101
|
Salarinasab S, Salimi L, Alidadiani N, Shokrollahi E, Arzhanga P, Karbasforush S, Marofi F, Nasirzadeh M, Rahbarghazi R, Nourazarian A, Nikanfar M. Interaction of opioid with insulin/IGFs signaling in Alzheimer's disease. J Mol Neurosci 2020; 70:819-834. [PMID: 32026387 DOI: 10.1007/s12031-020-01478-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease is associated with biochemical and histopathological changes characterized by molecular abnormalities. Due to the lack of effective treatments for Alzheimer's disease, many attempts have been made to find potential therapies to reduce or even return neuronal loss after disease initiation. Alzheimer's disease is also touted as type III diabetes, showing an association with insulin signaling. The large distribution of the insulin receptor on the cell surface and its regulatory role in the central nervous system suggests that the pathogenesis of Alzheimer's disease could be ascribed to insulin signaling. The interference of opioids, such as morphine with insulin signaling pathways, is thought to occur via direct crosstalk between the signaling pathways of the insulin receptor and the mu-opioid receptor. In this review article, we discuss the possible crosstalk between the mu-opioid receptor and insulin signaling pathways. The association of these two signaling pathways with Alzheimer's disease is also debated.
Collapse
Affiliation(s)
- Sadegh Salarinasab
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Leila Salimi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Alidadiani
- Department of Cardiac Surgery, Friedrich-Alexander-University Erlangen-Nürnberg, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Elhameh Shokrollahi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Pishva Arzhanga
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saedeh Karbasforush
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Nasirzadeh
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Imam Reza St, Golgasht St, Tabriz, 51666-14756, Iran.
| | - Alireza Nourazarian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht St, Tabriz, 51666-16471, Iran.
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
102
|
Pandey S, Phulara SC, Mishra SK, Bajpai R, Kumar A, Niranjan A, Lehri A, Upreti DK, Chauhan PS. Betula utilis extract prolongs life expectancy, protects against amyloid-β toxicity and reduces Alpha Synuclien in Caenorhabditis elegans via DAF-16 and SKN-1. Comp Biochem Physiol C Toxicol Pharmacol 2020; 228:108647. [PMID: 31669661 DOI: 10.1016/j.cbpc.2019.108647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/19/2023]
Abstract
Betula utilis (BU), an important medicinal plant that grows in high altitudes of the Himalayan region, has been utilized traditionally due to it's antibacterial, hepatoprotective, and anti-tumor properties. Here, we demonstrated the longevity and amyloid-β toxicity attenuating activity of B. utilis ethanolic extract (BUE) in Caenorhabditis elegans. Lifespan of the worms was observed under both the standard laboratory and stress (oxidative and thermal) conditions. Effect of BUE was also observed on the attenuation of age-dependent physiological parameters. Further, gene-specific mutants and green fluorescent protein (GFP)-tagged strains were used to investigate the molecular mechanism underlying the beneficial effects mediated by BUE supplementation. Our results showed that BUE (50 μg/ml) extended the mean lifespan of C. elegans by 35.99% and increased its survival under stress conditions. The BUE also reduced the levels of intracellular reactive oxygen species (ROS) by 22.47%. A delayed amyloid-β induced paralyses was observed in CL4176 transgenic worms. Interestingly, the BUE supplementation was also able to reduce the α-synuclein aggregation in NL5901 transgenic strain. Gene-specific mutant studies suggested that the BUE-mediated lifespan extension was dependent on daf-16, hsf-1, and skn-1 but not on sir-2.1 gene. Furthermore, transgenic reporter gene expression assay showed that BUE treatment enhanced the expression of stress-protective genes such as sod-3 and gst-4. Present findings suggested that ROS scavenging activity, together with multiple longevity mechanisms, were involved in BUE-mediated lifespan extension. Thus, BUE might have potential to increase the lifespan and to attenuate neuro-related disease progression.
Collapse
Affiliation(s)
- Swapnil Pandey
- Microbial Technology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suresh Chandra Phulara
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur 522502, Andhra Pradesh, India
| | - Shashank Kumar Mishra
- Microbial Technology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Rajesh Bajpai
- Plant Diversity, Systematics and Herbarium, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Anil Kumar
- Central Instrumentation Facility, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Abhishek Niranjan
- Central Instrumentation Facility, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Alok Lehri
- Central Instrumentation Facility, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dalip Kumar Upreti
- Plant Diversity, Systematics and Herbarium, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Puneet Singh Chauhan
- Microbial Technology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
103
|
Esmaeili MH, Enayati M, Khabbaz Abkenar F, Ebrahimian F, Salari AA. Glibenclamide mitigates cognitive impairment and hippocampal neuroinflammation in rats with type 2 diabetes and sporadic Alzheimer-like disease. Behav Brain Res 2020; 379:112359. [PMID: 31733313 DOI: 10.1016/j.bbr.2019.112359] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
|
104
|
Alzheimer's Disease and Diabetes: Insulin Signaling as the Bridge Linking Two Pathologies. Mol Neurobiol 2020; 57:1966-1977. [PMID: 31900863 DOI: 10.1007/s12035-019-01858-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
Abstract
Alzheimer's (or Alzheimer) disease (AD) is the most prevalent subset of dementia, affecting elderly populations worldwide. The cumulative costs of the AD care are rapidly accelerating as the average lifespan increases. Onset and risk factors for AD and AD-like dementias have been largely unknown until recently. Studies show that chronic type II diabetes mellitus (DM) is closely associated with neurodegeneration, especially AD. Type II DM is characterized by the cells' inability to take up insulin, as well as chronic hyperglycemia. In the central nervous system, insulin has crucial regulatory roles, while chronic hyperglycemia leads to formation and accumulation of advanced glycation end products (AGEs). AGEs are the major contributor to insulin resistance in diabetic cells, due to their regulatory role on sirtuin expression. Insulin activity in the central nervous system is known to interact with key proteins affected in neurodegenerative conditions, such as amyloid-β precursor protein (AβPP or APP), huntingtin-associated protein-1 (HAP1), Abelson helper integration site-1 (AHI1 or Jouberin), kinesin, and tau. Sirtuins have been theorized to be the mechanism for insulin resistance, and have been found to be affected in neurodegenerative conditions as well. There are hints that all these neuronal proteins may be closely related, although the mechanisms remain unclear. This review will gather existing research on these proteins and highlight the link between neurodegenerative conditions and diabetes mellitus.
Collapse
|
105
|
Abstract
Neuroinflammation is implicated in contributing to a variety of neurologic and somatic illnesses including Alzheimer's disease (AD), Parkinson's disease (PD), and depression. In this chapter, we focus on the role of neuroinflammation in mediating these three illnesses and portray interactions between the immune response and the central nervous system in the context of sex differences in disease progression. The majority of this chapter is supported by clinical findings; however, we occasionally utilize preclinical models where human studies are currently lacking. We begin by detailing the pathology of neuroinflammation, distinguishing between acute and chronic inflammation, and examining contributions from the innate and adaptive immune systems. Next, we summarize potential mechanisms of immune cell mediators including interleukin-1 beta (IL-1β), tumor necrosis factor α, and IL-6 in AD, PD, and depression development. Given the strong sex bias seen in these illnesses, we additionally examine the role of sex hormones, e.g., estrogen and testosterone in mediating neuroinflammation at the cellular level. Systematically, we detail how sex hormones may contribute to distinct behavioral and clinical symptoms and prognosis between males and females with AD, PD, or depression. Finally, we highlight the possible role of exercise in alleviating neuroinflammation, as well as evidence that antiinflammatory drug therapies improve cognitive symptoms observed in brain-related diseases.
Collapse
Affiliation(s)
- Deepika Mukhara
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Unsong Oh
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
106
|
Abstract
Addiction to substances such as alcohol, cocaine, opioids, and methamphetamine poses a continuing clinical and public challenge globally. Despite progress in understanding substance use disorders, challenges remain in their treatment. Some of these challenges include limited ability of therapeutics to reach the brain (blood-brain barrier), adverse systemic side effects of current medications, and importantly key aspects of addiction not addressed by currently available treatments (such as cognitive impairment). Inability to sustain abstinence or seek treatment due to cognitive deficits such as poor decision-making and impulsivity is known to cause poor treatment outcomes. In this review, we provide an evidenced-based rationale for intranasal drug delivery as a viable and safe treatment modality to bypass the blood-brain barrier and target insulin to the brain to improve the treatment of addiction. Intranasal insulin with improvement of brain cell energy and glucose metabolism, stress hormone reduction, and improved monoamine transmission may be an ideal approach for treating multiple domains of addiction including memory and impulsivity. This may provide additional benefits to enhance current treatment approaches.
Collapse
Affiliation(s)
- Bhavani Kashyap
- HealthPartners Neuroscience Center, 295 Phalen Blvd, St Paul, Minnesota, 55130, USA.
- HealthPartners Institute, Bloomington, Minnesota, USA.
| | - Leah R Hanson
- HealthPartners Neuroscience Center, 295 Phalen Blvd, St Paul, Minnesota, 55130, USA
- HealthPartners Institute, Bloomington, Minnesota, USA
| | - William H Frey Ii
- HealthPartners Neuroscience Center, 295 Phalen Blvd, St Paul, Minnesota, 55130, USA
- HealthPartners Institute, Bloomington, Minnesota, USA
| |
Collapse
|
107
|
Fernández-de Frutos M, Galán-Chilet I, Goedeke L, Kim B, Pardo-Marqués V, Pérez-García A, Herrero JI, Fernández-Hernando C, Kim J, Ramírez CM. MicroRNA 7 Impairs Insulin Signaling and Regulates Aβ Levels through Posttranscriptional Regulation of the Insulin Receptor Substrate 2, Insulin Receptor, Insulin-Degrading Enzyme, and Liver X Receptor Pathway. Mol Cell Biol 2019; 39:e00170-19. [PMID: 31501273 PMCID: PMC6817752 DOI: 10.1128/mcb.00170-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/14/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023] Open
Abstract
Brain insulin resistance is a key pathological feature contributing to obesity, diabetes, and neurodegenerative disorders, including Alzheimer's disease (AD). Besides the classic transcriptional mechanism mediated by hormones, posttranscriptional regulation has recently been shown to regulate a number of signaling pathways that could lead to metabolic diseases. Here, we show that microRNA 7 (miR-7), an abundant microRNA in the brain, targets insulin receptor (INSR), insulin receptor substrate 2 (IRS-2), and insulin-degrading enzyme (IDE), key regulators of insulin homeostatic functions in the central nervous system (CNS) and the pathology of AD. In this study, we found that insulin and liver X receptor (LXR) activators promote the expression of the intronic miR-7-1 in vitro and in vivo, along with its host heterogeneous nuclear ribonucleoprotein K (HNRNPK) gene, encoding an RNA binding protein (RBP) that is involved in insulin action at the posttranscriptional level. Our data show that miR-7 expression is altered in the brains of diet-induced obese mice. Moreover, we found that the levels of miR-7 are also elevated in brains of AD patients; this inversely correlates with the expression of its target genes IRS-2 and IDE. Furthermore, overexpression of miR-7 increased the levels of extracellular Aβ in neuronal cells and impaired the clearance of extracellular Aβ by microglial cells. Taken together, these results represent a novel branch of insulin action through the HNRNPK-miR-7 axis and highlight the possible implication of these posttranscriptional regulators in a range of diseases underlying metabolic dysregulation in the brain, from diabetes to Alzheimer's disease.
