101
|
Louveau B, Jouenne F, Têtu P, Sadoux A, Gruber A, Lopes E, Delyon J, Serror K, Marco O, Da Meda L, Ndiaye A, Lermine A, Dumaz N, Battistella M, Baroudjian B, Lebbe C, Mourah S. A Melanoma-Tailored Next-Generation Sequencing Panel Coupled with a Comprehensive Analysis to Improve Routine Melanoma Genotyping. Target Oncol 2020; 15:759-771. [PMID: 33151472 DOI: 10.1007/s11523-020-00764-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tumor molecular deciphering is crucial in clinical management. Pan-cancer next-generation sequencing panels have moved towards exhaustive molecular characterization. However, because of treatment resistance and the growing emergence of pharmacological targets, tumor-specific customized panels are needed to guide therapeutic strategies. OBJECTIVE The objective of this study was to present such a customized next-generation sequencing panel in melanoma. METHODS Melanoma patients with somatic molecular profiling performed as part of routine care were included. High-throughput sequencing was performed with a melanoma tailored next-generation sequencing panel of 64 genes involved in molecular classification, prognosis, theranostic, and therapeutic resistance. Single nucleotide variants and copy number variations were screened, and a comprehensive molecular analysis identified clinically relevant alterations. RESULTS Four hundred and twenty-one melanoma cases were analyzed (before any treatment initiation for 94.8% of patients). After bioinformatic prioritization, we uncovered 561 single nucleotide variants, 164 copy number variations, and four splice-site mutations. At least one alteration was detected in 368 (87.4%) lesions, with BRAF, NRAS, CDKN2A, CCND1, and MET as the most frequently altered genes. Among patients with BRAFV600 mutated melanoma, 44.5% (77 of 173) harbored at least one concurrent alteration driving potential resistance to mitogen-activated protein kinase inhibitors. In patients with RAS hotspot mutated lesions and in patients with neither BRAFV600 nor RAS hotspot mutations, alterations constituting potential pharmacological targets were found in 56.9% (66 of 116) and 47.7% (63 of 132) of cases, respectively. CONCLUSIONS Our tailored next-generation sequencing assay coupled with a comprehensive analysis may improve therapeutic management in a significant number of patients with melanoma. Updating such a panel and implementing multi-omic approaches will further enhance patients' clinical management.
Collapse
Affiliation(s)
- Baptiste Louveau
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France.,Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France
| | - Fanélie Jouenne
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France.,Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France
| | - Pauline Têtu
- Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aurélie Sadoux
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France
| | - Aurélia Gruber
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France
| | - Eddie Lopes
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France
| | - Julie Delyon
- Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France.,Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Kevin Serror
- Department of Plastic, Reconstructive and Esthetic Surgery, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Oren Marco
- Department of Plastic, Reconstructive and Esthetic Surgery, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laetitia Da Meda
- Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aminata Ndiaye
- MOABI-APHP Bioinformatics Platform-WIND-DSI, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alban Lermine
- MOABI-APHP Bioinformatics Platform-WIND-DSI, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicolas Dumaz
- INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France
| | - Maxime Battistella
- Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France.,Department of Pathology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Barouyr Baroudjian
- Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Céleste Lebbe
- Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France.,Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Samia Mourah
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France. .,Université de Paris, Paris, France. .,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France.
| |
Collapse
|
102
|
Lazow MA, Johnson SL, Johnson ND, Breneman JC, Dexheimer PJ, Szabo S, Pressey JG. Genome-Driven Therapy for Chemotherapy-Resistant Metastatic CDK6-Amplified Osteosarcoma. JCO Precis Oncol 2020; 4:498-504. [PMID: 35050742 DOI: 10.1200/po.20.00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Margot A Lazow
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sheryl L Johnson
- Division of Pathology and Laboratory Medicine, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Neil D Johnson
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - John C Breneman
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Phillip J Dexheimer
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sara Szabo
- Division of Pathology and Laboratory Medicine, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Joseph G Pressey
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
103
|
Jirawatnotai S, Dalton S, Wattanapanitch M. Role of cyclins and cyclin-dependent kinases in pluripotent stem cells and their potential as a therapeutic target. Semin Cell Dev Biol 2020; 107:63-71. [PMID: 32417217 PMCID: PMC7554155 DOI: 10.1016/j.semcdb.2020.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 02/09/2023]
Abstract
Over the last 15 years connections between cell cycle control, maintenance of pluripotency, and control of cell fate decisions have been firmly established. With the emergence of powerful tools, such as highly-specific small molecule inhibitors for cyclin-dependent protein kinase (CDK) activity and single-cell imaging technologies, the mechanistic links between cyclins, CDKs and regulation in PSCs in mechanistic detail has been made possible. In this review, we discuss new developments that mechanistically link the CDK regulatory network to control of cell fate decisions, including maintenance of the pluripotent state. Overall, these findings have potential to impact the translational applications of stem cells in regenerative medicine, drug discovery and cancer treatment.
Collapse
Affiliation(s)
- Siwanon Jirawatnotai
- Siriraj Center of Research for Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Medical School, Mahidol University, Bangkok, 10700, Thailand
| | - Stephen Dalton
- Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, 325 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| | - Methichit Wattanapanitch
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
104
|
Hu Q, Peng J, Jiang L, Li W, Su Q, Zhang J, Li H, Song M, Cheng B, Xia J, Wu T. Metformin as a senostatic drug enhances the anticancer efficacy of CDK4/6 inhibitor in head and neck squamous cell carcinoma. Cell Death Dis 2020; 11:925. [PMID: 33116117 PMCID: PMC7595194 DOI: 10.1038/s41419-020-03126-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
CDK4/6 inhibitors show promising antitumor activity in a variety of solid tumors; however, their role in head and neck squamous cell carcinoma (HNSCC) requires further investigation. The senescence-associated secretory phenotype (SASP) induced by CDK4/6 inhibitors has dual effects on cancer treatment. The need to address the SASP is a serious challenge in the clinical application of CDK4/6 inhibitors. We investigated whether metformin can act as a senostatic drug to modulate the SASP and enhance the anticancer efficacy of CDK4/6 inhibitors in HNSCC. In this study, the efficacy of a combination of the CDK4/6 inhibitor LY2835219 and metformin in HNSCC was investigated in in vitro assays, an HSC6 xenograft model, and a patient-derived xenograft model. Senescence-associated β-galactosidase staining, antibody array, sphere-forming assay, and in vivo tumorigenesis assay were used to detect the impacts of metformin on the senescence and SASP induced by LY2835219. We found that LY2835219 combined with metformin synergistically inhibited HNSCC by inducing cell cycle arrest in vitro and in vivo. Metformin significantly modulated the profiles of the SASP elicited by LY2835219 by inhibiting the mTOR and stat3 pathways. The LY2835219-induced SASP resulted in upregulation of cancer stemness, while this phenomenon can be attenuated when combined with metformin. Furthermore, results showed that the stemness inhibition by metformin was associated with blockade of the IL6-stat3 axis. Survival analysis demonstrated that overexpression of IL6 and stemness markers was associated with poor survival in HNSCC patients, indicating that including metformin to target these proteins might improve patient prognosis. Collectively, our data suggest that metformin can act as a senostatic drug to enhance the anticancer efficacy of CDK4/6 inhibitors by reprogramming the profiles of the SASP.
Collapse
Affiliation(s)
- Qinchao Hu
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jianmin Peng
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Laibo Jiang
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wuguo Li
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiao Su
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiayu Zhang
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Huan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ming Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,Department of Head and Neck Surgery, Sun Yat‑sen University Cancer Center, Guangzhou, China
| | - Bin Cheng
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Juan Xia
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Tong Wu
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
105
|
Zhu G, Li X, Li J, Zhou W, Chen Z, Fan Y, Jiang Y, Zhao Y, Sun G, Mao W. Arsenic trioxide (ATO) induced degradation of Cyclin D1 sensitized PD-1/PD-L1 checkpoint inhibitor in oral and esophageal squamous cell carcinoma. J Cancer 2020; 11:6516-6529. [PMID: 33046973 PMCID: PMC7545676 DOI: 10.7150/jca.47111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Arsenic trioxide (ATO) is widely studied for its antitumor efficacy and several recent studies suggested the immune modulatory effects of ATO in animal models. In this study we found ATO treatment induced increased ROS production and DNA damage in esophageal squamous cell carcinoma (ESCC) cells, led to DNA damage mediated degradation of Cyclin D1 and upregulation of PD-L1 in these cancer cells. Mechanistically, we found ATO induced a transient upregulation and nuclear translocation of Cyclin D1 by sumoylation. Followed with increased ubiquitination and degradation of Cyclin D1 through T286 phosphorylation, and at least partly mediated by Stat1 Y701 phosphorylation. We observed inversed correlations between Cyclin D1 and PD-L1 expression levels in human ESCC tissues. With 4NQO induced PD-L1 humanized mouse oral and esophageal squamous carcinoma model, we found combinatory administration of ATO and check point inhibitor resulted in a significant reduction of tumor volumes. Inversed correlation between Cyclin D1 with PD-L1 was also observed in the 4NQO induced mouse ESCC and OSCC model. Together, these data suggested ATO induced degradation of Cyclin D1 and functional suppression of CDK4/6 pathway sensitized OSCC and ESCC to checkpoint inhibitor treatment.
Collapse
Affiliation(s)
- Guanxia Zhu
- Wenzhou Medical University, Wenzhou, 325035, China
| | - Xia Li
- Cancer Hospital of University of Chinese Academy of Sciences, Institute of Cancer and Basic Medicine of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Jiong Li
- Department of Medicinal Chemistry, Massey Cancer Center, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298-0540, United States
| | - Wei Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhongjian Chen
- Cancer Hospital of University of Chinese Academy of Sciences, Institute of Cancer and Basic Medicine of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yun Fan
- Cancer Hospital of University of Chinese Academy of Sciences, Institute of Cancer and Basic Medicine of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Youhua Jiang
- Cancer Hospital of University of Chinese Academy of Sciences, Institute of Cancer and Basic Medicine of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yue Zhao
- Cancer Hospital of University of Chinese Academy of Sciences, Institute of Cancer and Basic Medicine of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Guogui Sun
- North China University of Science and Technology Affiliated People's Hospital, School of Public Health, North China University of Science and Technology, Tangshan, 063001, China
| | - Weimin Mao
- Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
106
|
Wang Y, Lakoma A, Zogopoulos G. Building towards Precision Oncology for Pancreatic Cancer: Real-World Challenges and Opportunities. Genes (Basel) 2020; 11:E1098. [PMID: 32967105 PMCID: PMC7563487 DOI: 10.3390/genes11091098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
The advent of next-generation sequencing (NGS) has provided unprecedented insight into the molecular complexity of pancreatic ductal adenocarcinoma (PDAC). This has led to the emergence of biomarker-driven treatment paradigms that challenge empiric treatment approaches. However, the growth of sequencing technologies is outpacing the development of the infrastructure required to implement precision oncology as routine clinical practice. Addressing these logistical barriers is imperative to maximize the clinical impact of molecular profiling initiatives. In this review, we examine the evolution of precision oncology in PDAC, spanning from germline testing for cancer susceptibility genes to multi-omic tumor profiling. Furthermore, we highlight real-world challenges to delivering precision oncology for PDAC, and propose strategies to improve the generation, interpretation, and clinical translation of molecular profiling data.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Surgery, McGill University, Montreal, QC H4A 3J1, Canada; (Y.W.); (A.L.)
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
- The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Anna Lakoma
- Department of Surgery, McGill University, Montreal, QC H4A 3J1, Canada; (Y.W.); (A.L.)
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
- The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - George Zogopoulos
- Department of Surgery, McGill University, Montreal, QC H4A 3J1, Canada; (Y.W.); (A.L.)
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
- The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
107
|
Targeted therapies in melanoma beyond BRAF: targeting NRAS-mutated and KIT-mutated melanoma. Curr Opin Oncol 2020; 32:79-84. [PMID: 31833955 DOI: 10.1097/cco.0000000000000606] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Melanoma treatment have been revolutionized since 2010 by the development of immune checkpoint inhibitors, and, for BRAF-mutated melanoma, targeted therapies based on BRAF and MEK inhibitors, which is a model of effective targeted therapy in cancer. However, patients with BRAF wild type cannot benefit for such treatments. In this review, we will focus on the current clinical development of targeted therapies beyond BRAF, in NRAS-mutated and KIT-altered melanoma. RECENT FINDINGS In NRAS-mutated melanoma, targeted therapies based on MEK inhibition are being developed as monotherapy or in combination with MAPK, PI3K or CDK4/6 inhibitor. Targeted therapies of KIT-altered melanoma patients is based in KIT inhibitor (mostly imatinib, nilotinib), although for both melanoma subtypes, results are for now disappointing as compared with BRAF and MEK inhibitors in BRAF-mutated melanoma. SUMMARY Combined therapeutic targeted strategies are awaited in NRAS-mutated and KIT-altered melanoma and could provide additional benefit.
