101
|
Sangija F, Martin H, Matemu A. African nightshades (Solanum nigrum complex): The potential contribution to human nutrition and livelihoods in sub-Saharan Africa. Compr Rev Food Sci Food Saf 2021; 20:3284-3318. [PMID: 33938139 DOI: 10.1111/1541-4337.12756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/22/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Achieving zero hunger in sub-Saharan Africa (SSA) without minimizing postharvest losses of agricultural products is impossible. Therefore, a holistic approach is vital to end hunger, simultaneously improving food security, diversity, and livelihoods. This review focuses on the African nightshades (ANS) Solanum spp. contribution to improving food and nutrition security in SSA. Different parts of ANS are utilized as food and medicine; however, pests and diseases hinder ANS utilization. African nightshade is rich in micronutrients such as β-carotene, vitamins C and E, minerals (iron, calcium, and zinc), and dietary fiber. The leaves contain a high amount of nutrients than the berries. Proper utilization of ANS can contribute to ending hidden hunger, mainly in children and pregnant women. Literature shows that ANS contains antinutritional factors such as oxalate, phytate, nitrate, and alkaloids; however, their quantities are low to cause potential health effects. Several improved varieties with high yields, rich in nutrients, and low alkaloids have been developed in SSA. Various processing and preservation techniques such as cooking, drying, and fermentation are feasible techniques for value addition on ANS in SSA; moreover, most societies are yet to adopt them effectively. Furthermore, promoting value addition and commercialization of ANS is of importance and can create more jobs. Therefore, this review provides an overview of ANS production and challenges that hinder their utilization, possible solutions, and future research suggestions. This review concludes that ANS is an essential nutritious leafy vegetable for improving nutrition and livelihoods in SSA.
Collapse
Affiliation(s)
- Frank Sangija
- Department of Food Biotechnology and Nutritional Sciences (FBNS), Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Haikael Martin
- Department of Food Biotechnology and Nutritional Sciences (FBNS), Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Athanasia Matemu
- Department of Food Biotechnology and Nutritional Sciences (FBNS), Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| |
Collapse
|
102
|
Abraham J, Dowling K, Florentine S. Can Copper Products and Surfaces Reduce the Spread of Infectious Microorganisms and Hospital-Acquired Infections? MATERIALS (BASEL, SWITZERLAND) 2021; 14:3444. [PMID: 34206230 PMCID: PMC8269470 DOI: 10.3390/ma14133444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/04/2023]
Abstract
Pathogen transfer and infection in the built environment are globally significant events, leading to the spread of disease and an increase in subsequent morbidity and mortality rates. There are numerous strategies followed in healthcare facilities to minimize pathogen transfer, but complete infection control has not, as yet, been achieved. However, based on traditional use in many cultures, the introduction of copper products and surfaces to significantly and positively retard pathogen transmission invites further investigation. For example, many microbes are rendered unviable upon contact exposure to copper or copper alloys, either immediately or within a short time. In addition, many disease-causing bacteria such as E. coli O157:H7, hospital superbugs, and several viruses (including SARS-CoV-2) are also susceptible to exposure to copper surfaces. It is thus suggested that replacing common touch surfaces in healthcare facilities, food industries, and public places (including public transport) with copper or alloys of copper may substantially contribute to limiting transmission. Subsequent hospital admissions and mortality rates will consequently be lowered, with a concomitant saving of lives and considerable levels of resources. This consideration is very significant in times of the COVID-19 pandemic and the upcoming epidemics, as it is becoming clear that all forms of possible infection control measures should be practiced in order to protect community well-being and promote healthy outcomes.
