101
|
García-Padilla C, Dueñas Á, García-López V, Aránega A, Franco D, Garcia-Martínez V, López-Sánchez C. Molecular Mechanisms of lncRNAs in the Dependent Regulation of Cancer and Their Potential Therapeutic Use. Int J Mol Sci 2022; 23:764. [PMID: 35054945 PMCID: PMC8776057 DOI: 10.3390/ijms23020764] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 12/16/2022] Open
Abstract
Deep whole genome and transcriptome sequencing have highlighted the importance of an emerging class of non-coding RNA longer than 200 nucleotides (i.e., long non-coding RNAs (lncRNAs)) that are involved in multiple cellular processes such as cell differentiation, embryonic development, and tissue homeostasis. Cancer is a prime example derived from a loss of homeostasis, primarily caused by genetic alterations both in the genomic and epigenetic landscape, which results in deregulation of the gene networks. Deregulation of the expression of many lncRNAs in samples, tissues or patients has been pointed out as a molecular regulator in carcinogenesis, with them acting as oncogenes or tumor suppressor genes. Herein, we summarize the distinct molecular regulatory mechanisms described in literature in which lncRNAs modulate carcinogenesis, emphasizing epigenetic and genetic alterations in particular. Furthermore, we also reviewed the current strategies used to block lncRNA oncogenic functions and their usefulness as potential therapeutic targets in several carcinomas.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Ángel Dueñas
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio García-López
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aránega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Virginio Garcia-Martínez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
102
|
Brandi P, Conejero L, Cueto FJ, Martínez-Cano S, Dunphy G, Gómez MJ, Relaño C, Saz-Leal P, Enamorado M, Quintas A, Dopazo A, Amores-Iniesta J, Del Fresno C, Nistal-Villán E, Ardavín C, Nieto A, Casanovas M, Subiza JL, Sancho D. Trained immunity induction by the inactivated mucosal vaccine MV130 protects against experimental viral respiratory infections. Cell Rep 2022; 38:110184. [PMID: 34986349 PMCID: PMC8755442 DOI: 10.1016/j.celrep.2021.110184] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 09/11/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
MV130 is an inactivated polybacterial mucosal vaccine that confers protection to patients against recurrent respiratory infections, including those of viral etiology. However, its mechanism of action remains poorly understood. Here, we find that intranasal prophylaxis with MV130 modulates the lung immune landscape and provides long-term heterologous protection against viral respiratory infections in mice. Intranasal administration of MV130 provides protection against systemic candidiasis in wild-type and Rag1-deficient mice lacking functional lymphocytes, indicative of innate immune-mediated protection. Moreover, pharmacological inhibition of trained immunity with metformin abrogates the protection conferred by MV130 against influenza A virus respiratory infection. MV130 induces reprogramming of both mouse bone marrow progenitor cells and in vitro human monocytes, promoting an enhanced cytokine production that relies on a metabolic shift. Our results unveil that the mucosal administration of a fully inactivated bacterial vaccine provides protection against viral infections by a mechanism associated with the induction of trained immunity.
Collapse
Affiliation(s)
- Paola Brandi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Laura Conejero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francisco J Cueto
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sarai Martínez-Cano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Inmunotek S.L., Alcalá de Henares, Spain
| | - Gillian Dunphy
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Manuel J Gómez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carlos Relaño
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Paula Saz-Leal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Michel Enamorado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ana Quintas
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Carlos Del Fresno
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Instituto de Investigación Biomédica del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Estanislao Nistal-Villán
- Microbiology Section, Department Pharmacological and Health Sciences, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Carlos Ardavín
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Antonio Nieto
- Pediatric Pulmonology & Allergy Unit, Health Research Institute, La Fe University Hospital, Valencia, Spain
| | | | | | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
103
|
How Epigenetics Can Enhance Pig Welfare? Animals (Basel) 2021; 12:ani12010032. [PMID: 35011138 PMCID: PMC8749669 DOI: 10.3390/ani12010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetics works as an interface between the individual and its environment to provide phenotypic plasticity to increase individual adaptation capabilities. Recently, a wide variety of epi-genetic findings have indicated evidence for its application in the development of putative epi-biomarkers of stress in farm animals. The purpose of this study was to evaluate previously reported stress epi-biomarkers in swine and encourage researchers to investigate potential paths for the development of a robust molecular tool for animal welfare certification. In this literature review, we report on the scientific concerns in the swine production chain, the management carried out on the farms, and the potential implications of these practices for the animals' welfare and their epigenome. To assess reported epi-biomarkers, we identified, from previous studies, potentially stress-related genes surrounding epi-biomarkers. With those genes, we carried out a functional enrichment analysis of differentially methylated regions (DMRs) of the DNA of swine subjected to different stress-related conditions (e.g., heat stress, intrauterine insult, and sanitary challenges). We identified potential epi-biomarkers for target analysis, which could be added to the current guidelines and certification schemes to guarantee and certify animal welfare on farms. We believe that this technology may have the power to increase consumers' trust in animal welfare.
Collapse
|
104
|
Martínez-Iglesias O, Naidoo V, Cacabelos N, Cacabelos R. Epigenetic Biomarkers as Diagnostic Tools for Neurodegenerative Disorders. Int J Mol Sci 2021; 23:13. [PMID: 35008438 PMCID: PMC8745005 DOI: 10.3390/ijms23010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetics is the study of heritable changes in gene expression that occur without alterations to the DNA sequence, linking the genome to its surroundings. The accumulation of epigenetic alterations over the lifespan may contribute to neurodegeneration. The aim of the present study was to identify epigenetic biomarkers for improving diagnostic efficacy in patients with neurodegenerative diseases. We analyzed global DNA methylation, chromatin remodeling/histone modifications, sirtuin (SIRT) expression and activity, and the expression of several important neurodegeneration-related genes. DNA methylation, SIRT expression and activity and neuregulin 1 (NRG1), microtubule-associated protein tau (MAPT) and brain-derived neurotrophic factor (BDNF) expression were reduced in buffy coat samples from patients with neurodegenerative disorders. Our data suggest that these epigenetic biomarkers may be useful in clinical practical for the diagnosis, surveillance, and prognosis of disease activity in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Olaia Martínez-Iglesias
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, 15165 Corunna, Spain; (V.N.); (N.C.); (R.C.)
| | | | | | | |
Collapse
|
105
|
Ghai M, Kader F. A Review on Epigenetic Inheritance of Experiences in Humans. Biochem Genet 2021; 60:1107-1140. [PMID: 34792705 DOI: 10.1007/s10528-021-10155-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
If genetics defines the inheritance of DNA, epigenetics aims to regulate and make it adaptable. Epigenetic alterations include DNA methylation, chromatin remodelling, post-translational modifications of histone proteins and activity of non-coding RNAs. Several studies, especially in animal models, have reported transgenerational inheritance of epigenetic marks. However, evidence of transgenerational inheritance in humans via germline in the absence of any direct exposure to the driving external stimulus remains controversial. Most of the epimutations exist in relation with genetic variants. The present review looks at intergenerational and transgenerational inheritance in humans, (both father and mother) in response to diet, exposure to chemicals, stress, exercise, and disease status. If not transgenerational, at least intergenerational human studies could help to understand early processes of inheritance. In humans, female and male germline development follow separate paths of epigenetic events and both oocyte and sperm possess their own unique epigenomes. While DNA methylation alterations are reset during epigenetic reprogramming, non-coding RNAs via human sperm provide evidence of being reliable carriers for transgenerational inheritance. Human studies reveal that one mechanism of epigenetic inheritance cannot be applied to the complete human genome. Multiple factors including time, type, and tissue of exposure determine if the modified epigenetic mark could be transmissible and till which generation. Population-specific differences should also be taken into consideration while associating inheritance to an environmental exposure. A longitudinal study targeting one environmental factor, but different population groups should be conducted at a specific geographical location to pinpoint heritable epigenetic changes.
