101
|
Kim A, Lalonde K, Truesdell A, Gomes Welter P, Brocardo PS, Rosenstock TR, Gil-Mohapel J. New Avenues for the Treatment of Huntington's Disease. Int J Mol Sci 2021; 22:ijms22168363. [PMID: 34445070 PMCID: PMC8394361 DOI: 10.3390/ijms22168363] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the HD gene. The disease is characterized by neurodegeneration, particularly in the striatum and cortex. The first symptoms usually appear in mid-life and include cognitive deficits and motor disturbances that progress over time. Despite being a genetic disorder with a known cause, several mechanisms are thought to contribute to neurodegeneration in HD, and numerous pre-clinical and clinical studies have been conducted and are currently underway to test the efficacy of therapeutic approaches targeting some of these mechanisms with varying degrees of success. Although current clinical trials may lead to the identification or refinement of treatments that are likely to improve the quality of life of those living with HD, major efforts continue to be invested at the pre-clinical level, with numerous studies testing novel approaches that show promise as disease-modifying strategies. This review offers a detailed overview of the currently approved treatment options for HD and the clinical trials for this neurodegenerative disorder that are underway and concludes by discussing potential disease-modifying treatments that have shown promise in pre-clinical studies, including increasing neurotropic support, modulating autophagy, epigenetic and genetic manipulations, and the use of nanocarriers and stem cells.
Collapse
Affiliation(s)
- Amy Kim
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
| | - Kathryn Lalonde
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
| | - Aaron Truesdell
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Priscilla Gomes Welter
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (P.G.W.); (P.S.B.)
| | - Patricia S. Brocardo
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (P.G.W.); (P.S.B.)
| | - Tatiana R. Rosenstock
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Department of Pharmacology, University of São Paulo, São Paulo 05508-000, Brazil
| | - Joana Gil-Mohapel
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Correspondence: ; Tel.: +1-250-472-4597; Fax: +1-250-472-5505
| |
Collapse
|
102
|
Trudler D, Ghatak S, Lipton SA. Emerging hiPSC Models for Drug Discovery in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:8196. [PMID: 34360966 PMCID: PMC8347370 DOI: 10.3390/ijms22158196] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide and are characterized by the chronic and progressive deterioration of neural function. Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), represent a huge social and economic burden due to increasing prevalence in our aging society, severity of symptoms, and lack of effective disease-modifying therapies. This lack of effective treatments is partly due to a lack of reliable models. Modeling neurodegenerative diseases is difficult because of poor access to human samples (restricted in general to postmortem tissue) and limited knowledge of disease mechanisms in a human context. Animal models play an instrumental role in understanding these diseases but fail to comprehensively represent the full extent of disease due to critical differences between humans and other mammals. The advent of human-induced pluripotent stem cell (hiPSC) technology presents an advantageous system that complements animal models of neurodegenerative diseases. Coupled with advances in gene-editing technologies, hiPSC-derived neural cells from patients and healthy donors now allow disease modeling using human samples that can be used for drug discovery.
Collapse
Affiliation(s)
- Dorit Trudler
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (S.G.)
| | - Swagata Ghatak
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (S.G.)
| | - Stuart A. Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (S.G.)
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
103
|
Yeung JHY, Walby JL, Palpagama TH, Turner C, Waldvogel HJ, Faull RLM, Kwakowsky A. Glutamatergic receptor expression changes in the Alzheimer's disease hippocampus and entorhinal cortex. Brain Pathol 2021; 31:e13005. [PMID: 34269494 PMCID: PMC8549033 DOI: 10.1111/bpa.13005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's Disease (AD) is the leading form of dementia worldwide. Currently, the pathological mechanisms underlying AD are not well understood. Although the glutamatergic system is extensively implicated in its pathophysiology, there is a gap in knowledge regarding the expression of glutamate receptors in the AD brain. This study aimed to characterize the expression of specific glutamate receptor subunits in post‐mortem human brain tissue using immunohistochemistry and confocal microscopy. Free‐floating immunohistochemistry and confocal laser scanning microscopy were used to quantify the density of glutamate receptor subunits GluA2, GluN1, and GluN2A in specific cell layers of the hippocampal sub‐regions, subiculum, entorhinal cortex, and superior temporal gyrus. Quantification of GluA2 expression in human post‐mortem hippocampus revealed a significant increase in the stratum (str.) moleculare of the dentate gyrus (DG) in AD compared with control. Increased GluN1 receptor expression was found in the str. moleculare and hilus of the DG, str. oriens of the CA2 and CA3, str. pyramidale of the CA2, and str. radiatum of the CA1, CA2, and CA3 subregions and the entorhinal cortex. GluN2A expression was significantly increased in AD compared with control in the str. oriens, str. pyramidale, and str. radiatum of the CA1 subregion. These findings indicate that the expression of glutamatergic receptor subunits shows brain region‐specific changes in AD, suggesting possible pathological receptor functioning. These results provide evidence of specific glutamatergic receptor subunit changes in the AD hippocampus and entorhinal cortex, indicating the requirement for further research to elucidate the pathophysiological mechanisms it entails, and further highlight the potential of glutamatergic receptor subunits as therapeutic targets.
Collapse
Affiliation(s)
- Jason H Y Yeung
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Joshua L Walby
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
104
|
Prados ME, Correa-Sáez A, Unciti-Broceta JD, Garrido-Rodríguez M, Jimenez-Jimenez C, Mazzone M, Minassi A, Appendino G, Calzado MA, Muñoz E. Betulinic Acid Hydroxamate is Neuroprotective and Induces Protein Phosphatase 2A-Dependent HIF-1α Stabilization and Post-transcriptional Dephosphorylation of Prolyl Hydrolase 2. Neurotherapeutics 2021; 18:1849-1861. [PMID: 34339019 PMCID: PMC8608974 DOI: 10.1007/s13311-021-01089-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 02/04/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by unwanted choreatic movements, behavioral and psychiatric disturbances, and dementia. The activation of the hypoxic response pathway through the pharmacological inhibition of hypoxia-inducing factor (HIF) prolyl-hydroxylases (PHDs) is a promising approach for neurodegenerative diseases, including HD. Herein, we have studied the mechanism of action of the compound Betulinic acid hydroxamate (BAH), a hypoximimetic derivative of betulinic acid, and its efficacy against striatal neurodegeneration using complementary approaches. Firstly, we showed the molecular mechanisms through which BAH modifies the activity of the PHD2 prolyl hydroxylase, thus directly affecting HIF-1α stability. BAH treatment reduces PHD2 phosphorylation on Ser-125 residue, responsible for the control of its hydrolase activity. HIF activation by BAH is inhibited by okadaic acid and LB-100 indicating that a protein phosphatase 2A (PP2A) is implicated in the mechanism of action of BAH. Furthermore, in striatal cells bearing a mutated form of the huntingtin protein, BAH stabilized HIF-1α protein, induced Vegf and Bnip3 gene expression and protected against mitochondrial toxin-induced cytotoxicity. Pharmacokinetic analyses showed that BAH has a good brain penetrability and experiments performed in a mouse model of striatal neurodegeneration induced by 3-nitropropionic acid showed that BAH improved the clinical symptoms. In addition, BAH also prevented neuronal loss, decreased reactive astrogliosis and microglial activation, inhibited the upregulation of proinflammatory markers, and improved antioxidant defenses in the brain. Taken together, our results show BAH's ability to activate the PP2A/PHD2/HIF pathway, which may have important implications in the treatment of HD and perhaps other neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Alejandro Correa-Sáez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain
- Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Hospital Reina Sofia, Cordoba, Spain
| | | | - Martín Garrido-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain
- Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Hospital Reina Sofia, Cordoba, Spain
| | - Carla Jimenez-Jimenez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain
- Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Hospital Reina Sofia, Cordoba, Spain
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB-KULeuven, 3000, Leuven, Belgium
| | - Alberto Minassi
- Department of Drug Science, University of Piemonte Orientale, Novara, Italy
| | - Giovanni Appendino
- Department of Drug Science, University of Piemonte Orientale, Novara, Italy
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
- Hospital Universitario Hospital Reina Sofia, Cordoba, Spain.
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
- Hospital Universitario Hospital Reina Sofia, Cordoba, Spain.
| |
Collapse
|
105
|
Park EJ, Jin SW, Lim HJ, Kim HY, Kang MS, Yang S. Whole Cigarette Smoke Condensates Induce Accumulation of Amyloid Beta Precursor Protein with Oxidative Stress in Murine Astrocytes. TOXICS 2021; 9:150. [PMID: 34203397 PMCID: PMC8309752 DOI: 10.3390/toxics9070150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
Although cigarette smoking has been postulated to be a potential risk factor for Alzheimer's disease (AD), the toxic mechanism is still unclear. Additionally, astrocytes have been identified as a potential target, given they play multiple roles in maintaining normal brain function. In this study, we explored the toxic mechanism of whole cigarette smoke condensates (WCSC) using murine astrocytes. Cell proliferation, the percentage of cells in the G2/M phase, and LDH concentrations in the cell supernatants were all reduced in WCSC-treated cells. In addition, oxidative stress was induced, together with shortening of processes, structural damage of organelles, disturbances in mitochondrial function, blockage of autophagic signals, accumulation of amyloid β precursor protein, and loss of chemotactic functions. Based on these results, we hypothesize that dysfunction of astrocytes may contribute to the occurrence of cigarette-smoking-induced AD.