Collapse
Affiliation(s)
- Joji Abraham
- School of Engineering, Information Technology and Physical Sciences, Mt Helen Campus, Ballarat, VIC 3353, Australia;
| | - Kim Dowling
- School of Engineering, Information Technology and Physical Sciences, Mt Helen Campus, Ballarat, VIC 3353, Australia;
- Department of Geology, University of Johannesburg, Johannesburg 2006, South Africa
| | - Singarayer Florentine
- Future Regions Research Centre, School of Science, Psychology and Sport, Federation University Australia, Mt Helen Campus, Ballarat, VIC 3353, Australia;
| |
Collapse
|
103
|
Simonetti T, Peter K, Chen Y, Jin Q, Zhang G, LaBorde LF, Macarisin D. Prevalence and Distribution of Listeria monocytogenes in Three Commercial Tree Fruit Packinghouses. Front Microbiol 2021; 12:652708. [PMID: 34177834 PMCID: PMC8222780 DOI: 10.3389/fmicb.2021.652708] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
A 2-year longitudinal study of three tree fruit packinghouses was conducted to determine the prevalence and distribution of Listeria monocytogenes. Samples were collected from 40 standardized non-food-contact surface locations six different times over two 11-month production seasons. Of the 1,437 samples collected, the overall prevalence of L. monocytogenes over the course of the study was 17.5%. Overall prevalence did not differ significantly (p > 0.05) between each year. However, values varied significantly (p ≤ 0.05) within each production season following packing activity levels; increasing in the fall, peaking in early winter, and then decreasing through spring. L. monocytogenes was most often found in the packing line areas, where moisture and fruit debris were commonly observed and less often in dry cold storage and packaging areas. Persistent contamination was attributed to the inability of water drainage systems to prevent moisture accumulation on floors and equipment during peak production times and uncontrolled employee and equipment traffic throughout the facility. This is the first multiyear longitudinal surveillance study to compare L. monocytogenes prevalence at standardized sample sites common to multiple tree fruit packinghouses. Recommendations based on our results will help packinghouse operators to identify critical areas for inclusion in their L. monocytogenes environmental monitoring programs.
Collapse
Affiliation(s)
- Tobin Simonetti
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | - Kari Peter
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States
| | - Yi Chen
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Qing Jin
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Guodong Zhang
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Luke F LaBorde
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | - Dumitru Macarisin
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
104
|
Castellanos-Rozo J, Pérez Pulido R, Grande MJ, Lucas R, Gálvez A. Potentially pathogenic bacteria isolated from Paipa cheese and its susceptibility profiles to antibiotics and biocides. Braz J Microbiol 2021; 52:1535-1543. [PMID: 34050446 DOI: 10.1007/s42770-021-00522-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/04/2021] [Indexed: 11/24/2022] Open
Abstract
The objective of this work was to evaluate the microbiological quality of cheese produced by formal and informal micro-enterprises in Paipa, Colombia, to isolate potentially pathogenic bacteria and to determine their prevalence and resistance to antimicrobials such as antibiotics and biocides. Sixteen micro-enterprises of the seventy existing in the region were sampled during 3 years. Viable concentrations of aerobic mesophiles, total and fecal coliforms, Salmonella sp., Listeria monocytogenes, Staphylococcus sp., yeasts, and molds were determined. Seventy-three bacterial isolates were identified by 16S rRNA gene sequencing. The susceptibility of the isolates to antibiotics and biocides was determined. The results indicated that between 98 and 100% of the cheese samples (n = 48 samples) of formal and informal micro-enterprises presented populations of total and fecal coliforms and Staphylococcus sp. above the limits established by Colombian regulations and varied according to the micro-enterprise. The results also indicated that 56% of Staphylococcus isolates were S. aureus. L. monocytogenes was positive in 38% of the samples. Salmonella sp. was not detected. The coliforms that prevailed were Escherichia coli (25%), Citrobacter freundii (14%), and Proteus mirabilis (8%). All L. monocytogenes were sensitive to ampicillin but resistant to erythromycin and trimethoprim-sulfamethoxazole. S. aureus isolates were susceptible to most antibiotics, except tetracycline and erythromycin (7% resistance). Likewise, 30% of coliforms (n = 36) were multidrug-resistant to antibiotics but susceptible to biocides.