Collapse
Affiliation(s)
| | - Inmaculada Galán-Chilet
- Genomic and Genetic Diagnosis Unit, Biomedical Research Institute Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Leigh Goedeke
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Byungwook Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Ana Pérez-García
- IMDEA Research Institute of Food and Health Sciences, Madrid, Spain
| | - J Ignacio Herrero
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Cristina M Ramírez
- IMDEA Research Institute of Food and Health Sciences, Madrid, Spain
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
108
|
Zhu L, Zhang Z, Hou XJ, Wang YF, Yang JY, Wu CF. Inhibition of PDE5 attenuates streptozotocin-induced neuroinflammation and tau hyperphosphorylation in a streptozotocin-treated rat model. Brain Res 2019; 1722:146344. [DOI: 10.1016/j.brainres.2019.146344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/10/2019] [Accepted: 07/20/2019] [Indexed: 01/10/2023]
|
109
|
Choi YS, Song JE, Lee JE, Kim E, Kim CH, Kim DH, Song HT. Hyperpolarized [1-13C]lactate flux increased in the hippocampal region in diabetic mice. Mol Brain 2019; 12:88. [PMID: 31675964 PMCID: PMC6824044 DOI: 10.1186/s13041-019-0505-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 01/01/2023] Open
Abstract
Increasing evidence suggests there is a relationship between cognitive impairment and metabolic dysfunction. Diabetes is a chronic disease, and metabolic factors affecting brain metabolisms, such as serum glucose, insulin, and glucagon, are altered according to disease progression. In our previous study, we applied hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy in prediabetic mice after feeding them a 60% high-fat diet (HFD) for 6 months. Ultimately, we detected significantly increased [1-13C]lactate conversion in the whole brain and an almost five-fold increased [1-13C]lactate/pyruvate ratio in the hippocampal region. In the present study, we induced diabetes in mice by injecting streptozotocin and feeding them an HFD for 6 months. Unlike in prediabetic mice, [1-13C]lactate conversion in the diabetic mice did not differ from that in the control group, but [1-13C]lactate/total 13C ratio showed an almost 1.4-fold increase in the hippocampal region. We measured the amount of the lactate and mRNA levels of glucose transporters from isolated hippocampus and cortex samples. In the hippocampus, significantly decreased GLUT1 mRNA levels and increased lactate were detected, suggesting an inconsistency between glucose and pyruvate metabolism. Pyruvate can be produced from oxaloacetate as well as glucose. We investigated ATP citrate lyase (ACLY) because it cleaves citrate into oxaloacetate and acetyl CoA. Phosphorylated ACLY (Ser455), the active form, was increased in both hippocampus and cortex samples of mice injected with streptozotocin and fed an HFD. Also, phosphorylated ACLY/total ACLY showed a positive correlation with lactate amount in the hippocampus. Our results suggest that the brain has different responses to diabetic progression, but, in the hippocampus, maintains metabolic alteration toward increasing lactate production from the prediabetic to the diabetic stage. We suggest that ACLY-mediated pyruvate be used to support lactate levels in the hippocampus in cases of limited glucose availability.
Collapse
Affiliation(s)
- Young-Suk Choi
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jae Eun Song
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,BK21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chul Hoon Kim
- BK21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ho-Taek Song
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
110
|
Park SK, Kang JY, Kim JM, Yoo SK, Han HJ, Chung DH, Kim DO, Kim GH, Heo HJ. Fucoidan-Rich Substances from Ecklonia cava Improve Trimethyltin-Induced Cognitive Dysfunction via Down-Regulation of Amyloid β Production/Tau Hyperphosphorylation. Mar Drugs 2019; 17:E591. [PMID: 31627432 PMCID: PMC6836021 DOI: 10.3390/md17100591] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Ecklonia cava (E. cava) was investigated to compare the effect of polyphenol and fucoidan extract and mixture (polyphenol:fucoidan = 4:6) on cognitive function. The ameliorating effect of E. cava was evaluated using the Y-maze, passive avoidance and Morris water maze tests with a trimethyltin (TMT)-induced cognitive dysfunction model, and the results showed that the fucoidan extract and mixture (4:6) had relatively higher learning and memory function effects than the polyphenol extract. After a behavioral test, the inhibitory effect of lipid peroxidation and cholinergic system activity were examined in mouse brain tissue, and the fucoidan extract and mixture (4:6) also showed greater improvements than the polyphenol extract. Mitochondrial activity was evaluated using mitochondrial reactive oxygen species (ROS) content, mitochondrial membrane potential (MMP, ΔΨm), adenosine triphosphate (ATP) content, and mitochondria-mediated protein (BAX, cytochrome C) analysis, and these results were similar to the results of the behavioral tests. Finally, to confirm the cognitive function-related mechanism of E. cava, the amyloid-β production and tau hyperphosphorylation-medicated proteins were analyzed. Based on these results, the improvement effect of E. cava was more influenced by fucoidan than polyphenol. Therefore, our study suggests that the fucoidan-rich substances in E. cava could be a potential material for improving cognitive function by down-regulating amyloid-β production and tau hyperphosphorylation.
Collapse
Affiliation(s)
- Seon Kyeong Park
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21 plus), Gyeongsang National University, Jinju 52828, Korea.
| | - Jin Yong Kang
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21 plus), Gyeongsang National University, Jinju 52828, Korea.
| | - Jong Min Kim
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21 plus), Gyeongsang National University, Jinju 52828, Korea.
| | - Seul Ki Yoo
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21 plus), Gyeongsang National University, Jinju 52828, Korea.
| | - Hye Ju Han
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21 plus), Gyeongsang National University, Jinju 52828, Korea.
| | - Dong Hwa Chung
- Food Technology Major, Graduate School of International Agricultural Technology, Institute of Green Bio Science and Technology, Pyeongchang 25354, Korea.
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| | - Gun-Hee Kim
- Departments of Food and Nutrition, Duksung Women's University, Seoul 01369, Korea.
| | - Ho Jin Heo
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21 plus), Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
111
|
Lanzillotta C, Di Domenico F, Perluigi M, Butterfield DA. Targeting Mitochondria in Alzheimer Disease: Rationale and Perspectives. CNS Drugs 2019; 33:957-969. [PMID: 31410665 PMCID: PMC6825561 DOI: 10.1007/s40263-019-00658-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A decline in mitochondrial function plays a key role in the aging process and increases the incidence of age-related disorders, including Alzheimer disease (AD). Mitochondria-the power station of the organism-can affect several different cellular activities, including abnormal cellular energy generation, response to toxic insults, regulation of metabolism, and execution of cell death. In AD subjects, mitochondria are characterized by impaired function such as lowered oxidative phosphorylation, decreased adenosine triphosphate production, significant increased reactive oxygen species generation, and compromised antioxidant defense. The current review discusses the most relevant mitochondrial defects that are considered to play a significant role in AD and that may offer promising therapeutic targets for the treatment/prevention of AD. In addition, we discuss mechanisms of action and translational potential of some promising mitochondrial and bioenergetic therapeutics for AD including compounds able to potentiate energy production, antioxidants to scavenge reactive oxygen species and reduce oxidative damage, glucose metabolism, and candidates that target mitophagy. While mitochondrial therapeutic strategies have shown promise at the preclinical stage, there has been little progress in clinical trials. Thus, there is an urgent need to better understand the mechanisms regulating mitochondrial homeostasis in order to identify powerful drug candidates that target 'in and out' the mitochondria to preserve cognitive functions.
Collapse
Affiliation(s)
- Chiara Lanzillotta
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA.
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506-0055, USA.
| |
Collapse
|
112
|
McGrath ER, Himali JJ, Levy D, Conner SC, DeCarli CS, Pase MP, Courchesne P, Satizabal CL, Vasan RS, Beiser AS, Seshadri S. Circulating IGFBP-2: a novel biomarker for incident dementia. Ann Clin Transl Neurol 2019; 6:1659-1670. [PMID: 31373442 PMCID: PMC6764739 DOI: 10.1002/acn3.50854] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To determine the association between plasma insulin-like growth factor binding protein 2 (IGFBP-2) and cognitive outcomes. METHODS We measured plasma IGFBP-2 levels in 1596 (53% women, mean age 68.7 [SD 5.7] years) dementia-free Framingham Offspring cohort participants between 1998 and 2001. Multivariable Cox proportional hazards models related plasma IGFBP-2 to subsequent risk of incident dementia and Alzheimer's disease. MRI brain measures and cognitive performance were included as secondary outcomes. RESULTS During a median follow-up of 11.8 (Q1, Q3: 7.1, 13.3) years, 131 participants developed incident dementia, of whom 98 were diagnosed with Alzheimer's disease. The highest tertile of IGFBP-2, compared to the lowest tertile, was associated with an increased risk of incident all-cause dementia (hazard ratio [HR] 2.89, 95% CI 1.63-5.13) and Alzheimer's disease (HR 3.63, 95% CI 1.76-7.50) in multivariable analysis. Higher circulating IGFBP2 levels were also cross-sectionally associated with poorer performance on tests of abstract reasoning but not with MRI-based outcomes. After adding plasma IGFBP-2 levels to a conventional dementia prediction model, 32% of individuals with dementia were correctly assigned a higher predicted risk, while 8% of individuals without dementia were correctly assigned a lower predicted risk (overall net reclassification improvement index, 0.40, 95% CI 0.22-0.59). INTERPRETATION Elevated circulating IGFBP-2 levels were associated with an increased risk of both all-cause dementia and Alzheimer's disease. Addition of IGFBP2 plasma levels to a model of traditional risk factors significantly improved dementia risk classification. Manipulation of insulin-like growth factor signaling via IGFBP-2 may be a promising therapeutic target for dementia.
Collapse
Affiliation(s)
- Emer R. McGrath
- Department of NeurologyBrigham & Women’s HospitalBostonMassachusetts
- Harvard Medical SchoolBostonMassachusetts
- Framingham Heart StudyFraminghamMassachusetts
| | - Jayandra J. Himali
- Framingham Heart StudyFraminghamMassachusetts
- Boston University School of Public HealthBostonMassachusetts
- Boston University School of MedicineBostonMassachusetts
| | - Daniel Levy
- Framingham Heart StudyFraminghamMassachusetts
- Population Sciences Branch of the National Heart, Lung, Blood Institute of the National Institutes of HealthBethesdaMaryland
| | - Sarah C. Conner
- Boston University School of Public HealthBostonMassachusetts
| | | | - Matthew P. Pase
- Framingham Heart StudyFraminghamMassachusetts
- Melbourne Dementia Research CentreThe Florey Institute for Neuroscience and Mental HealthMelbourneVictoriaAustralia
- University of MelbourneMelbourneVictoriaAustralia
| | - Paul Courchesne
- Framingham Heart StudyFraminghamMassachusetts
- Population Sciences Branch of the National Heart, Lung, Blood Institute of the National Institutes of HealthBethesdaMaryland
| | - Claudia L. Satizabal
- Framingham Heart StudyFraminghamMassachusetts
- Boston University School of MedicineBostonMassachusetts
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexas
| | - Ramachandran S. Vasan
- Framingham Heart StudyFraminghamMassachusetts
- Boston University School of MedicineBostonMassachusetts
| | - Alexa S. Beiser
- Framingham Heart StudyFraminghamMassachusetts
- Boston University School of Public HealthBostonMassachusetts
- Boston University School of MedicineBostonMassachusetts
| | - Sudha Seshadri
- Framingham Heart StudyFraminghamMassachusetts
- Boston University School of MedicineBostonMassachusetts
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexas
| |
Collapse
|
113
|
Das TK, Jana P, Chakrabarti SK, Abdul Hamid MRW. Curcumin Downregulates GSK3 and Cdk5 in Scopolamine-Induced Alzheimer's Disease Rats Abrogating Aβ 40/42 and Tau Hyperphosphorylation. J Alzheimers Dis Rep 2019; 3:257-267. [PMID: 31754658 PMCID: PMC6839535 DOI: 10.3233/adr-190135] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Extracellular amyloid-β (Aβ) aggregation and tau hyperphosphorylation are the key drivers of AD. Glycogen synthase kinase 3 (GSK3) and cyclin dependent kinase 5 (Cdk5) have been known as leading applicants arbitrating abnormal tau hyperphosphorylation. Thus, we evaluated the efficacy and underlying mechanism of action of curcumin in scopolamine-induced AD rats in our study. We found that curcumin-treated AD rats markedly reduced the levels of Aβ40 and Aβ42 in the brain and in the plasma in comparison to untreated AD rats. Moreover, the levels of phosphorylated tau at Ser396 (PHF13), Ser202/Thr205 (AT8), and Aβ40/42 (MOAB2) were decreased significantly in AD rats treated with curcumin. Phospho-GSK3β (Tyr216), the active form of GSK3β, and total GSK3β were significantly decreased in AD rats treated with curcumin. Furthermore, Cdk5 and its activators p35 and p25 were significantly decreased in curcumin-treated AD rats. The reduced levels of Cdk5, p35, p25, and GSK3β in curcumin-treated AD rats may result decreased Aβ aggregation and tau hyperphosphorylation, thus ameliorating AD. Impaired spatial memory and locomotor activity in AD rats were partially reversed by curcumin. Therefore, curcumin, as a natural compound present in turmeric, may be a more effective therapeutic agent in the treatment of AD in humans.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Universiti Brunei Darussalam, PAPRSB Institute of Health Sciences, Jalan Tungku Link, Gadong, Brunei Darussalam.,Institute of Reproductive Medicine, Salt Lake, Kolkata, India
| | - Piyali Jana
- Department of Microbiology, Vidyasagar University, India
| | | | - Mas R W Abdul Hamid
- Universiti Brunei Darussalam, PAPRSB Institute of Health Sciences, Jalan Tungku Link, Gadong, Brunei Darussalam
| |
Collapse
|
114
|
Neuroprotective Properties of Linagliptin: Focus on Biochemical Mechanisms in Cerebral Ischemia, Vascular Dysfunction and Certain Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20164052. [PMID: 31434198 PMCID: PMC6719127 DOI: 10.3390/ijms20164052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 02/08/2023] Open
Abstract
Linagliptin is a representative of dipeptidyl peptidase 4 (DPP-4) inhibitors which are registered and used effectively in a treatment of diabetes mellitus type 2. They increase the levels of active forms of endogenous incretins such as GLP-1 and GIP by inhibiting their enzymatic decomposition. Scientific reports suggest beneficial effects of linagliptin administration via immunological and biochemical pathways involved in neuroprotective processes of CNS. Linagliptin’s administration leads to a decrease in the concentration of proinflammatory factors such as: TNF-α, IL-6 and increases the number of anti-inflammatory patrolling monocytes CX3CR1bright. Significant reduction in Aβ42 level has been associated with the use of linagliptin implying potential application in Alzheimer’s disease. Linagliptin improved vascular functions by increasing production of nitric oxide (NO) and limiting concentration of apolipoprotein B. Linagliptin-induced decrease in macrophages infiltration may provide improvement in atheromatous plaque stabilization. Premedication with linagliptin increases neuron’s survival after stroke and augments neuronal stem cells proliferation. It seems to be connected with SDF-1α/CXCR4 signaling pathway. Linagliptin prevented abnormal proliferation and migration of rat brain microvascular endothelial cells in a state of hypoperfusion via SIRT1/HIF-1α/VEGF pathway. The article presents a summary of the studies assessing neuroprotective properties of linagliptin with special emphasis on cerebral ischemia, vascular dysfunction and neurodegenerative diseases.