Collapse
Affiliation(s)
- Eun-Jung Park
- East–West Medical Science Research Institute, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul 02447, Korea
- Human Health and Environmental Toxins Research Center, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul 02447, Korea
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.-W.J.); (H.-J.L.); (M.-S.K.)
| | - Seung-Woo Jin
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.-W.J.); (H.-J.L.); (M.-S.K.)
| | - Hyun-Ji Lim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.-W.J.); (H.-J.L.); (M.-S.K.)
| | - Hyeon-Young Kim
- Inhalation Toxicology Center for Airborne Risk Factors, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup 56212, Korea;
| | - Min-Sung Kang
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.-W.J.); (H.-J.L.); (M.-S.K.)
- General Toxicology & Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup 56212, Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea;
- Degenerative InterDiseases Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
106
|
Freitas A, Aroso M, Rocha S, Ferreira R, Vitorino R, Gomez-Lazaro M. Bioinformatic analysis of the human brain extracellular matrix proteome in neurodegenerative disorders. Eur J Neurosci 2021; 53:4016-4033. [PMID: 34013613 DOI: 10.1111/ejn.15316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022]
Abstract
Alzheimer's, Parkinson's, and Huntington's diseases are characterized by selective degeneration of specific brain areas. Although increasing number of studies report alteration of the extracellular matrix on these diseases, an exhaustive characterization at the brain's matrix level might contribute to the development of more efficient cell restoration therapies. In that regard, proteomics-based studies are a powerful approach to uncover matrix changes. However, to date, the majority of proteomics studies report no or only a few brain matrix proteins with altered expression. This study aims to reveal the changes in the brain extracellular matrix by integrating several proteomics-based studies performed with postmortem tissue. In total, 67 matrix proteins with altered expression were collected. By applying a bioinformatic approach, we were able to reveal the dysregulated biological processes. Among them are processes related to the organization of the extracellular matrix, glycosaminoglycans and proteoglycans' metabolism, blood coagulation, and response to injury and oxidative stress. In addition, a protein was found altered in all three diseases-collagen type I alpha 2-and its binding partners further identified. A ClueGO network was created, depicting the GO groups associated with these binding partners, uncovering the processes that may consequently be affected. These include cellular adhesion, cell signaling through membrane receptors, inflammatory processes, and apoptotic cell death in response to oxidative stress. Overall, we were able to associate the contribution of the modification of extracellular matrix components to essential biological processes, highlighting the investment needed on proteomics studies with specific focus on the extracellular matrix in neurodegeneration.
Collapse
Affiliation(s)
- Ana Freitas
- i3S -Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB -Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,FMUP - Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Miguel Aroso
- i3S -Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB -Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Sara Rocha
- i3S -Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB -Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Rita Ferreira
- QOPNA &, LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED, University of Aveiro, Aveiro, Portugal.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria Gomez-Lazaro
- i3S -Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB -Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
107
|
Boroujeni M, Simani L, Bluyssen HAR, Samadikhah HR, Zamanlui Benisi S, Hassani S, Akbari Dilmaghani N, Fathi M, Vakili K, Mahmoudiasl GR, Abbaszadeh HA, Hassani Moghaddam M, Abdollahifar MA, Aliaghaei A. Inflammatory Response Leads to Neuronal Death in Human Post-Mortem Cerebral Cortex in Patients with COVID-19. ACS Chem Neurosci 2021; 12:2143-2150. [PMID: 34100287 PMCID: PMC8204755 DOI: 10.1021/acschemneuro.1c00111] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
The recent coronavirus disease of 2019 (COVID-19) pandemic has adversely affected people worldwide. A growing body of literature suggests the neurological complications and manifestations in response to COVID-19 infection. Herein, we explored the inflammatory and immune responses in the post-mortem cerebral cortex of patients with severe COVID-19. The participants comprised three patients diagnosed with severe COVID-19 from March 26, 2020, to April 17, 2020, and three control patients. Our findings demonstrated a surge in the number of reactive astrocytes and activated microglia, as well as low levels of glutathione along with the upregulation of inflammation- and immune-related genes IL1B, IL6, IFITM, MX1, and OAS2 in the COVID-19 group. Overall, the data imply that oxidative stress may invoke a glial-mediated neuroinflammation, which ultimately leads to neuronal cell death in the cerebral cortex of COVID-19 patients.
Collapse
Affiliation(s)
- Mahdi
Eskandarian Boroujeni
- Laboratory
of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Leila Simani
- Skull
Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1333635445, Iran
| | - Hans A. R. Bluyssen
- Laboratory
of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Hamid Reza Samadikhah
- Department
of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran 13185/768, Iran
| | - Soheila Zamanlui Benisi
- Stem
Cell Research Center, Tissue Engineering and Regenerative Medicine
Institute, Central Tehran Branch, Islamic
Azad University, Tehran 13185/768, Iran
| | - Sanaz Hassani
- Laboratory
of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Nader Akbari Dilmaghani
- Skull
Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1333635445, Iran
| | - Mobina Fathi
- Student
Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Kimia Vakili
- Student
Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Gholam-Reza Mahmoudiasl
- Legal Medicine
Organization, Legal Medicine Research Center, Tehran 1114795113, Iran
- Laser
Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Hojjat Allah Abbaszadeh
- Laser
Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
- Department
of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Meysam Hassani Moghaddam
- Department
of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Mohammad-Amin Abdollahifar
- Department
of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
- Brain
Mapping Research Center, Shahid Beheshti
University of Medical Sciences, Tehran 19857-17443, Iran
| | - Abbas Aliaghaei
- Department
of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
- Brain
Mapping Research Center, Shahid Beheshti
University of Medical Sciences, Tehran 19857-17443, Iran
| |
Collapse
|
108
|
Gatto RG, Weissmann C, Amin M, Angeles-López QD, García-Lara L, Castellanos LCS, Deyoung D, Segovia J, Mareci TH, Uchitel OD, Magin RL. Evaluation of early microstructural changes in the R6/1 mouse model of Huntington's disease by ultra-high field diffusion MR imaging. Neurobiol Aging 2021; 102:32-49. [PMID: 33765430 DOI: 10.1016/j.neurobiolaging.2021.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 12/21/2022]
Abstract
Diffusion MRI (dMRI) has been able to detect early structural changes related to neurological symptoms present in Huntington's disease (HD). However, there is still a knowledge gap to interpret the biological significance at early neuropathological stages. The purpose of this study is two-fold: (i) establish if the combination of Ultra-High Field Diffusion MRI (UHFD-MRI) techniques can add a more comprehensive analysis of the early microstructural changes observed in HD, and (ii) evaluate if early changes in dMRI microstructural parameters can be linked to cellular biomarkers of neuroinflammation. Ultra-high field magnet (16.7T), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) techniques were applied to fixed ex-vivo brains of a preclinical model of HD (R6/1 mice). Fractional anisotropy (FA) was decreased in deep and superficial grey matter (GM) as well as white matter (WM) brain regions with well-known early HD microstructure and connectivity pathology. NODDI parameters associated with the intracellular and extracellular compartment, such as intracellular ventricular fraction (ICVF), orientation dispersion index (ODI), and isotropic volume fractions (IsoVF) were altered in R6/1 mice GM. Further, histological studies in these areas showed that glia cell markers associated with neuroinflammation (GFAP & Iba1) were consistent with the dMRI findings. dMRI can be used to extract non-invasive information of neuropathological events present in the early stages of HD. The combination of multiple imaging techniques represents a better approach to understand the neuropathological process allowing the early diagnosis and neuromonitoring of patients affected by HD.
Collapse
Affiliation(s)
- Rodolfo G Gatto
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| | - Carina Weissmann
- Insituto de Fisiología Biología Molecular y Neurociencias-IFIBYNE-CONICET, Universidad de Buenos, Aires, Argentina
| | - Manish Amin
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Quetzalli D Angeles-López
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México City, México
| | - Lucia García-Lara
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México City, México
| | - Libia C Salinas Castellanos
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México City, México
| | - Daniel Deyoung
- Department of Biochemistry, National High Magnetic Field Laboratory, Gainesville, FL, USA
| | - Jose Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México City, México
| | - Thomas H Mareci
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Osvaldo D Uchitel
- Insituto de Fisiología Biología Molecular y Neurociencias-IFIBYNE-CONICET, Universidad de Buenos, Aires, Argentina
| | - Richard L Magin
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
109
|
Mondal A, Mukherjee S, Dar W, Singh S, Pati S. Role of glucose 6-phosphate dehydrogenase (G6PD) deficiency and its association to Autism Spectrum Disorders. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166185. [PMID: 34087423 DOI: 10.1016/j.bbadis.2021.166185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/27/2022]
Abstract
Autism Spectrum Disorder (ASD) is a common group of neurodevelopmental disorders which causes significant alterations in social and communication skills along with repetitive behavior and limited interests. The physiological understanding of ASD is ambiguous. Several reports suggested that environmental, genetic and epigenetic changes, neuroinflammation, mitochondrial dysfunction and metabolic alterations orchestrate the pathological outcomes of ASD. A recent report from Saudi Arabia found a mutation in X-chromosomal housekeeping glucose 6-phosphate dehydrogenase (G6PD) gene in two male ASD patients. Although, the involvement of G6PD-deficiency in the pathogenesis of ASD is poorly understood. Several reports suggested that G6PD deficiency impedes cellular detoxification of reactive oxygen species (ROS), which may result in neuronal damage and neuroinflammation. A deficiency of G6PD in newborn children may play a fundamental role in the pathogenesis of ASD. In this review, we will discuss the implications of G6PD deficiency in pathogenesis, male biasness and theranostics in ASD patients.