Collapse
Affiliation(s)
- Meenu Ghai
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa.
| | - Farzeen Kader
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa
| |
Collapse
|
106
|
PCNA Loaders and Unloaders-One Ring That Rules Them All. Genes (Basel) 2021; 12:genes12111812. [PMID: 34828416 PMCID: PMC8618651 DOI: 10.3390/genes12111812] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
During each cell duplication, the entirety of the genomic DNA in every cell must be accurately and quickly copied. Given the short time available for the chore, the requirement of many proteins, and the daunting amount of DNA present, DNA replication poses a serious challenge to the cell. A high level of coordination between polymerases and other DNA and chromatin-interacting proteins is vital to complete this task. One of the most important proteins for maintaining such coordination is PCNA. PCNA is a multitasking protein that forms a homotrimeric ring that encircles the DNA. It serves as a processivity factor for DNA polymerases and acts as a landing platform for different proteins interacting with DNA and chromatin. Therefore, PCNA is a signaling hub that influences the rate and accuracy of DNA replication, regulates DNA damage repair, controls chromatin formation during the replication, and the proper segregation of the sister chromatids. With so many essential roles, PCNA recruitment and turnover on the chromatin is of utmost importance. Three different, conserved protein complexes are in charge of loading/unloading PCNA onto DNA. Replication factor C (RFC) is the canonical complex in charge of loading PCNA during the S-phase. The Ctf18 and Elg1 (ATAD5 in mammalian) proteins form complexes similar to RFC, with particular functions in the cell’s nucleus. Here we summarize our current knowledge about the roles of these important factors in yeast and mammals.
Collapse
|
107
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
108
|
Bone J. Neoliberal precarity and primalization: A biosocial perspective on the age of insecurity, injustice, and unreason. THE BRITISH JOURNAL OF SOCIOLOGY 2021; 72:1030-1045. [PMID: 34374077 DOI: 10.1111/1468-4446.12884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/14/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
In light of the observed rise in social instability and populist politics that has emerged recently even in some of the world's oldest and presumed stable democracies, this paper reappraises the role of the neoliberal political and economic consensus in fermenting popular discontent. While this is very well trodden ground the paper approaches the issues from a wholly new direction, specifically addressing how exposure to the destabilizing conditions of the present can be seen to have negatively impacted on the neurological functioning of many of the disenchanted and distressed of the current era, generating chronic negative emotional arousal and an associated impact on the capacity for rational thought and conduct. This condition of mental and emotional fugue, it is argued, has also rendered growing numbers more susceptible to marginal and radicalizing discourses, largely extended and amplified via social media, and not least the emotionally charged overtures of populist politicians. Against a backdrop of increasing insecurity, transformative changes to work and living conditions precipitated by neoliberal policy and the digital revolution, together with the epochal crisis presented by the global pandemic, it is argued that the task of understanding the deep and fundamental causes of social and political fracture have rarely been more urgent.
Collapse
Affiliation(s)
- John Bone
- School of Social Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
109
|
Valencia-Ortega J, Saucedo R, Sánchez-Rodríguez MA, Cruz-Durán JG, Martínez EGR. Epigenetic Alterations Related to Gestational Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22179462. [PMID: 34502370 PMCID: PMC8430976 DOI: 10.3390/ijms22179462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the most common metabolic complication in pregnancy, which affects the future health of both the mother and the newborn. Its pathophysiology involves nutritional, hormonal, immunological, genetic and epigenetic factors. Among the latter, it has been observed that alterations in DNA (deoxyribonucleic acid) methylation patterns and in the levels of certain micro RNAs, whether in placenta or adipose tissue, are related to well-known characteristics of the disease, such as hyperglycemia, insulin resistance, inflammation and excessive placental growth. Furthermore, epigenetic alterations of gestational diabetes mellitus are observable in maternal blood, although their pathophysiological roles are completely unknown. Despite this, it has not been possible to determine the causes of the epigenetic characteristics of GDM, highlighting the need for integral and longitudinal studies. Based on this, this article summarizes the most relevant and recent studies on epigenetic alterations in placenta, adipose tissue and maternal blood associated with GDM in order to provide the reader with a general overview of the subject and indicate future research topics.
Collapse
Affiliation(s)
- Jorge Valencia-Ortega
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, Mexico City 06600, Mexico;
| | - Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, Mexico City 06600, Mexico;
- Correspondence: ; Tel.: +55-55887521
| | - Martha A. Sánchez-Rodríguez
- Unidad de Investigación en Gerontología, Facultad de Estudios Superiores Zaragoza, Universidad Autónoma de México, Mexico City 04510, Mexico;
| | - José G. Cruz-Durán
- UMAE Hospital de Gineco-Obstetricia No. 3, Instituto Mexicano del Seguro Social, Mexico City 06600, Mexico;
| | - Edgar G. Ramos Martínez
- Universidad Autónoma Benito Juárez de Oaxaca and Instituto de Cómputo Aplicado en Ciencias, Oaxaca 68120, Mexico;
| |
Collapse
|
110
|
Lux V, Non AL, Pexman PM, Stadler W, Weber LAE, Krüger M. A Developmental Framework for Embodiment Research: The Next Step Toward Integrating Concepts and Methods. Front Syst Neurosci 2021; 15:672740. [PMID: 34393730 PMCID: PMC8360894 DOI: 10.3389/fnsys.2021.672740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
Embodiment research is at a turning point. There is an increasing amount of data and studies investigating embodiment phenomena and their role in mental processing and functions from across a wide range of disciplines and theoretical schools within the life sciences. However, the integration of behavioral data with data from different biological levels is challenging for the involved research fields such as movement psychology, social and developmental neuroscience, computational psychosomatics, social and behavioral epigenetics, human-centered robotics, and many more. This highlights the need for an interdisciplinary framework of embodiment research. In addition, there is a growing need for a cross-disciplinary consensus on level-specific criteria of embodiment. We propose that a developmental perspective on embodiment is able to provide a framework for overcoming such pressing issues, providing analytical tools to link timescales and levels of embodiment specific to the function under study, uncovering the underlying developmental processes, clarifying level-specific embodiment criteria, and providing a matrix and platform to bridge disciplinary boundaries among the involved research fields.
Collapse
Affiliation(s)
- Vanessa Lux
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Amy L Non
- Department of Anthropology, University of California, San Diego, La Jolla, CA, United States
| | - Penny M Pexman
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Waltraud Stadler
- Chair of Human Movement Science, Department of Sports and Health Sciences, Technical University of Munich, Munich, Germany
| | - Lilian A E Weber
- Department of Psychiatry, Oxford Centre for Human Brain Activity, Warneford Hospital, Oxford, United Kingdom.,Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Melanie Krüger
- Institute of Sports Science, Faculty of Humanities, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
111
|
Salekeen R, Diaconeasa AG, Billah MM, Islam KMD. Energy Metabolism Focused Analysis of Sexual Dimorphism in Biological Aging and Hypothesized Sex-specificity in Sirtuin Dependency. Mitochondrion 2021; 60:85-100. [PMID: 34332101 DOI: 10.1016/j.mito.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 01/09/2023]
Abstract
The process of biological aging or senescence refers to the gradual loss of homeostasis and subsequent loss of function - leading to higher chances of mortality. Many mechanisms and driving forces have been suggested to facilitate the evolution of a molecular circuit acting as a trade-off between survival and proliferation, resulting in senescence. A major observation on biological aging and longevity in humans and model organisms is the prevalence of significant sexual divergence in the onset, mechanisms and effects of aging associated processes. In the current account, we describe possible mechanisms by which aging, sex and reproduction are evolutionarily intertwined in order to maintain systemic energy homeostasis. We also interrogate existing literature on the sexual dimorphism of genetic, cellular, metabolic, endocrine and epigenetic processes driving cellular and systemic aging. Subsequently, based on available evidence, we propose a hypothetic model of sex-limited decoupling of female longevity from sirtuins, a major family of regulator proteins of the survival-proliferation trade-off. We also provide necessary considerations to be made in order to test the hypothesis and explore the physiological and therapeutic implications of this decoupling event in male and female longevity after reaching reproductive maturity. HYPOTHESIS STATEMENT: Sirtuins provide survival benefits in a sex-nonspecific manner but the dependency on sirtuins in driving metabolic networks after reaching reproductive maturity is evolutionarily decoupled from female longevity.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| | - Amalia Gabriela Diaconeasa
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| |
Collapse
|
112
|
Strain J, Spaans F, Serhan M, Davidge ST, Connor KL. Programming of weight and obesity across the lifecourse by the maternal metabolic exposome: A systematic review. Mol Aspects Med 2021; 87:100986. [PMID: 34167845 DOI: 10.1016/j.mam.2021.100986] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
Exposome research aims to comprehensively understand the multiple environmental exposures that influence human health. To date, much of exposome science has focused on environmental chemical exposures and does not take a lifecourse approach. The rising prevalence of obesity, and the limited success in its prevention points to the need for a better understanding of the diverse exposures that associate with, or protect against, this condition, and the mechanisms driving its pathogenesis. The objectives of this review were to 1. evaluate the evidence on the maternal metabolic exposome in the programming of offspring growth/obesity and 2. identify and discuss the mechanisms underlying the programming of obesity. A systematic review was conducted following PRISMA guidelines to capture articles that investigated early life metabolic exposures and offspring weight and/or obesity outcomes. Scientific databases were searched using pre-determined indexed search terms, and risk of bias assessments were conducted to determine study quality. A final total of 76 articles were obtained and extracted data from human and animal studies were visualised using GOfER diagrams. Multiple early life exposures, including maternal obesity, diabetes and adverse nutrition, increase the risk of high weight at birth and postnatally, and excess adipose accumulation in human and animal offspring. The main mechanisms through which the metabolic exposome programmes offspring growth and obesity risk include epigenetic modifications, altered placental function, altered composition of the gut microbiome and breast milk, and metabolic inflammation, with downstream effects on development of the central appetite system, adipose tissues and liver. Understanding early life risks and protectors, and the mechanisms through which the exposome modifies health trajectories, is critical for developing and applying early interventions to prevent offspring obesity later in life.