Collapse
|
115
|
Hegde V, Vijayan M, Kumar S, Akheruzzaman M, Sawant N, Dhurandhar NV, Reddy PH. Adenovirus 36 improves glycemic control and markers of Alzheimer's disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165531. [PMID: 31398466 DOI: 10.1016/j.bbadis.2019.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide. While the causes of AD are unclear, several risk factors have been identified, including impaired glycemic control, which significantly increases the risk of cognitive decline and AD. In vitro and in vivo studies show that human adenovirus 36 (Ad36) improves glycemic control by increasing cellular glucose uptake in cells, experimental animal models and in humans who are naturally exposed to the virus. This study, tested improvement in glycemic control by Ad36 and delay in onset of cognitive decline in APPswe transgenic mice (Tg2576 line), a model of genetic predisposition to impaired glycemic control and AD. Three-month old APPswe mice were divided into Ad36 infected (Ad36) or mock infected (control) groups and baseline glycemic control measured by glucose tolerance test (GTT) prior to infection. Changes in glycemic control were determined 10- and 24-week post infection. Serum insulin was also measured during GTT. Cognition was determined by Y-maze test, while motor coordination and skill acquisition by rotarod test. Glycemic control as determined by GTT showed less deterioration in Ad36 infected mice over time, accompanied by a significant attenuation of cognitive decline. Analysis of brain tissue lysate showed significantly reduced levels of amyloid beta 42 in Ad36 mice relative to control mice. Golgi-Cox staining analysis also revealed reduced dendritic spines and synaptic gene expression in control mice compared to Ad36 infected mice. This proof of concept study shows that in a mouse model of AD, Ad36 improves glycemic control and ameliorates cognitive decline.
Collapse
Affiliation(s)
- V Hegde
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | - M Vijayan
- Internal Medicine, Cell Biology and Biochemistry, Neuroscience/Pharmacology and Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - S Kumar
- Internal Medicine, Cell Biology and Biochemistry, Neuroscience/Pharmacology and Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Akheruzzaman
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - N Sawant
- Internal Medicine, Cell Biology and Biochemistry, Neuroscience/Pharmacology and Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - N V Dhurandhar
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P H Reddy
- Internal Medicine, Cell Biology and Biochemistry, Neuroscience/Pharmacology and Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
116
|
Spinelli M, Fusco S, Grassi C. Brain Insulin Resistance and Hippocampal Plasticity: Mechanisms and Biomarkers of Cognitive Decline. Front Neurosci 2019; 13:788. [PMID: 31417349 PMCID: PMC6685093 DOI: 10.3389/fnins.2019.00788] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/15/2019] [Indexed: 12/27/2022] Open
Abstract
In the last decade, much attention has been devoted to the effects of nutrient-related signals on brain development and cognitive functions. A turning point was the discovery that brain areas other than the hypothalamus expressed receptors for hormones related to metabolism. In particular, insulin signaling has been demonstrated to impact on molecular cascades underlying hippocampal plasticity, learning and memory. Here, we summarize the molecular evidence linking alteration of hippocampal insulin sensitivity with changes of both adult neurogenesis and synaptic plasticity. We also review the epidemiological studies and experimental models emphasizing the critical role of brain insulin resistance at the crossroad between metabolic and neurodegenerative disease. Finally, we brief novel findings suggesting how biomarkers of brain insulin resistance, involving the study of brain-derived extracellular vesicles and brain glucose metabolism, may predict the onset and/or the progression of cognitive decline.
Collapse
Affiliation(s)
- Matteo Spinelli
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Fusco
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
117
|
Rorbach-Dolata A, Piwowar A. Neurometabolic Evidence Supporting the Hypothesis of Increased Incidence of Type 3 Diabetes Mellitus in the 21st Century. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1435276. [PMID: 31428627 PMCID: PMC6679855 DOI: 10.1155/2019/1435276] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
The most recent evidence supports the existence of a link between type 2 diabetes (T2DM) and Alzheimer's Disease (AD), described by the new term: type 3 diabetes (T3D). The increasing incidence of T2DM in the 21st century and accompanying reports on the higher risk of AD in diabetic patients prompts the search for pathways linking glycemia disturbances and neurodegeneration. It is suggested that hyperglycemia may lead to glutamate-induced excitotoxicity, a pathological process resulting from excessive depolarization of membrane and uncontrolled calcium ion influx into neuronal cells. On the other hand, it has been confirmed that peripheral insulin resistance triggers insulin resistance in the brain, which may consequently contribute to AD by amyloid beta accumulation, tau phosphorylation, oxidative stress, advanced glycation end products, and apoptosis. Some literature sources suggest significant amylin involvement in additional amyloid formation in the central nervous system, especially under hyperamylinemic conditions. It is particularly important to provide early diagnostics in people with metabolic disturbances, especially including fasting insulin and HOMA-IR, which are necessary to reveal insulin resistance. The present review reveals the most recent and important evidence associated with the phenomenon of T3D and discusses the potential lacks of prevention and diagnostics for diabetes which might result in neurometabolic disorders, from a pharmacotherapy perspective.
Collapse
Affiliation(s)
- Anna Rorbach-Dolata
- Department of Toxicology, Faculty of Pharmacy with the Division of Laboratory Diagnostics, Wroclaw Medical University, Borowska 211, 50-552 Wroclaw, Poland
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy with the Division of Laboratory Diagnostics, Wroclaw Medical University, Borowska 211, 50-552 Wroclaw, Poland
| |
Collapse
|
118
|
Agostinone J, Alarcon-Martinez L, Gamlin C, Yu WQ, Wong ROL, Di Polo A. Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury. Brain 2019; 141:1963-1980. [PMID: 29931057 PMCID: PMC6022605 DOI: 10.1093/brain/awy142] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/06/2018] [Indexed: 01/07/2023] Open
Abstract
Dendrite pathology and synapse disassembly are critical features of chronic neurodegenerative diseases. In spite of this, the capacity of injured neurons to regenerate dendrites has been largely ignored. Here, we show that, upon axonal injury, retinal ganglion cells undergo rapid dendritic retraction and massive synapse loss that preceded neuronal death. Human recombinant insulin, administered as eye drops or systemically after dendritic arbour shrinkage and prior to cell loss, promoted robust regeneration of dendrites and successful reconnection with presynaptic targets. Insulin-mediated regeneration of excitatory postsynaptic sites on retinal ganglion cell dendritic processes increased neuronal survival and rescued light-triggered retinal responses. Further, we show that axotomy-induced dendrite retraction triggered substantial loss of the mammalian target of rapamycin (mTOR) activity exclusively in retinal ganglion cells, and that insulin fully reversed this response. Targeted loss-of-function experiments revealed that insulin-dependent activation of mTOR complex 1 (mTORC1) is required for new dendritic branching to restore arbour complexity, while complex 2 (mTORC2) drives dendritic process extension thus re-establishing field area. Our findings demonstrate that neurons in the mammalian central nervous system have the intrinsic capacity to regenerate dendrites and synapses after injury, and provide a strong rationale for the use of insulin and/or its analogues as pro-regenerative therapeutics for intractable neurodegenerative diseases including glaucoma.
Collapse
Affiliation(s)
- Jessica Agostinone
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada.,University of Montreal Hospital Research Center (CR-CHUM), University of Montreal, Montreal, Quebec, Canada
| | - Luis Alarcon-Martinez
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada.,University of Montreal Hospital Research Center (CR-CHUM), University of Montreal, Montreal, Quebec, Canada
| | - Clare Gamlin
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, Washington, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, Washington, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, Washington, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada.,University of Montreal Hospital Research Center (CR-CHUM), University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
119
|
Jojo GM, Kuppusamy G, Selvaraj K, Baruah UK. Prospective of managing impaired brain insulin signalling in late onset Alzheimers disease with excisting diabetic drugs. J Diabetes Metab Disord 2019; 18:229-242. [PMID: 31275894 DOI: 10.1007/s40200-019-00405-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Abstract
Late onset Alzheimer's disease (AD) is the most common cause of dementia among elderly. The exact cause of the disease is until now unknown and there is no complete cure for the disease. Growing evidence suggest that AD is a metabolic disorder associated with impairment in brain insulin signalling. These findings enriched the scope for the repurposing of diabetic drugs in AD management. Even though many of these drugs are moving in a positive direction in the ongoing clinical studies, the extent of the success has seen to influence by several properties of these drugs since they were originally designed to manage the peripheral insulin resistance. In depth understandings of these properties is hence highly significant to optimise the use of diabetic drugs in the clinical management of AD; which is the primary aim of the present review article.
