal death. There are several well-established genetic and environmental factors hypothesized to contribute to AD progression including air pollution. However, the molecular mechanisms by which air pollution exacerbates AD are unclear. OBJECTIVE This study explored the effects of particulate matter exposure on AD-related brain changes using the APP/PS1 transgenic model of disease. METHODS Male C57BL/6;C3H wild type and APP/PS1 mice were exposed to either filtered air (FA) or particulate matter sized under 2.5μm (PM2.5) for 6 h/day, 5 days/week for 3 months and brains were collected. Immunohistochemistry for Aβ, GFAP, Iba1, and CD68 and western blot analysis for PS1, BACE, APP, GFAP, and Iba1 were performed. Aβ ELISAs and cytokine arrays were performed on frozen hippocampal and cortical lysates, respectively. RESULTS The Aβ plaque load was significantly increased in the hippocampus of PM2.5-exposed APP/PS1 mice compared to their respective FA controls. Additionally, in the PM2.5-exposed APP/PS1 group, increased astrocytosis and microgliosis were observed as indicated by elevated GFAP, Iba1, and CD68 immunoreactivities. PM2.5 exposure also led to an elevation in the levels of PS1 and BACE in APP/PS1 mice. The cytokines TNF-α, IL-6, IL-1β, IFN-γ, and MIP-3α were also elevated in the cortices of PM2.5-exposed APP/PS1 mice compared to FA controls. CONCLUSION Our data suggest that chronic particulate matter exposure exacerbates AD by increasing Aβ plaque load, gliosis, and the brain inflammatory status.
Collapse
Affiliation(s)
- Bijayani Sahu
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037
| | - Amy R. Mackos
- College of Nursing, The Ohio State University, Columbus, OH
| | - Angela M. Floden
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037
| | - Loren E. Wold
- College of Nursing, The Ohio State University, Columbus, OH
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH
| | - Colin K. Combs
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037
| |
Collapse
|