Collapse
Affiliation(s)
- Jamie Strain
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Mohamed Serhan
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Sandra T Davidge
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada; Department of Physiology, University of Alberta, Edmonton, AB, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Kristin L Connor
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
113
|
Bellver-Sanchis A, Pallàs M, Griñán-Ferré C. The Contribution of Epigenetic Inheritance Processes on Age-Related Cognitive Decline and Alzheimer's Disease. EPIGENOMES 2021; 5:15. [PMID: 34968302 PMCID: PMC8594669 DOI: 10.3390/epigenomes5020015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
During the last years, epigenetic processes have emerged as important factors for many neurodegenerative diseases, such as Alzheimer's disease (AD). These complex diseases seem to have a heritable component; however, genome-wide association studies failed to identify the genetic loci involved in the etiology. So, how can these changes be transmitted from one generation to the next? Answering this question would allow us to understand how the environment can affect human populations for multiple generations and explain the high prevalence of neurodegenerative diseases, such as AD. This review pays particular attention to the relationship among epigenetics, cognition, and neurodegeneration across generations, deepening the understanding of the relevance of heritability in neurodegenerative diseases. We highlight some recent examples of EI induced by experiences, focusing on their contribution of processes in learning and memory to point out new targets for therapeutic interventions. Here, we first describe the prominent role of epigenetic factors in memory processing. Then, we briefly discuss aspects of EI. Additionally, we summarize evidence of how epigenetic marks inherited by experience and/or environmental stimuli contribute to cognitive status offspring since better knowledge of EI can provide clues in the appearance and development of age-related cognitive decline and AD.
Collapse
Affiliation(s)
| | | | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028 Barcelona, Spain; (A.B.-S.); (M.P.)
| |
Collapse
|
114
|
Exploration of Epigenetics for Improvement of Drought and Other Stress Resistance in Crops: A Review. PLANTS 2021; 10:plants10061226. [PMID: 34208642 PMCID: PMC8235456 DOI: 10.3390/plants10061226] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/01/2023]
Abstract
Crop plants often have challenges of biotic and abiotic stresses, and they adapt sophisticated ways to acclimate and cope with these through the expression of specific genes. Changes in chromatin, histone, and DNA mostly serve the purpose of combating challenges and ensuring the survival of plants in stressful environments. Epigenetic changes, due to environmental stress, enable plants to remember a past stress event in order to deal with such challenges in the future. This heritable memory, called "plant stress memory", enables plants to respond against stresses in a better and efficient way, not only for the current plant in prevailing situations but also for future generations. Development of stress resistance in plants for increasing the yield potential and stability has always been a traditional objective of breeders for crop improvement through integrated breeding approaches. The application of epigenetics for improvements in complex traits in tetraploid and some other field crops has been unclear. An improved understanding of epigenetics and stress memory applications will contribute to the development of strategies to incorporate them into breeding for complex agronomic traits. The insight in the application of novel plant breeding techniques (NPBTs) has opened a new plethora of options among plant scientists to develop germplasms for stress tolerance. This review summarizes and discusses plant stress memory at the intergenerational and transgenerational levels, mechanisms involved in stress memory, exploitation of induced and natural epigenetic changes, and genome editing technologies with their future possible applications, in the breeding of crops for abiotic stress tolerance to increase the yield for zero hunger goals achievement on a sustainable basis in the changing climatic era.
Collapse
|
115
|
Jin T, Rehani P, Ying M, Huang J, Liu S, Roussos P, Wang D. scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks. Genome Med 2021; 13:95. [PMID: 34044854 PMCID: PMC8161957 DOI: 10.1186/s13073-021-00908-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding cell-type-specific gene regulatory mechanisms from genetic variants to diseases remains challenging. To address this, we developed a computational pipeline, scGRNom (single-cell Gene Regulatory Network prediction from multi-omics), to predict cell-type disease genes and regulatory networks including transcription factors and regulatory elements. With applications to schizophrenia and Alzheimer's disease, we predicted disease genes and regulatory networks for excitatory and inhibitory neurons, microglia, and oligodendrocytes. Further enrichment analyses revealed cross-disease and disease-specific functions and pathways at the cell-type level. Our machine learning analysis also found that cell-type disease genes improved clinical phenotype predictions. scGRNom is a general-purpose tool available at https://github.com/daifengwanglab/scGRNom .
Collapse
Affiliation(s)
- Ting Jin
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Peter Rehani
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA
- Department of Integrative Biology, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Present address: Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Mufang Ying
- Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Present address: Department of Statistics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jiawei Huang
- Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Panagiotis Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA.
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA.
- Department of Computer Sciences, University of Wisconsin - Madison, Madison, WI, 53706, USA.
| |
Collapse
|
116
|
Manterola M, Palominos MF, Calixto A. The Heritability of Behaviors Associated With the Host Gut Microbiota. Front Immunol 2021; 12:658551. [PMID: 34054822 PMCID: PMC8155505 DOI: 10.3389/fimmu.2021.658551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
What defines whether the interaction between environment and organism creates a genetic memory able to be transferred to subsequent generations? Bacteria and the products of their metabolism are the most ubiquitous biotic environments to which every living organism is exposed. Both microbiota and host establish a framework where environmental and genetic factors are integrated to produce adaptive life traits, some of which can be inherited. Thus, the interplay between host and microbe is a powerful model to study how phenotypic plasticity is inherited. Communication between host and microbe can occur through diverse molecules such as small RNAs (sRNAs) and the RNA interference machinery, which have emerged as mediators and carriers of heritable environmentally induced responses. Notwithstanding, it is still unclear how the organism integrates sRNA signaling between different tissues to orchestrate a systemic bacterially induced response that can be inherited. Here we discuss current evidence of heritability produced by the intestinal microbiota from several species. Neurons and gut are the sensing systems involved in transmitting changes through transcriptional and post-transcriptional modifications to the gonads. Germ cells express inflammatory receptors, and their development and function are regulated by host and bacterial metabolites and sRNAs thus suggesting that the dynamic interplay between host and microbe underlies the host's capacity to transmit heritable behaviors. We discuss how the host detects changes in the microbiota that can modulate germ cells genomic functions. We also explore the nature of the interactions that leave permanent or long-term memory in the host and propose mechanisms by which the microbiota can regulate the development and epigenetic reprogramming of germ cells, thus influencing the inheritance of the host. We highlight the vast contribution of the bacterivore nematode C. elegans and its commensal and pathogenic bacteria to the understanding on how behavioral adaptations can be inter and transgenerational inherited.
Collapse
Affiliation(s)
- Marcia Manterola
- Programa de Genética Humana, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - M. Fernanda Palominos
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- Programa de Doctorado en Ciencias, mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|
117
|
Lizárraga D, García-Gasca A. The Placenta as a Target of Epigenetic Alterations in Women with Gestational Diabetes Mellitus and Potential Implications for the Offspring. EPIGENOMES 2021; 5:epigenomes5020013. [PMID: 34968300 PMCID: PMC8594713 DOI: 10.3390/epigenomes5020013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a pregnancy complication first detected in the second or third trimester in women that did not show evident glucose intolerance or diabetes before gestation. In 2019, the International Diabetes Federation reported that 15.8% of live births were affected by hyperglycemia during pregnancy, of which 83.6% were due to gestational diabetes mellitus, 8.5% were due to diabetes first detected in pregnancy, and 7.9% were due to diabetes detected before pregnancy. GDM increases the susceptibility to developing chronic diseases for both the mother and the baby later in life. Under GDM conditions, the intrauterine environment becomes hyperglycemic, while also showing high concentrations of fatty acids and proinflammatory cytokines, producing morphological, structural, and molecular modifications in the placenta, affecting its function; these alterations may predispose the baby to disease in adult life. Molecular alterations include epigenetic mechanisms such as DNA and RNA methylation, chromatin remodeling, histone modifications, and expression of noncoding RNAs (ncRNAs). The placenta is a unique organ that originates only in pregnancy, and its main function is communication between the mother and the fetus, ensuring healthy development. Thus, this review provides up-to-date information regarding two of the best-documented (epigenetic) mechanisms (DNA methylation and miRNA expression) altered in the human placenta under GDM conditions, as well as potential implications for the offspring.