Collapse
|
108
|
Yano S, Tazawa H, Kagawa S, Fujiwara T, Hoffman RM. FUCCI Real-Time Cell-Cycle Imaging as a Guide for Designing Improved Cancer Therapy: A Review of Innovative Strategies to Target Quiescent Chemo-Resistant Cancer Cells. Cancers (Basel) 2020; 12:cancers12092655. [PMID: 32957652 PMCID: PMC7563319 DOI: 10.3390/cancers12092655] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Chemotherapy of solid tumors has made very slow progress over many decades. A major problem has been that solid tumors very often contain non-dividing cells due to lack of oxygen deep in the tumor and these non-dividing cells resist most currently-used chemotherapy which usually only targets dividing cells. The present review demonstrates how a unique imaging system, FUCCI, which color codes cells depending on whether they are in a dividing or non-dividing phase, is being used to design very novel therapy that targets non-dividing cancer cells which can greatly improve the efficacy of cancer chemotherapy. Abstract Progress in chemotherapy of solid cancer has been tragically slow due, in large part, to the chemoresistance of quiescent cancer cells in tumors. The fluorescence ubiquitination cell-cycle indicator (FUCCI) was developed in 2008 by Miyawaki et al., which color-codes the phases of the cell cycle in real-time. FUCCI utilizes genes linked to different color fluorescent reporters that are only expressed in specific phases of the cell cycle and can, thereby, image the phases of the cell cycle in real-time. Intravital real-time FUCCI imaging within tumors has demonstrated that an established tumor comprises a majority of quiescent cancer cells and a minor population of cycling cancer cells located at the tumor surface or in proximity to tumor blood vessels. In contrast to most cycling cancer cells, quiescent cancer cells are resistant to cytotoxic chemotherapy, most of which target cells in S/G2/M phases. The quiescent cancer cells can re-enter the cell cycle after surviving treatment, which suggests the reason why most cytotoxic chemotherapy is often ineffective for solid cancers. Thus, quiescent cancer cells are a major impediment to effective cancer therapy. FUCCI imaging can be used to effectively target quiescent cancer cells within tumors. For example, we review how FUCCI imaging can help to identify cell-cycle-specific therapeutics that comprise decoy of quiescent cancer cells from G1 phase to cycling phases, trapping the cancer cells in S/G2 phase where cancer cells are mostly sensitive to cytotoxic chemotherapy and eradicating the cancer cells with cytotoxic chemotherapy most active against S/G2 phase cells. FUCCI can readily image cell-cycle dynamics at the single cell level in real-time in vitro and in vivo. Therefore, visualizing cell cycle dynamics within tumors with FUCCI can provide a guide for many strategies to improve cell-cycle targeting therapy for solid cancers.
Collapse
Affiliation(s)
- Shuya Yano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (S.K.); (T.F.)
- Center for Graduate Medical Education, Okayama University Hospital, Okayama 700-8558, Japan
- Correspondence: ; Tel.: +81-86-235-7257; Fax: +81-86-221-8775
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (S.K.); (T.F.)
- Center of Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (S.K.); (T.F.)
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (S.K.); (T.F.)
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, CA 92111, USA;
- Department of Surgery, University of California, San Diego, CA 92093, USA
| |
Collapse
|
109
|
Grande E, Teulé A, Alonso‐Gordoa T, Jiménez‐Fonseca P, Benavent M, Capdevila J, Custodio A, Vera R, Munarriz J, La Casta A, Díez JJ, Gajate P, Molina‐Cerrillo J, Matos I, Cristóbal EM, Ruffinelli JC, Palacios J, García‐Carbonero R. The PALBONET Trial: A Phase II Study of Palbociclib in Metastatic Grade 1 and 2 Pancreatic Neuroendocrine Tumors (GETNE-1407). Oncologist 2020; 25:745-e1265. [PMID: 32045050 PMCID: PMC7485337 DOI: 10.1634/theoncologist.2020-0033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/13/2020] [Indexed: 12/17/2022] Open
Abstract
LESSONS LEARNED Palbociclib demonstrated no detectable activity in molecularly unselected and heavily pretreated patients with advanced grade 1/2 pancreatic neuroendocrine tumors. Predictive biomarkers that improve patient selection should be investigated in future studies of palbociclib. BACKGROUND Palbociclib, a CDK4/6 inhibitor, has shown in vitro activity in pancreatic neuroendocrine tumor (pNET) cell lines. Here we prospectively assessed the activity and safety of palbociclib in monotherapy in metastatic refractory pNETs. METHODS This was a nonrandomized, open-label, phase II study of patients with metastatic grade (G)1/2 pNETs recruited from 10 centers in Spain. Palbociclib 125 mg was orally administered once daily for 21 of 28 days until disease progression or unacceptable toxicity. RESULTS Twenty-one patients were included; 52.4% were men, and median age was 57.4 years (range, 37.4-73.4). Patients had previously received a median of three prior lines of systemic therapy (range, 1-10) for advanced disease (somatostatin analogues, 71.4%; sunitinib, 81.0%; everolimus, 47.6%; chemotherapy, 47.6%). Nineteen patients were evaluated for objective response rate (ORR), with a median follow-up of 12.4 months (range, 7.53-19.33). No objective and confirmed responses were observed (0%); 11 (57.9%) patients had stable disease, and 6 of them lasted more than 6 months; 8 (42.1%) patients had disease progression as best response. Median progression-free survival (PFS) was 2.6 months (95% confidence interval [CI], 0-14.4) and median overall survival (OS) was 18.7 months (95% CI, 7.4-29.9; Fig. 1). Most frequent toxicities of any grade were asthenia (76.2%), neutropenia (42.9%), diarrhea (33.3%), and nausea (33.3%). Five (23.8%) patients developed G3-4 neutropenia and two (9.5%) patients developed G3-4 thrombocytopenia. CONCLUSION Lack of activity was observed with palbociclib as a single agent in molecularly unselected and heavily pretreated patients with advanced G1/2 pNETs.
Collapse
Affiliation(s)
- Enrique Grande
- Department of Medical Oncology, MD Anderson Cancer Center MadridMadridSpain
| | - Alex Teulé
- Department of Medical Oncology, Catalan Institute of Oncology (Hospital Duran i Reynals), L'HospitaletBarcelonaSpain
| | - Teresa Alonso‐Gordoa
- Department of Medical Oncology, University Hospital Ramón y Cajal, IRYCIS, CIBERONCMadridSpain
| | | | - Marta Benavent
- Department of Medical Oncology, University Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)SevilleSpain
| | - Jaume Capdevila
- Department of Medical Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), CIBERONCBarcelonaSpain
| | - Ana Custodio
- Department of Medical Oncology, University Hospital La Paz, Centro de Investigación Biomédica en Red Cáncer CB16/12/00398MadridSpain
| | - Ruth Vera
- Department of Medical Oncology, Complejo Hospitalario de Navarra, IdisNAPamplonaSpain
| | - Javier Munarriz
- Department of Medical Oncology, University Hospital General de CastellonCastellonSpain
| | - Adelaida La Casta
- Department of Medical Oncology, University Hospital DonostiaSan SebastiánSpain
| | - Juan José Díez
- Department of Endocrinology, University Hospital Puerta de Hierro Majadahonda, Department of Medicine, Faculty of Medicine, Universidad AutónomaMadridSpain
| | - Pablo Gajate
- Department of Medical Oncology, University Hospital Ramón y Cajal, IRYCIS, CIBERONCMadridSpain
| | - Javier Molina‐Cerrillo
- Department of Medical Oncology, University Hospital Ramón y Cajal, IRYCIS, CIBERONCMadridSpain
| | - Ignacio Matos
- Department of Medical Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), CIBERONCBarcelonaSpain
| | - Eva María Cristóbal
- Department of Pathology, University Hospital Ramón y Cajal IRYCIS, CIBERONCMadridSpain
| | - José C. Ruffinelli
- Department of Medical Oncology, Catalan Institute of Oncology (Hospital Duran i Reynals), L'HospitaletBarcelonaSpain
| | - José Palacios
- Department of Pathology, University Hospital Ramón y Cajal, Departament of Medicine and Medical Specialties, Faculty of Medicine, University of Alcalá, IRYCIS, CIBERONCMadridSpain
| | - Rocío García‐Carbonero
- Department of Medical Oncology, University Hospital 12 de Octubre, IIS imas12, UCM, CNIO, CIBERONCMadridSpain
| |
Collapse
|
110
|
CDK4/6 Inhibitors in Breast Cancer Treatment: Potential Interactions with Drug, Gene, and Pathophysiological Conditions. Int J Mol Sci 2020; 21:ijms21176350. [PMID: 32883002 PMCID: PMC7504705 DOI: 10.3390/ijms21176350] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Palbociclib, ribociclib, and abemaciclib belong to the third generation of cyclin-dependent kinases inhibitors (CDKis), an established therapeutic class for advanced and metastatic breast cancer. Interindividual variability in the therapeutic response of CDKis has been reported and some individuals may experience increased and unexpected toxicity. This narrative review aims at identifying the factors potentially concurring at this variability for driving the most appropriate and tailored use of CDKis in the clinic. Specifically, concomitant medications, pharmacogenetic profile, and pathophysiological conditions could influence absorption, distribution, metabolism, and elimination pharmacokinetics. A personalized therapeutic approach taking into consideration all factors potentially contributing to an altered pharmacokinetic/pharmacodynamic profile could better drive safe and effective clinical use.
Collapse
|
111
|
Karasic TB, O'Hara MH, Teitelbaum UR, Damjanov N, Giantonio BJ, d'Entremont TS, Gallagher M, Zhang PJ, O'Dwyer PJ. Phase II Trial of Palbociclib in Patients with Advanced Esophageal or Gastric Cancer. Oncologist 2020; 25:e1864-e1868. [PMID: 32692450 DOI: 10.1634/theoncologist.2020-0681] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 01/17/2023] Open
Abstract
LESSONS LEARNED Palbociclib monotherapy demonstrated minimal clinical activity in patients with previously treated gastroesophageal cancers. Further clinical evaluation of palbociclib monotherapy is not warranted in gastroesophageal cancers, but improved understanding of resistance mechanisms may permit rational combination approaches. BACKGROUND Dysregulation of the cell cycle is a hallmark of cancer. Progression through the G1/S transition requires phosphorylation of retinoblastoma (RB) by cyclin-dependent kinases (CDKs) 4 and 6, which are regulated by cyclins D and E. Amplifications of cyclin D loci and activating mutations in CDKs are frequent molecular aberrations in gastroesophageal malignancies. We conducted a phase II trial of the CDK4/6 inhibitor palbociclib as an initial test of efficacy. METHODS Patients with previously treated metastatic gastroesophageal cancers with intact RB nuclear expression by immunohistochemistry were treated with 125 mg daily of palbociclib for days 1-21 of 28-day cycles. The primary endpoint was overall response rate. RESULTS We screened 29 patients and enrolled 21 patients: 5 with gastric adenocarcinoma, 3 with gastroesophageal junction adenocarcinoma, 8 with esophageal adenocarcinoma, and 5 with esophageal squamous cell carcinoma. All 29 tumors screened had intact nuclear RB expression, and four treated patients tested positive for CCND1 overexpression. No objective responses were seen. Median progression-free survival was 1.8 months, and median overall survival was 3.0 months. All recurrent grade 3 or 4 toxicities were hematologic, with neutropenia in eight patients (38%), anemia in four patients (19%), and thrombocytopenia in two patients (10%). CONCLUSION Palbociclib has limited single-agent activity in gastroesophageal tumors.
Collapse
Affiliation(s)
| | - Mark H O'Hara
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ursina R Teitelbaum
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nevena Damjanov
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bruce J Giantonio
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Tracy S d'Entremont
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maryann Gallagher
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul J Zhang
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Peter J O'Dwyer
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
112
|
Colas P. Cyclin-dependent kinases and rare developmental disorders. Orphanet J Rare Dis 2020; 15:203. [PMID: 32762766 PMCID: PMC7410148 DOI: 10.1186/s13023-020-01472-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Extensive studies in the past 30 years have established that cyclin-dependent kinases (CDKs) exert many diverse, important functions in a number of molecular and cellular processes that are at play during development. Not surprisingly, mutations affecting CDKs or their activating cyclin subunits have been involved in a variety of rare human developmental disorders. These recent findings are reviewed herein, giving a particular attention to the discovered mutations and their demonstrated or hypothesized functional consequences, which can account for pathological human phenotypes. The review highlights novel, important CDK or cyclin functions that were unveiled by their association with human disorders, and it discusses the shortcomings of mouse models to reveal some of these functions. It explains how human genetics can be used in combination with proteome-scale interaction databases to loom regulatory networks around CDKs and cyclins. Finally, it advocates the use of these networks to profile pathogenic CDK or cyclin variants, in order to gain knowledge on protein function and on pathogenic mechanisms.