Collapse
Affiliation(s)
- Abir Mondal
- Neurobiology and Disease Modelling Laboratory, Host-Pathogen Interactions & Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida 201314, India
| | - Soumyadeep Mukherjee
- Neurobiology and Disease Modelling Laboratory, Host-Pathogen Interactions & Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida 201314, India
| | - Waseem Dar
- Neurobiology and Disease Modelling Laboratory, Host-Pathogen Interactions & Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida 201314, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Soumya Pati
- Neurobiology and Disease Modelling Laboratory, Host-Pathogen Interactions & Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida 201314, India.
| |
Collapse
|
110
|
Hyeon JW, Kim AH, Yano H. Epigenetic regulation in Huntington's disease. Neurochem Int 2021; 148:105074. [PMID: 34038804 DOI: 10.1016/j.neuint.2021.105074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
Huntington's disease (HD) is a devastating and fatal monogenic neurodegenerative disorder characterized by progressive loss of selective neurons in the brain and is caused by an abnormal expansion of CAG trinucleotide repeats in a coding exon of the huntingtin (HTT) gene. Progressive gene expression changes that begin at premanifest stages are a prominent feature of HD and are thought to contribute to disease progression. Increasing evidence suggests the critical involvement of epigenetic mechanisms in abnormal transcription in HD. Genome-wide alterations of a number of epigenetic modifications, including DNA methylation and multiple histone modifications, are associated with HD, suggesting that mutant HTT causes complex epigenetic abnormalities and chromatin structural changes, which may represent an underlying pathogenic mechanism. The causal relationship of specific epigenetic changes to early transcriptional alterations and to disease pathogenesis require further investigation. In this article, we review recent studies on epigenetic regulation in HD with a focus on DNA and histone modifications. We also discuss the contribution of epigenetic modifications to HD pathogenesis as well as potential mechanisms linking mutant HTT and epigenetic alterations. Finally, we discuss the therapeutic potential of epigenetic-based treatments.
Collapse
Affiliation(s)
- Jae Wook Hyeon
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
111
|
Balog M, Blažetić S, Ivić V, Labak I, Krajnik B, Marin R, Canerina-Amaro A, de Pablo DP, Bardak A, Gaspar R, Szűcs KF, Vari SG, Heffer M. Disarranged neuroplastin environment upon aging and chronic stress recovery in female Sprague Dawley rats. Eur J Neurosci 2021; 55:2474-2490. [PMID: 33909305 PMCID: PMC9290558 DOI: 10.1111/ejn.15256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
Chronic stress produces long-term metabolic changes throughout the superfamily of nuclear receptors, potentially causing various pathologies. Sex hormones modulate the stress response and generate a sex-specific age-dependent metabolic imprint, especially distinct in the reproductive senescence of females. We monitored chronic stress recovery in two age groups of female Sprague Dawley rats to determine whether stress and/or aging structurally changed the glycolipid microenvironment, a milieu playing an important role in cognitive functions. Old females experienced memory impairment even at basal conditions, which was additionally amplified by stress. On the other hand, the memory of young females was not disrupted. Stress recovery was followed by a microglial decrease and an increase in astrocyte count in the hippocampal immune system. Since dysfunction of the brain immune system could contribute to disturbed synaptogenesis, we analyzed neuroplastin expression and the lipid environment. Neuroplastin microenvironments were explored by analyzing immunofluorescent stainings using a newly developed Python script method. Stress reorganized glycolipid microenvironment in the Cornu Ammonis 1 (CA1) and dentate gyrus (DG) hippocampal regions of old females but in a very different fashion, thus affecting neuroplasticity. The postulation of four possible neuroplastin environments pointed to the GD1a ganglioside enrichment during reproductive senescence of stressed females, as well as its high dispersion in both regions and to GD1a and GM1 loss in the CA1 region. A specific lipid environment might influence neuroplastin functionality and underlie synaptic dysfunction triggered by a combination of aging and chronic stress.
Collapse
Affiliation(s)
- Marta Balog
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Vedrana Ivić
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Irena Labak
- Department of Biology, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Bartosz Krajnik
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, School of Health Sciences, Universidad de La Laguna, La Laguna, Spain
| | - Ana Canerina-Amaro
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, School of Health Sciences, Universidad de La Laguna, La Laguna, Spain
| | - Daniel Pereda de Pablo
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, School of Health Sciences, Universidad de La Laguna, La Laguna, Spain
| | - Ana Bardak
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Robert Gaspar
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Kálmán Ferenc Szűcs
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Sandor G Vari
- Cedars-Sinai Medical Center, International Research and Innovation in Medicine Program, Los Angeles, CA, USA
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
112
|
Ou M, Fan W, Sun F, Li M, Lin M, Yu Y, Liang S, Liao H, Jie W, Cai Y, Chen F, Chen X, Zhao T, Tang P, Cui L, Zhou H. Nasal Delivery of AntagomiR-741 Protects Against the Radiation-Induced Brain Injury in Mice. Radiat Res 2021; 195:355-365. [PMID: 33544844 DOI: 10.1667/rade-20-00070.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 12/09/2020] [Indexed: 11/03/2022]
Abstract
Radiation-induced brain injury (RBI) is a serious complication in patients who have received radiotherapy for head and neck tumors. Currently, there is a scarcity of information on early diagnostic and preventive methods of RBI. Accumulating evidence suggests that microRNAs are involved in the regulation of radiation injury, but the molecular biological mechanism of miRNAs in RBI is largely unknown. Therefore, in our study, microRNA sequencing was used to discover differential miRNAs in the hippocampus of RBI-modeled mice, which suggested that miR-741-3p was most significantly upregulated. To clarify the underlying mechanism of miR-741-3p in RBI-modeled mice, an inhibitor of miR-741-3p (antagomiR-741) was delivered into the brain via the nasal passage before irradiation. The delivery of antagomiR-741 significantly reduced miR-741-3p levels in the hippocampus of RBI-modeled mice, and the cognitive dysfunction and neuronal apoptosis induced by radiation were also alleviated at 6 weeks postirradiation. Downregulation of miR-741-3p was found to improve the protrusion and branching status of microglia after irradiation and reduced the number of GFAP-positive astrocytes. Additionally, antagomiR-741 suppressed the radiation-induced production of pro-inflammatory cytokines IL-6 and TNF-α in the hippocampus and S100B in the serum. Furthermore, Ddr2, PKCα and St8sia1 were revealed as target genes of miR-741-3p and as potential regulatory targets for RBI. Overall, our study provides identification and functional evaluation of miRNA in RBI and lays the foundation for improving the prevention strategy for RBI based on the delivery of miRNA via the nose-brain pathway.
Collapse
Affiliation(s)
- Mingqian Ou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Luoding People's Hospital, Affiliated Hospital of Guangdong Medical University, Luoding, China
| | - Weihao Fan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Furong Sun
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Minhua Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Meijun Lin
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yangsheng Yu
- Department of Neurology, Puning People's Hospital, Southern Medical University, Jieyang, China
| | - Shiyun Liang
- Department of Otorhinolaryngology, Luoding People's Hospital, Affiliated Hospital of Guangdong Medical University, Luoding, China
| | - Haojie Liao
- Department of Neurology, Southern Medical University, Affiliated Shenzhen Bao An Hospital, Shenzhen, China
| | - Wanxin Jie
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tian Zhao
- The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Pei Tang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haihong Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
113
|
Albert K, Niskanen J, Kälvälä S, Lehtonen Š. Utilising Induced Pluripotent Stem Cells in Neurodegenerative Disease Research: Focus on Glia. Int J Mol Sci 2021; 22:ijms22094334. [PMID: 33919317 PMCID: PMC8122303 DOI: 10.3390/ijms22094334] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism's somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer's disease and Parkinson's disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.
Collapse
Affiliation(s)
- Katrina Albert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Jonna Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (J.N.); (S.K.)
| | - Sara Kälvälä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (J.N.); (S.K.)
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (J.N.); (S.K.)
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
- Correspondence:
| |
Collapse
|
114
|
Boeri L, Perottoni S, Izzo L, Giordano C, Albani D. Microbiota-Host Immunity Communication in Neurodegenerative Disorders: Bioengineering Challenges for In Vitro Modeling. Adv Healthc Mater 2021; 10:e2002043. [PMID: 33661580 PMCID: PMC11468246 DOI: 10.1002/adhm.202002043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Human microbiota communicates with its host by secreting signaling metabolites, enzymes, or structural components. Its homeostasis strongly influences the modulation of human tissue barriers and immune system. Dysbiosis-induced peripheral immunity response can propagate bacterial and pro-inflammatory signals to the whole body, including the brain. This immune-mediated communication may contribute to several neurodegenerative disorders, as Alzheimer's disease. In fact, neurodegeneration is associated with dysbiosis and neuroinflammation. The interplay between the microbial communities and the brain is complex and bidirectional, and a great deal of interest is emerging to define the exact mechanisms. This review focuses on microbiota-immunity-central nervous system (CNS) communication and shows how gut and oral microbiota populations trigger immune cells, propagating inflammation from the periphery to the cerebral parenchyma, thus contributing to the onset and progression of neurodegeneration. Moreover, an overview of the technological challenges with in vitro modeling of the microbiota-immunity-CNS axis, offering interesting technological hints about the most advanced solutions and current technologies is provided.