Collapse
|
118
|
de Assis Pinheiro J, Freitas FV, Borçoi AR, Mendes SO, Conti CL, Arpini JK, Dos Santos Vieira T, de Souza RA, Dos Santos DP, Barbosa WM, Archanjo AB, de Oliveira MM, Dos Santos JG, Sorroche BP, Casali-da-Rocha JC, Trivilin LO, Borloti EB, Louro ID, Arantes LMRB, Alvares-da-Silva AM. Alcohol consumption, depression, overweight and cortisol levels as determining factors for NR3C1 gene methylation. Sci Rep 2021; 11:6768. [PMID: 33762648 PMCID: PMC7990967 DOI: 10.1038/s41598-021-86189-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
The NR3C1 glucocorticoid receptor (GR) gene is a component of the stress response system, which can be regulated by epigenetic mechanisms. NR3C1 methylation has been associated with trauma and mental issues, including depression, post-traumatic stress, anxiety, and personality disorders. Previous studies have reported that stressful events are involved in NR3C1 gene methylation, suggesting that its regulation under environmental effects is complex. The present study aimed to analyze associations involving stressors such as socioeconomic status, health conditions, and lifestyle in relation to NR3C1 methylation in adults. This study included 386 individual users of the Brazilian Public Unified Health System (SUS), and evaluated socioeconomic and health conditions, body mass index, cortisol levels, and lifestyle. Data were correlated with NR3C1 methylation, determined using DNA pyrosequencing. The results showed that alcohol consumption, overweight, and high cortisol levels were related to NR3C1 demethylation, while depression was related to its methylation. Habits, lifestyle, and health status may influence NR3C1 gene regulation via methylation, revealing the complexity of environmental impacts on NR3C1 methylation.
Collapse
Affiliation(s)
- Júlia de Assis Pinheiro
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | - Flávia Vitorino Freitas
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil.,Department of Pharmacy and Nutrition, Universidade Federal do Espirito Santo, Alegre, ES, Brazil
| | - Aline Ribeiro Borçoi
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | - Suzanny Oliveira Mendes
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | - Catarine Lima Conti
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | - Juliana Krüger Arpini
- Graduate Program in Forest Sciences, Universidade Federal do Espirito Santo, Alegre, ES, Brazil
| | - Tamires Dos Santos Vieira
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | | | | | - Wagner Miranda Barbosa
- Department of Pharmacy and Nutrition, Universidade Federal do Espirito Santo, Alegre, ES, Brazil
| | - Anderson Barros Archanjo
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | - Mayara Mota de Oliveira
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | | | - Bruna Pereira Sorroche
- Molecular Oncology Research Center, Hospital do Câncer de Barretos, Barretos, SP, Brazil
| | | | | | - Elizeu Batista Borloti
- Department of Social and Developmental Psychology, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil
| | - Iuri Drumond Louro
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | | | - Adriana Madeira Alvares-da-Silva
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil. .,Department of Morphology, Health Science Center, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil. .,Departamento de Biologia, Universidade Federal do Espirito Santo, Alto Universitário Sem Número, Alegre, ES, 29500000, Brazil.
| |
Collapse
|
119
|
Zaidan H, Galiani D, Gaisler-Salomon I. Pre-reproductive stress in adolescent female rats alters oocyte microRNA expression and offspring phenotypes: pharmacological interventions and putative mechanisms. Transl Psychiatry 2021; 11:113. [PMID: 33547270 PMCID: PMC7865076 DOI: 10.1038/s41398-021-01220-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/31/2022] Open
Abstract
Pre-reproductive stress (PRS) to adolescent female rats alters anxiogenic behavior in first (F1)- and second-generation (F2) offspring and increases mRNA expression of corticotropin-releasing factor receptor type 1 (Crhr1) in oocytes and in neonate offspring brain. Here, we ask whether the expression of Crhr1 and Crhr1-targeting microRNA is altered in brain, blood, and oocytes of exposed females and in the brain of their neonate and adult F1 and F2 offspring. In addition, we inquire whether maternal post-stress drug treatment reverses PRS-induced abnormalities in offspring. We find that PRS induces a selective increase in Crhr1-targeting mir-34a and mir-34c in blood and oocytes, while non-Crhr1 microRNA molecules remain unaltered. PRS induces similar microRNA changes in prefrontal cortex of F1 and F2 neonates. In adult animals, cortical Crhr1, but not mir-34, expression is affected by both maternal and direct stress exposure. Post-PRS fluoxetine (FLX) treatment increases pup mortality, and both FLX and the Crhr1 antagonist NBI 27914 reverse some of the effects of PRS and also have independent effects on F1 behavior and gene expression. PRS also alters behavior as well as gene and miRNA expression patterns in paternally derived F2 offspring, producing effects that are different from those previously found in maternally derived F2 offspring. These findings extend current knowledge on inter- and trans-generational transfer of stress effects, point to microRNA changes in stress-exposed oocytes as a potential mechanism, and highlight the consequences of post-stress pharmacological interventions in adolescence.
Collapse
Affiliation(s)
- Hiba Zaidan
- grid.18098.380000 0004 1937 0562School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Dalia Galiani
- grid.13992.300000 0004 0604 7563Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Gaisler-Salomon
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel.
| |
Collapse
|
120
|
Reid BM, Fridley BL. DNA Methylation in Ovarian Cancer Susceptibility. Cancers (Basel) 2020; 13:E108. [PMID: 33396385 PMCID: PMC7795210 DOI: 10.3390/cancers13010108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic alterations are somatically acquired over the lifetime and during neoplastic transformation but may also be inherited as widespread 'constitutional' alterations in normal tissues that can cause cancer predisposition. Epithelial ovarian cancer (EOC) has an established genetic susceptibility and mounting epidemiological evidence demonstrates that DNA methylation (DNAm) intermediates as well as independently contributes to risk. Targeted studies of known EOC susceptibility genes (CSGs) indicate rare, constitutional BRCA1 promoter methylation increases familial and sporadic EOC risk. Blood-based epigenome-wide association studies (EWAS) for EOC have detected a total of 2846 differentially methylated probes (DMPs) with 71 genes replicated across studies despite significant heterogeneity. While EWAS detect both symptomatic and etiologic DMPs, adjustments and analytic techniques may enrich risk associations, as evidenced by the detection of dysregulated methylation of BNC2-a known CSG identified by genome-wide associations studies (GWAS). Integrative genetic-epigenetic approaches have mapped methylation quantitative trait loci (meQTL) to EOC risk, revealing DNAm variations that are associated with nine GWAS loci and, further, one novel risk locus. Increasing efforts to mapping epigenome variation across populations and cell types will be key to decoding both the genomic and epigenomic causal pathways to EOC.
Collapse
Affiliation(s)
- Brett M. Reid
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Brooke L. Fridley
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
121
|
The Airway Epithelium-A Central Player in Asthma Pathogenesis. Int J Mol Sci 2020; 21:ijms21238907. [PMID: 33255348 PMCID: PMC7727704 DOI: 10.3390/ijms21238907] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by variable airflow obstruction in response to a wide range of exogenous stimuli. The airway epithelium is the first line of defense and plays an important role in initiating host defense and controlling immune responses. Indeed, increasing evidence indicates a range of abnormalities in various aspects of epithelial barrier function in asthma. A central part of this impairment is a disruption of the airway epithelial layer, allowing inhaled substances to pass more easily into the submucosa where they may interact with immune cells. Furthermore, many of the identified susceptibility genes for asthma are expressed in the airway epithelium. This review focuses on the biology of the airway epithelium in health and its pathobiology in asthma. We will specifically discuss external triggers such as allergens, viruses and alarmins and the effect of type 2 inflammatory responses on airway epithelial function in asthma. We will also discuss epigenetic mechanisms responding to external stimuli on the level of transcriptional and posttranscriptional regulation of gene expression, as well the airway epithelium as a potential treatment target in asthma.