Collapse
Affiliation(s)
- Pierre Colas
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université / CNRS, Roscoff, France.
| |
Collapse
|
113
|
Das A, Henderson FC, Alshareef M, Porto GBF, Kanginakudru I, Infinger LK, Vandergrift WA, Lindhorst SM, Varma AK, Patel SJ, Cachia D. MGMT-inhibitor in combination with TGF-βRI inhibitor or CDK 4/6 inhibitor increases temozolomide sensitivity in temozolomide-resistant glioblastoma cells. Clin Transl Oncol 2020; 23:612-619. [PMID: 32710211 DOI: 10.1007/s12094-020-02456-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/09/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Glioblastoma (GB) remains an incurable and deadly brain malignancy that often proves resistant to upfront treatment with temozolomide. Nevertheless, temozolomide remains the most commonly prescribed FDA-approved chemotherapy for GB. The DNA repair protein methylguanine-DNA methyl transferase (MGMT) confers resistance to temozolomide. Unsurprisingly temozolomide-resistant tumors tend to possess elevated MGMT protein levels or lack inhibitory MGMT promotor methylation. In this study, cultured human temozolomide resistance GB (43RG) cells were introduced to the MGMT inhibitor O6-benzylguanine combined with temozolomide and either LY2835219 (CDK 4/6 inhibitor) or LY2157299 (TGF-βRI inhibitor) seeking to overcome GB treatment resistance. METHODS Treatment effects were assessed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, western blot, cell viability, and cell cycle progression. RESULTS Our in vitro study demonstrated that sequential treatment of O6-Benzylguanine with either LY2385219 or LY2157299-enhanced temozolomide enhanced sensitivity in MGMT+ 43RG cells. Importantly, normal human neurons and astrocytes remained impervious to the drug therapies under these conditions. Furthermore, LY2835219 has additional anti-proliferative effects on cell cycling, including induction of an RB-associated G (1) arrest via suppression of cyclin D-CDK4/6-Rb pathway. LY2157299 enhances anti-tumor effect by disrupting TGF-β-dependent HIF-1α signaling and by activating both Smad and PI3K-AKT pathways towards transcription of S/G2 checkpoints. CONCLUSION This study establishes the groundwork for the development of a combinatorial pharmacologic approach by using either LY2385219 or LY2157299 inhibitor plus O6-Benzylguanine to augment temozolomide response in temozolomide-resistant GB cells.
Collapse
Affiliation(s)
- A Das
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA.
| | - F C Henderson
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| | - M Alshareef
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| | - G B F Porto
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| | - I Kanginakudru
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| | - L K Infinger
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| | - W A Vandergrift
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| | - S M Lindhorst
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| | - A K Varma
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| | - S J Patel
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| | - D Cachia
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| |
Collapse
|
114
|
A refractory case of CDK4-amplified spinal astrocytoma achieving complete response upon treatment with a Palbociclib-based regimen:a case report. BMC Cancer 2020; 20:630. [PMID: 32641004 PMCID: PMC7346338 DOI: 10.1186/s12885-020-07061-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 06/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spinal cord astrocytoma is a rare neoplasm, and patients usually recur within months after surgery. There is currently a lack of consensus regarding post-operative treatment. Clinical data on the activity of systemic treatment like chemoradiotherapy and anti-angiogenic agents also remained scant. Next-generation sequencing (NGS) -based genomic profiling thus may help identify potential treatment options for a subset of patients that harbor actionable genetic alterations. CASE PRESENTATION We reported for the first time a refractory case of grade III spinal cord astrocytoma that underwent two surgeries but eventually progressed following post-operative chemoradiotherapy plus bevacizumab. Hybridization capture-based NGS using a 381-gene panel disclosed cyclin dependent kinase 4 (CDK4) amplification and after receiving a triplet regimen containg palbociclib for 15 months, the patient achieved complete response. CONCLUSIONS This case demonstrated the importance of genetic profiling and the benefit of a multi-modality treatment strategy in cancer management.
Collapse
|
115
|
Crawford KA, Berlow NE, Tsay J, Lazich M, Mancini M, Noakes C, Huang T, Keller C. Case report for an adolescent with germline RET mutation and alveolar rhabdomyosarcoma. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a004853. [PMID: 32532875 PMCID: PMC7304354 DOI: 10.1101/mcs.a004853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/13/2020] [Indexed: 11/25/2022] Open
Abstract
In this case report we evaluate the genetics of and scientific basis of therapeutic options for a 14-yr-old male patient diagnosed with metastatic PAX3–FOXO1 fusion positive alveolar rhabdomyosarcoma. A distinguishing genetic feature of this patient was a germline RET C634F mutation, which is a known driver of multiple endocrine neoplasia type 2A (MEN2A) cancer. Through sequential DNA and RNA sequencing analyses over the patient's clinical course, a set of gene mutations, amplifications, and overexpressed genes were identified and biological hypotheses generated to explore the biology of RET and coexisting signaling pathways in rhabdomyosarcoma. Somatic genetic abnormalities identified include CDK4 amplification and FGFR4 G388R polymorphism. Because of the initial lack of patient-derived primary cell cultures, these hypotheses were evaluated using several approaches including western blot analysis and pharmacological evaluation with molecularly similar alveolar rhabdomyosarcoma cell lines. Once a primary cell culture became available, the RET inhibitor cabozantinib was tested but showed no appreciable efficacy in vitro, affirming with the western blot negative for RET protein expression that RET germline mutation could be only incidental. In parallel, the patient was treated with cabozantinib without definitive clinical benefit. Parallel chemical screens identified PI3K and HSP90 as potential tumor-specific biological features. Inhibitors of PI3K and HSP90 were further validated in drug combination synergy experiments and shown to be synergistic in the patient-derived culture. We also evaluated the use of JAK/STAT pathway inhibitors in the context of rhabdomyosarcomas bearing the FGFR4 G388R coding variant. Although the patient succumbed to his disease, study of the patient's tumor has generated insights into the biology of RET and other targets in rhabdomyosarcoma.
Collapse
Affiliation(s)
- Kenneth A Crawford
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | - Noah E Berlow
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | - Jennifer Tsay
- 2016 Pediatric Cancer Nanocourse, Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | - Michael Lazich
- 2016 Pediatric Cancer Nanocourse, Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | - Maria Mancini
- Champions Oncology, Hackensack, New Jersey 07601, USA
| | | | - Tannie Huang
- Kaiser Permanente Santa Clara Medical Center, Santa Clara, California 95051, USA
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| |
Collapse
|
116
|
Inhibition of the CDK4/6-Cyclin D-Rb Pathway by Ribociclib Augments Chemotherapy and Immunotherapy in Renal Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9525207. [PMID: 32626773 PMCID: PMC7306082 DOI: 10.1155/2020/9525207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022]
Abstract
Renal cell carcinoma (RCC) is the most aggressive type of genitourinary cancer and is resistant to current therapies. Identifying drugs that enhance the efficacy of RCC standard-of-care drugs at sublethal concentrations is an alternative therapeutic strategy. Ribociclib is an orally available cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor that is approved for the treatment of breast cancer. In this work, we demonstrate that ribociclib at clinically achievable concentrations inhibits proliferation of 7 out of 9 tested RCC cell lines, with IC50 range from 76 to 280 nM. In addition, ribociclib induces apoptosis of RCC cells, but with less potency compared to its antiproliferative activity. The combination of ribociclib with chemotherapeutic or immunotherapeutic agents is synergistic in RCC cell lines. Of note, ribociclib demonstrates selective anti-RCC activity by sparing normal kidney cells and fibroblast cells. Consistent with the in vitro findings, ribociclib inhibits RCC growth at the dosage that does not lead to toxicity in mice and enhances the in vivo efficacy of RCC standard-of-care drugs. Mechanistically, we show that ribociclib remarkably inhibits phosphorylation of retinoblastoma protein (Rb) at various sites, leading to the suppression of transcription of E2F target genes in RCC cells. Our findings clearly demonstrate the potency and selectivity of ribociclib in RCC preclinical models, via inhibition of the CDK4/6-cyclin D/Rb pathway. Our findings support a clinical trial for the combination of ribociclib with chemo/immunotherapy in RCC.
Collapse
|
117
|
Liu Y, Zhao R, Fang S, Li Q, Jin Y, Liu B. Abemaciclib sensitizes HPV-negative cervical cancer to chemotherapy via specifically suppressing CDK4/6-Rb-E2F and mTOR pathways. Fundam Clin Pharmacol 2020; 35:156-164. [PMID: 32446293 DOI: 10.1111/fcp.12574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
Cervical cancer is the second most common malignancy in women, and the novel therapeutic treatment is needed. Abemaciclib is a FDA-approved drug for breast cancer treatment. In this work, we identified that abemaciclib has potent anti-cervical cancer activity. We demonstrate that abemaciclib is the most effective drug against human papillomavirus (HPV)-negative cervical cancer cells compared to ribociclib and palbociclib, with its IC50 at nanomolar concentration range. This is achieved by the inhibition of proliferation and induction of apoptosis, through specifically suppressing CDK4/6-Rb-E2F and mTOR pathways by abemaciclib in HPV-negative cervical cancer cells. Of note, the combination of abemaciclib with paclitaxel and cisplatin at sublethal concentration results in much greater efficacy than chemotherapy alone. In addition, we confirm the efficacy of abemaciclib and its combination with paclitaxel or cisplatin at the doses that are not toxic to mice in HPV-negative cervical cancer xenograft mouse model. Interestingly, we show that abemaciclib and other CDK4/6 inhibitors are not effective in targeting HPV-positive cervical cancer cells, and this is likely to be associated with the high p16 and low Rb expression in HPV-positive cervical cancer cells. Our work is the first to provide the preclinical evidence to demonstrate the potential of abemaciclib for the treatment of HPV-negative cervical cancer. The mechanism analysis highlights the therapeutic value of inhibiting CDK4/6 in HPV-negative but not HPV-positive cervical cancer.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Runsheng Zhao
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Shanshan Fang
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Quan Li
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Yiqiang Jin
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| | - Bo Liu
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangyang, 441000, China
| |
Collapse
|
118
|
Zięba S, Chechlińska M, Kowalik A, Kowalewska M. Genes, pathways and vulvar carcinoma - New insights from next-generation sequencing studies. Gynecol Oncol 2020; 158:498-506. [PMID: 32522421 DOI: 10.1016/j.ygyno.2020.05.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023]
Abstract
In this review, we summarize the existing literature on next generation sequencing (NGS) studies in vulvar squamous cell carcinoma (VSCC). A total of 201 VSCC tumor samples were investigated in five studies published between 2017 and 2019. Findings on somatic mutations in human papillomavirus (HPV)-DNA positive (HPV+) and HPV-DNA negative (HPV-) disease were extracted and submitted to pathway and drug candidate analyses. The general genetic findings show cell cycle activity aberrations common to both HPV+ and HPV- VSCC. In silico analyses of somatic mutations detected in NGS studies pointed to PI3K-Akt pathway as the main pathway dysregulated in both HPV+ and HPV- VSCC tumors. In addition, pathways specific for HPV+ VSCC, i.e. AMPK, Prolactin, mTOR and Chemokine pathways as well as pathways unique for HPV- disease, i.e. GnRH, Neurotrophin, Oxytocin, Notch pathways were identified. These observations provide a rationale for incorporating novel specific therapeutic strategies in vulvar cancer. In this review, based on the Drug Gene Interaction database analysis of the NGS data, we listed potential drugs for this disease. The candidates revealed in our analysis provide new therapeutic opportunities in VSCC.