Collapse
Affiliation(s)
- Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Simone Perottoni
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Luca Izzo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Diego Albani
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSvia Mario Negri 2Milan20156Italy
| |
Collapse
|
115
|
Lomeli N, Lepe J, Gupta K, Bota DA. Cognitive complications of cancer and cancer-related treatments - Novel paradigms. Neurosci Lett 2021; 749:135720. [PMID: 33582187 PMCID: PMC8423125 DOI: 10.1016/j.neulet.2021.135720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 01/07/2023]
Abstract
As advances in diagnostics and therapeutic strategies in oncology have increased the number of cancer survivors, the investigation of the mechanisms associated with long-term cognitive complications of cancer treatment has become an important topic of interest. The neurotoxic effects of chemotherapeutic agents have been described in pre-clinical and clinical research. In vitro and rodent studies have identified some underlying mechanisms contributing to chemotherapy-induced neurotoxicity and cognitive impairment for various chemotherapy drugs and other cancer treatments. However, investigation of the direct biological effects of cancer and other potential contributing factors in the pathogenesis of cancer-related cognitive impairment (CRCI) has only recently come into focus. This review will highlight evidence from pre-clinical tumor-bearing rodent models suggesting that cancer influences the cognitive and behavioral changes reported in human cancer populations through direct or indirect pathways that alter the normal neuroinflammatory responses, induce structural brain deficits, and decrease neurogenesis. We reflect on human clinical cancer research indicating that cognitive and behavioral changes precede cancer treatment in some malignancies. We also highlight implications for future areas of CRCI research based on novel findings on the interplay between cancer, chemotherapy, inflammation, tau pathology, and dysregulation of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Naomi Lomeli
- Department of Neurology, University of California Irvine, Irvine, CA, USA.
| | - Javier Lepe
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA.
| | - Kalpna Gupta
- Department of Medicine, University of California Irvine, Irvine, CA, USA.
| | - Daniela A Bota
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
116
|
Holbrook JA, Jarosz-Griffiths HH, Caseley E, Lara-Reyna S, Poulter JA, Williams-Gray CH, Peckham D, McDermott MF. Neurodegenerative Disease and the NLRP3 Inflammasome. Front Pharmacol 2021; 12:643254. [PMID: 33776778 PMCID: PMC7987926 DOI: 10.3389/fphar.2021.643254] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
The prevalence of neurodegenerative disease has increased significantly in recent years, and with a rapidly aging global population, this trend is expected to continue. These diseases are characterised by a progressive neuronal loss in the brain or peripheral nervous system, and generally involve protein aggregation, as well as metabolic abnormalities and immune dysregulation. Although the vast majority of neurodegeneration is idiopathic, there are many known genetic and environmental triggers. In the past decade, research exploring low-grade systemic inflammation and its impact on the development and progression of neurodegenerative disease has increased. A particular research focus has been whether systemic inflammation arises only as a secondary effect of disease or is also a cause of pathology. The inflammasomes, and more specifically the NLRP3 inflammasome, a crucial component of the innate immune system, is usually activated in response to infection or tissue damage. Dysregulation of the NLRP3 inflammasome has been implicated in the progression of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion diseases. This review aims to summarise current literature on the role of the NLRP3 inflammasome in the pathogenesis of neurodegenerative diseases, and recent work investigating NLRP3 inflammasome inhibition as a potential future therapy.
Collapse
Affiliation(s)
- Jonathan A. Holbrook
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Heledd H. Jarosz-Griffiths
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research at St. James’s University Hospital, Leeds, United Kingdom
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
| | - Emily Caseley
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research at St. James’s University Hospital, Leeds, United Kingdom
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - James A. Poulter
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research at St. James’s University Hospital, Leeds, United Kingdom
| | - Caroline H. Williams-Gray
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Peckham
- Leeds Institute of Medical Research at St. James’s University Hospital, Leeds, United Kingdom
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
- Leeds Centre for Cystic Fibrosis, St James’s University Hospital, Leeds, United Kingdom
| | - Michael F. McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
117
|
Angeles-López QD, García-Lara L, Aguirre-Pineda N, Castañeda-Arellano R, Elizondo-Azuela G, Pérez-Severiano F, Segovia J. The absence of the aryl hydrocarbon receptor in the R6/1 transgenic mouse model of Huntington's disease improves the neurological phenotype. Behav Brain Res 2021; 408:113230. [PMID: 33684424 DOI: 10.1016/j.bbr.2021.113230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an abnormal CAG repeat expansion in the huntingtin gene coding for a protein with an elongated polyglutamine sequence. HD patients present choreiform movements, which are caused by the loss of neurons in the striatum and cerebral cortex. Previous reports indicate that the absence of the aryl hydrocarbon receptor (AhR) protects mice from excitotoxic insults and increases the transcription of neurotrophic factors. Based on these data, we evaluated the effects of the lack of the AhR on a mice model of HD, generating a double transgenic mouse, expressing human mutated huntingtin (R6/1 mice) and knockout for the AhR. Our results show that the body weight of 30-week-old double transgenic mice is similar to that of R6/1 mice; however, feet clasping, an indicative of neuronal damage in the R6/1 animals, was not observed. In addition, motor coordination and ambulatory behavior in double transgenic mice did not deteriorate over time as occur in the R6/1 mice. Moreover, the anxiety behavior of double transgenic mice was similar to wild type mice. Interestingly, astrogliosis is also reduced in the double transgenic mice. The present data demonstrate that the complete loss of the AhR reduces the motor and behavioral deterioration observed in R6/1 mice, suggesting that the pharmacological modulation of the AhR could be a therapeutic target in HD.
Collapse
Affiliation(s)
- Quetzalli D Angeles-López
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Mexico; Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Mexico
| | - Lucia García-Lara
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Mexico
| | - Nicolás Aguirre-Pineda
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Mexico
| | - Rolando Castañeda-Arellano
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara 45425, Jalisco, Mexico
| | - Guillermo Elizondo-Azuela
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Mexico
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Mexico.
| |
Collapse
|
118
|
Bergonzoni G, Döring J, Biagioli M. D1R- and D2R-Medium-Sized Spiny Neurons Diversity: Insights Into Striatal Vulnerability to Huntington's Disease Mutation. Front Cell Neurosci 2021; 15:628010. [PMID: 33642998 PMCID: PMC7902492 DOI: 10.3389/fncel.2021.628010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder caused by an aberrant expansion of the CAG tract within the exon 1 of the HD gene, HTT. HD progressively impairs motor and cognitive capabilities, leading to a total loss of autonomy and ultimate death. Currently, no cure or effective treatment is available to halt the disease. Although the HTT gene is ubiquitously expressed, the striatum appears to be the most susceptible district to the HD mutation with Medium-sized Spiny Neurons (MSNs) (D1R and D2R) representing 95% of the striatal neuronal population. Why are striatal MSNs so vulnerable to the HD mutation? Particularly, why do D1R- and D2R-MSNs display different susceptibility to HD? Here, we highlight significant differences between D1R- and D2R-MSNs subpopulations, such as morphology, electrophysiology, transcriptomic, functionality, and localization in the striatum. We discuss possible reasons for their selective degeneration in the context of HD. Our review suggests that a better understanding of cell type-specific gene expression dysregulation within the striatum might reveal new paths to therapeutic intervention or prevention to ameliorate HD patients' life expectancy.
Collapse
Affiliation(s)
| | | | - Marta Biagioli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
119
|
Axenhus M, Winblad B, Tjernberg LO, Schedin-Weiss S. Huntingtin Levels are Elevated in Hippocampal Post-Mortem Samples of Alzheimer's Disease Brain. Curr Alzheimer Res 2021; 17:858-867. [PMID: 33272184 DOI: 10.2174/1567205017666201203125622] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND We have recently identified Huntingtin (Htt), the pathogenic protein in Huntington's disease, as a mediator of Alzheimer's disease (AD) pathology in an amyloid precursor protein (APP) knock-in mouse model of AD. That finding prompted us to examine if Htt is accumulated in the brains of AD patients and in which cell type Htt is present in the AD brain. OBJECTIVE To investigate whether location and levels of Htt are affected in hippocampus and frontal cortex in AD. METHODS Brains from AD patients (n=11) and controls (n=11) were stained for Htt using immunohistochemistry and signal intensity of Htt was quantified and localized in subregions and neurons. Confocal microscopy was used to characterize neuronal Htt localisation and its relationship with tau tangles and astrocytes. RESULTS Htt levels were increased in neuronal cells in the granular layer of the dentate gyrus, in CA1 and CA3 in hippocampus and in layer III of the frontal cortex. Htt was found in the soma, perinuclear space, thin neurites and nucleus of pyramidal neurons. Htt was present in neurons containing tau tangles but did not colocalize with astrocytes. CONCLUSION Htt accumulates in pyramidal neuron-rich areas including hippocampal subregions associated with memory and frontal cortex layer III. The accumulation of Htt in AD shows distinct cellular and morphological patterns and is not present in astrocytes. Clearly, further research is warranted to elucidate the role of Htt as a mediator of AD pathology and the potential use of Htt as a target in future therapeutic strategies.