Collapse
|
122
|
Childebayeva A, Goodrich JM, Leon-Velarde F, Rivera-Chira M, Kiyamu M, Brutsaert TD, Dolinoy DC, Bigham AW. Genome-Wide Epigenetic Signatures of Adaptive Developmental Plasticity in the Andes. Genome Biol Evol 2020; 13:5981114. [PMID: 33185669 PMCID: PMC7859850 DOI: 10.1093/gbe/evaa239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 01/03/2023] Open
Abstract
High-altitude adaptation is a classic example of natural selection operating on the human genome. Physiological and genetic adaptations have been documented in populations with a history of living at high altitude. However, the role of epigenetic gene regulation, including DNA methylation, in high-altitude adaptation is not well understood. We performed an epigenome-wide DNA methylation association study based on whole blood from 113 Peruvian Quechua with differential lifetime exposures to high altitude (>2,500) and recruited based on a migrant study design. We identified two significant differentially methylated positions (DMPs) and 62 differentially methylated regions (DMRs) associated with high-altitude developmental and lifelong exposure statuses. DMPs and DMRs were found in genes associated with hypoxia-inducible factor pathway, red blood cell production, blood pressure, and others. DMPs and DMRs associated with fractional exhaled nitric oxide also were identified. We found a significant association between EPAS1 methylation and EPAS1 SNP genotypes, suggesting that local genetic variation influences patterns of methylation. Our findings demonstrate that DNA methylation is associated with early developmental and lifelong high-altitude exposures among Peruvian Quechua as well as altitude-adaptive phenotypes. Together these findings suggest that epigenetic mechanisms might be involved in adaptive developmental plasticity to high altitude. Moreover, we show that local genetic variation is associated with DNA methylation levels, suggesting that methylation associated SNPs could be a potential avenue for research on genetic adaptation to hypoxia in Andeans.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Anthropology, University of Michigan.,Department of Environmental Health Sciences, School of Public Health, University of Michigan.,Department of Archaeogenetics, Max Planck Institute for the Study of Human History, Jena, Germany
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan
| | - Fabiola Leon-Velarde
- Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria Rivera-Chira
- Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Melisa Kiyamu
- Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan.,Department of Nutritional Sciences, School of Public Health, University of Michigan
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles
| |
Collapse
|
123
|
Epigenetic Mechanisms Contribute to Evolutionary Adaptation of Gene Network Activity under Environmental Selection. Cell Rep 2020; 33:108306. [PMID: 33113358 PMCID: PMC7656290 DOI: 10.1016/j.celrep.2020.108306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/17/2019] [Accepted: 10/02/2020] [Indexed: 11/30/2022] Open
Abstract
How evolution can be facilitated by epigenetic mechanisms has received refreshed attention recently. To explore the role epigenetic inheritance plays in evolution, we subject isogenic wild-type yeast cells expressing PGAL1-YFP (yellow fluorescent protein) to selection by daily sorting based on reporter expression. We observe expression-level reductions in multiple replicates sorted for the lowest expression that persist for several days, even after lifting the selection pressure. Reduced expression is due to factors in the galactose (GAL) network rather than global factors. Results using a constitutively active GAL network are in overall agreement with findings with the wild-type network. We find that the local chromatin environment of the reporter has a significant effect on the observed phenotype. Genome sequencing, chromatin immunoprecipitation (ChIP)-qPCR, and sporulation analysis provide further insights into the epigenetic and genetic contributors to the expression changes observed. Our work provides a comprehensive example of the role played by epigenetic mechanisms on gene network evolution. Luo et al. demonstrate how epigenetic mechanisms contribute to the evolution of gene network activity. Subjecting yeast cells to repeated environmental selection based on the activity of the galactose network, they observe sustained changes in reporter expression level. They characterize the epigenetic and genetic factors contributing to the observed phenotypes.
Collapse
|
124
|
Villagra C, Frías-Lasserre D. Epigenetic Molecular Mechanisms in Insects. NEOTROPICAL ENTOMOLOGY 2020; 49:615-642. [PMID: 32514997 DOI: 10.1007/s13744-020-00777-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Insects are the largest animal group on Earth both in biomass and diversity. Their outstanding success has inspired genetics and developmental research, allowing the discovery of dynamic process explaining extreme phenotypic plasticity and canalization. Epigenetic molecular mechanisms (EMMs) are vital for several housekeeping functions in multicellular organisms, regulating developmental, ontogenetic trajectories and environmental adaptations. In Insecta, EMMs are involved in the development of extreme phenotypic divergences such as polyphenisms and eusocial castes. Here, we review the history of this research field and how the main EMMs found in insects help to understand their biological processes and diversity. EMMs in insects confer them rapid response capacity allowing insect either to change with plastic divergence or to keep constant when facing different stressors or stimuli. EMMs function both at intra as well as transgenerational scales, playing important roles in insect ecology and evolution. We discuss on how EMMs pervasive influences in Insecta require not only the control of gene expression but also the dynamic interplay of EMMs with further regulatory levels, including genetic, physiological, behavioral, and environmental among others, as was earlier proposed by the Probabilistic Epigenesis model and Developmental System Theory.
Collapse
Affiliation(s)
- C Villagra
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile.
| | - D Frías-Lasserre
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
125
|
Baratta AM, Rathod RS, Plasil SL, Seth A, Homanics GE. Exposure to drugs of abuse induce effects that persist across generations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:217-277. [PMID: 33461664 PMCID: PMC8167819 DOI: 10.1016/bs.irn.2020.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Substance use disorders are highly prevalent and continue to be one of the leading causes of disability in the world. Notably, not all people who use addictive drugs develop a substance use disorder. Although substance use disorders are highly heritable, patterns of inheritance cannot be explained purely by Mendelian genetic mechanisms. Vulnerability to developing drug addiction depends on the interplay between genetics and environment. Additionally, evidence from the past decade has pointed to the role of epigenetic inheritance in drug addiction. This emerging field focuses on how environmental perturbations, including exposure to addictive drugs, induce epigenetic modifications that are transmitted to the embryo at fertilization and modify developmental gene expression programs to ultimately impact subsequent generations. This chapter highlights intergenerational and transgenerational phenotypes in offspring following a history of parental drug exposure. Special attention is paid to parental preconception exposure studies of five drugs of abuse (alcohol, cocaine, nicotine, cannabinoids, and opiates) and associated behavioral and physiological outcomes in offspring. The highlighted studies demonstrate that parental exposure to drugs of abuse has enduring effects that persist into subsequent generations. Understanding the contribution of epigenetic inheritance in drug addiction may provide clues for better treatments and therapies for substance use disorders.
Collapse
Affiliation(s)
- Annalisa M Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Richa S Rathod
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sonja L Plasil
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amit Seth
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregg E Homanics
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
126
|
Hemmingsen CH, Kjaer SK, Jezek AH, Verhulst FC, Pagsberg AK, Kamper-Jørgensen M, Mørch LS, Hargreave M. Maternal use of hormonal contraception and risk of childhood ADHD: a nationwide population-based cohort study. Eur J Epidemiol 2020; 35:795-805. [PMID: 32968938 DOI: 10.1007/s10654-020-00673-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 08/04/2020] [Indexed: 11/30/2022]
Abstract
Although maternal use of hormones has been suspected of increasing the risk for childhood attention-deficit/hyperactivity disorder (ADHD), no study has examined hormonal contraception use in this context. We examined the association between maternal hormonal contraception use before or during pregnancy and ADHD risk in children. This nationwide population-based cohort study included 1,056,846 children born in Denmark between 1998 and 2014. Prescriptions for hormonal contraceptives redeemed by the mother was categorized as: no use, previous use (> 3 months before pregnancy), and recent use (≤ 3 months before or during pregnancy). Children were followed for ADHD, from birth until 31 December 2015. Cox proportional hazard models were used to estimate hazard ratios (HRs) with 95% confidence intervals (CIs). During 9,819,565 person-years of follow-up (median: 9.2), ADHD was diagnosed or a prescription for ADHD medication redeemed for 23,380 children (2.2%). The adjusted HR for ADHD was higher in children of mothers who had previously (HR 1.23; 95% CI 1.18-1.28) or recently (HR 1.30; 95% CI 1.24-1.37) used hormonal contraception than in those of mothers with no use. The highest estimates were seen for use of non-oral progestin products with HRs of 1.90 (95% CI 1.59-2.26) for previous use, 2.23 (95% CI 1.96-2.54) for recent use, and 3.10 (95% CI 1.62-5.91) for use during pregnancy. Maternal use of hormonal contraception was associated with an increased risk for ADHD in the offspring; more pronounced for non-oral progestin-only than other products.