Collapse
Affiliation(s)
- Gifty M Jojo
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| | - Kousalya Selvaraj
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| | - Uday Krishna Baruah
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| |
Collapse
|
120
|
Gali CC, Fanaee-Danesh E, Zandl-Lang M, Albrecher NM, Tam-Amersdorfer C, Stracke A, Sachdev V, Reichmann F, Sun Y, Avdili A, Reiter M, Kratky D, Holzer P, Lass A, Kandimalla KK, Panzenboeck U. Amyloid-beta impairs insulin signaling by accelerating autophagy-lysosomal degradation of LRP-1 and IR-β in blood-brain barrier endothelial cells in vitro and in 3XTg-AD mice. Mol Cell Neurosci 2019; 99:103390. [PMID: 31276749 PMCID: PMC6897558 DOI: 10.1016/j.mcn.2019.103390] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/30/2019] [Indexed: 02/06/2023] Open
Abstract
Aberrant insulin signaling constitutes an early change in Alzheimer's disease (AD). Insulin receptors (IR) and low-density lipoprotein receptor-related protein-1 (LRP-1) are expressed in brain capillary endothelial cells (BCEC) forming the blood-brain barrier (BBB). There, insulin may regulate the function of LRP-1 in Aβ clearance from the brain. Changes in IR-β and LRP-1 and insulin signaling at the BBB in AD are not well understood. Herein, we identified a reduction in cerebral and cerebrovascular IR-β levels in 9-month-old male and female 3XTg-AD (PS1M146V, APPSwe, and tauP301L) as compared to NTg mice, which is important in insulin mediated signaling responses. Reduced cerebral IR-β levels corresponded to impaired insulin signaling and LRP-1 levels in brain. Reduced cerebral and cerebrovascular IR-β and LRP-1 levels in 3XTg-AD mice correlated with elevated levels of autophagy marker LC3B. In both genotypes, high-fat diet (HFD) feeding decreased cerebral and hepatic LRP-1 expression and elevated cerebral Aβ burden without affecting cerebrovascular LRP-1 and IR-β levels. In vitro studies using primary porcine (p)BCEC revealed that Aβ peptides 1–40 or 1–42 (240 nM) reduced cellular levels and interaction of LRP-1 and IR-β thereby perturbing insulin-mediated signaling. Further mechanistic investigation revealed that Aβ treatment accelerated the autophagy-lysosomal degradation of IR-β and LRP-1 in pBCEC. LRP-1 silencing in pBCEC decreased IR-β levels through post-translational pathways further deteriorating insulin-mediated responses at the BBB. Our findings indicate that LRP-1 proves important for insulin signaling at the BBB. Cerebral Aβ burden in AD may accelerate LRP-1 and IR-β degradation in BCEC thereby contributing to impaired cerebral and cerebromicrovascular insulin effects.
Collapse
Affiliation(s)
- Chaitanya Chakravarthi Gali
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Elham Fanaee-Danesh
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Martina Zandl-Lang
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Nicole Maria Albrecher
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Carmen Tam-Amersdorfer
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Anika Stracke
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Vinay Sachdev
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Yidan Sun
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Afrim Avdili
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Marielies Reiter
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Peter Holzer
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Karunya K Kandimalla
- College of Pharmacy, Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Ute Panzenboeck
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
121
|
Franklin W, Krishnan B, Taglialatela G. Chronic synaptic insulin resistance after traumatic brain injury abolishes insulin protection from amyloid beta and tau oligomer-induced synaptic dysfunction. Sci Rep 2019; 9:8228. [PMID: 31160730 PMCID: PMC6546708 DOI: 10.1038/s41598-019-44635-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is a risk factor for Alzheimer's disease (AD), although the mechanisms contributing to this increased risk are unknown. Insulin resistance is an additional risk factor for AD whereby decreased insulin signaling increases synaptic sensitivity to amyloid beta (Aβ) and tau. Considering this, we used rats that underwent a lateral fluid percussion injury at acute and chronic time-points to investigate whether decreased insulin responsiveness in TBI animals is playing a role in synaptic vulnerability to AD pathology. We detected acute and chronic decreases in insulin responsiveness in isolated hippocampal synaptosomes after TBI. In addition to assessing both Aβ and tau binding on synaptosomes, we performed electrophysiology to assess the dysfunctional impact of Aβ and tau oligomers as well as the protective effect of insulin. While we saw no difference in binding or degree of LTP inhibition by either Aβ or tau oligomers between sham and TBI animals, we found that insulin treatment was able to block oligomer-induced LTP inhibition in sham but not in TBI animals. Since insulin treatment has been discussed as a therapy for AD, this gives valuable insight into therapeutic implications of treating AD patients based on one's history of associated risk factors.
Collapse
Affiliation(s)
- Whitney Franklin
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- Department of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Balaji Krishnan
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, Texas, 77555, USA.
| |
Collapse
|
122
|
Chenodeoxycholic Acid Ameliorates AlCl 3-Induced Alzheimer's Disease Neurotoxicity and Cognitive Deterioration via Enhanced Insulin Signaling in Rats. Molecules 2019; 24:molecules24101992. [PMID: 31137621 PMCID: PMC6571973 DOI: 10.3390/molecules24101992] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
Insulin resistance is a major risk factor for Alzheimer’s disease (AD). Chenodeoxycholic acid (CDCA) and synthetic Farnesoid X receptor (FXR) ligands have shown promising outcomes in ameliorating insulin resistance associated with various medical conditions. This study aimed to investigate whether CDCA treatment has any potential in AD management through improving insulin signaling. Adult male Wistar rats were randomly allocated into three groups and treated for six consecutive weeks; control (vehicle), AD-model (AlCl3 50 mg/kg/day i.p) and CDCA-treated group (AlCl3 + CDCA 90 mg/kg/day p.o from day 15). CDCA improved cognition as assessed by Morris Water Maze and Y-maze tests and preserved normal histological features. Moreover, CDCA lowered hippocampal beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and amyloid-beta 42 (Aβ42). Although no significant difference was observed in hippocampal insulin level, CDCA reduced insulin receptor substrate-1 phosphorylation at serine-307 (pSer307-IRS1), while increased protein kinase B (Akt) activation, glucose transporter type 4 (GLUT4), peroxisome proliferator-activated receptor gamma (PPARγ) and glucagon-like peptide-1 (GLP-1). Additionally, CDCA activated cAMP response element-binding protein (CREB) and enhanced brain-derived neurotrophic factor (BDNF). Ultimately, CDCA was able to improve insulin sensitivity in the hippocampi of AlCl3-treated rats, which highlights its potential in AD management.
Collapse
|
123
|
The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Ameliorates High-fat Induced Cognitive Decline in Tauopathy Model Mice. Int J Mol Sci 2019; 20:ijms20102539. [PMID: 31126115 PMCID: PMC6566831 DOI: 10.3390/ijms20102539] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/03/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
Vascular risk factors, such as type 2 diabetes mellitus (T2DM), are associated with the increased risk of Alzheimer's disease. One of the common T2DM medications, dipeptidyl peptidase (DPP)-4 inhibitors, have a minimum risk for hypoglycemia and have recently been suggested to ameliorate β-amyloid pathology. However, conflicting results have been reported regarding the effects of DPP-4 inhibition on cognitive function and tau pathology. Thus, we investigated whether inhibiting DPP-4 affects tau pathology and cognition in a mouse model of tauopathy with hyperglycemia. Male mice overexpressing the P301S mutant human microtubule-associated protein tau gene (PS19) were fed either a low or high-fat diet. PS19 mice were then administered either linagliptin, a DPP-4 inhibitor, or vehicle, from 6 weeks to 8 months of age. Linagliptin-treated mice exhibited higher levels of glucagon-like peptide-1 and decreased fasting blood glucose, compared with the vehicle-treated mice at 8 months. Linagliptin treatment significantly restored spatial reference memory and increased cerebral blood flow without affecting phosphorylation levels of tau or endothelial nitric oxide synthase (eNOS) in the brain. Linagliptin may ameliorate HFD-induced cognitive worsening in tauopathy, at least partially, by increasing cerebral perfusion via the eNOS-independent pathway.
Collapse
|
124
|
Govindpani K, McNamara LG, Smith NR, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A. Vascular Dysfunction in Alzheimer's Disease: A Prelude to the Pathological Process or a Consequence of It? J Clin Med 2019; 8:E651. [PMID: 31083442 PMCID: PMC6571853 DOI: 10.3390/jcm8050651] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Despite decades of research following several theoretical and clinical lines, all existing treatments for the disorder are purely symptomatic. AD research has traditionally been focused on neuronal and glial dysfunction. Although there is a wealth of evidence pointing to a significant vascular component in the disease, this angle has been relatively poorly explored. In this review, we consider the various aspects of vascular dysfunction in AD, which has a significant impact on brain metabolism and homeostasis and the clearance of β-amyloid and other toxic metabolites. This may potentially precede the onset of the hallmark pathophysiological and cognitive symptoms of the disease. Pathological changes in vessel haemodynamics, angiogenesis, vascular cell function, vascular coverage, blood-brain barrier permeability and immune cell migration may be related to amyloid toxicity, oxidative stress and apolipoprotein E (APOE) genotype. These vascular deficits may in turn contribute to parenchymal amyloid deposition, neurotoxicity, glial activation and metabolic dysfunction in multiple cell types. A vicious feedback cycle ensues, with progressively worsening neuronal and vascular pathology through the course of the disease. Thus, a better appreciation for the importance of vascular dysfunction in AD may open new avenues for research and therapy.
Collapse
Affiliation(s)
- Karan Govindpani
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Laura G McNamara
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Nicholas R Smith
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Chitra Vinnakota
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard Lm Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
125
|
Molecular Pathophysiology of Insulin Depletion, Mitochondrial Dysfunction, and Oxidative Stress in Alzheimer’s Disease Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:27-44. [DOI: 10.1007/978-981-13-3540-2_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
126
|
Pardeshi R, Bolshette N, Gadhave K, Arfeen M, Ahmed S, Jamwal R, Hammock BD, Lahkar M, Goswami SK. Docosahexaenoic Acid Increases the Potency of Soluble Epoxide Hydrolase Inhibitor in Alleviating Streptozotocin-Induced Alzheimer's Disease-Like Complications of Diabetes. Front Pharmacol 2019; 10:288. [PMID: 31068802 PMCID: PMC6491817 DOI: 10.3389/fphar.2019.00288] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 01/05/2023] Open
Abstract
Diabetes is a risk factor for Alzheimer's disease and it is associated with significant memory loss. In the present study, we hypothesized that the soluble epoxide hydrolase (sEH) inhibitor N-[1-(1-oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl)-urea (also known as TPPU) could alleviate diabetes-aggravated Alzheimer's disease-like symptoms by improving memory and cognition, and reducing the oxidative stress and inflammation associated with this condition. Also, we evaluated the effect of edaravone, an antioxidant on diabetes-induced Alzheimer's-like complications and the additive effect of docosahexaenoic acid (DHA) on the efficacy of TPPU. Diabetes was induced in male Sprague-Dawley rats by intraperitoneally administering streptozotocin (STZ). Six weeks after induction of diabetes, animals were either treated with vehicle, edaravone (3 or 10 mg/kg), TPPU (1 mg/kg) or TPPU (1 mg/kg) + DHA (100 mg/kg) for 2 weeks. The results demonstrate that the treatments increased the memory response of diabetic rats, in comparison to untreated diabetic rats. Indeed, DHA + TPPU were more effective than TPPU alone in reducing the symptoms monitored. All drug treatments reduced oxidative stress and minimized inflammation in the brain of diabetic rats. Expression of the amyloid precursor protein (APP) was increased in the brain of diabetic rats. Treatment with edaravone (10 mg/kg), TPPU or TPPU + DHA minimized the level of APP. The activity of acetylcholinesterase (AChE) which metabolizes acetylcholine was increased in the brain of diabetic rats. All the treatments except edaravone (3 mg/kg) were effective in decreasing the activity of AChE and TPPU + DHA was more efficacious than TPPU alone. Intriguingly, the histological changes in hippocampus after treatment with TPPU + DHA showed significant protection of neurons against STZ-induced neuronal damage. Overall, we found that DHA improved the efficacy of TPPU in increasing neuronal survival and memory, decreasing oxidative stress and inflammation possibly by stabilizing anti-inflammatory and neuroprotective epoxides of DHA. In the future, further evaluating the detailed mechanisms of action of sEH inhibitor and DHA could help to develop a strategy for the management of Alzheimer's-like complications in diabetes.