Collapse
Affiliation(s)
- Michael Axenhus
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
120
|
Microglial Turnover in Ageing-Related Neurodegeneration: Therapeutic Avenue to Intervene in Disease Progression. Cells 2021; 10:cells10010150. [PMID: 33466587 PMCID: PMC7828713 DOI: 10.3390/cells10010150] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Microglia are brain-dwelling macrophages and major parts of the neuroimmune system that broadly contribute to brain development, homeostasis, ageing and injury repair in the central nervous system (CNS). Apart from other brain macrophages, they have the ability to constantly sense changes in the brain’s microenvironment, functioning as housekeepers for neuronal well-being and providing neuroprotection in normal physiology. Microglia use a set of genes for these functions that involve proinflammatory cytokines. In response to specific stimuli, they release these proinflammatory cytokines, which can damage and kill neurons via neuroinflammation. However, alterations in microglial functioning are a common pathophysiology in age-related neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, Huntington’s and prion diseases, as well as amyotrophic lateral sclerosis, frontotemporal dementia and chronic traumatic encephalopathy. When their sentinel or housekeeping functions are severely disrupted, they aggravate neuropathological conditions by overstimulating their defensive function and through neuroinflammation. Several pathways are involved in microglial functioning, including the Trem2, Cx3cr1 and progranulin pathways, which keep the microglial inflammatory response under control and promote clearance of injurious stimuli. Over time, an imbalance in this system leads to protective microglia becoming detrimental, initiating or exacerbating neurodegeneration. Correcting such imbalances might be a potential mode of therapeutic intervention in neurodegenerative diseases.
Collapse
|
121
|
O'Carroll SJ, Cook WH, Young D. AAV Targeting of Glial Cell Types in the Central and Peripheral Nervous System and Relevance to Human Gene Therapy. Front Mol Neurosci 2021; 13:618020. [PMID: 33505247 PMCID: PMC7829478 DOI: 10.3389/fnmol.2020.618020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Different glial cell types are found throughout the central (CNS) and peripheral nervous system (PNS), where they have important functions. These cell types are also involved in nervous system pathology, playing roles in neurodegenerative disease and following trauma in the brain and spinal cord (astrocytes, microglia, oligodendrocytes), nerve degeneration and development of pain in peripheral nerves (Schwann cells, satellite cells), retinal diseases (Müller glia) and gut dysbiosis (enteric glia). These cell type have all been proposed as potential targets for treating these conditions. One approach to target these cell types is the use of gene therapy to modify gene expression. Adeno-associated virus (AAV) vectors have been shown to be safe and effective in targeting cells in the nervous system and have been used in a number of clinical trials. To date, a number of studies have tested the use of different AAV serotypes and cell-specific promoters to increase glial cell tropism and expression. However, true glial-cell specific targeting for a particular glial cell type remains elusive. This review provides an overview of research into developing glial specific gene therapy and discusses some of the issues that still need to be addressed to make glial cell gene therapy a clinical reality.
Collapse
Affiliation(s)
- Simon J O'Carroll
- Spinal Cord Injury Research Group, Department of Anatomy and Medical Imaging, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - William H Cook
- Molecular Neurotherapeutics Group, Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Deborah Young
- Molecular Neurotherapeutics Group, Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
122
|
Yang TT, Qian F, Liu L, Peng XC, Huang JR, Ren BX, Tang FR. Astroglial connexins in epileptogenesis. Seizure 2021; 84:122-128. [PMID: 33348235 DOI: 10.1016/j.seizure.2020.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022] Open
Abstract
The astroglial network connected through gap junctions assembling from connexins physiologically balances the concentrations of ions and neurotransmitters around neurons. Astrocytic dysfunction has been associated with many neurological disorders including epilepsy. Dissociated gap junctions result in the increased activity of connexin hemichannels which triggers brain pathophysiological changes. Previous studies in patients and animal models of epilepsy indicate that the reduced gap junction coupling from assembled connexin hemichannels in the astrocytes may play an important role in epileptogenesis. This abnormal cell-to-cell communication is now emerging as an important feature of brain pathologies and being considered as a novel therapeutic target for controlling epileptogenesis. In particular, candidate drugs with ability of inhibition of connexin hemichannel activity and enhancement of gap junction formation in astrocytes should be explored to prevent epileptogenesis and control epilepsy.
Collapse
Affiliation(s)
- Ting-Ting Yang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Feng Qian
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China.
| | - Lian Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Xiao-Chun Peng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Jiang-Rong Huang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Bo-Xu Ren
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Feng-Ru Tang
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore.
| |
Collapse
|
123
|
Novosadova EV, Arsen’eva EL, Antonov SA, Kazantseva EA, Novosadova LV, Kurko OD, Illarioshkin SN, Tarantul VZ, Grivennikov IA. Generation and Characteristics of Glial Cells from Induced Human Pluripotent Stem Cells. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
124
|
Chiu YJ, Lin SA, Chen WL, Lin TH, Lin CH, Yao CF, Lin W, Wu YR, Chang KH, Lee-Chen GJ, Chen CM. Pathomechanism characterization and potential therapeutics identification for SCA3 targeting neuroinflammation. Aging (Albany NY) 2020; 12:23619-23646. [PMID: 33196459 PMCID: PMC7762503 DOI: 10.18632/aging.103700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Polyglutamine (polyQ)-mediated spinocerebellar ataxias (SCA) are caused by mutant genes with expanded CAG repeats encoding polyQ tracts. The misfolding and aggregation of polyQ proteins result in increased reactive oxygen species (ROS) and cellular toxicity. Inflammation is a common manifestation of oxidative stress and inflammatory process further reduces cellular antioxidant capacity. Increase of activated microglia in the pons of SCA type 3 (SCA3) patients suggests the involvement of neuroinflammation in the disease pathogenesis. In this study, we evaluated the anti-inflammatory potentials of indole compound NC009-1, 4-aminophenol-arachidonic acid derivative AM404, quinoline compound VB-037 and chalcone-coumarin derivative LM-031 using human HMC3 microglia and SCA3 ATXN3/Q75-GFP SH-SY5Y cells. The four tested compounds displayed anti-inflammatory activity by suppressing NO, IL-1β, TNF-α and IL-6 production and CD68 expression of IFN-γ-activated HMC3 microglia. In retinoic acid-differentiated ATXN3/Q75-GFP SH-SY5Y cells inflamed with IFN-γ-primed HMC3 conditioned medium, treatment with the tested compounds mitigated the increased caspase 1 activity and lactate dehydrogenase release, reduced polyQ aggregation and ROS and/or promoted neurite outgrowth. Examination of IL-1β- and TNF-α-mediated signaling pathways revealed that the tested compounds decreased IκBα/P65, JNK/JUN and/or P38/STAT1 signaling. The study results suggest the potential of NC009-1, AM404, VB-037 and LM-031 in treating SCA3 and probable other polyQ diseases.
Collapse
Affiliation(s)
- Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shu-An Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Wan-Ling Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| |
Collapse
|
125
|
Calvo-Flores Guzmán B, Elizabeth Chaffey T, Hansika Palpagama T, Waters S, Boix J, Tate WP, Peppercorn K, Dragunow M, Waldvogel HJ, Faull RLM, Kwakowsky A. The Interplay Between Beta-Amyloid 1-42 (Aβ 1-42)-Induced Hippocampal Inflammatory Response, p-tau, Vascular Pathology, and Their Synergistic Contributions to Neuronal Death and Behavioral Deficits. Front Mol Neurosci 2020; 13:522073. [PMID: 33224025 PMCID: PMC7667153 DOI: 10.3389/fnmol.2020.552073] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD), the most common chronic neurodegenerative disorder, has complex neuropathology. The principal neuropathological hallmarks of the disease are the deposition of extracellular β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) comprised of hyperphosphorylated tau (p-tau) protein. These changes occur with neuroinflammation, a compromised blood-brain barrier (BBB) integrity, and neuronal synaptic dysfunction, all of which ultimately lead to neuronal cell loss and cognitive deficits in AD. Aβ1-42 was stereotaxically administered bilaterally into the CA1 region of the hippocampi of 18-month-old male C57BL/6 mice. This study aimed to characterize, utilizing immunohistochemistry and behavioral testing, the spatial and temporal effects of Aβ1-42 on a broad set of parameters characteristic of AD: p-tau, neuroinflammation, vascular pathology, pyramidal cell survival, and behavior. Three days after Aβ1-42 injection and before significant neuronal cell loss was detected, acute neuroinflammatory and vascular responses were observed. These responses included the up-regulation of glial fibrillary acidic protein (GFAP), cell adhesion molecule-1 (PECAM-1, also known as CD31), fibrinogen labeling, and an increased number of activated astrocytes and microglia in the CA1 region of the hippocampus. From day 7, there was significant pyramidal cell loss in the CA1 region of the hippocampus, and by 30 days, significant localized up-regulation of p-tau, GFAP, Iba-1, CD31, and alpha-smooth muscle actin (α-SMA) in the Aβ1-42-injected mice compared with controls. These molecular changes in Aβ1-42-injected mice were accompanied by cognitive deterioration, as demonstrated by long-term spatial memory impairment. This study is reporting a comprehensive examination of a complex set of parameters associated with intrahippocampal administration of Aβ1-42 in mice, their spatiotemporal interactions and combined contribution to the disease progression. We show that a single Aβ injection can reproduce aspects of the inflammatory, vascular, and p-tau induced pathology occurring in the AD human brain that lead to cognitive deficits.