Collapse
Affiliation(s)
- Caroline H Hemmingsen
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Susanne K Kjaer
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Gynaecology, Rigshospitalet, Copenhagen, Denmark
| | - Andrea H Jezek
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Frank C Verhulst
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands.,Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Katrine Pagsberg
- Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Kamper-Jørgensen
- Section of Epidemiology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lina S Mørch
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark.,Cancer Surveillance and Pharmacoepidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marie Hargreave
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark.
| |
Collapse
|
127
|
Willis AR, Sukhdeo R, Reinke AW. Remembering your enemies: mechanisms of within-generation and multigenerational immune priming in Caenorhabditis elegans. FEBS J 2020; 288:1759-1770. [PMID: 32767821 DOI: 10.1111/febs.15509] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Pathogens are abundant and drive evolution of host immunity. Whilst immune memory is classically associated with adaptive immunity, studies in diverse species now show that priming of innate immune defences can also protect against secondary infection. Remarkably, priming may also be passed on to progeny to enhance pathogen resistance and promote survival in future generations. Phenotypic changes that occur independent of DNA sequence underlie both 'within-generation' priming and 'multigenerational' priming. However, the molecular mechanisms responsible for these phenomena are still poorly understood. Caenorhabditis elegans is a simple and genetically tractable model organism that has enabled key advances in immunity and environmental epigenetics. Using both natural and human pathogens, researchers have uncovered numerous examples of innate immune priming in this animal. Viral infection models have provided key evidence for a conserved antiviral RNA silencing mechanism that is inherited in progeny. Bacterial infection models have explored mechanisms of within-generation and multigenerational priming that span chromatin modification and transcriptional changes, small RNA pathways, maternal provisioning and pathogen avoidance strategies. Together, these studies are providing novel insight into the immune reactivity of the genome and have important consequences for our understanding of health and evolution. In this review, we present the current evidence for learned protection against pathogens in C. elegans, discuss the significance and limitations of these findings and highlight important avenues of future investigation.
Collapse
Affiliation(s)
| | - Ronesh Sukhdeo
- Department of Molecular Genetics, University of Toronto, ON, Canada
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, ON, Canada
| |
Collapse
|
128
|
Nguyen B, Than A, Dinh H, Morimoto J, Ponton F. Parental Microbiota Modulates Offspring Development, Body Mass and Fecundity in a Polyphagous Fruit Fly. Microorganisms 2020; 8:E1289. [PMID: 32846933 PMCID: PMC7563405 DOI: 10.3390/microorganisms8091289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
The commensal microbiota is a key modulator of animal fitness, but little is known about the extent to which the parental microbiota influences fitness-related traits of future generations. We addressed this gap by manipulating the parental microbiota of a polyphagous fruit fly (Bactrocera tryoni) and measuring offspring developmental traits, body composition, and fecundity. We generated three parental microbiota treatments where parents had a microbiota that was non-manipulated (control), removed (axenic), or removed-and-reintroduced (reinoculation). We found that the percentage of egg hatching, of pupal production, and body weight of larvae and adult females were lower in offspring of axenic parents compared to that of non-axenic parents. The percentage of partially emerged adults was higher, and fecundity of adult females was lower in offspring of axenic parents relative to offspring of control and reinoculated parents. There was no significant effect of parental microbiota manipulation on offspring developmental time or lipid reserve. Our results reveal transgenerational effects of the parental commensal microbiota on different aspects of offspring life-history traits, thereby providing a better understanding of the long-lasting effects of host-microbe interactions.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
| | - Anh Than
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
- Department of Entomology, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 100000, Vietnam
| | - Hue Dinh
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
| | - Juliano Morimoto
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
- School of Biological Sciences, Zoology Building, Tillydrone Ave, Aberdeen AB24 2TZ, UK
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
| |
Collapse
|
129
|
Alashkar Alhamwe B, Miethe S, Pogge von Strandmann E, Potaczek DP, Garn H. Epigenetic Regulation of Airway Epithelium Immune Functions in Asthma. Front Immunol 2020; 11:1747. [PMID: 32973742 PMCID: PMC7461869 DOI: 10.3389/fimmu.2020.01747] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the respiratory tract characterized by recurrent breathing problems resulting from airway obstruction and hyperresponsiveness. Human airway epithelium plays an important role in the initiation and control of the immune responses to different types of environmental factors contributing to asthma pathogenesis. Using pattern recognition receptors airway epithelium senses external stimuli, such as allergens, microbes, or pollutants, and subsequently secretes endogenous danger signaling molecules alarming and activating dendritic cells. Hence, airway epithelial cells not only mediate innate immune responses but also bridge them with adaptive immune responses involving T and B cells that play a crucial role in the pathogenesis of asthma. The effects of environmental factors on the development of asthma are mediated, at least in part, by epigenetic mechanisms. Those comprise classical epigenetics including DNA methylation and histone modifications affecting transcription, as well as microRNAs influencing translation. The common feature of such mechanisms is that they regulate gene expression without affecting the nucleotide sequence of the genomic DNA. Epigenetic mechanisms play a pivotal role in the regulation of different cell populations involved in asthma pathogenesis, with the remarkable example of T cells. Recently, however, there is increasing evidence that epigenetic mechanisms are also crucial for the regulation of airway epithelial cells, especially in the context of epigenetic transfer of environmental effects contributing to asthma pathogenesis. In this review, we summarize the accumulating evidence for this very important aspect of airway epithelial cell pathobiology.
Collapse
Affiliation(s)
- Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Marburg, Germany.,College of Pharmacy, International University for Science and Technology (IUST), Daraa, Syria.,Center for Tumor Biology and Immunology, Institute of Tumor Immunology, Philipps University Marburg, Marburg, Germany
| | - Sarah Miethe
- Institute of Laboratory Medicine, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Marburg, Germany.,Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps University Marburg, Marburg, Germany
| | - Elke Pogge von Strandmann
- Center for Tumor Biology and Immunology, Institute of Tumor Immunology, Philipps University Marburg, Marburg, Germany
| | - Daniel P Potaczek
- Institute of Laboratory Medicine, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Marburg, Germany.,John Paul II Hospital, Kraków, Poland
| | - Holger Garn
- Institute of Laboratory Medicine, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Marburg, Germany.,Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
130
|
Microglia and Reactive Oxygen Species Are Required for Behavioral Susceptibility to Chronic Social Defeat Stress. J Neurosci 2020; 40:1370-1372. [PMID: 32051290 DOI: 10.1523/jneurosci.2175-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/08/2019] [Accepted: 12/21/2019] [Indexed: 01/31/2023] Open
|
131
|
Garcia-Dominguez X, Marco-Jiménez F, Peñaranda DS, Diretto G, García-Carpintero V, Cañizares J, Vicente JS. Long-term and transgenerational phenotypic, transcriptional and metabolic effects in rabbit males born following vitrified embryo transfer. Sci Rep 2020; 10:11313. [PMID: 32647175 PMCID: PMC7347584 DOI: 10.1038/s41598-020-68195-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
The advent of assisted reproductive technologies (ART) in mammals involved an extraordinary change in the environment where the beginning of a new organism takes place. Under in vitro conditions, in which ART is currently being performed, it likely fails to mimic optimal in vivo conditions. This suboptimal environment could mediate in the natural developmental trajectory of the embryo, inducing lasting effects until later life stages that may be inherited by subsequent generations (transgenerational effects). Therefore, we evaluated the potential transgenerational effects of embryo exposure to the cryopreservation-transfer procedure in a rabbit model on the offspring phenotype, molecular physiology of the liver (transcriptome and metabolome) and reproductive performance during three generations (F1, F2 and F3). The results showed that, compared to naturally-conceived animals (NC group), progeny generated after embryo exposure to the cryopreservation-transfer procedure (VT group) exhibited lower body growth, which incurred lower adult body weight in the F1 (direct effects), F2 (intergenerational effects) and F3 (transgenerational effects) generations. Furthermore, VT animals showed intergenerational effects on heart weight and transgenerational effects on liver weight. The RNA-seq data of liver tissue revealed 642 differentially expressed transcripts (DETs) in VT animals from the F1 generation. Of those, 133 were inherited from the F2 and 120 from the F3 generation. Accordingly, 151, 190 and 159 differentially accumulated metabolites (DAMs) were detected from the F1, F2 and F3, respectively. Moreover, targeted metabolomics analysis demonstrated that transgenerational effects were mostly presented in the non-polar fraction. Functional analysis of molecular data suggests weakened zinc and fatty acid metabolism across the generations, associated with alterations in a complex molecular network affecting global hepatic metabolism that could be associated with the phenotype of VT animals. However, these VT animals showed proper reproductive performance, which verified a functional health status. In conclusion, our results establish the long-term transgenerational effects following a vitrified embryo transfer procedure. We showed that the VT phenotype could be the result of the manifestation of embryonic developmental plasticity in response to the stressful conditions during ART procedures.