Collapse
Affiliation(s)
- Rohit Pardeshi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Nityanand Bolshette
- Institutional Level Biotech Hub (IBT Hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | - Mohammad Arfeen
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Sahabuddin Ahmed
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Rohitash Jamwal
- Biomedical and Pharmaceutical Sciences, The University of Rhode Island, Kingston, RI, United States
| | - Bruce D. Hammock
- Hammock Laboratory of Pesticide Biotechnology, Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Mangala Lahkar
- Institutional Level Biotech Hub (IBT Hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Sumanta Kumar Goswami
- Hammock Laboratory of Pesticide Biotechnology, Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
127
|
Sah SK, Samuel VP, Dahiya S, Singh Y, Gilhotra RM, Gupta G, Mishra A, Sharma RK, Kumar GS, SreeHarsha N, Chellappan DK, Dua K. A contemporary biological pathway of islet amyloid polypeptide for the management of diabetic dementia. Chem Biol Interact 2019; 306:117-122. [PMID: 31004596 DOI: 10.1016/j.cbi.2019.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 01/07/2023]
Abstract
Major challenges of dealing elder patients with diabetes mellitus (DM) are the individualization of consideration in persons with various comorbid types of conditions. In spite of the fact that microvascular and macrovascular problems associated with DM are well documented, there is only a few numbers of reports viewing different conditions, for example, cognitive dysfunction. Cognitive dysfunction is of specific significance due to its effect on self-care and quality of life. All in all, the etiology of cognitive dysfunction in the maturing populace is probably going to be the grouping of ischemic and degenerative pathology. It is likewise trusted that Hyperglycemia is engaged with the system of DM-related cognitive dysfunction. At present, it isn't certain in the case of enhancing glycemic control or utilizing therapeutic agents can enhance the risk of cognitive decay. Amylin was later characterized as an amyloidogenic peptide, confined from a beta cell tumor and called islet amyloid polypeptide (IAPP), and after that, amylin. Conversely, we investigate the beneficial role and hypothesizing the mechanism of amylin related expanding the level and activation of CGRP receptor to enhance the cognition declination amid diabetic dementia.
Collapse
Affiliation(s)
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences, University, Ras Al Khaimah, United Arab Emirates
| | - Sunita Dahiya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Yogendar Singh
- Department of Pharmaceutical Sciences, Mahatma Gandhi College of Pharmaceutical Sciences, Sitapura, Jaipur, India
| | - Ritu M Gilhotra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India.
| | - Anurag Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Rakesh Kumar Sharma
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | | | - Nagaraja SreeHarsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, NSW 2308, Australia.
| |
Collapse
|
128
|
Ahmad MH, Fatima M, Mondal AC. Role of Hypothalamic-Pituitary-Adrenal Axis, Hypothalamic-Pituitary-Gonadal Axis and Insulin Signaling in the Pathophysiology of Alzheimer's Disease. Neuropsychobiology 2019; 77:197-205. [PMID: 30605907 DOI: 10.1159/000495521] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/13/2018] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD), the commonest progressive neurodegenerative disorder of the brain, is clinically characterized by the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. Recent studies suggest a relationship between the endocrinal dysregulation and the neuronal loss during the AD pathology. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and hypothalamic-pituitary-gonadal (HPG) axis regulating circulating levels of glucocorticoid hormones has been implicated in the pathophysiology of AD. Likewise, dysregulated insulin signaling, impaired glucose uptake and insulin resistance are some of the prime factors in the onset/progression of AD. In this review, we have discussed the changes in HPA and HPG axes, implicated insulin resistance/signaling and glucose regulation during the onset/progression of AD. Therefore, simultaneous detection of these endocrinal markers in the early or presymptomatic stages may help in the early diagnosis of AD. This evidence for implicated endocrinal functions supports the fact that modulation of endocrinal pathways can be used as therapeutic targets for AD. Future studies need to determine how the induction or inhibition of endocrinal targets could be used for predictable neuroprotection in AD therapies.
Collapse
Affiliation(s)
- Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mahino Fatima
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India,
| |
Collapse
|
129
|
Epigenetic Modulation on Tau Phosphorylation in Alzheimer's Disease. Neural Plast 2019; 2019:6856327. [PMID: 31093272 PMCID: PMC6481020 DOI: 10.1155/2019/6856327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Tau hyperphosphorylation is a typical pathological change in Alzheimer's disease (AD) and is involved in the early onset and progression of AD. Epigenetic modification refers to heritable alterations in gene expression that are not caused by direct changes in the DNA sequence of the gene. Epigenetic modifications, such as noncoding RNA regulation, DNA methylation, and histone modification, can directly or indirectly affect the regulation of tau phosphorylation, thereby participating in AD development and progression. This review summarizes the current research progress on the mechanisms of epigenetic modification associated with tau phosphorylation.
Collapse
|
130
|
Robinson A, Lubitz I, Atrakchi-Baranes D, Licht-Murava A, Katsel P, Leroith D, Liraz-Zaltsman S, Haroutunian V, Beeri MS. Combination of Insulin with a GLP1 Agonist Is Associated with Better Memory and Normal Expression of Insulin Receptor Pathway Genes in a Mouse Model of Alzheimer's Disease. J Mol Neurosci 2019; 67:504-510. [PMID: 30635783 PMCID: PMC6549496 DOI: 10.1007/s12031-019-1257-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023]
Abstract
Disruption of brain insulin signaling may explain the higher Alzheimer's disease (AD) risk among type 2 diabetic (T2D) patients. There is evidence from in vitro and human postmortem studies that combination of insulin with hypoglycemic medications is neuroprotective and associated with less amyloid aggregation. We examined the effect of 8-month intranasal administration of insulin, exenatide (a GLP-1 agonist), combination therapy (insulin + exenatide) or saline, in wild-type (WT) and an AD-like mouse model (Tg2576). Mice were assessed for learning, gene expression of key mediators and effectors of the insulin receptor signaling pathway (IRSP-IRS1, AKT1, CTNNB1, INSR, IRS2, GSK3B, IGF1R, AKT3), and brain Amyloid Beta (Aβ) levels. In Tg2576 mice, combination therapy reduced expression of IRSP genes which was accompanied by better learning. Cortical Aβ levels were decreased by 15-30% in all groups compared to saline but this difference did not reach statistical significance. WT mice groups, with or without treatment, did not differ in any comparison. Disentangling the mechanisms underlying the potential beneficial effects of combination therapy on the IR pathway and AD-like behavior is warranted.
Collapse
Affiliation(s)
- Ari Robinson
- The Joseph Sagol Neuroscience Center Tel-hashomer, Ramat-Gan 52621, Israel
| | - Irit Lubitz
- The Joseph Sagol Neuroscience Center Tel-hashomer, Ramat-Gan 52621, Israel
| | | | - Avital Licht-Murava
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY10021, USA
| | - Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mt Sinai, New-York, NY10029, USA
| | - Derek Leroith
- Department of Medicine, Ichan School of Medicine at Mt Sinai, New-York, NY10029, USA
| | | | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at Mt Sinai, New-York, NY10029, USA
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center Tel-hashomer, Ramat-Gan 52621, Israel,Department of Psychiatry, The Icahn School of Medicine at Mt Sinai, New-York, NY10029, USA
| |
Collapse
|
131
|
Hari Dass SA, McCracken K, Pokhvisneva I, Chen LM, Garg E, Nguyen TTT, Wang Z, Barth B, Yaqubi M, McEwen LM, MacIsaac JL, Diorio J, Kobor MS, O'Donnell KJ, Meaney MJ, Silveira PP. A biologically-informed polygenic score identifies endophenotypes and clinical conditions associated with the insulin receptor function on specific brain regions. EBioMedicine 2019; 42:188-202. [PMID: 30922963 PMCID: PMC6491717 DOI: 10.1016/j.ebiom.2019.03.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Activation of brain insulin receptors modulates reward sensitivity, inhibitory control and memory. Variations in the functioning of this mechanism likely associate with individual differences in the risk for related mental disorders (attention deficit hyperactivity disorder or ADHD, addiction, dementia), in agreement with the high co-morbidity between insulin resistance and psychopathology. These neurobiological mechanisms can be explored using genetic studies. We propose a novel, biologically informed genetic score reflecting the mesocorticolimbic and hippocampal insulin receptor-related gene networks, and investigate if it predicts endophenotypes (impulsivity, cognitive ability) in community samples of children, and psychopathology (addiction, dementia) in adults. METHODS Lists of genes co-expressed with the insulin receptor in the mesocorticolimbic system or hippocampus were created. SNPs from these genes (post-clumping) were compiled in a polygenic score using the association betas described in a conventional GWAS (ADHD in the mesocorticolimbic score and Alzheimer in the hippocampal score). Across multiple samples (n = 4502), the biologically informed, mesocorticolimbic or hippocampal specific insulin receptor polygenic scores were calculated, and their ability to predict impulsivity, risk for addiction, cognitive performance and presence of Alzheimer's disease was investigated. FINDINGS The biologically-informed ePRS-IR score showed better prediction of child impulsivity and cognitive performance, as well as risk for addiction and Alzheimer's disease in comparison to conventional polygenic scores for ADHD, addiction and dementia. INTERPRETATION This novel, biologically-informed approach enables the use of genomic datasets to probe relevant biological processes involved in neural function and disorders. FUND: Toxic Stress Research network of the JPB Foundation, Jacobs Foundation (Switzerland), Sackler Foundation.
Collapse
Affiliation(s)
- Shantala A Hari Dass
- Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Kathryn McCracken
- John Abbott College, Sainte-Anne-de-Bellevue, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Irina Pokhvisneva
- Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Lawrence M Chen
- Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Elika Garg
- Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Thao T T Nguyen
- Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Zihan Wang
- Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Barbara Barth
- McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Moein Yaqubi
- McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Lisa M McEwen
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Julie L MacIsaac
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Josie Diorio
- Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Kieran J O'Donnell
- Department of Psychiatry, Faculty of Medicine, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada
| | - Michael J Meaney
- Department of Psychiatry, Faculty of Medicine, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, 117609, Singapore
| | - Patricia P Silveira
- Department of Psychiatry, Faculty of Medicine, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; Sackler Institute for Epigenetics & Psychobiology, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada.
| |
Collapse
|
132
|
Haapalinna F, Kokki M, Jääskeläinen O, Hallikainen M, Helisalmi S, Koivisto A, Kokki H, Paajanen T, Penttinen J, Pikkarainen M, Rautiainen M, Soininen H, Solje E, Remes AM, Herukka SK. Subtle Cognitive Impairment and Alzheimer's Disease-Type Pathological Changes in Cerebrospinal Fluid are Common Among Neurologically Healthy Subjects. J Alzheimers Dis 2019; 62:165-174. [PMID: 29439329 DOI: 10.3233/jad-170534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The neuropathology of Alzheimer's disease (AD) has previously been shown to be rather common among the elderly. OBJECTIVE The aim of this study was to inspect the associations between cerebrospinal fluid (CSF) AD biomarker concentrations, age, the APOEɛ4 allele, cardiovascular diseases, diabetes, and cognitive performance in a cohort of a neurologically healthy population. METHODS This study included 93 subjects (42 men, mean age 67 years) without previous neurological symptoms or subjective cognitive complaints. Their cognition was assessed, and CSF biomarkers and APOEɛ4 status were analyzed. RESULTS Of the studied subjects, 8.6% (n = 8) had a pathological CSF AD biomarker profile. An increase in age correlated positively with CSF tau pathology and negatively with global cognitive performance. CONCLUSION AD-type pathological changes in CSF and subtle cognitive impairment are common within a population with no previous memory complaints. Age was the main risk factor for the changes.
Collapse
Affiliation(s)
- Fanni Haapalinna
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Merja Kokki
- Department of Anesthesia and Operative Services, Kuopio University Hospital, Kuopio, Finland
| | - Olli Jääskeläinen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Merja Hallikainen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Seppo Helisalmi
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Anne Koivisto
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Hannu Kokki
- Institute of Clinical Medicine, Anesthesiology and Intensive Care, University of Eastern Finland, Kuopio, Finland
| | - Teemu Paajanen
- Research and Service Centre for Occupational Health, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Janne Penttinen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Maria Pikkarainen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Minna Rautiainen
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Anne M Remes
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
133
|
Shukla M, Chinchalongporn V, Govitrapong P, Reiter RJ. The role of melatonin in targeting cell signaling pathways in neurodegeneration. Ann N Y Acad Sci 2019; 1443:75-96. [PMID: 30756405 DOI: 10.1111/nyas.14005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are typified by neuronal loss associated with progressive dysfunction and clinical presentation. Neurodegenerative diseases are characterized by the intra- and extracellular conglomeration of misfolded proteins that occur because of abnormal protein dynamics and genetic manipulations; these trigger processes of cell death in these disorders. The disrupted signaling mechanisms involved are oxidative stress-mediated mitochondrial and calcium signaling deregulation, alterations in immune and inflammatory signaling, disruption of autophagic integrity, proteostasis dysfunction, and anomalies in the insulin, Notch, and Wnt/β-catenin signaling pathways. Herein, we accentuate some of the contemporary translational approaches made in characterizing the underlying mechanisms of neurodegeneration. Melatonin-induced cognitive enhancement and inhibition of oxidative signaling substantiates the efficacy of melatonin in combating neurodegenerative processes. Our review considers in detail the possible roles of melatonin in understanding the synergistic pathogenic mechanisms between aggregated proteins and in regulating, modulating, and preventing the altered signaling mechanisms discovered in cellular and animal models along with clinical evaluations pertaining to neurodegeneration. Furthermore, this review showcases the therapeutic potential of melatonin in preventing and treating neurodegenerative diseases with optimum prognosis.