Collapse
Affiliation(s)
- Sebastian Zięba
- Department of Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland
| | - Magdalena Chechlińska
- Department of Immunology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland; Division of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland.
| | - Magdalena Kowalewska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland; Department of Immunology, Biochemistry and Nutrition, Medical University of Warsaw, Poland.
| |
Collapse
|
119
|
Combination cyclin-dependent kinase 4/6 inhibitors and endocrine therapy versus endocrine monotherapy for hormonal receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: A systematic review and meta-analysis. PLoS One 2020; 15:e0233571. [PMID: 32497134 PMCID: PMC7272037 DOI: 10.1371/journal.pone.0233571] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose This meta-analysis aimed to assess the efficacy and safety of cyclin-dependent kinase (CDK) 4/6 inhibitors plus endocrine therapy (ET) in hormonal receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer (ABC). Methods We searched PubMed, Embase, Cochrane, ClinicalTrials.gov., ASCO, ESMO and AACR databases from inception to October 10, 2019 for randomized controlled trials (RCTs) that compared CDK 4/6 inhibitors plus ET to single-agent ET with no treatment-line restriction. The main outcomes analyzed were progression-free survival (PFS), overall survival (OS), objective response rate (ORR), clinical benefit rate (CBR), and adverse events (AEs). Results Of 938 identified studies, 9 RCTs with 5043 women were eligible and included. Compared with ET alone, CDK 4/6 inhibitors and ET combination improved in PFS (hazard ratio (HR) 0.54, 95% confidence interval (CI) 0.50–0.59, p< 0.00001) and OS (HR 0.77, 95% CI 0.69–0.85, p< 0.00001), regardless of ET strategies (HR 0.54, 95% CI 0.50–0.59 in PFS; HR 0.77, 95% CI 0.69–0.85 in OS), treatment line of advanced disease (HR 0.52, 95% CI 0.46–0.59 in PFS; HR 0.75, 95% CI 0.66–0.85 in OS) and menopausal status (HR 0.54, 95% CI 0.50–0.58 in PFS; HR 0.76, 95% CI 0.68–0.84 in OS). Higher risk of grade 3/4 AEs (RR 2.66, 95% CI 2.44–2.90, p < 0.00001) were observed in the combination group than in the ET group. Conclusions Combination therapy with CDK 4/6 inhibitors and ET prolongs survival in HR+/ HER2- ABC. This combination is a better therapeutic strategy than endocrine monotherapy in HR+/HER2- ABC, regardless of treatment line, menopausal status and other individual characteristics.
Collapse
|
120
|
Stopfer LE, Mesfin JM, Joughin BA, Lauffenburger DA, White FM. Multiplexed relative and absolute quantitative immunopeptidomics reveals MHC I repertoire alterations induced by CDK4/6 inhibition. Nat Commun 2020; 11:2760. [PMID: 32488085 PMCID: PMC7265461 DOI: 10.1038/s41467-020-16588-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022] Open
Abstract
Peptides bound to class I major histocompatibility complexes (MHC) play a critical role in immune cell recognition and can trigger an antitumor immune response in cancer. Surface MHC levels can be modulated by anticancer agents, altering immunity. However, understanding the peptide repertoire's response to treatment remains challenging and is limited by quantitative mass spectrometry-based strategies lacking normalization controls. We describe an experimental platform that leverages recombinant heavy isotope-coded peptide MHCs (hipMHCs) and multiplex isotope tagging to quantify peptide repertoire alterations using low sample input. HipMHCs improve quantitative accuracy of peptide repertoire changes by normalizing for variation across analyses and enable absolute quantification using internal calibrants to determine copies per cell of MHC antigens, which can inform immunotherapy design. Applying this platform in melanoma cell lines to profile the immunopeptidome response to CDK4/6 inhibition and interferon-γ - known modulators of antigen presentation - uncovers treatment-specific alterations, connecting the intracellular response to extracellular immune presentation.
Collapse
Affiliation(s)
- Lauren E Stopfer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Joshua M Mesfin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Brian A Joughin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Douglas A Lauffenburger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
121
|
Skowron MA, Vermeulen M, Winkelhausen A, Becker TK, Bremmer F, Petzsch P, Schönberger S, Calaminus G, Köhrer K, Albers P, Nettersheim D. CDK4/6 inhibition presents as a therapeutic option for paediatric and adult germ cell tumours and induces cell cycle arrest and apoptosis via canonical and non-canonical mechanisms. Br J Cancer 2020; 123:378-391. [PMID: 32418994 PMCID: PMC7403155 DOI: 10.1038/s41416-020-0891-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Germ cell tumours (GCTs) are the most common solid malignancies in young men. Although high cure rates can be achieved, metastases, resistance to cisplatin-based therapy and late toxicities still represent a lethal threat, arguing for the need of new therapeutic options. In this study, we analysed the potential of cyclin-dependent kinase 4/6 (CDK4/6) inhibitors palbociclib and ribociclib (PaRi) as molecular drugs to treat cisplatin-resistant and -sensitive paediatric and adult GCTs. METHODS Ten GCT cell lines, including cisplatin-resistant subclones and non-malignant controls, were treated with PaRi and screened for changes in viability (triphenyl tetrazolium chloride (XTT) assay), apoptosis rates (flow cytometry, caspase assay), the cell cycle (flow cytometry), the transcriptome (RNA-sequencing, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and on protein level (western blot). Expression profiling was performed on paediatric and adult GCT tissues (expression microarrays, qRT-PCR, immunohistochemistry, 'The Cancer Genome Atlas' database). RESULTS We demonstrate that adult GCTs highly express CDK4, while paediatric GCTs strongly express CDK6 instead. Thus, both GCT types are potentially treatable by PaRi. GCTs presented as highly sensitive towards PaRi, which caused a decrease in viability, cell cycle arrest and apoptosis. Although GCTs mainly arrested in the G1/G0 phase, some embryonal carcinoma cell lines were able to bypass the G1/S checkpoint and progressed to the G2/M phase. We found that upregulation of CDK3 and downregulation of many mitosis regulation factors, like the HAUS genes, might be responsible for bypassing the G1/S checkpoint and termination of mitosis, respectively. We postulate that GCT cells do not tolerate these alterations in the cell cycle and eventually induce apoptosis. CONCLUSION Our study highlights PaRi as therapeutic options for cisplatin-resistant and -sensitive paediatric and adult GCTs.
Collapse
Affiliation(s)
- Margaretha A Skowron
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marieke Vermeulen
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Anna Winkelhausen
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Teresa K Becker
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Felix Bremmer
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Patrick Petzsch
- Genomics and Transcriptomics Lab, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Schönberger
- Department of Pediatric Hematology and Oncology, University Hospital Bonn, Bonn, Germany
| | - Gabriele Calaminus
- Department of Pediatric Hematology and Oncology, University Hospital Bonn, Bonn, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Lab, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Albers
- Department of Urology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
122
|
Kohlmeyer JL, Gordon DJ, Tanas MR, Monga V, Dodd RD, Quelle DE. CDKs in Sarcoma: Mediators of Disease and Emerging Therapeutic Targets. Int J Mol Sci 2020; 21:E3018. [PMID: 32344731 PMCID: PMC7215455 DOI: 10.3390/ijms21083018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Sarcomas represent one of the most challenging tumor types to treat due to their diverse nature and our incomplete understanding of their underlying biology. Recent work suggests cyclin-dependent kinase (CDK) pathway activation is a powerful driver of sarcomagenesis. CDK proteins participate in numerous cellular processes required for normal cell function, but their dysregulation is a hallmark of many pathologies including cancer. The contributions and significance of aberrant CDK activity to sarcoma development, however, is only partly understood. Here, we describe what is known about CDK-related alterations in the most common subtypes of sarcoma and highlight areas that warrant further investigation. As disruptions in CDK pathways appear in most, if not all, subtypes of sarcoma, we discuss the history and value of pharmacologically targeting CDKs to combat these tumors. The goals of this review are to (1) assess the prevalence and importance of CDK pathway alterations in sarcomas, (2) highlight the gap in knowledge for certain CDKs in these tumors, and (3) provide insight into studies focused on CDK inhibition for sarcoma treatment. Overall, growing evidence demonstrates a crucial role for activated CDKs in sarcoma development and as important targets for sarcoma therapy.
Collapse
Affiliation(s)
- Jordan L Kohlmeyer
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- The Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-570 Bowen Science Bldg., Iowa City, IA 52242, USA
| | - David J Gordon
- The Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Munir R Tanas
- The Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Varun Monga
- The Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.M.); (R.D.D.)
| | - Rebecca D Dodd
- The Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.M.); (R.D.D.)
| | - Dawn E Quelle
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- The Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-570 Bowen Science Bldg., Iowa City, IA 52242, USA
- The Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
123
|
Mercogliano MF, Bruni S, Elizalde PV, Schillaci R. Tumor Necrosis Factor α Blockade: An Opportunity to Tackle Breast Cancer. Front Oncol 2020; 10:584. [PMID: 32391269 PMCID: PMC7189060 DOI: 10.3389/fonc.2020.00584] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and the principal cause of mortality by malignancy in women and represents a main problem for public health worldwide. Tumor necrosis factor α (TNFα) is a pro-inflammatory cytokine whose expression is increased in a variety of cancers. In particular, in breast cancer it correlates with augmented tumor cell proliferation, higher malignancy grade, increased occurrence of metastasis and general poor prognosis for the patient. These characteristics highlight TNFα as an attractive therapeutic target, and consequently, the study of soluble and transmembrane TNFα effects and its receptors in breast cancer is an area of active research. In this review we summarize the recent findings on TNFα participation in luminal, HER2-positive and triple negative breast cancer progression and metastasis. Also, we describe TNFα role in immune response against tumors and in chemotherapy, hormone therapy, HER2-targeted therapy and anti-immune checkpoint therapy resistance in breast cancer. Furthermore, we discuss the use of TNFα blocking strategies as potential therapies and their clinical relevance for breast cancer. These TNFα blocking agents have long been used in the clinical setting to treat inflammatory and autoimmune diseases. TNFα blockade can be achieved by monoclonal antibodies (such as infliximab, adalimumab, etc.), fusion proteins (etanercept) and dominant negative proteins (INB03). Here we address the different effects of each compound and also analyze the use of potential biomarkers in the selection of patients who would benefit from a combination of TNFα blocking agents with HER2-targeted treatments to prevent or overcome therapy resistance in breast cancer.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Patricia V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
124
|
Wei X, Nian J, Zheng J, He Y, Zeng M. Inhibition of cyclin-dependent kinases by AT7519 enhances nasopharyngeal carcinoma cell response to chemotherapy. Cancer Chemother Pharmacol 2020; 85:949-957. [PMID: 32279103 DOI: 10.1007/s00280-020-04068-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/27/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The poor outcomes in nasopharyngeal carcinoma (NPC) necessitate new treatments. AT7519 is a potent inhibitor of several cyclin-dependent kinases (CDKs) and is currently in the early phase of clinical development for cancer treatment. The potent anti-cancer activities of AT7519 have been reported in various cancers, but not in NPC. MATERIALS AND METHODS The effects of AT7519 in NPC were systematically analyzed using cell culture assays and xenograft mouse models. The effects of AT7519 on molecules involved in mRNA transcription were examined. RESULTS AT7519, at a nanomolar concentration, significantly inhibits growth via arresting cells at G2/M phase, and induces apoptosis in NPC cells regardless of Epstein-Barr virus (EBV) infection and cellular origin. It also inhibits growth of a subpopulation of cells with highly proliferative and invasive features. Importantly, AT7519 acts synergistically with cisplatin and is effective against chemo-resistant NPC cells. Mechanistically, AT7519 inhibits phosphorylation of Rb, suggesting the inhibition of CDK2 in NPC. It also decreases N-myc level and RNA polymerase II phosphorylation, and inhibits transcription. Consistent with the in vitro findings, we demonstrate that AT7519 is effective as a single agent in two independent NPC xenograft mouse models. The combination of ATP7519 and cisplatin results in greater efficacy than cisplatin alone in inhibiting NPC tumor growth. CONCLUSIONS Our work is the first to report anti-NPC activities of AT7519. Our preclinical evidence suggests that AT7519 is a useful addition to overcome NPC chemo-resistance.
Collapse
Affiliation(s)
- Xin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Jiabin Nian
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Jing Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Yangli He
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xinhua Road, Xiuying Distric, Haikou, 570311, Hainan Province, China
| | - Min Zeng
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xinhua Road, Xiuying Distric, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
125
|
Polyphenolic Compounds from Lespedeza Bicolor Root Bark Inhibit Progression of Human Prostate Cancer Cells via Induction of Apoptosis and Cell Cycle Arrest. Biomolecules 2020; 10:biom10030451. [PMID: 32183314 PMCID: PMC7175281 DOI: 10.3390/biom10030451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
From a root bark of Lespedeza bicolor Turch we isolated two new (7 and 8) and six previously known compounds (1–6) belonging to the group of prenylated polyphenols. Their structures were elucidated using mass spectrometry, nuclear magnetic resonance and circular dichroism spectroscopy. These natural compounds selectively inhibited human drug-resistant prostate cancer in vitro. Prenylated pterocarpans 1–3 prevented the cell cycle progression of human cancer cells in S-phase. This was accompanied by a reduced expression of mRNA corresponding to several human cyclin-dependent kinases (CDKs). In contrast, compounds 4–8 induced a G1-phase cell cycle arrest without any pronounced effect on CDKs mRNA expression. Interestingly, a non-substituted hydroxy group at C-8 of ring D of the pterocarpan skeleton of compounds 1–3 seems to be important for the CDKs inhibitory activity.