Collapse
Affiliation(s)
- José Castellanos-Rozo
- Department of Biology and Microbiology, Faculty of Sciences and Engineering, Universidad de Boyacá, 150003, Tunja, Colombia
| | - Rubén Pérez Pulido
- Microbiology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071, Jaén, Spain
| | - Mª José Grande
- Microbiology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071, Jaén, Spain
| | - Rosario Lucas
- Microbiology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071, Jaén, Spain
| | - Antonio Gálvez
- Microbiology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071, Jaén, Spain.
| |
Collapse
|
105
|
Liu Y, Dong Q, Wang X, Liu B, Yuan S. Analysis and probabilistic simulation of
Listeria monocytogenes
inactivation in cooked beef during unsteady heating. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yangtai Liu
- University of Shanghai for Science and Technology Shanghai200093China
| | - Qingli Dong
- University of Shanghai for Science and Technology Shanghai200093China
| | - Xiang Wang
- University of Shanghai for Science and Technology Shanghai200093China
| | - Baolin Liu
- University of Shanghai for Science and Technology Shanghai200093China
| | - Sanling Yuan
- University of Shanghai for Science and Technology Shanghai200093China
| |
Collapse
|
106
|
Jorgensen J, Bland R, Waite-Cusic J, Kovacevic J. Diversity and antimicrobial resistance of Listeria spp. and L. monocytogenes clones from produce handling and processing facilities in the Pacific Northwest. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
107
|
Collu D, Marras L, Sanna A, Carrucciu G, Pinna A, Carraro V, Sanna G, Coroneo V. Evaluation of growth potential and growth dynamics of Listeria monocytogenes on ready-to-eat fresh fruit. Ital J Food Saf 2021; 10:9337. [PMID: 33907689 PMCID: PMC8056446 DOI: 10.4081/ijfs.2021.9337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
The consumption of fresh or RTE fruits is increasing every year and Listeria monocytogenes has been identified on raw or minimally processed fruits. A food product can become contaminated with L. monocytogenes anywhere along the pathway of food production during planting, harvesting, packaging, distribution and serving. The aim of this work was to assess the microbiological risks associated with consumption of ready- to- eat fruit such as melon, pineapple, coconut and fruit salad. The presence of Escherichia coli, Salmonella spp. and L. monocytogenes was also evaluated. Microbiological challenge tests were carried out for the evaluation of the L. monocytogenes growth potential in RTE fruit stored at 4 and 8°C. E. coli counts resulted under the detection limit of 10 CFU g-1, Salmonella and L. monocytogenes were not detected (absence in 25g). The growth potential values in coconut and melon (δ>0.5) showed the growth capacity of Listeria at the temperatures considered. A low initial load, also derived from good hygiene practices, and correct storage temperatures are essential to reduce bacterial growth in RTE fruit. The challenge test showed how each type of RTE fruit has a different commercial life based on its specific growth potential and that food should be stored at temperatures not higher than 4°C for a short period.
Collapse
Affiliation(s)
- David Collu
- Department of Medical Sciences and Public Health, University of Cagliari
| | - Luisa Marras
- Department of Medical Sciences and Public Health, University of Cagliari
| | - Adriana Sanna
- Department of Medical Sciences and Public Health, University of Cagliari
| | - Gerolamo Carrucciu
- Department of Medical Sciences and Public Health, University of Cagliari
| | - Antonella Pinna
- Department of Medical Sciences and Public Health, University of Cagliari
| | - Valentina Carraro
- Department of Medical Sciences and Public Health, University of Cagliari
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Valentina Coroneo
- Department of Medical Sciences and Public Health, University of Cagliari
| |
Collapse
|
108
|
Antilisterial Potential of Lactic Acid Bacteria in Eliminating Listeria monocytogenes in Host and Ready-to-Eat Food Application. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Listeriosis is a severe food borne disease with a mortality rate of up to 30% caused by pathogenic Listeria monocytogenes via the production of several virulence factors including listeriolysin O (LLO), transcriptional activator (PrfA), actin (Act), internalin (Int), etc. It is a foodborne disease predominantly causing infections through consumption of contaminated food and is often associated with ready-to-eat food (RTE) and dairy products. Common medication for listeriosis such as antibiotics might cause an eagle effect and antibiotic resistance if it is overused. Therefore, exploration of the use of lactic acid bacteria (LAB) with probiotic characteristics and multiple antimicrobial properties is increasingly getting attention for their capability to treat listeriosis, vaccine development, and hurdle technologies. The antilisterial gene, a gene coding to produce antimicrobial peptide (AMP), one of the inhibitory substances found in LAB, is one of the potential key factors in listeriosis treatment, coupled with the vast array of functions and strategies; this review summarizes the various strategies by LAB against L. monocytogenes and the prospect in development of a ‘generally regarded as safe’ LAB for treatment of listeriosis.