Collapse
Affiliation(s)
- Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Vorapin Chinchalongporn
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| |
Collapse
|
134
|
Galle SA, van der Spek A, Drent ML, Brugts MP, Scherder EJA, Janssen JAMJL, Ikram MA, van Duijn CM. Revisiting the Role of Insulin-Like Growth Factor-I Receptor Stimulating Activity and the Apolipoprotein E in Alzheimer's Disease. Front Aging Neurosci 2019; 11:20. [PMID: 30809143 PMCID: PMC6380107 DOI: 10.3389/fnagi.2019.00020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Alterations in insulin-like growth factor I (IGF-I) signaling have been associated with dementia and Alzheimer's disease (AD). Studies on the association between IGF-I levels and dementia risk have been inconclusive. We reported earlier that higher levels of IGF-I receptor stimulating activity are associated with a higher prevalence and incidence of dementia. Objective: In the present study, we test the robustness of the association between IGF-I receptor stimulating activity and dementia by extending the follow-up period to 16 years and investigate possible effect modification by apolipoprotein E (ApoE). Methods: At baseline, circulating IGF-I receptor stimulating activity was determined by the IGF-I kinase receptor activation (KIRA) assay in 1,014 elderly from the Rotterdam Study. Dementia was assessed from baseline (1997-1999) to follow-up in January 2015. Associations of IGF-I receptor stimulating activity and incident dementia were assessed with Cox proportional hazards models. Results: During 10,752 person-years of follow-up, 174 people developed dementia. In the extended follow-up we no longer observed a dose-response relationship between IGF-I receptor stimulating activity and risk of dementia [adjusted odds ratio 1.11; 95% confidence interval (CI) 0.97-1.28]. Interestingly, we found evidence of an interaction between ApoE-ε4 and tertiles of IGF-I receptor stimulating activity. IGF-I receptor stimulating activity in the median and top tertiles was related to increased dementia incidence in hetero- and homozygotes of the ApoE-ε4 allele, but did not show any association with dementia risk in people without the ApoE-ε4 allele (adjusted odds ratio medium vs. low IGF-I receptor stimulating activity in ApoE-ε4 carriers: 1.45; 95% CI 1.00-2.12). These findings suggest a threshold effect in ApoE-ε4 carriers. In line with the hypothesis that downregulation of IGF-I signaling is associated with increased dementia risk, ApoE-ε4 homozygotes without prevalent dementia displayed lower levels of IGF-I receptor stimulating activity than heterozygotes and non-carriers. Conclusion: The findings shed new light on the association between IGF-I signaling and the neuropathology of dementia and ask for replication in other cohorts, using measures of IGF-I receptor stimulating activity rather than total serum levels as putative markers of dementia risk.
Collapse
Affiliation(s)
- Sara A Galle
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Genetic Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ashley van der Spek
- Department of Genetic Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Madeleine L Drent
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Section of Endocrinology, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Michael P Brugts
- Department of Internal Medicine, Ikazia Ziekenhuis, Rotterdam, Netherlands
| | - Erik J A Scherder
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Neurology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Radiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Cornelia M van Duijn
- Department of Genetic Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands.,Nuffield Department of Population Health, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
135
|
Huang Y, Wan Z, Wang Z, Zhou B. Insulin signaling in Drosophila melanogaster mediates Aβ toxicity. Commun Biol 2019; 2:13. [PMID: 30652125 PMCID: PMC6325060 DOI: 10.1038/s42003-018-0253-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) and diabetes are clinically positively correlated. However, the connection between them is not clarified. Here, using Drosophila as a model system, we show that reducing insulin signaling can effectively suppress the toxicity from Aβ (Amyloid beta 42) expression. On the other hand, Aβ accumulation led to the elevation of fly insulin-like peptides (ILPs) and activation of insulin signaling in the brain. Mechanistically, these observations are attributed to a reciprocal competition between Drosophila insulin-like peptides and Aβ for the activity of insulin-degrading enzyme (IDE). Intriguingly, peripheral insulin signaling is decreased despite its heightened activity in the brain. While many upstream factors may modify Aβ toxicity, our results suggest that insulin signaling is the main downstream executor of Aβ damage, and thus may serve as a promising target for Alzheimer's treatment in non-diabetes patients. This study explains why more Alzheimer's cases are found in diabetes patients.
Collapse
Affiliation(s)
- Yunpeng Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Zhihui Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Zhiqing Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
- Beijing Institute for Brain Disorders, 45 Changchun St, 100053 Beijing, China
| |
Collapse
|
136
|
Crunfli F, Vrechi TA, Costa AP, Torrão AS. Cannabinoid Receptor Type 1 Agonist ACEA Improves Cognitive Deficit on STZ-Induced Neurotoxicity Through Apoptosis Pathway and NO Modulation. Neurotox Res 2019; 35:516-529. [PMID: 30607903 DOI: 10.1007/s12640-018-9991-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
Abstract
The cannabinoid system has the ability to modulate cellular and molecular mechanisms, including excitotoxicity, oxidative stress, apoptosis, and inflammation, acting as a neuroprotective agent, by its relationship with signaling pathways associated to the control of cell proliferation, differentiation, and survival. Recent reports have raised new perspectives on the possible role of cannabinoid system in neurodegenerative diseases like Alzheimer disease's (AD). AD is a neurodegenerative disorder characterized by the presence of amyloid plaques, neurofibrillary tangles, neuronal death, and progressive cognitive loss, which could be caused by energy metabolism impairment, changes in insulin signaling, chronic oxidative stress, neuroinflammation, Tau hyperphosphorylation, and Aβ deposition in the brain. Thus, we investigated the presumptive protective effect of the cannabinoid type 1 (CB1)-selective receptor agonist arachidonyl-2'-chloroethylamide (ACEA) against streptozotocin (STZ) exposure stimuli in an in vitro neuronal model (Neuro-2a neuroblastoma cells) and in vivo model (intracerebroventricular STZ injection), experimental models of sporadic AD. Our results demonstrated that ACEA treatment reversed cognitive impairment and increased activity of Akt and ERK triggered by STZ, and increased IR expression and increased the anti-apoptotic proteins levels, Bcl-2. In the in vitro model, ACEA was able to rescue cells from STZ-triggered death and modulated the NO release by STZ. Our study has demonstrated a participation of the cannabinoid system in cellular survival, involving the CB1 receptor, which occurs by positive regulation of the anti-apoptotic proteins, suggesting the participation of this system in neurodegenerative processes. Our data suggest that the cannabinoid system is an interesting therapeutic target for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fernanda Crunfli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil.
| | - Talita A Vrechi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil
| | - Andressa P Costa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil
| | - Andréa S Torrão
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
137
|
Gomaa AA, Makboul RM, Al-Mokhtar MA, Nicola MA. Polyphenol-rich Boswellia serrata gum prevents cognitive impairment and insulin resistance of diabetic rats through inhibition of GSK3β activity, oxidative stress and pro-inflammatory cytokines. Biomed Pharmacother 2019; 109:281-292. [DOI: 10.1016/j.biopha.2018.10.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
|
138
|
Liang H, Nie J, Van Skike CE, Valentine JM, Orr ME. Mammalian Target of Rapamycin at the Crossroad Between Alzheimer's Disease and Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:185-225. [PMID: 31062331 DOI: 10.1007/978-981-13-3540-2_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that Alzheimer's disease may manifest as a metabolic disorder with pathology and/or dysfunction in numerous tissues. Adults with Alzheimer's disease suffer with significantly more comorbidities than demographically matched Medicare beneficiaries (Zhao et al, BMC Health Serv Res 8:108, 2008b). Reciprocally, comorbid health conditions increase the risk of developing Alzheimer's disease (Haaksma et al, PLoS One 12(5):e0177044, 2017). Type 2 diabetes mellitus is especially notable as the disease shares many overlapping pathologies observed in patients with Alzheimer's disease, including hyperglycemia, hyperinsulinemia, insulin resistance, glucose intolerance, dyslipidemia, inflammation, and cognitive dysfunction, as described in Chap. 8 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al, Neurology 53(9):1937-1942, 1999; Voisin et al, Rev Med Interne 24(Suppl 3):288s-291s, 2003; Janson et al. Diabetes 53(2):474-481, 2004; Ristow M, J Mol Med (Berl) 82(8):510-529, 2004; Whitmer et al, BMJ 330(7504):1360, 2005, Curr Alzheimer Res 4(2):103-109, 2007; Ohara et al, Neurology 77(12):1126-1134, 2011). Although nondiabetic older adults also experience age-related cognitive decline, diabetes is uniquely associated with a twofold increased risk of Alzheimer's disease, as described in Chap. 2 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al. Neurology 53(9):1937-1942, 1999; Ohara et al, Neurology 77(12):1126-1134, 2011). Good glycemic control has been shown to improve cognitive status (Cukierman-et al, Diabetes Care 32(2):221-226, 2009), and the use of insulin sensitizers is correlated with a lower rate of cognitive decline in older adults (Morris JK, Burns JM, Curr Neurol Neurosci Rep 12(5):520-527, 2012). At the molecular level, the mechanistic/mammalian target of rapamycin (mTOR) plays a key role in maintaining energy homeostasis. Nutrient availability and cellular stress information, both extracellular and intracellular, are integrated and transduced through mTOR signaling pathways. Aberrant regulation of mTOR occurs in the brains of patients with Alzheimer's disease and in numerous tissues of individuals with type 2 diabetes (Mannaa et al, J Mol Med (Berl) 91(10):1167-1175, 2013). Moreover, modulating mTOR activity with a pharmacological inhibitor, rapamycin, provides wide-ranging health benefits, including healthy life span extension in numerous model organisms (Vellai et al, Nature 426(6967):620, 2003; Jia et al, Development 131(16):3897-3906, 2004; Kapahi et al, Curr Biol 14(10):885-890, 2004; Kaeberlein et al, Science 310(5751):1193-1196, 2005; Powers et al, Genes Dev 20(2):174-184, 2006; Harrison et al, Nature 460(7253):392-395, 2009; Selman et al, Science 326(5949):140-144, 2009; Sharp ZD, Strong R, J Gerontol A Biol Sci Med Sci 65(6):580-589, 2010), which underscores its importance to overall organismal health and longevity. In this chapter, we discuss the physiological role of mTOR signaling and the consequences of mTOR dysregulation in the brain and peripheral tissues, with emphasis on its relevance to the development of Alzheimer's disease and link to type 2 diabetes.