Collapse
|
126
|
Schettini F, Santo ID, Rea CG, Viggiani M, Buono G, Angelis CD, Cardalesi C, Lauria R, Giuliano M, Forestieri V, Thomas G, Maione P, Limite G, Accurso A, Malorni L, Placido SD, Arpino G. Palbociclib added to ongoing endocrine therapy for hormone receptor-positive HER2-negative metastatic breast cancer: A case report series. Mol Clin Oncol 2020; 12:456-460. [PMID: 32257203 PMCID: PMC7087462 DOI: 10.3892/mco.2020.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/03/2020] [Indexed: 12/02/2022] Open
Abstract
Palbociclib is a potent cyclin-dependent kinase (CDK)4/6 inhibitor that disrupts cell cycle progression and has been recently approved in combination with an aromatase inhibitor or fulvestrant as first- and second-line treatment in hormone receptor (HR)+, human epidermal growth factor receptor (HER)2- metastatic breast cancer. There is evidence that palbociclib may reverse endocrine therapy resistance and that it may also be added to ongoing endocrine therapy beyond progression to obtain clinical benefit. The aim of the present study was to explore this possibility in 5 patients who received palbociclib + fulvestrant following disease progression while under treatment with fulvestrant alone. The median progression-free survival was not reached during a median follow-up of 25 months, and the most frequent best response was stable disease. Three patients remained under treatment on the last re-evaluation. All patients had highly endocrine-sensitive disease and had previously received fulvestrant for ≥12 months. The hypothesis that a selected subpopulation of patients with HR+/HER2- metastatic breast cancer may benefit from the addition of palbociclib to ongoing endocrine therapy beyond disease progression merits further investigation.
Collapse
Affiliation(s)
- Francesco Schettini
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', I-80131 Naples, Italy.,Translational Genomics and Targeted Therapeutics in Solid Tumors, IDIBAPS, 08036 Barcelona, Spain
| | - Irene De Santo
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', I-80131 Naples, Italy.,'Sandro Pitigliani' Medical Oncology Department, Hospital of Prato, I-59100 Prato, Italy
| | - Carmen G Rea
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', I-80131 Naples, Italy
| | - Martina Viggiani
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', I-80131 Naples, Italy
| | - Giuseppe Buono
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', I-80131 Naples, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', I-80131 Naples, Italy
| | - Cinzia Cardalesi
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', I-80131 Naples, Italy
| | - Rossella Lauria
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', I-80131 Naples, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', I-80131 Naples, Italy
| | - Valeria Forestieri
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', I-80131 Naples, Italy
| | - Guglielmo Thomas
- Clinica Mediterranea, I-80100 Naples, Italy, Senology Unit, Villa Betania Hospital, I-80100 Naples, Italy
| | | | - Gennaro Limite
- Department of General and Specialist Surgery, University of Naples 'Federico II', I-80131 Naples, Italy
| | - Antonello Accurso
- Department of General and Specialist Surgery, University of Naples 'Federico II', I-80131 Naples, Italy
| | - Luca Malorni
- 'Sandro Pitigliani' Medical Oncology Department, Hospital of Prato, I-59100 Prato, Italy
| | - Sabino De Placido
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', I-80131 Naples, Italy
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', I-80131 Naples, Italy
| |
Collapse
|
127
|
Robert T, Johnson JL, Guichaoua R, Yaron TM, Bach S, Cantley LC, Colas P. Development of a CDK10/CycM in vitro Kinase Screening Assay and Identification of First Small-Molecule Inhibitors. Front Chem 2020; 8:147. [PMID: 32175313 PMCID: PMC7056863 DOI: 10.3389/fchem.2020.00147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/17/2020] [Indexed: 12/31/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) constitute a family of 20 serine/threonine protein kinases that play pivotal roles in the regulation of numerous important molecular and cellular processes. CDKs have long been considered promising therapeutic targets in a variety of pathologies, and the recent therapeutic success of CDK4/6 inhibitors in breast cancers has renewed interest in their therapeutic potential. Small-molecule inhibitors have been identified for every human CDK, except for CDK10. The only recent discovery of an activating cyclin (CycM) for CDK10 enabled us to identify its first phosphorylation substrates and gain insights into its biological functions. Yet, our knowledge of this kinase remains incomplete, despite it being the only member of its family that causes severe human developmental syndromes, when mutated either on the cyclin or the CDK moiety. CDK10 small-molecule inhibitors would be useful in exploring the functions of this kinase and gauging its potential as a therapeutic target for some cancers. Here, we report the identification of an optimized peptide phosphorylation substrate of CDK10/CycM and the development of the first homogeneous, miniaturized CDK10/CycM in vitro kinase assay. We reveal the ability of known CDK inhibitors, among which clinically tested SNS-032, riviciclib, flavopiridol, dinaciclib, AZD4573 and AT7519, to potently inhibit CDK10/CycM. We also show that NVP-2, a strong, remarkably selective CDK9 inhibitor is an equally potent CDK10/CycM inhibitor. Finally, we validate this kinase assay for applications in high-throughput screening campaigns to discover new, original CDK10 inhibitors.
Collapse
Affiliation(s)
- Thomas Robert
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France.,Kinase Inhibitor Specialized Screening Facility (KISSf), Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Roxane Guichaoua
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Stéphane Bach
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France.,Kinase Inhibitor Specialized Screening Facility (KISSf), Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Pierre Colas
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France
| |
Collapse
|
128
|
Current Advances in the Treatment of BRAF-Mutant Melanoma. Cancers (Basel) 2020; 12:cancers12020482. [PMID: 32092958 PMCID: PMC7072236 DOI: 10.3390/cancers12020482] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/02/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma is the most lethal form of skin cancer. Melanoma is usually curable with surgery if detected early, however, treatment options for patients with metastatic melanoma are limited and the five-year survival rate for metastatic melanoma had been 15-20% before the advent of immunotherapy. Treatment with immune checkpoint inhibitors has increased long-term survival outcomes in patients with advanced melanoma to as high as 50% although individual response can vary greatly. A mutation within the MAPK pathway leads to uncontrollable growth and ultimately develops into cancer. The most common driver mutation that leads to this characteristic overactivation in the MAPK pathway is the B-RAF mutation. Current combinations of BRAF and MEK inhibitors that have demonstrated improved patient outcomes include dabrafenib with trametinib, vemurafenib with cobimetinib or encorafenib with binimetinib. Treatment with BRAF and MEK inhibitors has met challenges as patient responses began to drop due to the development of resistance to these inhibitors which paved the way for development of immunotherapies and other small molecule inhibitor approaches to address this. Resistance to these inhibitors continues to push the need to expand our understanding of novel mechanisms of resistance associated with treatment therapies. This review focuses on the current landscape of how resistance occurs with the chronic use of BRAF and MEK inhibitors in BRAF-mutant melanoma and progress made in the fields of immunotherapies and other small molecules when used alone or in combination with BRAF and MEK inhibitors to delay or circumvent the onset of resistance for patients with stage III/IV BRAF mutant melanoma.
Collapse
|
129
|
A unique CDK4/6 inhibitor: Current and future therapeutic strategies of abemaciclib. Pharmacol Res 2020; 156:104686. [PMID: 32068118 DOI: 10.1016/j.phrs.2020.104686] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/23/2022]
Abstract
Cell cycle dysregulation, characterised by aberrant activation of cyclin dependent kinases (CDKs), is a hallmark of cancer. After years of research on the first and second generations of less selective CDK inhibitors with unfavourable clinical activity and toxicity profiles, CDK4/6 inhibitors become the first and only class of highly specific CDK inhibitors being approved for cancer treatment to date. CDK4/6 inhibitors have transformed the treatment paradigm of estrogen receptor-positive (ER+) breast cancer, dramatically improving the survival outcomes of these patients when incorporated with conventional endocrine therapies in both the first and later-line settings. Currently, the efficacies of CDK4/6 inhibitors in other breast cancer subtypes and cancers are being actively explored. All three CDK4/6 inhibitors have demonstrated very similar clinical efficacies. However, being the least similar structurally, abemaciclib is the only CDK4/6 inhibitor with single agent activity in refractory metastatic ER + breast cancer, the ability to cross the blood brain barrier efficiently, and a distinct toxicity profile of lower myelosuppression such that it can be dosed continuously. Here, we further discuss the distinguishing features of abemaciclib as compared to the other two CDK4/6 inhibitors, palbociclib and ribociclib. Besides being the most potent inhibitor of CDK4/6, abemaciclib exhibits a wider selectivity towards other CDKs and kinases, and functions through additional mechanisms of action besides inducing G1 cell cycle arrest, in a dose dependent manner. Hence, abemaciclib has the potential to act independently of the CDK4/6-cyclin D-RB pathway, resulting in crucial implications on the possibly expanded clinical indications and predictive biomarkers of abemaciclib, in contrast to the other CDK4/6 inhibitors. The current status of preclinical evidence and clinical studies of abemaciclib as a single agent and in combination treatment in breast and other cancers, together with its potential predictive biomarkers, is also summarised in this review.
Collapse
|
130
|
Fatehi Hassanabad A, Chehade R, Breadner D, Raphael J. Esophageal carcinoma: Towards targeted therapies. Cell Oncol (Dordr) 2019; 43:195-209. [PMID: 31848929 DOI: 10.1007/s13402-019-00488-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Patients with esophageal cancer are confronted with high mortality rates. Whether it is esophageal squamous cell carcinoma (ESCC) or esophageal adenocarcinoma (EAC), patients usually present at advanced stages, with treatment options traditionally involving chemotherapy in metastatic settings. With the comprehensive genomic characterization of esophageal cancers, targeted therapies are gaining interest and agents such as ramucirumab, trastuzumab and pembrolizumab are already being used for the treatment of EAC. CONCLUSIONS Pembrolizumab has recently been FDA-approved for PD-L1 positive, locally advanced or metastatic ESCC. Despite comprehensive molecular characterization, however, available targed therapies for ESCC are still lagging behind. Herein, we discuss current trends towards more targeted therapies in esophageal cancers, taking into consideration unique features of ESCCs and EACs. Patients progressing on standard therapies should be subjected to genomic profiling and considered for clinical trials aimed at testing targeted therapies. Future targeted therapies may include CDK4/6 inhibitors, PARP inhibitors and inhibitors targeting the NRF2 and Wnt signaling pathways. Ultimately, optimized biomarker assays and next generation sequencing platforms may allow for the identification of subcategories of ESCC and EAC patients that will benefit from selective targeted therapies and/or combinations thereof.
Collapse
Affiliation(s)
| | - Rania Chehade
- Department of Medicine, Schulich School of Medicine and Dentistry, Schulich School of Medicine and Dentistry at Western University, London, ON, Canada
| | - Daniel Breadner
- Department of Oncology, Division of Medical Oncology, London Regional Cancer Program, Schulich School of Medicine and Dentistry at Western University, London, ON, Canada
| | - Jacques Raphael
- Department of Oncology, Division of Medical Oncology, London Regional Cancer Program, Schulich School of Medicine and Dentistry at Western University, London, ON, Canada
| |
Collapse
|
131
|
Huang SW, Yang HY, Huang WJ, Chen WC, Yu MC, Wang SW, Hsu YF, Hsu MJ. WMJ-S-001, a Novel Aliphatic Hydroxamate-Based Compound, Suppresses Lymphangiogenesis Through p38mapk-p53-survivin Signaling Cascade. Front Oncol 2019; 9:1188. [PMID: 31781495 PMCID: PMC6851263 DOI: 10.3389/fonc.2019.01188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background and purpose: Angiogenesis and lymphangiogenesis are major routes for metastatic spread of tumor cells. It thus represent the rational targets for therapeutic intervention of cancer. Recently, we showed that a novel aliphatic hydroxamate-based compound, WMJ-S-001, exhibits anti-angiogenic, anti-inflammatory and anti-tumor properties. However, whether WMJ-S-001 is capable of suppressing lymphangiogenesis remains unclear. We are thus interested in exploring WMJ-S-001's anti-lymphangiogenic mechanisms in lymphatic endothelial cell (LECs). Experimental approach: WMJ-S-001's effects on LEC proliferation, migration and invasion, as well as signaling molecules activation were analyzed by immunoblotting, flow-cytometry, MTT, BrdU, migration and invasion assays. We performed tube formation assay to examine WMJ-S-001's ex vivo anti-lymphangiogenic effects. Key results: WMJ-S-001 inhibited serum-induced cell proliferation, migration, invasion in murine LECs (SV-LECs). WMJ-S-001 reduced the mRNA and protein levels of survivin. Survivin siRNA significantly suppressed serum-induced SV-LEC invasion. WMJ-S-001 induced p53 phosphorylation and increased its reporter activities. In addition, WMJ-S-001 increased p53 binding to the promoter region of survivin, while Sp1 binding to the region was decreased. WMJ-S-001 induced p38 mitogen-activated protein kinase (p38MAPK) activation. p38MPAK signaling blockade significantly inhibited p53 phosphorylation and restored survivin reduction in WMJ-S-001-stimulated SV-LCEs. Furthermore, WMJ-S-001 induced survivin reduction and inhibited cell proliferation, invasion and tube formation of primary human LECs. Conclusions and Implications: These observations indicate that WMJ-S-001 may suppress lymphatic endothelial remodeling and reduce lymphangiogenesis through p38MAPK-p53-survivin signaling. It also suggests that WMJ-S-001 is a potential lead compound in developing novel agents for the treatment of lymphangiogenesis-associated diseases and cancer.