Collapse
Affiliation(s)
- Beatriz Calvo-Flores Guzmán
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tessa Elizabeth Chaffey
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani Hansika Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sarah Waters
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jordi Boix
- Centre for Brain Research, NeuroDiscovery Behavioural Unit, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Warren Perry Tate
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Katie Peppercorn
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Michael Dragunow
- Centre for Brain Research, Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry John Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Lewis Maxwell Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
126
|
Abstract
The innate immune system in the central nervous system (CNS) is mainly represented by specialized tissue-resident macrophages, called microglia. In the past years, various species-, host- and tissue-specific as well as environmental factors were recognized that essentially affect microglial properties and functions in the healthy and diseased brain. Host microbiota are mostly residing in the gut and contribute to microglial activation states, for example, via short-chain fatty acids (SCFAs) or aryl hydrocarbon receptor (AhR) ligands. Thereby, the gut microorganisms are deemed to influence numerous CNS diseases mediated by microglia. In this review, we summarize recent findings of the interaction between the host microbiota and the CNS in health and disease, where we specifically highlight the resident gut microbiota as a crucial environmental factor for microglial function as what we coin "the microbiota-microglia axis."
Collapse
Affiliation(s)
- Omar Mossad
- Institute of NeuropathologyFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Daniel Erny
- Institute of NeuropathologyFaculty of MedicineUniversity of FreiburgFreiburgGermany
| |
Collapse
|
127
|
Wu J, Tang Y. Revisiting the Immune Balance Theory: A Neurological Insight Into the Epidemic of COVID-19 and Its Alike. Front Neurol 2020; 11:566680. [PMID: 33178109 PMCID: PMC7593407 DOI: 10.3389/fneur.2020.566680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
As the pandemic of COVID-19 is raging around the world, the mysteriousness of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) coronavirus is being revealed by the concerted endeavors of scientists. Although fever and pneumonia are typical symptoms, COVID-19 patients exhibit multiple neurological complications. In this interim review, we will summarize the neurological manifestations and their potential causes in COVID-19. Similar to the other two fatal respiratory coronaviruses, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 also shows to be neuroinvasive that may spread from the periphery to brain, probably by the retrograde axonal transport. The invaded viruses may directly disrupt the complex neural circuits, and raise a chronic activation of immune responses. In another hand, multiple organ failure in severe COVID-19 is caused by the systemic acute immune responses, and unsurprisingly caused the brain inflammation and led to encephalitis. However, in the central nervous system (CNS), the activation of resident immune cells including microglia and astrocytes may lead to chronic immune imbalance, which underlies the potential long-term effects in synaptic changes and neuropsychiatric impairments. The neuroinvasive biology also provides a possible link with the Braak staging of neurodegenerative diseases such as Parkinson's disease (PD). Although with considerable advances, the neurotropic potential and chronic neurological effects caused by SARS-CoV-2 infections merit further investigations.
Collapse
Affiliation(s)
- Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
128
|
Seminotti B, Amaral AU, Grings M, Ribeiro CAJ, Leipnitz G, Wajner M. Lipopolysaccharide-Elicited Systemic Inflammation Induces Selective Vulnerability of Cerebral Cortex and Striatum of Developing Glutaryl-CoA Dehydrogenase Deficient (Gcdh -/-) Mice to Oxidative Stress. Neurotox Res 2020; 38:1024-1036. [PMID: 33001399 DOI: 10.1007/s12640-020-00291-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022]
Abstract
We investigated redox homeostasis in cerebral and peripheral tissues of wild type (WT) and glutaryl-CoA dehydrogenase knockout mice (Gcdh-/-) submitted to inflammation induced by lipopolysaccharide (LPS) since patients with glutaric aciduria type I (GA I) manifest acute encephalopathy during catabolic events triggered by inflammation. WT and Gcdh-/- mice fed a low (0.9%) or high (4.7%) Lys chow were euthanized 4 h after LPS intraperitoneal injection. Cerebral cortex of Lys-restricted Gcdh-/- animals presented no alterations of redox homeostasis, whereas those fed a high Lys chow showed increased malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity, compared to WT mice. Furthermore, Gcdh-/- mice receiving low Lys and injected with LPS presented elevated MDA levels and decreased reduced glutathione (GSH) concentrations, glutathione peroxidase (GPx), and glutathione reductase (GR) activities in cerebral cortex. LPS administration also decreased GSH values, as well as GPx and GR activities in cerebral cortex of Gcdh-/- mice receiving Lys overload. Further experiments performed in WT and Gcdh-/- mice injected with LPS and receiving either a low or high Lys chow revealed increased MDA levels and decreased GSH concentrations in cerebral cortex and striatum, but not in hippocampus, liver and heart of Gcdh-/- mice, suggesting a selective vulnerability of these cerebral structures to oxidative stress during an inflammatory process. LPS administration also increased S100B and NF-κF protein levels in brain of Gcdh-/- mice receiving high Lys. These data support the hypothesis that low Lys diet is beneficial in GA I by preventing redox imbalance, whereas a high Lys diet or systemic inflammation per se or combined induce oxidative stress in striatum and cerebral cortex that are mainly damaged in this disorder.
Collapse
Affiliation(s)
- Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Building 21111, Porto Alegre, RS, 90035-003, Brazil.
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Building 21111, Porto Alegre, RS, 90035-003, Brazil.,Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Avenida Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| | - Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Building 21111, Porto Alegre, RS, 90035-003, Brazil
| | - César Augusto João Ribeiro
- Natural and Humanities Sciences Center, Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Building 21111, Porto Alegre, RS, 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - 21111, Porto Alegre, RS, 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Building 21111, Porto Alegre, RS, 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - 21111, Porto Alegre, RS, 90035-003, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
| |
Collapse
|
129
|
Khadka B, Lee JY, Park DH, Kim KT, Bae JS. The Role of Natural Compounds and their Nanocarriers in the Treatment of CNS Inflammation. Biomolecules 2020; 10:E1401. [PMID: 33019651 PMCID: PMC7601486 DOI: 10.3390/biom10101401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation, which is involved in various inflammatory cascades in nervous tissues, can result in persistent and chronic apoptotic neuronal cell death and programmed cell death, triggering various degenerative disorders of the central nervous system (CNS). The neuroprotective effects of natural compounds against neuroinflammation are mainly mediated by their antioxidant, anti-inflammatory, and antiapoptotic properties that specifically promote or inhibit various molecular signal transduction pathways. However, natural compounds have several limitations, such as their pharmacokinetic properties and stability, which hinder their clinical development and use as medicines. This review discusses the molecular mechanisms of neuroinflammation and degenerative diseases of CNS. In addition, it emphasizes potential natural compounds and their promising nanocarriers for overcoming their limitations in the treatment of neuroinflammation. Moreover, recent promising CNS inflammation-targeted nanocarrier systems implementing lesion site-specific active targeting strategies for CNS inflammation are also discussed.
Collapse
Affiliation(s)
- Bikram Khadka
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam 58554, Korea;
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea;
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam 58554, Korea;
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMR1, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
130
|
Stone NL, Murphy AJ, England TJ, O'Sullivan SE. A systematic review of minor phytocannabinoids with promising neuroprotective potential. Br J Pharmacol 2020; 177:4330-4352. [PMID: 32608035 PMCID: PMC7484504 DOI: 10.1111/bph.15185] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Embase and PubMed were systematically searched for articles addressing the neuroprotective properties of phytocannabinoids, apart from cannabidiol and Δ9 -tetrahydrocannabinol, including Δ9 -tetrahydrocannabinolic acid, Δ9 -tetrahydrocannabivarin, cannabidiolic acid, cannabidivarin, cannabichromene, cannabichromenic acid, cannabichromevarin, cannabigerol, cannabigerolic acid, cannabigerivarin, cannabigerovarinic acid, cannabichromevarinic acid, cannabidivarinic acid, and cannabinol. Out of 2,341 studies, 31 articles met inclusion criteria. Cannabigerol (range 5 to 20 mg·kg-1 ) and cannabidivarin (range 0.2 to 400 mg·kg-1 ) displayed efficacy in models of Huntington's disease and epilepsy. Cannabichromene (10-75 mg·kg-1 ), Δ9 -tetrahydrocannabinolic acid (20 mg·kg-1 ), and tetrahydrocannabivarin (range 0.025-2.5 mg·kg-1 ) showed promise in models of seizure and hypomobility, Huntington's and Parkinson's disease. Limited mechanistic data showed cannabigerol, its derivatives VCE.003 and VCE.003.2, and Δ9 -tetrahydrocannabinolic acid mediated some of their effects through PPAR-γ, but no other receptors were probed. Further studies with these phytocannabinoids, and their combinations, are warranted across a range of neurodegenerative disorders.