Collapse
Affiliation(s)
- Hanyu Liang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Candice E Van Skike
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Joseph M Valentine
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Miranda E Orr
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- San Antonio Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, San Antonio, TX, USA.
| |
Collapse
|
139
|
Choi YS, Kang S, Ko SY, Lee S, Kim JY, Lee H, Song JE, Kim DH, Kim E, Kim CH, Saksida L, Song HT, Lee JE. Hyperpolarized [1-13C] pyruvate MR spectroscopy detect altered glycolysis in the brain of a cognitively impaired mouse model fed high-fat diet. Mol Brain 2018; 11:74. [PMID: 30563553 PMCID: PMC6299662 DOI: 10.1186/s13041-018-0415-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/26/2018] [Indexed: 01/08/2023] Open
Abstract
Higher dietary intakes of saturated fatty acid increase the risk of developing Alzheimer's disease and dementia, and even in people without diabetes higher glucose levels may be a risk factor for dementia. The mechanisms causing neuronal dysfunction and dementia by consuming high-fat diet degrading the integrity of the blood-brain barrier (BBB) has been suggested but are not yet fully understood, and metabolic state of the brain by this type of insult is still veiled. The objective of this study was to investigate the effect of high-fat diet on the brain metabolism by a multimodal imaging method using the hyperpolarizedcarbon 13 (13C)-pyruvate magnetic resonance (MR) spectroscopy and dynamic contrast-enhanced MR imaging in conjunction with the biochemical assay and the behavior test in a mouse model fed high-fat diet (HFD). In mice were fed 60% HFD for 6 months, hyperpolarized [1-13C] pyruvate MR spectroscopy showed decreased perfusion (p < 0.01) and increased conversion from pyruvate to lactate (p < 0.001) in the brain. The hippocampus and striatum showed the highest conversion ratio. The functional integrity of the blood-brain barrier tested by dynamic contrast-enhanced MR imaging showed no difference to the control. Lactate was increased in the cortex (p < 0.01) and striatum (p < 0.05), while PDH activity was decreased in the cortex (p < 0.01) and striatum (p < 0.001) and the phosphorylated PDH was increased in the striatum (p < 0.05). Mice fed HFD showed less efficiency in learning memory compared with control (p < 0.05). To determine whether hyperpolarized 13C-pyruvate magnetic resonance (MR) spectroscopy could detect a much earier event in the brain. Mice fed HFD for 3 months did not show a detectable cognitive decline in water maze based learning memory. Hyperpolarized [1-13C] pyruvate MR spectroscopy showed increased lactate conversion (P < .001), but no difference in cerebral perfusion. These results suggest that the increased hyperpolarized [1-13C] lactate signal in the brain of HFD-fed mice represent that altered metabolic alteration toward to glycolysis and hypoperfusion by the long-term metabolic stress by HFD further promote to glycolysis. The hyperpolarized [1-13C] pyruvate MR spectroscopy can be used to monitor the brain metabolism and will provide information helpful to understand the disease process.
Collapse
Affiliation(s)
- Young-Suk Choi
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Somang Kang
- Department of Anatomy, BK21 Project for Medical Science and Research Institute of Radiological Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Sang-Yoon Ko
- Department of Anatomy, BK21 Project for Medical Science and Research Institute of Radiological Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Saeram Lee
- Department of Anatomy, BK21 Project for Medical Science and Research Institute of Radiological Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Jae Young Kim
- Department of Anatomy, BK21 Project for Medical Science and Research Institute of Radiological Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Hansol Lee
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722 South Korea
| | - Jae Eun Song
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722 South Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722 South Korea
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
- BK21 PLUS Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Lisa Saksida
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK
- Molecular Medicine Research Group, Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON Canada
- The Brain and Mind Institute, Western University, London, ON Canada
| | - Ho-Taek Song
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Jong Eun Lee
- Department of Anatomy, BK21 Project for Medical Science and Research Institute of Radiological Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
- BK21 PLUS Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| |
Collapse
|
140
|
Johnson SC, Pan A, Li L, Sedensky M, Morgan P. Neurotoxicity of anesthetics: Mechanisms and meaning from mouse intervention studies. Neurotoxicol Teratol 2018; 71:22-31. [PMID: 30472095 DOI: 10.1016/j.ntt.2018.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/02/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
Volatile anesthetics are widely used in human medicine and generally considered to be safe in healthy individuals. In recent years, the safety of volatile anesthesia in pediatric patients has been questioned following reports of anesthetic induced neurotoxicity in pre-clinical studies. These studies in mice, rats, and primates have demonstrated that exposure to anesthetic agents during early post-natal periods can cause acute neurotoxicity, as well as later-life cognitive defects including deficits in learning and memory. In recent years, the focus of many pre-clinical studies has been on identifying candidate pathways or potential therapeutic targets through intervention trials. These reports have shed light on the mechanisms underlying anesthesia induced neurotoxicity as well as highlighting the challenges of pre-clinical modeling of anesthesia induced neurotoxicity in mice. Here, we summarize the data derived from intervention studies in neonatal mouse models of anesthetic exposure and provide an overview of mechanisms proposed to mediate anesthesia induced neurotoxicity in mice based on these reports. The majority of these studies implicate one of three mechanisms: reactive oxygen species (ROS) mediated stress and signaling, growth/nutrient signaling, or direct neuronal modulation.
Collapse
Affiliation(s)
- Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America.
| | - Amanda Pan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America
| | - Li Li
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Anesthesiology, University of Washington, Seattle, WA, United States of America
| | - Margaret Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Anesthesiology, University of Washington, Seattle, WA, United States of America
| | - Philip Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Anesthesiology, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
141
|
Tramutola A, Lanzillotta C, Barone E, Arena A, Zuliani I, Mosca L, Blarzino C, Butterfield DA, Perluigi M, Di Domenico F. Intranasal rapamycin ameliorates Alzheimer-like cognitive decline in a mouse model of Down syndrome. Transl Neurodegener 2018; 7:28. [PMID: 30410750 PMCID: PMC6218962 DOI: 10.1186/s40035-018-0133-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023] Open
Abstract
Background Down syndrome (DS) individuals, by the age of 40s, are at increased risk to develop Alzheimer-like dementia, with deposition in brain of senile plaques and neurofibrillary tangles. Our laboratory recently demonstrated the disturbance of PI3K/AKT/mTOR axis in DS brain, prior and after the development of Alzheimer Disease (AD). The aberrant modulation of the mTOR signalling in DS and AD age-related cognitive decline affects crucial neuronal pathways, including insulin signaling and autophagy, involved in pathology onset and progression. Within this context, the therapeutic use of mTOR-inhibitors may prevent/attenuate the neurodegenerative phenomena. By our work we aimed to rescue mTOR signalling in DS mice by a novel rapamycin intranasal administration protocol (InRapa) that maximizes brain delivery and reduce systemic side effects. Methods Ts65Dn mice were administered with InRapa for 12 weeks, starting at 6 months of age demonstrating, at the end of the treatment by radial arms maze and novel object recognition testing, rescued cognition. Results The analysis of mTOR signalling, after InRapa, demonstrated in Ts65Dn mice hippocampus the inhibition of mTOR (reduced to physiological levels), which led, through the rescue of autophagy and insulin signalling, to reduced APP levels, APP processing and APP metabolites production, as well as, to reduced tau hyperphosphorylation. In addition, a reduction of oxidative stress markers was also observed. Discussion These findings demonstrate that chronic InRapa administration is able to exert a neuroprotective effect on Ts65Dn hippocampus by reducing AD pathological hallmarks and by restoring protein homeostasis, thus ultimately resulting in improved cognition. Results are discussed in term of a potential novel targeted therapeutic approach to reduce cognitive decline and AD-like neuropathology in DS individuals.
Collapse
Affiliation(s)
- Antonella Tramutola
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Lanzillotta
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Eugenio Barone
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,2Universidad Autònoma de Chile, Instituto de Ciencias Biomédicas, Facultad de alud, Avenida Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Andrea Arena
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Ilaria Zuliani
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Luciana Mosca
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Carla Blarzino
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - D Allan Butterfield
- 3Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055 USA
| | - Marzia Perluigi
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Fabio Di Domenico
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
142
|
Tumminia A, Vinciguerra F, Parisi M, Frittitta L. Type 2 Diabetes Mellitus and Alzheimer's Disease: Role of Insulin Signalling and Therapeutic Implications. Int J Mol Sci 2018; 19:ijms19113306. [PMID: 30355995 PMCID: PMC6275025 DOI: 10.3390/ijms19113306] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023] Open
Abstract
In the last two decades, numerous in vitro studies demonstrated that insulin receptors and theirs downstream pathways are widely distributed throughout the brain. This evidence has proven that; at variance with previous believes; insulin/insulin-like-growth-factor (IGF) signalling plays a crucial role in the regulation of different central nervous system (CNS) tasks. The most important of these functions include: synaptic formation; neuronal plasticity; learning; memory; neuronal stem cell activation; neurite growth and repair. Therefore; dysfunction at different levels of insulin signalling and metabolism can contribute to the development of a number of brain disorders. Growing evidences demonstrate a close relationship between Type 2 Diabetes Mellitus (T2DM) and neurodegenerative disorders such as Alzheimer’s disease. They, in fact, share many pathophysiological characteristics comprising impaired insulin sensitivity, amyloid β accumulation, tau hyper-phosphorylation, brain vasculopathy, inflammation and oxidative stress. In this article, we will review the clinical and experimental evidences linking insulin resistance, T2DM and neurodegeneration, with the objective to specifically focus on insulin signalling-related mechanisms. We will also evaluate the pharmacological strategies targeting T2DM as potential therapeutic tools in patients with cognitive impairment.
Collapse
Affiliation(s)
- Andrea Tumminia
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Diabetes, Obesity and Dietetic Center, Garibaldi Hospital, Via Palermo n° 636, 95122 Catania, Italy.
| | - Federica Vinciguerra
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Diabetes, Obesity and Dietetic Center, Garibaldi Hospital, Via Palermo n° 636, 95122 Catania, Italy.
| | - Miriam Parisi
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Diabetes, Obesity and Dietetic Center, Garibaldi Hospital, Via Palermo n° 636, 95122 Catania, Italy.
| | - Lucia Frittitta
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Diabetes, Obesity and Dietetic Center, Garibaldi Hospital, Via Palermo n° 636, 95122 Catania, Italy.
| |
Collapse
|
143
|
Park S, Kim DS, Kang S, Kim HJ. The combination of luteolin and l-theanine improved Alzheimer disease-like symptoms by potentiating hippocampal insulin signaling and decreasing neuroinflammation and norepinephrine degradation in amyloid-β-infused rats. Nutr Res 2018; 60:116-131. [PMID: 30527255 DOI: 10.1016/j.nutres.2018.09.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 08/10/2018] [Accepted: 09/27/2018] [Indexed: 01/11/2023]
Abstract
Luteolin and l-theanine have anti-inflammatory, antioxidant, and possible antidiabetic activities, and they may synergistically protect against dementia. Here, we hypothesized that a combination of luteolin and l-theanine would synergistically act to improve memory function and glucose disturbances in rats infused with amyloid-β, and the mechanisms underlying these actions were investigated. Rats that received an amyloid-β(25-35) infusion into the CA1 region of the hippocampus were fed dextrin (AD-CON), 0.1% luteolin (AD-Lut), 0.2% l-theanine (AD-Thea), or both 0.05% luteolin and 0.1% l-theanine (AD-LuTh) in conjunction with a high-fat diet over 8 weeks. AD-LuTh improved memory function, as determined by water maze and passive avoidance tests, by potentiating the hippocampal insulin signaling and reducing inflammation: Luteolin mainly potentiated insulin signaling via the pAkt➔pGSK➔pTau pathway, and l-theanine primarily reduced tumor necrosis factor-α. In the metabolomics analysis of the hippocampus lysates, the concentration of proline, phenylpyruvic acid, and normetanephrine decreased in the AD-LuTh compared to AD-CON. Norepinephrine contents were lower in the AD-CON than non-AD rats with a high fat diet with 0.2% dextrin, whereas AD-Thea and AD-LuTh inhibited the decrease. Both the AD-Lut and AD-LuTh increased glucose infusion rates and decreased hepatic glucose output under basal and hyperinsulinemic conditions, indicating improved whole-body and hepatic insulin sensitivity. Disturbances in glucose-stimulated insulin secretion during hyperglycemic clamp were most effectively corrected by the AD-Lut and AD-LuTh treatments. In conclusion, the hypothesis of the study was accepted. The combination of luteolin and l-theanine prevented Alzheimer disease-like symptom, possibly by improving hippocampal insulin signaling, norepinephrine metabolisms, and decreasing neuroinflammation. The combination of luteolin and l-theanine may be a useful therapeutic option for preventing and/or delaying the progression of memory dysfunction.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food & Nutrition, Obesity/Diabetes Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan, 336-795, Republic of Korea.