Collapse
Affiliation(s)
- Shiu-Wen Huang
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yu Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chuan Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Chieh Yu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Fen Hsu
- Division of General Surgery, Department of Surgery, Landseed Hospital, Taoyuan, Taiwan
| | - Ming-Jen Hsu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
132
|
Floristán A, Morales L, Hanniford D, Martinez C, Castellano-Sanz E, Dolgalev I, Ulloa-Morales A, Vega-Saenz de Miera E, Moran U, Darvishian F, Osman I, Kirchhoff T, Hernando E. Functional analysis of RPS27 mutations and expression in melanoma. Pigment Cell Melanoma Res 2019; 33:466-479. [PMID: 31663663 DOI: 10.1111/pcmr.12841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/10/2019] [Accepted: 10/27/2019] [Indexed: 12/11/2022]
Abstract
Next-generation sequencing has enabled genetic and genomic characterization of melanoma to an unprecedent depth. However, the high mutational background plus the limited depth of coverage of whole-genome sequencing performed on cutaneous melanoma samples make the identification of novel driver mutations difficult. We sought to explore the somatic mutation portfolio in exonic and gene regulatory regions in human melanoma samples, for which we performed targeted sequencing of tumors and matched germline DNA samples from 89 melanoma patients, identifying known and novel recurrent mutations. Two recurrent mutations found in the RPS27 promoter associated with decreased RPS27 mRNA levels in vitro. Data mining and IHC analyses revealed a bimodal pattern of RPS27 expression in melanoma, with RPS27-low patients displaying worse prognosis. In vitro characterization of RPS27-high and RPS27-low melanoma cell lines, as well as loss-of-function experiments, demonstrated that high RPS27 status provides increased proliferative and invasive capacities, while low RPS27 confers survival advantage in low attachment and resistance to therapy. Additionally, we demonstrate that 10 other cancer types harbor bimodal RPS27 expression, and in those, similarly to melanoma, RPS27-low expression associates with worse clinical outcomes. RPS27 promoter mutation could thus represent a mechanism of gene expression modulation in melanoma patients, which may have prognostic and predictive implications.
Collapse
Affiliation(s)
- Alfredo Floristán
- Departments of Pathology, New York University School of Medicine, New York, NY, USA.,Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Leah Morales
- Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.,Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Douglas Hanniford
- Departments of Pathology, New York University School of Medicine, New York, NY, USA.,Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Carlos Martinez
- Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.,Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Elena Castellano-Sanz
- Departments of Pathology, New York University School of Medicine, New York, NY, USA.,Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Igor Dolgalev
- Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY, USA
| | - Alejandro Ulloa-Morales
- Departments of Pathology, New York University School of Medicine, New York, NY, USA.,Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Eleazar Vega-Saenz de Miera
- Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.,Departments of Urology and Medicine, New York University School of Medicine, New York, NY, USA.,The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA
| | - Una Moran
- Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.,The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA
| | - Farbod Darvishian
- Departments of Pathology, New York University School of Medicine, New York, NY, USA.,Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Iman Osman
- Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.,Departments of Urology and Medicine, New York University School of Medicine, New York, NY, USA.,The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA
| | - Tomas Kirchhoff
- Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.,Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Eva Hernando
- Departments of Pathology, New York University School of Medicine, New York, NY, USA.,Interdisciplinary Melanoma Cooperative Group (IMCG), NYU Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| |
Collapse
|
133
|
Downregulation of class II phosphoinositide 3-kinase PI3K-C2β delays cell division and potentiates the effect of docetaxel on cancer cell growth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:472. [PMID: 31752944 PMCID: PMC6873561 DOI: 10.1186/s13046-019-1472-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Background Alteration of signalling pathways regulating cell cycle progression is a common feature of cancer cells. Several drugs targeting distinct phases of the cell cycle have been developed but the inability of many of them to discriminate between normal and cancer cells has strongly limited their clinical potential because of their reduced efficacy at the concentrations used to limit adverse side effects. Mechanisms of resistance have also been described, further affecting their efficacy. Identification of novel targets that can potentiate the effect of these drugs or overcome drug resistance can provide a useful strategy to exploit the anti-cancer properties of these agents to their fullest. Methods The class II PI3K isoform PI3K-C2β was downregulated in prostate cancer PC3 cells and cervical cancer HeLa cells using selective siRNAs and the effect on cell growth was determined in the absence or presence of the microtubule-stabilizing agent/anti-cancer drug docetaxel. Mitosis progression was monitored by time-lapse microscopy. Clonogenic assays were performed to determine the ability of PC3 and HeLa cells to form colonies upon PI3K-C2β downregulation in the absence or presence of docetaxel. Cell multi-nucleation was assessed by immunofluorescence. Tumour growth in vivo was assessed using a xenograft model of PC3 cells upon PI3K-C2β downregulation and in combination with docetaxel. Results Downregulation of PI3K-C2β delays mitosis progression in PC3 and HeLa cells, resulting in reduced ability to form colonies in clonogenic assays in vitro. Compared to control cells, PC3 cells lacking PI3K-C2β form smaller and more compact colonies in vitro and they form tumours more slowly in vivo in the first weeks after cells implant. Stable and transient PI3K-C2β downregulation potentiates the effect of low concentrations of docetaxel on cancer cell growth. Combination of PI3K-C2β downregulation and docetaxel almost completely prevents colonies formation in clonogenic assays in vitro and strongly inhibits tumour growth in vivo. Conclusions These data reveal a novel role for the class II PI3K PI3K-C2β during mitosis progression. Furthermore, data indicate that blockade of PI3K-C2β might represent a novel strategy to potentiate the effect of docetaxel on cancer cell growth.
Collapse
|
134
|
Lai E, Puzzoni M, Ziranu P, Pretta A, Impera V, Mariani S, Liscia N, Soro P, Musio F, Persano M, Donisi C, Tolu S, Balconi F, Pireddu A, Demurtas L, Pusceddu V, Camera S, Sclafani F, Scartozzi M. New therapeutic targets in pancreatic cancer. Cancer Treat Rev 2019; 81:101926. [PMID: 31739115 DOI: 10.1016/j.ctrv.2019.101926] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with poor survival. Of all newly diagnosed patients, only about 20% can benefit from a potentially curative surgical resection, the remaining 80% presenting with unresectable locally advanced (LAPC) or metastatic (MPC) disease. Currently, there are limited therapeutic options for LAPC and MPC patients. Furthermore, despite intensive research efforts to better understand the molecular bases of PDAC and the biological relevance of its tumor microenvironment, treatments still largely consist of classical cytotoxic chemotherapy agents. Several studies of genetic and epigenetic sequencing have demonstrated the existence of 4 molecular PDAC subtypes, with heterogeneous genetic characteristics and different biological behaviour: squamous, pancreatic progenitor, immunogenic and aberrantly differentiated endocrine exocrine (ADEX). These distinct subtypes derive from alterations at multiple levels. Apart from the DNA repair pathway, however, none of these has so far been validated as a clinically relevant therapeutic target. Also, PDAC is unique from an immunological perspective and many studies have recently tried to elucidate the role of intratumoral effector T-cells, RAS oncogene, immunosuppressive leukocytes and desmoplastic reaction in maintaining the immunological homeostasis of this disease. However, there still remains much to be learned about the mechanisms whereby the pancreatic immune microenvironment promotes immune escape of cancer cells. Furthermore, while therapies targeting the stroma as well as immunotherapies hold promise for the future, these are not yet standard of care. This review aims to outline the state-of-the-art of LAPC and MPC treatment, highlighting data on the target therapies failure and current ongoing clinical trials on new promising therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Andrea Pretta
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy.
| | - Valentino Impera
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy.
| | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Nicole Liscia
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy.
| | - Paolo Soro
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Francesca Musio
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Clelia Donisi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Simona Tolu
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy.
| | - Francesca Balconi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Annagrazia Pireddu
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy.
| | - Laura Demurtas
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Silvia Camera
- Medical Oncology Unit, Sapienza University of Rome - University Hospital and University of Cagliari, Cagliari, Italy.
| | | | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| |
Collapse
|
135
|
Rossi V, Berchialla P, Giannarelli D, Nisticò C, Ferretti G, Gasparro S, Russillo M, Catania G, Vigna L, Mancusi RL, Bria E, Montemurro F, Cognetti F, Fabi A. Should All Patients With HR-Positive HER2-Negative Metastatic Breast Cancer Receive CDK 4/6 Inhibitor As First-Line Based Therapy? A Network Meta-Analysis of Data from the PALOMA 2, MONALEESA 2, MONALEESA 7, MONARCH 3, FALCON, SWOG and FACT Trials. Cancers (Basel) 2019; 11:cancers11111661. [PMID: 31717791 PMCID: PMC6896062 DOI: 10.3390/cancers11111661] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022] Open
Abstract
Background: We aim to understand whether all patients with hormonal receptor (HR)-positive (+)/human epidermal growth factor receptor-2 (HER2)-negative (-) metastatic breast cancer (MBC) should receive cyclin D-dependent kinase (CDK) 4/6 inhibitor-based therapy as a first-line approach. METHODS A network meta-analysis (NMA) using the Bayesian hierarchical arm-based model, which provides the estimates for various effect sizes, were computed. RESULTS First-line treatment options in HR+/HER2- MBC, including CDK 4/6 inhibitors combined with aromatase inhibitors (AIs) or fulvestrant (F), showed a significantly longer progression-free survival (PFS) in comparison with AI monotherapy, with a total of 26% progression risk reduction. In the indirect comparison across the three classes of CDK 4/6 inhibitors and F endocrine-based therapies, the first strategy resulted in longer PFS, regardless of specific CDK 4/6 inhibitor (HR: 0.68; 95% CrI: 0.53-0.87 for palbociclib + AI, HR: 0.65; 95% CrI: 0.53-0.79 for ribociclib + AI, HR: 0.63; 95% CrI: 0.47-0.86 for abemaciclib + AI) and patient's characteristics. Longer PFS was also found in patients with bone-only and soft tissues limited disease treated with CDK 4/6 inhibitors. CONCLUSIONS CDK 4/6 inhibitors have similar efficacy when associated with an AI in the first-line treatment of HR+ MBC, and are superior to either F or AI monotherapy, regardless of any other patients or tumor characteristics.
Collapse
Affiliation(s)
- Valentina Rossi
- Breast Unit, S. Camillo-Forlanini Hospital of Rome, 00152 Rome, Italy; (V.R.); (L.V.)
| | - Paola Berchialla
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy;
| | - Diana Giannarelli
- Department of Medical Statistics, IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy;
| | - Cecilia Nisticò
- Division of Medical Oncology1, IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy; (C.N.); (G.F.); (S.G.); (M.R.); (G.C.)
| | - Gianluigi Ferretti
- Division of Medical Oncology1, IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy; (C.N.); (G.F.); (S.G.); (M.R.); (G.C.)
| | - Simona Gasparro
- Division of Medical Oncology1, IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy; (C.N.); (G.F.); (S.G.); (M.R.); (G.C.)
| | - Michelangelo Russillo
- Division of Medical Oncology1, IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy; (C.N.); (G.F.); (S.G.); (M.R.); (G.C.)
| | - Giovanna Catania
- Division of Medical Oncology1, IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy; (C.N.); (G.F.); (S.G.); (M.R.); (G.C.)
| | - Leonardo Vigna
- Breast Unit, S. Camillo-Forlanini Hospital of Rome, 00152 Rome, Italy; (V.R.); (L.V.)
| | | | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
- Department of Medical Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Filippo Montemurro
- Direzione Day Hospital Oncologico Multidisciplinare, Istituto di Candiolo, FPO-IRCCS, 10060 Candiolo, Italy;
| | | | - Alessandra Fabi
- Division of Medical Oncology1, IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy; (C.N.); (G.F.); (S.G.); (M.R.); (G.C.)