Collapse
|
109
|
Duze ST, Marimani M, Patel M. Tolerance of Listeria monocytogenes to biocides used in food processing environments. Food Microbiol 2021; 97:103758. [PMID: 33653529 DOI: 10.1016/j.fm.2021.103758] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen that causes a life-threatening disease in humans known as listeriosis. Contamination of food during processing is the main route of transmission of Listeria monocytogenes. Therefore, biocides play a crucial role in food processing environments as they act as the first line of defense in the prevention and control of L. monocytogenes. Residues of biocides may be present at sublethal concentrations after disinfection. This, unfortunately, subjects L. monocytogenes to selection pressure, giving rise to tolerant strains, which pose a threat to food safety and public health. This review will give a brief description of L. monocytogenes, the clinical manifestation, treatment of listeriosis as well as recently recorded outbreaks. The article will then discuss the current literature on the ability of L. monocytogenes strains to tolerate biocides especially quaternary ammonium compounds as well as the mechanisms of tolerance towards biocides including the activation of efflux pump systems.
Collapse
Affiliation(s)
- Sanelisiwe Thinasonke Duze
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - Musa Marimani
- Department of Anatomical Pathology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Mrudula Patel
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa; National Health Laboratory Services and Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| |
Collapse
|
110
|
Ogunniyi AD, Dandie CE, Brunetti G, Drigo B, Aleer S, Hall B, Ferro S, Deo P, Venter H, Myers B, Donner E, Lombi E. Neutral electrolyzed oxidizing water is effective for pre-harvest decontamination of fresh produce. Food Microbiol 2021; 93:103610. [PMID: 32912583 DOI: 10.1016/j.fm.2020.103610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Pre-harvest sanitization of irrigation water has potential for reducing pathogen contamination of fresh produce. We compared the sanitizing effects of irrigation water containing neutral electrolyzed oxidizing water (EOW) or sodium hypochlorite (NaClO) on pre-harvest lettuce and baby spinach leaves artificially contaminated with a mixture of Escherichia coli, Salmonella Enteritidis and Listeria innocua (~1 × 108 colony-forming units/mL each resuspended in water containing 100 mg/L dissolved organic carbon, simulating a splash-back scenario from contaminated soil/manure). The microbial load and leaf quality were assessed over 7 days, and post-harvest shelf life evaluated for 10 days. Irrigation with water containing EOW or NaClO at 50 mg/L free chlorine significantly reduced the inoculated bacterial load by ≥ 1.5 log10, whereas tap water irrigation reduced the inoculated bacterial load by an average of 0.5 log10, when compared with untreated leaves. There were no visual effects of EOW or tap water irrigation on baby spinach or lettuce leaf surfaces pre- or post-harvest, whereas there were obvious negative effects of NaClO irrigation on leaf appearance for both plants, including severe necrotic zones and yellowing/browning of leaves. Therefore, EOW could serve as a viable alternative to chemical-based sanitizers for pre-harvest disinfection of minimally processed vegetables.
Collapse
Affiliation(s)
- Abiodun D Ogunniyi
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia.