| | - Da Sol Kim
- Department of Food & Nutrition, Obesity/Diabetes Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan, 336-795, Republic of Korea
| | - Suna Kang
- Department of Food & Nutrition, Obesity/Diabetes Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan, 336-795, Republic of Korea
| | - Hyun Jin Kim
- Department of Food Science & Technology, and Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
144
|
Biliverdin reductase-A impairment links brain insulin resistance with increased Aβ production in an animal model of aging: Implications for Alzheimer disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3181-3194. [PMID: 29981845 DOI: 10.1016/j.bbadis.2018.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/21/2018] [Accepted: 07/03/2018] [Indexed: 12/26/2022]
|
145
|
Kumar M, Bansal N. Ellagic acid prevents dementia through modulation of PI3-kinase-endothelial nitric oxide synthase signalling in streptozotocin-treated rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:987-1001. [PMID: 29947909 DOI: 10.1007/s00210-018-1524-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
Abstract
Ellagic acid (EGA)-enriched dietary supplements are widely acclaimed, owing to its versatile bioactivities. Previously, we reported that chronic administration of EGA prevented the impairment of cognitive abilities in rats using the intracerebroventricular-administered streptozotocin (STZ-ICV) model of Alzheimer's disease. Impairment of phosphoinositide 3 (PI3)-kinase-regulated endothelial nitric oxide synthase (eNOS) activity by central administration of STZ in rodents instigates dementia. The aim of the present study was to delineate the role of PI3-kinase-eNOS activity in the prevention of STZ-ICV-induced memory dysfunctions by EGA. The Morris water maze and elevated plus maze tests were conducted, and brain oxidative stress markers (TBARS, GSH, SOD, CAT), nitrite, acetylcholinesterase (AChE), LDH, TNF-α and eNOS were quantified. Administration of EGA (35 mg/k, p.o.) for 4 weeks daily attenuated the STZ-ICV (3 mg/kg)-triggered increase of brain oxidative stress, nitrite and TNF-α levels; AChE and LDH activity; and decline of brain eNOS activity. The memory restoration by EGA in STZ-ICV-treated rats was conspicuously impaired by N(G)-nitro-L-arginine methyl ester (L-NAME) (20 mg/kg, 28 days) and wortmannin (5 μg/rat; ICV) treatments. Wortmannin (PI3-kinase inhibitor) and L-NAME groups manifested elevated brain oxidative stress, TNF-α content and AChE and LDH activity and diminished nitrite content. L-NAME (arginine-based competitive eNOS inhibitor) enhanced the eNOS expression (not activity) whereas wortmannin reduced the brain eNOS levels in EGA- and STZ-ICV-treated rats. However, the L-NAME group exhibited superior cognitive abilities in comparison to the wortmannin group. It can be concluded that EGA averted the memory deficits by precluding the STZ-ICV-induced loss of PI3-kinase-eNOS signalling in the brain of rats.
Collapse
Affiliation(s)
- Manish Kumar
- IKG Punjab Technical University, Kapurthala, Punjab, 144603, India
- Department of Pharmacology, ASBASJSM College of Pharmacy, Bela, Ropar, 140111, India
| | - Nitin Bansal
- Department of Pharmacology, ASBASJSM College of Pharmacy, Bela, Ropar, 140111, India.
| |
Collapse
|
146
|
Abdel Rasheed NO, El Sayed NS, El-Khatib AS. Targeting central β2 receptors ameliorates streptozotocin-induced neuroinflammation via inhibition of glycogen synthase kinase3 pathway in mice. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:65-75. [PMID: 29782959 DOI: 10.1016/j.pnpbp.2018.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 10/16/2022]
Abstract
Alzheimer's disease (AD) is portrayed by progressive cognitive decline and pathological deposition of amyloid plaques as well as neurofibrillary tangles. Most of AD cases are sporadic, resulting from overlap of various environmental and genetic factors. Intra-cerebroventricular injection of streptozotocin (STZ) leads to insulin resistance brain state accompanied by memory decline, oxidative stress, and neuro-degeneration which mimic the pathologies associated with sporadic Alzheimer's disease (SAD). In the current study, protective effects of formoterol in STZ-induced SAD were studied. Formoterol-induced improvement in cognition was confirmed using Morris water maze and Y maze together with histopathological evidences. Moreover, prominent declines in oxidative stress, neuro-inflammation, and apoptotic parameters were recorded upon its injection in STZ-induced SAD mouse model. This was manifested by the decrement of malondialdehyde, hydrogen peroxide, interleukin-1β, interleukin-6, tumor necrosis factor-α, and caspase-3levels contrary to reduced glutathione and interleukin-10 increments. Formoterol also reversed STZ-induced alteration in acetylcholine and glutamate levels. Furthermore, it could be concluded that formoterol was capable of combating STZ-induced neuro-inflammation and retarding the development of the main pathological hallmarks of AD through glycogen synthase kinase-3 deactivation.
Collapse
Affiliation(s)
- Nora O Abdel Rasheed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
147
|
Biliverdin Reductase-A Mediates the Beneficial Effects of Intranasal Insulin in Alzheimer Disease. Mol Neurobiol 2018; 56:2922-2943. [PMID: 30073505 DOI: 10.1007/s12035-018-1231-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
Impairment of biliverdin reductase-A (BVR-A) is an early event leading to brain insulin resistance in AD. Intranasal insulin (INI) administration is under evaluation as a strategy to alleviate brain insulin resistance; however, the molecular mechanisms underlying INI beneficial effects are still unclear. We show that INI improves insulin signaling activation in the hippocampus and cortex of adult and aged 3×Tg-AD mice by ameliorating BVR-A activation. These changes were associated with a reduction of nitrosative stress, Tau phosphorylation, and Aβ oligomers in brain, along with improved cognitive functions. The role of BVR-A was strengthened by showing that cells lacking BVR-A: (i) develop insulin resistance if treated with insulin and (ii) can be recovered from insulin resistance only if treated with a BVR-A-mimetic peptide. These novel findings shed light on the mechanisms underlying INI treatment effects and suggest BVR-A as potential therapeutic target to prevent brain insulin resistance in AD.
Collapse
|
148
|
Tramutola A, Sharma N, Barone E, Lanzillotta C, Castellani A, Iavarone F, Vincenzoni F, Castagnola M, Butterfield DA, Gaetani S, Cassano T, Perluigi M, Di Domenico F. Proteomic identification of altered protein O-GlcNAcylation in a triple transgenic mouse model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3309-3321. [PMID: 30031227 DOI: 10.1016/j.bbadis.2018.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/22/2018] [Accepted: 07/16/2018] [Indexed: 12/23/2022]
Abstract
PET scan analysis demonstrated the early reduction of cerebral glucose metabolism in Alzheimer disease (AD) patients that can make neurons vulnerable to damage via the alteration of the hexosamine biosynthetic pathway (HBP). Defective HBP leads to flawed protein O-GlcNAcylation coupled, by a mutual inverse relationship, with increased protein phosphorylation on Ser/Thr residues. Altered O-GlcNAcylation of Tau and APP have been reported in AD and is closely related with pathology onset and progression. In addition, type 2 diabetes patients show an altered O-GlcNAcylation/phosphorylation that might represent a link between metabolic defects and AD progression. Our study aimed to decipher the specific protein targets of altered O-GlcNAcylation in brain of 12-month-old 3×Tg-AD mice compared with age-matched non-Tg mice. Hence, we analysed the global O-GlcNAc levels, the levels and activity of OGT and OGA, the enzymes controlling its cycling and protein specific O-GlcNAc levels using a bi-dimensional electrophoresis (2DE) approach. Our data demonstrate the alteration of OGT and OGA activation coupled with the decrease of total O-GlcNAcylation levels. Data from proteomics analysis led to the identification of several proteins with reduced O-GlcNAcylation levels, which belong to key pathways involved in the progression of AD such as neuronal structure, protein degradation and glucose metabolism. In parallel, we analysed the O-GlcNAcylation/phosphorylation ratio of IRS1 and AKT, whose alterations may contribute to insulin resistance and reduced glucose uptake. Our findings may contribute to better understand the role of altered protein O-GlcNAcylation profile in AD, by possibly identifying novel mechanisms of disease progression related to glucose hypometabolism.
Collapse
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Nidhi Sharma
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy; Universidad Autònoma de Chile, Instituto de Ciencias Biomédicas, Facultad de alud, Providencia, Santiago, Chile
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Andrea Castellani
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Federica Iavarone
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Federica Vincenzoni
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Massimo Castagnola
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
149
|
Gallelli CA, Calcagnini S, Romano A, Koczwara JB, de Ceglia M, Dante D, Villani R, Giudetti AM, Cassano T, Gaetani S. Modulation of the Oxidative Stress and Lipid Peroxidation by Endocannabinoids and Their Lipid Analogues. Antioxidants (Basel) 2018; 7:E93. [PMID: 30021985 PMCID: PMC6070960 DOI: 10.3390/antiox7070093] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Growing evidence supports the pivotal role played by oxidative stress in tissue injury development, thus resulting in several pathologies including cardiovascular, renal, neuropsychiatric, and neurodegenerative disorders, all characterized by an altered oxidative status. Reactive oxygen and nitrogen species and lipid peroxidation-derived reactive aldehydes including acrolein, malondialdehyde, and 4-hydroxy-2-nonenal, among others, are the main responsible for cellular and tissue damages occurring in redox-dependent processes. In this scenario, a link between the endocannabinoid system (ECS) and redox homeostasis impairment appears to be crucial. Anandamide and 2-arachidonoylglycerol, the best characterized endocannabinoids, are able to modulate the activity of several antioxidant enzymes through targeting the cannabinoid receptors type 1 and 2 as well as additional receptors such as the transient receptor potential vanilloid 1, the peroxisome proliferator-activated receptor alpha, and the orphan G protein-coupled receptors 18 and 55. Moreover, the endocannabinoids lipid analogues N-acylethanolamines showed to protect cell damage and death from reactive aldehydes-induced oxidative stress by restoring the intracellular oxidants-antioxidants balance. In this review, we will provide a better understanding of the main mechanisms triggered by the cross-talk between the oxidative stress and the ECS, focusing also on the enzymatic and non-enzymatic antioxidants as scavengers of reactive aldehydes and their toxic bioactive adducts.
Collapse
Affiliation(s)
- Cristina Anna Gallelli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Justyna Barbara Koczwara
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Marialuisa de Ceglia
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Donatella Dante
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Rosanna Villani
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy.
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
150
|
Bonham LW, Geier EG, Steele NZR, Holland D, Miller BL, Dale AM, Desikan RS, Yokoyama JS. Insulin-Like Growth Factor Binding Protein 2 Is Associated With Biomarkers of Alzheimer's Disease Pathology and Shows Differential Expression in Transgenic Mice. Front Neurosci 2018; 12:476. [PMID: 30061810 PMCID: PMC6055061 DOI: 10.3389/fnins.2018.00476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022] Open
Abstract
There is increasing evidence that metabolic dysfunction plays an important role in Alzheimer's disease (AD). Brain insulin resistance and subsequent impairment of insulin and insulin-like growth factor (IGF) signaling are associated with the neurodegenerative and clinical features of AD. Nevertheless, how the brain insulin/IGF signaling system is altered in AD and the effects of these changes on AD pathobiology are not well understood. IGF binding protein 2 (IGFBP-2) is an abundant cerebral IGF signaling protein and there is early evidence suggesting it associates with AD biomarkers. We evaluated the relationship between protein levels of IGFBP-2 with cerebrospinal fluid (CSF) biomarkers and neuroimaging markers of AD progression in 300 individuals from across the AD spectrum. CSF IGFBP-2 levels were correlated with CSF tau levels and brain atrophy in non-hippocampal regions. To further explore the role of IGFBP2 in tau pathobiology, we evaluated the expression of IGFBP2 in different human and mouse brain cell types and brain tissue from two transgenic mouse models: the P301L-tau model of tauopathy and TASTPM model of AD. We observed significant differential expression of IGFBP2 in both transgenic mouse models relative to wild-type mice in cortex but not in hippocampus. In both humans and mice, IGFBP2 is most highly expressed in astrocytes. Taken together, our findings suggest that IGFBP-2 may be linked to tau pathology and provides further evidence for a relationship between metabolic dysregulation and neurodegeneration. Our results also raise the possibility that this relationship may extend beyond neurons.
Collapse
Affiliation(s)
- Luke W Bonham
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Ethan G Geier
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Natasha Z R Steele
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Dominic Holland
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Anders M Dale
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States.,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States.,Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Rahul S Desikan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer S Yokoyama
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | | |
Collapse
|