Collapse
Affiliation(s)
- Nicole L. Stone
- Division of Medical Sciences and Graduate Entry Medicine, School of MedicineUniversity of Nottingham, Royal Derby HospitalDerbyUK
| | - Alexandra J. Murphy
- Division of Medical Sciences and Graduate Entry Medicine, School of MedicineUniversity of Nottingham, Royal Derby HospitalDerbyUK
| | - Timothy J. England
- Division of Medical Sciences and Graduate Entry Medicine, School of MedicineUniversity of Nottingham, Royal Derby HospitalDerbyUK
| | - Saoirse E. O'Sullivan
- Division of Medical Sciences and Graduate Entry Medicine, School of MedicineUniversity of Nottingham, Royal Derby HospitalDerbyUK
| |
Collapse
|
131
|
Ahmad R, Khan A, Lee HJ, Ur Rehman I, Khan I, Alam SI, Kim MO. Lupeol, a Plant-Derived Triterpenoid, Protects Mice Brains against Aβ-Induced Oxidative Stress and Neurodegeneration. Biomedicines 2020; 8:biomedicines8100380. [PMID: 32993092 PMCID: PMC7601269 DOI: 10.3390/biomedicines8100380] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that represents 60–70% of all dementia cases. AD is characterized by the formation and accumulation of amyloid-beta (Aβ) plaques, neurofibrillary tangles, and neuronal cell loss. Further accumulation of Aβ in the brain induces oxidative stress, neuroinflammation, and synaptic and memory dysfunction. In this study, we investigated the antioxidant and neuroprotective effects of the natural triterpenoid lupeol in the Aβ1-42 mouse model of AD. An Intracerebroventricular injection (i.c.v.) of Aβ (3 µL/5 min/mouse) into the brain of a mouse increased the reactive oxygen species (ROS) levels, neuroinflammation, and memory and cognitive dysfunction. The oral administration of lupeol at a dose of 50 mg/kg for two weeks significantly decreased the oxidative stress, neuroinflammation, and memory impairments. Lupeol decreased the oxidative stress via the activation of nuclear factor erythroid 2-related factor-2 (Nrf-2) and heme oxygenase-1 (HO-1) in the brain of adult mice. Moreover, lupeol treatment prevented neuroinflammation by suppressing activated glial cells and inflammatory mediators. Additionally, lupeol treatment significantly decreased the accumulation of Aβ and beta-secretase-1 (BACE-1) expression and enhanced the memory and cognitive function in the Aβ-mouse model of AD. To the best of our knowledge, this is the first study to investigate the anti-oxidative and neuroprotective effects of lupeol against Aβ1-42-induced neurotoxicity. Our findings suggest that lupeol could serve as a novel, promising, and accessible neuroprotective agent against progressive neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Myeong Ok Kim
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
132
|
Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol 2020; 16:529-546. [PMID: 32796930 DOI: 10.1038/s41582-020-0389-4] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Huntington disease (HD) is a neurodegenerative disease caused by CAG repeat expansion in the huntingtin gene (HTT) and involves a complex web of pathogenic mechanisms. Mutant HTT (mHTT) disrupts transcription, interferes with immune and mitochondrial function, and is aberrantly modified post-translationally. Evidence suggests that the mHTT RNA is toxic, and at the DNA level, somatic CAG repeat expansion in vulnerable cells influences the disease course. Genome-wide association studies have identified DNA repair pathways as modifiers of somatic instability and disease course in HD and other repeat expansion diseases. In animal models of HD, nucleocytoplasmic transport is disrupted and its restoration is neuroprotective. Novel cerebrospinal fluid (CSF) and plasma biomarkers are among the earliest detectable changes in individuals with premanifest HD and have the sensitivity to detect therapeutic benefit. Therapeutically, the first human trial of an HTT-lowering antisense oligonucleotide successfully, and safely, reduced the CSF concentration of mHTT in individuals with HD. A larger trial, powered to detect clinical efficacy, is underway, along with trials of other HTT-lowering approaches. In this Review, we discuss new insights into the molecular pathogenesis of HD and future therapeutic strategies, including the modulation of DNA repair and targeting the DNA mutation itself.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- Huntington's Disease Centre, University College London, London, UK. .,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK. .,UK Dementia Research Institute, University College London, London, UK.
| | - Michael D Flower
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK
| | - Christopher A Ross
- Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward J Wild
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
133
|
Salado-Manzano C, Perpiña U, Straccia M, Molina-Ruiz FJ, Cozzi E, Rosser AE, Canals JM. Is the Immunological Response a Bottleneck for Cell Therapy in Neurodegenerative Diseases? Front Cell Neurosci 2020; 14:250. [PMID: 32848630 PMCID: PMC7433375 DOI: 10.3389/fncel.2020.00250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders such as Parkinson's (PD) and Huntington's disease (HD) are characterized by a selective detrimental impact on neurons in a specific brain area. Currently, these diseases have no cures, although some promising trials of therapies that may be able to slow the loss of brain cells are underway. Cell therapy is distinguished by its potential to replace cells to compensate for those lost to the degenerative process and has shown a great potential to replace degenerated neurons in animal models and in clinical trials in PD and HD patients. Fetal-derived neural progenitor cells, embryonic stem cells or induced pluripotent stem cells are the main cell sources that have been tested in cell therapy approaches. Furthermore, new strategies are emerging, such as the use of adult stem cells, encapsulated cell lines releasing trophic factors or cell-free products, containing an enriched secretome, which have shown beneficial preclinical outcomes. One of the major challenges for these potential new treatments is to overcome the host immune response to the transplanted cells. Immune rejection can cause significant alterations in transplanted and endogenous tissue and requires immunosuppressive drugs that may produce adverse effects. T-, B-lymphocytes and microglia have been recognized as the main effectors in striatal graft rejection. This review aims to summarize the preclinical and clinical studies of cell therapies in PD and HD. In addition, the precautions and strategies to ensure the highest quality of cell grafts, the lowest risk during transplantation and the reduction of a possible immune rejection will be outlined. Altogether, the wide-ranging possibilities of advanced therapy medicinal products (ATMPs) could make therapeutic treatment of these incurable diseases possible in the near future.
Collapse
Affiliation(s)
- Cristina Salado-Manzano
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Unai Perpiña
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | - Francisco J. Molina-Ruiz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Emanuele Cozzi
- Department of Cardio-Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
- Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Anne E. Rosser
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
134
|
Lange Canhos L, Chen M, Falk S, Popper B, Straub T, Götz M, Sirko S. Repetitive injury and absence of monocytes promote astrocyte self-renewal and neurological recovery. Glia 2020; 69:165-181. [PMID: 32744730 DOI: 10.1002/glia.23893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022]
Abstract
Unlike microglia and NG2 glia, astrocytes are incapable of migrating to sites of injury in the posttraumatic cerebral cortex, instead relying on proliferation to replenish their numbers and distribution in the affected region. However, neither the spectrum of their proliferative repertoire nor their postinjury distribution has been examined in vivo. Using a combination of different thymidine analogs and clonal analysis in a model of repetitive traumatic brain injury, we show for the first time that astrocytes that are quiescent following an initial injury can be coerced to proliferate after a repeated insult in the cerebral cortex grey matter. Interestingly, this process is promoted by invasion of monocytes to the injury site, as their genetic ablation (using CCR2-/- mice) increased the number of repetitively dividing astrocytes at the expense of newly proliferating astrocytes in repeatedly injured parenchyma. These differences profoundly affected both the distribution of astrocytes and recovery period for posttraumatic behavior deficits suggesting key roles of astrocyte self-renewal in brain repair after injury.
Collapse
Affiliation(s)
- Luisa Lange Canhos
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany.,Graduate School of Systemic Neurosciences (GSN-LMU), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Muxin Chen
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sven Falk
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Bastian Popper
- Core Facility Animal Models, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tobias Straub
- Core Facility Bioinformatics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany.,Excellence Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany
| |
Collapse
|
135
|
Abo-Salem OM, Ali TM, Harisa GI, Mehanna OM, Younos IH, Almalki WH. Beneficial effects of (-)-epigallocatechin-3-O-gallate on diabetic peripheral neuropathy in the rat model. J Biochem Mol Toxicol 2020; 34:e22508. [PMID: 32275810 DOI: 10.1002/jbt.22508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/26/2020] [Accepted: 03/26/2020] [Indexed: 11/11/2022]
Abstract
Diabetic neuropathic pain is characterized by spontaneous pain with hyperalgesia and allodynia. We investigated whether (-)-epigallocatechin-3-O-gallate could improve diabetic neuropathic pain development through hypoglycemic, hypolipidemic, antioxidant, and anti-inflammatory effects. Diabetes was induced in rats by streptozotocin (55 mg/kg/once) and treated with (-)-epigallocatechin-3-O-gallate (25 mg/kg/orally/once/daily/5 weeks). Diabetic rats showed an increase in serum levels of glucose, nitric oxide, triglyceride, total cholesterol, and low-density lipoprotein-cholesterol with a decrease in high-density lipoprotein-cholesterol and body weight. Also, there was an elevation in brain malondialdehyde with a marked reduction in brain levels of glutathione, superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase. Furthermore, diabetic rats showed a clear reduction in plasma levels of insulin and an increase in plasma cytokines (interleukin-6 and tumor necrosis factor-α). Moreover, diabetic rats exhibited hyperalgesia as indicated by a hot plate, tail immersion, formalin, and carrageenan-induced edema tests as well as brain histopathological changes (neuron degeneration, gliosis, astrocytosis, congestion and hemorrhage). (-)-Epigallocatechin-3-O-gallate treatment ameliorated alterations in body weight, biochemical parameters, pain sensation, and histopathological changes in brain tissue. (-)-Epigallocatechin-3-O-gallate offers promising hypoglycemic, hypolipidemic, antioxidant and anti-inflammatory effects, which can prevent the development and progression of diabetic neuropathic pain.