| | - Catherine E Dandie
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Gianluca Brunetti
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Samuel Aleer
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Barbara Hall
- Plant Health and Biosecurity, SARDI, Adelaide, South Australia, Australia
| | - Sergio Ferro
- Ecas4 Australia Pty Ltd, 8/1 London Road, Mile End South, South Australia, Australia
| | - Permal Deo
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Baden Myers
- Australian Flow Management Group & UniSA STEM, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| |
Collapse
|
111
|
Nangul A, Bozkurt H, Gupta S, Woolf A, Phan-Thien KY, McConchie R, Fletcher GC. Decline of Listeria monocytogenes on fresh apples during long-term, low-temperature simulated international sea-freight transport. Int J Food Microbiol 2021; 341:109069. [PMID: 33508582 DOI: 10.1016/j.ijfoodmicro.2021.109069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/01/2021] [Accepted: 01/09/2021] [Indexed: 11/30/2022]
Abstract
Listeria monocytogenes has caused outbreaks of foodborne illness from apples in the USA, and is also a major issue for regulatory compliance worldwide. Due to apple's significance as an important export product from New Zealand, we aimed to determine the effect of long-term, low-temperature sea-freight from New Zealand to the USA (July) and Europe (March-April), two key New Zealand markets, on the survival and/or growth of L. monocytogenes on fresh apples. Temperature and humidity values were recorded during a shipment to each market (USA and Europe), then the observed variations around the 0.5 °C target temperature were simulated in laboratory trials using open ('Scired') and closed ('Royal Gala' for the USA and 'Cripps Pink' for Europe) calyx cultivars of apples inoculated with a cocktail of 107-108 cells of seven strains of L. monocytogenes. Samples were analysed for L. monocytogenes quantification at various intervals during the simulation and on each occasion, an extra set was analysed after a subsequent 8 days at 20 °C. When both the sea-freight simulations concluded, L. monocytogenes showed 5 log reductions on the equatorial surface of skin of apples, but only about 2.5 log reduction for USA and about 3.3 log reduction for Europe in the calyx. Cultivar type had no significant effect on the survival of L. monocytogenes for both sea-freight simulations, either in the calyx or on the skin (P > 0.05). Most of the reduction in the culturable cells on the skin occurred during the initial 2 weeks of the long-term storage simulations. There was also no significant difference in the reduction of L. monocytogenes at 0.5 or 20 °C. No correlation was observed between firmness or total soluble solids and survival of L. monocytogenes. Because the inoculated bacterial log reduction was lower in the calyx than on the skin, it is speculated that the risk of causing illness is higher if contaminated apple cores are eaten. The result suggested that the international sea-freight transportation does not result in the growth of L. monocytogenes irrespective of time and temperature. The results of this study provide useful insights into the survival of L. monocytogenes on different apple cultivars that can be used to develop effective risk mitigation strategies for fresh apples during long-term, low-temperature international sea-freight transportation.
Collapse
Affiliation(s)
- Agam Nangul
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW 2006, Australia; The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Hayriye Bozkurt
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW 2006, Australia.
| | - Sravani Gupta
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Allan Woolf
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Kim-Yen Phan-Thien
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW 2006, Australia
| | - Robyn McConchie
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW 2006, Australia
| | - Graham C Fletcher
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand.
| |
Collapse
|
112
|
Belias A, Strawn LK, Wiedmann M, Weller D. Small Produce Farm Environments Can Harbor Diverse Listeria monocytogenes and Listeria spp. Populations. J Food Prot 2021; 84:113-121. [PMID: 32916716 PMCID: PMC8000000 DOI: 10.4315/jfp-20-179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