- Correspondence: ; Tel.: +39-065266-5144
| |
Collapse
|
136
|
Li P, Zhang X, Gu L, Zhou J, Deng D. P16 methylation increases the sensitivity of cancer cells to the CDK4/6 inhibitor palbociclib. PLoS One 2019; 14:e0223084. [PMID: 31652270 PMCID: PMC6814222 DOI: 10.1371/journal.pone.0223084] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
The P16 (CDKN2Aink4a) gene is an endogenous CDK4/6 inhibitor. Palbociclib (PD0332991) is an anti-CDK4/6 chemical for cancer treatment. P16 is most frequently inactivated by copy number deletion and DNA methylation in cancers. It is well known that cancer cells with P16 deletion are more sensitive to palbociclib than those without. However, whether P16 methylation is related to palbociclib sensitivity is not known. By analyzing public pharmacogenomic datasets, we found that the IC50 of palbociclib in cancer cell lines (n = 522) was positively correlated with both the P16 expression level and P16 gene copy number. Our experimental results further showed that cancer cell lines with P16 methylation were more sensitive to palbociclib than those without. To determine whether P16 methylation directly increased the sensitivity of cancer cells to palbociclib, we induced P16 methylation in the lung cancer cell lines H661 and HCC827 and the gastric cancer cell line BGC823 via an engineered P16-specific DNA methyltransferase (P16-Dnmt) and found that the sensitivity of these cells to palbociclib was significantly increased. The survival rate of P16-Dnmt cells was significantly lower than that of vector control cells 48 hrs post treatment with palbociclib (10 μM). Notably, palbociclib treatment also selectively inhibited the proliferation of the P16-methylated subpopulation of P16-Dnmt cells, further indicating that P16 methylation can increase the sensitivity of cells to this CDK4/6 inhibitor. These results were confirmed in an animal experiment. In conclusion, inactivation of the P16 gene by DNA methylation can increase the sensitivity of cancer cells to palbociclib.
Collapse
Affiliation(s)
- Paiyun Li
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xuehong Zhang
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
- * E-mail:
| |
Collapse
|
137
|
Hale R, Sandakly S, Shipley J, Walters Z. Epigenetic Targets in Synovial Sarcoma: A Mini-Review. Front Oncol 2019; 9:1078. [PMID: 31681608 PMCID: PMC6813544 DOI: 10.3389/fonc.2019.01078] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/30/2019] [Indexed: 01/25/2023] Open
Abstract
Synovial Sarcomas (SS) are a type of Soft Tissue Sarcoma (STS) and represent 8-10% of all STS cases. Although SS can arise at any age, it typically affects younger individuals aged 15-35 and is therefore part of both pediatric and adult clinical practices. SS occurs primarily in the limbs, often near joints, but can present anywhere. It is characterized by the recurrent pathognomonic chromosomal translocation t(X;18)(p11.2;q11.2) that most frequently fuses SSX1 or SSX2 genes with SS18. This leads to the expression of the SS18-SSX fusion protein, which causes disturbances in several interacting multiprotein complexes such as the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex, also known as the BAF complex and the Polycomb Repressive Complex 1 and 2 (PRC1 and PRC2). Furthermore, this promotes widespread epigenetic rewiring, leading to aberrant gene expression that drives the pathogenesis of SS. Good prognoses are characterized predominantly by small tumor size and young patient age. Whereas, high tumor grade and an increased genomic complexity of the tumor constitute poor prognostic factors. The current therapeutic strategy relies on chemotherapy and radiotherapy, the latter of which can lead to chronic side effects for pediatric patients. We will focus on the known roles of SWI/SNF, PRC1, and PRC2 as the main effectors of the SS18-SSX-mediated genome modifications and we present existing biological rationale for potential therapeutic targets and treatment strategies.
Collapse
Affiliation(s)
- Ryland Hale
- Translational Epigenomics Team, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sami Sandakly
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Zoë Walters
- Translational Epigenomics Team, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
138
|
Cimadamore A, Massari F, Santoni M, Mollica V, Di Nunno V, Cheng L, Lopez-Beltran A, Scarpelli M, Montironi R, Moch H. Molecular characterization and diagnostic criteria of renal cell carcinoma with emphasis on liquid biopsies. Expert Rev Mol Diagn 2019; 20:141-150. [PMID: 31498685 DOI: 10.1080/14737159.2019.1665510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Over the past 6 years, important genomic and transcriptomic studies performed on RCC reported a comprehensive molecular description of RCC pathogenic alterations. Such molecular findings pave the way for an integrated classification, based on histopathology aspects and molecular alterations in order to personalize the clinical management of RCC.Areas covered: The aim of this review is to evaluate the current knowledge and the potential value of liquid biopsy in RCC. Studies on presence and analysis of circulating tumor DNA (ctDNA), circulating RNA, specific microRNA, long non-coding RNA, and circulating tumor cells are reported for each phase of disease, from the diagnostic setting to the localized disease and, lastly, in the metastatic stage.Expert opinion: Advantages of liquid biopsies compared to serial tissue sampling are numerous. However, some limitations must be addressed before considering liquid biopsy as a noninvasive biomarker of clinical utility. The suboptimal sensitivity depends on the assessment technique and genetic platforms used, the tumor organ, the tumor stage, tumor heterogeneity, and clonality. The rate of discordance with tumor tissue genotyping may depends on temporal heterogeneity, spatial heterogeneity, and/or assay error (false-negative or false-positive genotyping).
Collapse
Affiliation(s)
- Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | | | | - Veronica Mollica
- Division of Oncology, S. Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Marina Scarpelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
139
|
Pre-treatment with the CDK4/6 inhibitor palbociclib improves the efficacy of paclitaxel in TNBC cells. Sci Rep 2019; 9:13014. [PMID: 31506466 PMCID: PMC6736958 DOI: 10.1038/s41598-019-49484-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
Triple Negative Breast Cancer (TNBC) is a challenging disease due to the lack of druggable targets; therefore, chemotherapy remains the standard of care and the identification of new targets is a high clinical priority. Alterations in the components of the cell cycle machinery have been frequently reported in cancer; given the success obtained with the CDK4/6 inhibitor palbocicib in ER-positive BC, we explored the potential of combining this drug with chemotherapy in Rb-positive TNBC cell models. The simultaneous combination of palbociclib with paclitaxel exerted an antagonistic effect; by contrast, the sequential treatment inhibited cell proliferation and increased cell death more efficaciously than single treatments. By down-regulating the E2F target c-myc, palbociclib reduced HIF-1α and GLUT-1 expression, and hence glucose uptake and consumption both under normoxic and hypoxic conditions. Importantly, these inhibitory effects on glucose metabolism were enhanced by palbociclib/paclitaxel sequential combination; the superior efficacy of such combination was ascribed to the ability of paclitaxel to inhibit palbociclib-mediated induction of AKT and to further down-regulate the Rb/E2F/c-myc signaling. Our results suggest that the efficacy of standard chemotherapy can be significantly improved by a pre-treatment with palbociclib, thus offering a better therapeutic option for Rb-proficient TNBC.
Collapse
|
140
|
Bollerslev J, Schalin-Jäntti C, Rejnmark L, Siggelkow H, Morreau H, Thakker R, Sitges-Serra A, Cetani F, Marcocci C. MANAGEMENT OF ENDOCRINE DISEASE: Unmet therapeutic, educational and scientific needs in parathyroid disorders. Eur J Endocrinol 2019; 181:P1-P19. [PMID: 31176307 PMCID: PMC6598862 DOI: 10.1530/eje-19-0316] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
PARAT, a new European Society of Endocrinology program, aims to identify unmet scientific and educational needs of parathyroid disorders, such as primary hyperparathyroidism (PHPT), including parathyroid cancer (PC), and hypoparathyroidism (HypoPT). The discussions and consensus statements from the first PARAT workshop (September 2018) are reviewed. PHPT has a high prevalence in Western communities, PHPT has a high prevalence in Western communities, yet evidence is sparse concerning the natural history and whether morbidity and long-term outcomes are related to hypercalcemia or plasma PTH concentrations, or both. Cardiovascular mortality and prevalence of low energy fractures are increased, whereas Quality of Life is decreased, although their reversibility by treatment of PHPT has not been convincingly demonstrated. PC is a rare cause of PHPT, with an increasing incidence, and international collaborative studies are required to advance knowledge of the genetic mechanisms, biomarkers for disease activity, and optimal treatments. For example, ~20% of PCs demonstrate high mutational burden, and identifying targetable DNA variations, gene amplifications and gene fusions may facilitate personalized care, such as different forms of immunotherapy or targeted therapy. HypoPT, a designated orphan disease, is associated with a high risk of symptoms and complications. Most cases are secondary to neck surgery. However, there is a need to better understand the relation between disease biomarkers and intellectual function, and to establish the role of PTH in target tissues, as these may facilitate the appropriate use of PTH substitution therapy. Management of parathyroid disorders is challenging, and PARAT has highlighted the need for international transdisciplinary scientific and educational studies in advancing in this field.
Collapse
Affiliation(s)
- Jens Bollerslev
- Section of Specialized Endocrinology, Oslo University Hospital
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Camilla Schalin-Jäntti
- Division of Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Heide Siggelkow
- Endokrinologikum Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Hans Morreau
- Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Rajesh Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Antonio Sitges-Serra
- Endocrine Surgery Unit, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Filomena Cetani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
141
|
Sánchez-Martínez C, Lallena MJ, Sanfeliciano SG, de Dios A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances (2015-2019). Bioorg Med Chem Lett 2019; 29:126637. [PMID: 31477350 DOI: 10.1016/j.bmcl.2019.126637] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
Abstract
Sustained proliferative capacity and gene dysregulation are hallmarks of cancer. In mammalian cells, cyclin-dependent kinases (CDKs) control critical cell cycle checkpoints and key transcriptional events in response to extracellular and intracellular signals leading to proliferation. Significant clinical activity for the treatment of hormone receptor positive metastatic breast cancer has been demonstrated by palbociclib, ribociclib and abemaciclib, dual CDK4/6 inhibitors recently FDA-approved. SY-1365, a CDK7 inhibitor has shown initial encouraging data in phase I for solid tumors treatment. These results have rejuvenated the CDKs research field. This review provides an overview of relevant advances on CDK inhibitor research since 2015 to 2019, with special emphasis on transcriptional CDK inhibitors, new emerging strategies such as target protein degradation and compounds under clinical evaluation.
Collapse
Affiliation(s)
| | - María José Lallena
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Alcobendas (Madrid) 28108, Spain
| | | | - Alfonso de Dios
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, IN 46285, United States
| |
Collapse
|
142
|
Gregory PA. The miR-200-Quaking axis functions in tumour angiogenesis. Oncogene 2019; 38:6767-6769. [DOI: 10.1038/s41388-019-0916-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/18/2019] [Indexed: 11/09/2022]
|
143
|
Miller TW, Traphagen NA, Li J, Lewis LD, Lopes B, Asthagiri A, Loomba J, De Jong J, Schiff D, Patel SH, Purow BW, Fadul CE. Tumor pharmacokinetics and pharmacodynamics of the CDK4/6 inhibitor ribociclib in patients with recurrent glioblastoma. J Neurooncol 2019; 144:563-572. [PMID: 31399936 DOI: 10.1007/s11060-019-03258-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/02/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION We conducted a phase Ib study (NCT02345824) to determine whether ribociclib, an inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6), penetrates tumor tissue and modulates downstream signaling pathways including retinoblastoma protein (Rb) in patients with recurrent glioblastoma (GBM). METHODS Study participants received ribociclib (600 mg QD) for 8-21 days before surgical resection of their recurrent GBM. Total and unbound concentrations of ribociclib were measured in samples of tumor tissue, plasma, and cerebrospinal fluid (CSF). We analyzed tumor specimens obtained from the first (initial/pre-study) and second (recurrent/on-study) surgery by immunohistochemistry for Rb status and downstream signaling of CDK4/6 inhibition. Participants with Rb-positive recurrent tumors continued ribociclib treatment on a 21-day-on, 7-day-off schedule after surgery, and were monitored for toxicity and disease progression. RESULTS Three participants with recurrent Rb-positive GBM participated in this study. Mean unbound (pharmacologically active) ribociclib concentrations in plasma, CSF, MRI-enhancing, MRI-non-enhancing, and tumor core regions were 0.337 μM, 0.632 μM, 1.242 nmol/g, 0.484 nmol/g, and 1.526 nmol/g, respectively, which exceeded the in vitro IC50 (0.04 μM) for inhibition of CDK4/6 in cell-free assay. Modulation of pharmacodynamic markers of ribociclib CDK 4/6 inhibition in tumor tissues were inconsistent between study participants. No participants experienced serious adverse events, but all experienced early disease progression. CONCLUSIONS This study suggests that ribociclib penetrated recurrent GBM tissue at concentrations predicted to be therapeutically beneficial. Our study was unable to demonstrate tumor pharmacodynamic correlates of drug activity. Although well tolerated, ribociclib monotherapy seemed ineffective for the treatment of recurrent GBM.