Collapse
Affiliation(s)
- Ximo Garcia-Dominguez
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - Francisco Marco-Jiménez
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - David S Peñaranda
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - Gianfranco Diretto
- National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, 00123, Rome, Italy
| | - Víctor García-Carpintero
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, 46022, Valencia, Spain
| | - Joaquín Cañizares
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, 46022, Valencia, Spain
| | - José S Vicente
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
132
|
Zindler T, Frieling H, Neyazi A, Bleich S, Friedel E. Simulating ComBat: how batch correction can lead to the systematic introduction of false positive results in DNA methylation microarray studies. BMC Bioinformatics 2020; 21:271. [PMID: 32605541 PMCID: PMC7328269 DOI: 10.1186/s12859-020-03559-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/26/2020] [Indexed: 12/04/2022] Open
Abstract
Background Systematic technical effects—also called batch effects—are a considerable challenge when analyzing DNA methylation (DNAm) microarray data, because they can lead to false results when confounded with the variable of interest. Methods to correct these batch effects are error-prone, as previous findings have shown. Results Here, we demonstrate how using the R function ComBat to correct simulated Infinium HumanMethylation450 BeadChip (450 K) and Infinium MethylationEPIC BeadChip Kit (EPIC) DNAm data can lead to a large number of false positive results under certain conditions. We further provide a detailed assessment of the consequences for the highly relevant problem of p-value inflation with subsequent false positive findings after application of the frequently used ComBat method. Using ComBat to correct for batch effects in randomly generated samples produced alarming numbers of false discovery rate (FDR) and Bonferroni-corrected (BF) false positive results in unbalanced as well as in balanced sample distributions in terms of the relation between the outcome of interest variable and the technical position of the sample during the probe measurement. Both sample size and number of batch factors (e.g. number of chips) were systematically simulated to assess the probability of false positive findings. The effect of sample size was simulated using n = 48 up to n = 768 randomly generated samples. Increasing the number of corrected factors led to an exponential increase in the number of false positive signals. Increasing the number of samples reduced, but did not completely prevent, this effect. Conclusions Using the approach described, we demonstrate, that using ComBat for batch correction in DNAm data can lead to false positive results under certain conditions and sample distributions. Our results are thus contrary to previous publications, considering a balanced sample distribution as unproblematic when using ComBat. We do not claim completeness in terms of reporting all technical conditions and possible solutions of the occurring problems as we approach the problem from a clinician’s perspective and not from that of a computer scientist. With our approach of simulating data, we provide readers with a simple method to assess the probability of false positive findings in DNAm microarray data analysis pipelines.
Collapse
Affiliation(s)
- Tristan Zindler
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany.
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Alexandra Neyazi
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Eva Friedel
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte (CCM), Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), 10178, Berlin, Germany
| |
Collapse
|
133
|
Substantially Altered Expression Profile of Diabetes/Cardiovascular/Cerebrovascular Disease Associated microRNAs in Children Descending from Pregnancy Complicated by Gestational Diabetes Mellitus-One of Several Possible Reasons for an Increased Cardiovascular Risk. Cells 2020; 9:cells9061557. [PMID: 32604801 PMCID: PMC7349356 DOI: 10.3390/cells9061557] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Gestational diabetes mellitus (GDM), one of the major pregnancy-related complications, characterized as a transitory form of diabetes induced by insulin resistance accompanied by a low/absent pancreatic beta-cell compensatory adaptation to the increased insulin demand, causes the acute, long-term, and transgenerational health complications. The aim of the study was to assess if alterations in gene expression of microRNAs associated with diabetes/cardiovascular/cerebrovascular diseases are present in whole peripheral blood of children aged 3-11 years descending from GDM complicated pregnancies. A substantially altered microRNA expression profile was found in children descending from GDM complicated pregnancies. Almost all microRNAs with the exception of miR-92a-3p, miR-155-5p, and miR-210-3p were upregulated. The microRNA expression profile also differed between children after normal and GDM complicated pregnancies in relation to the presence of overweight/obesity, prehypertension/hypertension, and/or valve problems and heart defects. Always, screening based on the combination of microRNAs was superior over using individual microRNAs, since at 10.0% false positive rate it was able to identify a large proportion of children with an aberrant microRNA expression profile (88.14% regardless of clinical findings, 75.41% with normal clinical findings, and 96.49% with abnormal clinical findings). In addition, the higher incidence of valve problems and heart defects was found in children with a prior exposure to GDM. The extensive file of predicted targets of all microRNAs aberrantly expressed in children descending from GDM complicated pregnancies indicates that a large group of these genes is involved in ontologies of diabetes/cardiovascular/cerebrovascular diseases. In general, children with a prior exposure to GDM are at higher risk of later development of diabetes mellitus and cardiovascular/cerebrovascular diseases, and would benefit from dispensarisation as well as implementation of primary prevention strategies.
Collapse
|
134
|
González B, Gancedo SN, Garazatua SAJ, Roldán E, Vitullo AD, González CR. Dopamine Receptor D1 Contributes to Cocaine Epigenetic Reprogramming of Histone Modifications in Male Germ Cells. Front Cell Dev Biol 2020; 8:216. [PMID: 32318569 PMCID: PMC7146055 DOI: 10.3389/fcell.2020.00216] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/12/2020] [Indexed: 11/28/2022] Open
Abstract
Paternal environmental perturbations, including cocaine intake, can affect the development and behavior of the offspring through epigenetic inheritance. However, the mechanism by which cocaine alters the male germ cells epigenome is almost unexplored. Here, we report that cocaine-treated male mice showed alterations on specific histone post-translational modifications (PTMs) including increased silent chromatin marks H3K9me3 and H3K27me3 and decreased active enhancer and promoter marks H3K27ac and H3K4me3 in isolated germ cells. Also, cocaine increased H3K9ac and H4K16ac levels, involved in the replacement of histones by protamines that take place at round spermatid stage. Cocaine also altered histones H3/H4 epigenetic enzymes by increasing acetyltransferase KAT8/MOF, deacetylase SIRT1 and methyltransferase KMT1C/G9A, and decreasing deacetylases HDAC1/2 and demethylase KDM1A/LSD1 protein levels. Moreover, a pre-treatment with dopamine receptor 1 (DRD1) antagonist SCH23390 (SCH) blocked cocaine effects on H3K4me3, H3K27me3, and H4K16ac epigenetic marks. Interestingly, treatment with SCH-only was able to modify most of the histone marks tested here, pointing to a dopamine role in controlling histone PTMs in germ cells. Taken together, our data suggest a key role for DRD1 in mediating cocaine-triggered epigenetic modifications related to the silencing of gene transcription and the histone-to-protamine replacement that controls chromatin architecture of maturing sperm cells, and pinpoints a novel role of the dopaminergic system in the regulation of male germ cells reprogramming.