Collapse
Affiliation(s)
- Osama Mohamed Abo-Salem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Tarek Mohamed Ali
- Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
- Department of Medical Physiology, Faculty of Medicine, Taif University, Taif, Saudi Arabia
| | - Gamaleldin Ibrahim Harisa
- Department of Pharmaceutics, Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Biochemistry, College of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo, Egypt
| | - Osama Mahmoud Mehanna
- Department of Medical Physiology, Faculty of Medicine, Taif University, Taif, Saudi Arabia
- Department of Medical Physiology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ibrahim Hamdy Younos
- Department of Clinical Pharmacology, College of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
136
|
Petrozziello T, Mills AN, Vaine CA, Penney EB, Fernandez-Cerado C, Legarda GPA, Velasco-Andrada MS, Acuña PJ, Ang MA, Muñoz EL, Diesta CCE, Macalintal-Canlas R, Acuña-Sunshine G, Ozelius LJ, Sharma N, Bragg DC, Sadri-Vakili G. Neuroinflammation and histone H3 citrullination are increased in X-linked Dystonia Parkinsonism post-mortem prefrontal cortex. Neurobiol Dis 2020; 144:105032. [PMID: 32739252 DOI: 10.1016/j.nbd.2020.105032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation plays a pathogenic role in neurodegenerative diseases and recent findings suggest that it may also be involved in X-linked Dystonia-Parkinsonism (XDP) pathogenesis. Previously, fibroblasts and neuronal stem cells derived from XDP patients demonstrated hypersensitivity to TNF-α, dysregulation in NFκB signaling, and an increase in several pro-inflammatory markers. However, the role of inflammatory processes in XDP patient brain remains unknown. Here we demonstrate that there is a significant increase in astrogliosis and microgliosis in human post-mortem XDP prefrontal cortex (PFC) compared to control. Furthermore, there is a significant increase in histone H3 citrullination (H3R2R8R17cit3) with a concomitant increase in peptidylarginine deaminase 2 (PAD2) and 4 (PAD4), the enzymes catalyzing citrullination, in XDP post-mortem PFC. While there is a significant increase in myeloperoxidase (MPO) levels in XDP PFC, neutrophil elastase (NE) levels are not altered, suggesting that MPO may be released by activated microglia or reactive astrocytes in the brain. Similarly, there was an increase in H3R2R8R17cit3, PAD2 and PAD4 levels in XDP-derived fibroblasts. Importantly, treatment of fibroblasts with Cl-amidine, a pan inhibitor of PAD enzymes, reduced histone H3 citrullination and pro-inflammatory chemokine expression, without affecting cell survival. Taken together, our results demonstrate that inflammation is increased in XDP post-mortem brain and fibroblasts and unveil a new epigenetic potential therapeutic target.
Collapse
Affiliation(s)
- Tiziana Petrozziello
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Alexandra N Mills
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Christine A Vaine
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Ellen B Penney
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | | | | | | | - Patrick J Acuña
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America; Sunshine Care Foundation, Roxas City, 5800, Capiz, Philippines
| | - Mark A Ang
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Edwin L Muñoz
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | | | | | - Geraldine Acuña-Sunshine
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America; Sunshine Care Foundation, Roxas City, 5800, Capiz, Philippines
| | - Laurie J Ozelius
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Nutan Sharma
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - D Cristopher Bragg
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Ghazaleh Sadri-Vakili
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA 02129, United States of America.
| |
Collapse
|
137
|
Vesicular Transport of Encapsulated microRNA between Glial and Neuronal Cells. Int J Mol Sci 2020; 21:ijms21145078. [PMID: 32708414 PMCID: PMC7404393 DOI: 10.3390/ijms21145078] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes (EXs) and extracellular microvesicles (EMVs) represent a diverse assortment of plasma membrane-derived nanovesicles, 30–1000 nm in diameter, released by all cell lineages of the central nervous system (CNS). They are examples of a very active and dynamic form of extracellular communication and the conveyance of biological information transfer essential to maintain homeostatic neurological functions and contain complex molecular cargoes representative of the cytoplasm of their cells of origin. These molecular cargoes include various mixtures of proteins, lipids, proteolipids, cytokines, chemokines, carbohydrates, microRNAs (miRNA) and messenger RNAs (mRNA) and other components, including end-stage neurotoxic and pathogenic metabolic products, such as amyloid beta (Aβ) peptides. Brain microglia, for example, respond to both acute CNS injuries and degenerative diseases with complex reactions via the induction of a pro-inflammatory phenotype, and secrete EXs and EMVs enriched in selective pathogenic microRNAs (miRNAs) such as miRNA-34a, miRNA-125b, miRNA-146a, miRNA-155, and others that are known to promote neuro-inflammation, induce complement activation, disrupt innate–immune signaling and deregulate the expression of neuron-specific phosphoproteins involved in neurotropism and synaptic signaling. This communication will review our current understanding of the trafficking of miRNA-containing EXs and EMVs from astrocytes and “activated pro-inflammatory” microglia to target neurons in neurodegenerative diseases with an emphasis on Alzheimer’s disease wherever possible.
Collapse
|
138
|
The longevity-associated variant of BPIFB4 improves a CXCR4-mediated striatum-microglia crosstalk preventing disease progression in a mouse model of Huntington's disease. Cell Death Dis 2020; 11:546. [PMID: 32683420 PMCID: PMC7368858 DOI: 10.1038/s41419-020-02754-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 01/10/2023]
Abstract
The longevity-associated variant (LAV) of the bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) has been found significantly enriched in long-living individuals. Neuroinflammation is a key player in Huntington's disease (HD), a neurodegenerative disorder caused by neural death due to expanded CAG repeats encoding a long polyglutamine tract in the huntingtin protein (Htt). Herein, we showed that striatal-derived cell lines with expanded Htt (STHdh Q111/111) expressed and secreted lower levels of BPIFB4, when compared with Htt expressing cells (STHdh Q7/7), which correlated with a defective stress response to proteasome inhibition. Overexpression of LAV-BPIFB4 in STHdh Q111/111 cells was able to rescue both the BPIFB4 secretory profile and the proliferative/survival response. According to a well-established immunomodulatory role of LAV-BPIFB4, conditioned media from LAV-BPIFB4-overexpressing STHdh Q111/111 cells were able to educate Immortalized Human Microglia-SV40 microglial cells. While STHdh Q111/111 dying cells were ineffective to induce a CD163 + IL-10high pro-resolving microglia compared to normal STHdh Q7/7, LAV-BPIFB4 transduction promptly restored the central immune control through a mechanism involving the stromal cell-derived factor-1. In line with the in vitro results, adeno-associated viral-mediated administration of LAV-BPIFB4 exerted a CXCR4-dependent neuroprotective action in vivo in the R6/2 HD mouse model by preventing important hallmarks of the disease including motor dysfunction, body weight loss, and mutant huntingtin protein aggregation. In this view, LAV-BPIFB4, due to its pleiotropic ability in both immune compartment and cellular homeostasis, may represent a candidate for developing new treatment for HD.
Collapse
|
139
|
Reactive Species in Huntington Disease: Are They Really the Radicals You Want to Catch? Antioxidants (Basel) 2020; 9:antiox9070577. [PMID: 32630706 PMCID: PMC7401865 DOI: 10.3390/antiox9070577] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Huntington disease (HD) is a neurodegenerative condition and one of the so-called rare or minority diseases, due to its low prevalence (affecting 1–10 of every 100,000 people in western countries). The causative gene, HTT, encodes huntingtin, a protein with a yet unknown function. Mutant huntingtin causes a range of phenotypes, including oxidative stress and the activation of microglia and astrocytes, which leads to chronic inflammation of the brain. Although substantial efforts have been made to find a cure for HD, there is currently no medical intervention able to stop or even delay progression of the disease. Among the many targets of therapeutic intervention, oxidative stress and inflammation have been extensively studied and some clinical trials have been promoted to target them. In the present work, we review the basic research on oxidative stress in HD and the strategies used to fight it. Many of the strategies to reduce the phenotypes associated with oxidative stress have produced positive results, yet no substantial functional recovery has been observed in animal models or patients with the disease. We discuss possible explanations for this and suggest potential ways to overcome it.
Collapse
|
140
|
Niewiadomska-Cimicka A, Hache A, Trottier Y. Gene Deregulation and Underlying Mechanisms in Spinocerebellar Ataxias With Polyglutamine Expansion. Front Neurosci 2020; 14:571. [PMID: 32581696 PMCID: PMC7296114 DOI: 10.3389/fnins.2020.00571] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (polyQ SCAs) include SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 and constitute a group of adult onset neurodegenerative disorders caused by the expansion of a CAG repeat sequence located within the coding region of specific genes, which translates into polyglutamine tract in the corresponding proteins. PolyQ SCAs are characterized by degeneration of the cerebellum and its associated structures and lead to progressive ataxia and other diverse symptoms. In recent years, gene and epigenetic deregulations have been shown to play a critical role in the pathogenesis of polyQ SCAs. Here, we provide an overview of the functions of wild type and pathogenic polyQ SCA proteins in gene regulation, describe the extent and nature of gene expression changes and their pathological consequences in diseases, and discuss potential avenues to further investigate converging and distinct disease pathways and to develop therapeutic strategies.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Antoine Hache
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Yvon Trottier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|