Collapse
Affiliation(s)
- Todd W Miller
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine At Dartmouth, Lebanon, NH, USA
| | - Nicole A Traphagen
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine At Dartmouth, Lebanon, NH, USA
| | - Jing Li
- Pharmacology Core, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Lionel D Lewis
- Section of Clinical Pharmacology, Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine At Dartmouth, Lebanon, NH, USA
| | - Beatriz Lopes
- Department of Pathology, Divisions of Neuropathology and Molecular Diagnostics, University of Virginia Health System, Charlottesville, VA, USA
| | - Ashok Asthagiri
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Johanna Loomba
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Jenny De Jong
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia Health System, P.O. Box 800432, Charlottesville, VA, 22908, USA
| | - Sohil H Patel
- Department of Radiology and Medical Imaging, Division of Neuroradiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Benjamin W Purow
- Department of Neurology, Division of Neuro-Oncology, University of Virginia Health System, P.O. Box 800432, Charlottesville, VA, 22908, USA
| | - Camilo E Fadul
- Department of Neurology, Division of Neuro-Oncology, University of Virginia Health System, P.O. Box 800432, Charlottesville, VA, 22908, USA.
| |
Collapse
|
144
|
Wang F, Chen G, Quinn MJ, Chen S, Ji X, Shentu Y, Li Y. Increased CDK4 protein expression predicts a poor prognosis in mucosal melanoma associated with the p16 INK4a-CDK4-pRb pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2819-2825. [PMID: 31934118 PMCID: PMC6949700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Mucosal melanoma (MM) occurs in non-cutaneous mucosal sites, e.g., the head and neck or the lower genital tract; it is a rare and aggressive neoplasm with a poor prognosis. To date, few prognostic markers of MM have been well-defined. The aim of this study is to clarify the prognostic value of the cell-cycle regulatory proteins (CDK4, pRb and CyclinD1, p16) which are associated with the p16INK4a-CDK4-pRb pathway in MM. A total of 54 MM samples were obtained from biopsy specimens, and the expressions of the cell-cycle regulatory proteins (CDK4, pRb and CyclinD1, p16) were assessed by immunohistochemistry. A Mantel-Cox regression analysis was performed to investigate the association of these proteins with the overall survival of MM patients. Increased CDK4 expression was significantly associated with reduced survival at three years (P = 0.022). Increased CDK4 protein expression may be a helpful prognostic indicator for the management of these patients who infiltrate into the p16INK4a-CDK4-pRb pathway. In addition, we found that those patients with low expression of CDK4 were significantly older (P < 0.05) compared to the patients with high expression of CDK4.
Collapse
Affiliation(s)
- Fang Wang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Guorong Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - M J Quinn
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Suidan Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Xiuhuan Ji
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Yangyang Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| |
Collapse
|
145
|
Tong Z, Sathe A, Ebner B, Qi P, Veltkamp C, Gschwend JE, Holm PS, Nawroth R. Functional genomics identifies predictive markers and clinically actionable resistance mechanisms to CDK4/6 inhibition in bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:322. [PMID: 31331377 PMCID: PMC6647307 DOI: 10.1186/s13046-019-1322-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/11/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND CDK4/6 inhibitors are a promising treatment strategy in tumor therapy but are hampered by resistance mechanisms. This study was performed to reveal predictive markers, mechanisms of resistance and to develop rational combination therapies for a personalized therapy approach in bladder cancer. METHODS A genome-scale CRISPR-dCas9 activation screen for resistance to the CDK4/6 inhibitor Palbociclib was performed in the bladder cancer derived cell line T24. sgRNA counts were analyzed using next generation sequencing and MAGeCK-VISPR. Significantly enriched sgRNAs were cloned and validated on a molecular and functional level for mediating resistance to Palbociclib treatment. Analysis was done in vitro and in vivo in the chorioallantois membrane model of the chicken embryo. Comparison of screen hits to signaling pathways and clinically relevant molecular alterations was performed using DAVID, Reactome, DGIdb and cBioPortal. RESULTS In the screen, 1024 sgRNAs encoding for 995 genes were significantly enriched indicative of mediators of resistance. 8 random sgRNAs were validated, revealing partial rescue to Palbociclib treatment. Within this gene panel, members of Receptor-Tyrosine Kinases, PI3K-Akt, Ras/MAPK, JAK/STAT or Wnt signaling pathways were identified. Combination of Palbociclib with inhibitors against these signaling pathways revealed beneficial effects in vitro and in in vivo xenografts. CONCLUSIONS Identification of potential predictive markers, resistance mechanisms and rational combination therapies could be achieved by applying a CRISPR-dCas9 screening approach in bladder cancer.
Collapse
Affiliation(s)
- Zhichao Tong
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| | - Anuja Sathe
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| | - Benedikt Ebner
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| | - Pan Qi
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| | - Christian Veltkamp
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, Einsteinstrasse 25, 81675, Munich, Germany
| | - Juergen E Gschwend
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| | - Per Sonne Holm
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| | - Roman Nawroth
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany.
| |
Collapse
|
146
|
Zhang C, Stockwell SR, Elbanna M, Ketteler R, Freeman J, Al-Lazikani B, Eccles S, De Haven Brandon A, Raynaud F, Hayes A, Clarke PA, Workman P, Mittnacht S. Signalling involving MET and FAK supports cell division independent of the activity of the cell cycle-regulating CDK4/6 kinases. Oncogene 2019; 38:5905-5920. [PMID: 31296956 PMCID: PMC6756076 DOI: 10.1038/s41388-019-0850-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022]
Abstract
Deregulation of cyclin-dependent kinases 4 and 6 (CDK4/6) is highly prevalent in cancer; yet, inhibitors against these kinases are currently used only in restricted tumour contexts. The extent to which cancers depend on CDK4/6 and the mechanisms that may undermine such dependency are poorly understood. Here, we report that signalling engaging the MET proto-oncogene receptor tyrosine kinase/focal adhesion kinase (FAK) axis leads to CDK4/6-independent CDK2 activation, involving as critical mechanistic events loss of the CDKI p21CIP1 and gain of its regulator, the ubiquitin ligase subunit SKP2. Combined inhibition of MET/FAK and CDK4/6 eliminates the proliferation capacity of cancer cells in culture, and enhances tumour growth inhibition in vivo. Activation of the MET/FAK axis is known to arise through cancer extrinsic and intrinsic cues. Our work predicts that such cues support cell division independent of the activity of the cell cycle-regulating CDK4/6 kinases and identifies MET/FAK as a tractable route to broaden the utility of CDK4/6 inhibitor-based therapies in the clinic.
Collapse
Affiliation(s)
- Chi Zhang
- UCL Cancer Institute, University College London, London, WC1E 6DD, UK
- Cancer Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London, SM2 5NG, UK
| | - Simon R Stockwell
- UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - May Elbanna
- UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Jamie Freeman
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Bissan Al-Lazikani
- Cancer Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London, SM2 5NG, UK
| | - Suzanne Eccles
- Cancer Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London, SM2 5NG, UK
| | - Alexis De Haven Brandon
- Cancer Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London, SM2 5NG, UK
| | - Florence Raynaud
- Cancer Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London, SM2 5NG, UK
| | - Angela Hayes
- Cancer Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London, SM2 5NG, UK
| | - Paul A Clarke
- Cancer Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London, SM2 5NG, UK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London, SM2 5NG, UK.
| | - Sibylle Mittnacht
- UCL Cancer Institute, University College London, London, WC1E 6DD, UK.
| |
Collapse
|
147
|
Indovina P, Pentimalli F, Conti D, Giordano A. Translating RB1 predictive value in clinical cancer therapy: Are we there yet? Biochem Pharmacol 2019; 166:323-334. [PMID: 31176618 DOI: 10.1016/j.bcp.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
The retinoblastoma RB1 gene has been identified in the 80s as the first tumor suppressor. RB1 loss of function, as well alterations in its pathway, occur in most human cancers and often have prognostic value. RB1 has a key role in restraining cell cycle entry and, along with its family members, regulates a myriad of cellular processes and affects cell response to a variety of stimuli, ultimately determining cell fate. Consistently, RB1 status is a crucial determinant of the cell response to antitumoral therapies, impacting on the outcome of both traditional and modern anti-cancer strategies, including precision medicine approaches, such as kinase inhibitors, and immunotherapy. Despite many efforts however, the predictive value of RB1 status in the clinical practice is still underused, mainly owing to the complexity of RB1 function, to differences depending on the cellular context and on the therapeutic strategies, and, not-lastly, to technical issues. Here, we provide an overview of studies analyzing the role of RB1 in response to conventional cytotoxic and cytostatic therapeutic agents in different cancer types, including hormone dependent ones. We also review RB1 predictive value in the response to the last generation CDK4/6 inhibitors, other kinase inhibitors, and immunotherapy and discuss new emerging non-canonical roles of RB1 that could impact on the response to antitumoral treatments.
Collapse
Affiliation(s)
- Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli 80131, Italy
| | - Daniele Conti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy.
| |
Collapse
|
148
|
Steele TM, Talbott GC, Sam A, Tepper CG, Ghosh PM, Vinall RL. Obatoclax, a BH3 Mimetic, Enhances Cisplatin-Induced Apoptosis and Decreases the Clonogenicity of Muscle Invasive Bladder Cancer Cells via Mechanisms That Involve the Inhibition of Pro-Survival Molecules as Well as Cell Cycle Regulators. Int J Mol Sci 2019; 20:ijms20061285. [PMID: 30875757 PMCID: PMC6470498 DOI: 10.3390/ijms20061285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Several studies by our group and others have determined that expression levels of Bcl-2 and/or Bcl-xL, pro-survival molecules which are associated with chemoresistance, are elevated in patients with muscle invasive bladder cancer (MI-BC). The goal of this study was to determine whether combining Obatoclax, a BH3 mimetic which inhibits pro-survival Bcl-2 family members, can improve responses to cisplatin chemotherapy, the standard of care treatment for MI-BC. Three MI-BC cell lines (T24, TCCSuP, 5637) were treated with Obatoclax alone or in combination with cisplatin and/or pre-miR-34a, a molecule which we have previously shown to inhibit MI-BC cell proliferation via decreasing Cdk6 expression. Proliferation, clonogenic, and apoptosis assays confirmed that Obatoclax can decrease cell proliferation and promote apoptosis in a dose-dependent manner. Combination treatment experiments identified Obatoclax + cisplatin as the most effective treatment. Immunoprecipitation and Western analyses indicate that, in addition to being able to inhibit Bcl-2 and Bcl-xL, Obatoclax can also decrease cyclin D1 and Cdk4/6 expression levels. This has not previously been reported. The combined data demonstrate that Obatoclax can inhibit cell proliferation, promote apoptosis, and significantly enhance the effectiveness of cisplatin in MI-BC cells via mechanisms that likely involve the inhibition of both pro-survival molecules and cell cycle regulators.
Collapse
Affiliation(s)
- Thomas M Steele
- Department of Pharmaceutical & Biomedical Sciences, California Northstate University College of Pharmacy (CNUCOP), Elk Grove, CA 95757, USA.
- VA Northern California Health Care System (VANCHCS), Sacramento, CA 95655, USA.
- Department of Urologic Surgery, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA.
| | - George C Talbott
- Department of Pharmaceutical & Biomedical Sciences, California Northstate University College of Pharmacy (CNUCOP), Elk Grove, CA 95757, USA.
| | - Anhao Sam
- Department of Pharmaceutical & Biomedical Sciences, California Northstate University College of Pharmacy (CNUCOP), Elk Grove, CA 95757, USA.
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA.
| | - Paramita M Ghosh
- VA Northern California Health Care System (VANCHCS), Sacramento, CA 95655, USA.
- Department of Urologic Surgery, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA.
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA.
| | - Ruth L Vinall
- Department of Pharmaceutical & Biomedical Sciences, California Northstate University College of Pharmacy (CNUCOP), Elk Grove, CA 95757, USA.
| |
Collapse
|