Collapse
Affiliation(s)
- Betina González
- Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Samanta N Gancedo
- Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Sahira A Janeir Garazatua
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo, Universidad Maimónides, Buenos Aires, Argentina
| | - Eduardo Roldán
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, Madrid, Spain
| | - Alfredo D Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo, Universidad Maimónides, Buenos Aires, Argentina
| | - Candela R González
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo, Universidad Maimónides, Buenos Aires, Argentina
| |
Collapse
|
135
|
Ozyilmaz B, Kirbiyik O, Ozdemir TR, Kaya OO, Kutbay YB, Erdogan KM, Guvenc MS, Koc A. The Efficiency of SNP-Based Microarrays in the Detection of Copy-Neutral Events at 15q11.2 and 11p15.5 Loci. J Pediatr Genet 2019; 9:9-18. [PMID: 31976138 DOI: 10.1055/s-0039-1698420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022]
Abstract
Prader-Willi, Angelman, Beckwith-Wiedemann, and Russell-Silver are imprinting syndromes. In this study, we aimed to compare the efficiency of single nucleotide polymorphism (SNP) microarray analysis with methylation-specific Multiplex ligation-dependent probe amplification (MS-MLPA) in the detection of uniparental disomy in these syndromes. The patient samples with regions of loss of heterozygosity (LOH), covering 15q11.2 and 11p15.5 critical loci, were analyzed with MS-MLPA to demonstrate the efficiency of SNP microarray in the detection of uniparental disomy (UPD). In a total of seven patients, LOH covering 15q11.2 and 11p15.5 critical loci was detected. Two (28.6%) of these seven patients showed aberrant methylation (suggesting UPD) in MS-MLPA. SNP microarray is a useful tool in the detection of LOH; however, it should be used with caution, since false-positive or false-negative LOH results can be obtained. Although methylation analysis is recommended as the first tier test in the diagnosis of most of the imprinting disorders, combining methylation analysis with SNP microarray can enhance our evaluation process.
Collapse
Affiliation(s)
- Berk Ozyilmaz
- Genetic Diagnosis Center, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Ozgur Kirbiyik
- Genetic Diagnosis Center, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Taha R Ozdemir
- Genetic Diagnosis Center, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Ozge Ozer Kaya
- Genetic Diagnosis Center, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Yasar B Kutbay
- Genetic Diagnosis Center, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Kadri M Erdogan
- Genetic Diagnosis Center, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Merve Saka Guvenc
- Genetic Diagnosis Center, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Altug Koc
- Genetic Diagnosis Center, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| |
Collapse
|
136
|
Tesarik J. Acquired Sperm DNA Modifications: Causes, Consequences, and Potential Solutions. EUROPEAN MEDICAL JOURNAL 2019. [DOI: 10.33590/emj/10312990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
DNA of human spermatozoa can be subject to various kinds of modifications acquired throughout life. Put simply, two basic types of acquired sperm DNA modifications can be distinguished: genetic and epigenetic. Genetic modifications cause alterations of the DNA sequence and mainly result from the formation of breakpoints leading to sperm DNA fragmentation. Epigenetic modifications include a vast spectrum of events that influence the expression of different genes without altering their DNA sequence. Both the genetic and the epigenetic modifications of sperm DNA can negatively influence embryonic development, cause miscarriages, and be the origin of different health problems for the offspring. As to sperm DNA fragmentation, reliable diagnostic methods are currently available. On the other hand, the detection of potentially harmful epigenetic modifications in spermatozoa is a much more complicated issue. Different treatment options can be chosen to solve problems associated with sperm DNA fragmentation. Some are relatively simple and noninvasive, based on oral treatments with antioxidants and other agents, depending on the underlying cause. In other cases, the recourse to different micromanipulation-assisted in vitro fertilisation techniques is necessary to select spermatozoa with minimal DNA damage to be injected into oocytes. The treatment of cases with epigenetic DNA modifications is still under investigation. Preliminary data suggest that some of the techniques used in cases of extensive DNA fragmentation can also be of help in those of epigenetic modifications; however, further progress will depend on the availability of more reliable diagnostic methods with which it will be possible to evaluate the effects of different therapeutic interventions.
Collapse
|
137
|
Samodien E, Pheiffer C, Erasmus M, Mabasa L, Louw J, Johnson R. Diet-induced DNA methylation within the hypothalamic arcuate nucleus and dysregulated leptin and insulin signaling in the pathophysiology of obesity. Food Sci Nutr 2019; 7:3131-3145. [PMID: 31660128 PMCID: PMC6804761 DOI: 10.1002/fsn3.1169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
Obesity rates continue to rise in an unprecedented manner in what could be the most rapid population‐scale shift in human phenotype ever to occur. Increased consumption of unhealthy, calorie‐dense foods, coupled with sedentary lifestyles, is the main factor contributing to a positive energy balance and the development of obesity. Leptin and insulin are key hormones implicated in pathogenesis of this disorder and are crucial for controlling whole‐body energy homeostasis. Their respective function is mediated by the counterbalance of anorexigenic and orexigenic neurons located within the hypothalamic arcuate nucleus. Dysregulation of leptin and insulin signaling pathways within this brain region may contribute not only to the development of obesity, but also systemically affect the peripheral organs, thereby manifesting as metabolic diseases. Although the exact mechanisms detailing how these hypothalamic nuclei contribute to disease pathology are still unclear, increasing evidence suggests that altered DNA methylation may be involved. This review evaluates animal studies that have demonstrated diet‐induced DNA methylation changes in genes that regulate energy homeostasis within the arcuate nucleus, and elucidates possible mechanisms causing hypothalamic leptin and insulin resistance leading to the development of obesity and metabolic diseases.
Collapse
Affiliation(s)
- Ebrahim Samodien
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa.,Department of Medical Physiology Stellenbosch University Tygerberg South Africa
| | - Melisse Erasmus
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa.,Department of Medical Physiology Stellenbosch University Tygerberg South Africa
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa.,Department of Biochemistry and Microbiology University of Zululand KwaDlangezwa South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform South African Medical Research Council. Tygerberg Cape Town South Africa.,Department of Medical Physiology Stellenbosch University Tygerberg South Africa
| |
Collapse
|
138
|
El Khoury D, Fayjaloun S, Nassar M, Sahakian J, Aad PY. Updates on the Effect of Mycotoxins on Male Reproductive Efficiency in Mammals. Toxins (Basel) 2019; 11:E515. [PMID: 31484408 PMCID: PMC6784030 DOI: 10.3390/toxins11090515] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
Mycotoxins are ubiquitous and unavoidable harmful fungal products with the ability to cause disease in both animals and humans, and are found in almost all types of foods, with a greater prevalence in hot humid environments. These mycotoxins vary greatly in structure and biochemical effects; therefore, by better understanding the toxicological and pathological aspects of mycotoxins, we can be better equipped to fight the diseases, as well as the biological and economic devastations, they induce. Multiple studies point to the association between a recent increase in male infertility and the increased occurrence of these mycotoxins in the environment. Furthermore, understanding how mycotoxins may induce an accumulation of epimutations during parental lifetimes can shed light on their implications with respect to fertility and reproductive efficiency. By acknowledging the diversity of mycotoxin molecular function and mode of action, this review aims to address the current limited knowledge on the effects of these chemicals on spermatogenesis and the various endocrine and epigenetics patterns associated with their disruptions.
Collapse
Affiliation(s)
- Diala El Khoury
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Salma Fayjaloun
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Marc Nassar
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Joseph Sahakian
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Pauline Y Aad
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon.
| |
Collapse
|
139
|
Bhattacharya S, Fontaine A, MacCallum PE, Drover J, Blundell J. Stress Across Generations: DNA Methylation as a Potential Mechanism Underlying Intergenerational Effects of Stress in Both Post-traumatic Stress Disorder and Pre-clinical Predator Stress Rodent Models. Front Behav Neurosci 2019; 13:113. [PMID: 31191267 PMCID: PMC6547031 DOI: 10.3389/fnbeh.2019.00113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Although most humans will experience some type of traumatic event in their lifetime only a small set of individuals will go on to develop post-traumatic stress disorder (PTSD). Differences in sex, age, trauma type, and comorbidity, along with many other elements, contribute to the heterogenous manifestation of this disorder. Nonetheless, aberrant hypothalamus-pituitary-adrenal (HPA) axis activity, especially in terms of cortisol and glucocorticoid receptor (GR) alterations, has been postulated as a tenable factor in the etiology and pathophysiology of PTSD. Moreover, emerging data suggests that the harmful effects of traumatic stress to the HPA axis in PTSD can also propagate into future generations, making offspring more prone to psychopathologies. Predator stress models provide an ethical and ethologically relevant way to investigate tentative mechanisms that are thought to underlie this phenomenon. In this review article, we discuss findings from human and laboratory predator stress studies that suggest changes to DNA methylation germane to GRs may underlie the generational effects of trauma transmission. Understanding mechanisms that promote stress-induced psychopathology will represent a major advance in the field and may lead to novel treatments for such devastating, and often treatment-resistant trauma and stress-disorders.
Collapse
Affiliation(s)
- Sriya Bhattacharya
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Audrey Fontaine
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada.,Institut des Systèmes Intelligents et de Robotique (ISIR), Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Phillip E MacCallum
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - James Drover
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|