ABSTRACT A comprehensive understanding of foodborne pathogen diversity in preharvest environments is necessary to effectively track pathogens on farms and identify sources of produce contamination. As such, this study aimed to characterize Listeria diversity in wildlife feces and agricultural water collected from a New York state produce farm over a growing season. Water samples were collected from a pond (n = 80) and a stream (n = 52). Fecal samples (n = 77) were opportunistically collected from areas <5 m from the water sources; all samples were collected from a <0.5-km2 area. Overall, 86 (41%) and 50 (24%) of 209 samples were positive for Listeria monocytogenes and Listeria spp. (excluding L. monocytogenes), respectively. For each positive sample, one L. monocytogenes or Listeria spp. isolate was speciated by sequencing the sigB gene, thereby allowing for additional characterization based on the sigB allelic type. The 86 L. monocytogenes and 50 Listeria spp. isolates represented 8 and 23 different allelic types, respectively. A subset of L. monocytogenes isolates (n = 44) from pond water and pond-adjacent feces (representing an ∼5,000-m2 area) were further characterized by pulsed-field gel electrophoresis (PFGE); these 44 isolates represented 22 PFGE types, which is indicative of considerable diversity at a small spatial scale. Ten PFGE types were isolated more than once, suggesting persistence or reintroduction of PFGE types in this area. Given the small spatial scale, the prevalence of L. monocytogenes and Listeria spp., as well as the considerable diversity among isolates, suggests traceback investigations may be challenging. For example, traceback of finished product or processing facility contamination with specific subtypes to preharvest sources may require collection of large sample sets and characterization of a considerable number of isolates. Our data also support the adage "absence of evidence does not equal evidence of absence" as applies to L. monocytogenes traceback efforts at the preharvest level. HIGHLIGHTS
Collapse
Affiliation(s)
- Alexandra Belias
- Department of Food Science, Cornell University, 354 Stocking Hall, Ithaca, New York 14853, USA
| | - Laura K. Strawn
- Department of Food Science and Technology, Eastern Shore Agricultural Research and Extension Center, Virginia Tech, 33446 Research Drive, Painter, VA 23420, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, 354 Stocking Hall, Ithaca, New York 14853, USA
| | - Daniel Weller
- Department of Food Science, Cornell University, 354 Stocking Hall, Ithaca, New York 14853, USA.,Corresponding author:
| |
Collapse
|
113
|
Cui H, Li H, Abdel-Samie MA, Surendhiran D, Lin L. Anti-Listeria monocytogenes biofilm mechanism of cold nitrogen plasma. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
114
|
Kim W, Yoon Y, Seo Y, Lee Y, Lee H, Kim S, Ha J, Choi Y, Oh H, Kim Y, Kang J, Park E, Yoo Y, Sung M, Lee S. Development of Listeria monocytogenes detection technique in mushroom based on real-time quantitative PCR through improvement of enrichment medium. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Woori Kim
- Department of Food and Nutrition, Sookmyung Women's University
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Women's University
| | - Yeongeun Seo
- Department of Food and Nutrition, Sookmyung Women's University
| | - Yewon Lee
- Department of Food and Nutrition, Sookmyung Women's University
| | - Heeyoung Lee
- Food Standard Research Center, Korea Food Research Institute
| | | | | | | | - Hyemin Oh
- Department of Food and Nutrition, Sookmyung Women's University
| | - Yujin Kim
- Department of Food and Nutrition, Sookmyung Women's University
| | - Joohyun Kang
- Department of Food and Nutrition, Sookmyung Women's University
| | - Eunyoung Park
- Department of Food and Nutrition, Sookmyung Women's University
| | - Yoonjeong Yoo
- Department of Food and Nutrition, Sookmyung Women's University
| | - Miseon Sung
- Department of Food and Nutrition, Sookmyung Women's University
| | | |
Collapse
|
115
|
Natural Plant-Derived Chemical Compounds as Listeria monocytogenes Inhibitors In Vitro and in Food Model Systems. Pathogens 2020; 10:pathogens10010012. [PMID: 33375619 PMCID: PMC7823385 DOI: 10.3390/pathogens10010012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen, sporadically present in various food product groups. An illness caused by the pathogen, named listeriosis, has high fatality rates. Even though L. monocytogenes is resistant to many environmental factors, e.g., low temperatures, low pH and high salinity, it is susceptible to various natural plant-derived antimicrobials (NPDA), including thymol, carvacrol, eugenol, trans-cinnamaldehyde, carvone S, linalool, citral, (E)-2-hexenal and many others. This review focuses on identifying NPDAs active against L. monocytogenes and their mechanisms of action against the pathogen, as well as on studies that showed antimicrobial action of the compounds against the pathogen in food model systems. Synergistic action of NDPA with other factors, biofilm inhibition and alternative delivery systems (encapsulation and active films) of the compounds tested against L. monocytogenes are also summarized briefly.
Collapse
|
116
|
Bacillus amyloliquefaciens ALB65 Inhibits the Growth of Listeria monocytogenes on Cantaloupe Melons. Appl Environ Microbiol 2020; 87:AEM.01926-20. [PMID: 33097500 DOI: 10.1128/aem.01926-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes high rates of hospitalization and mortality in people infected. Contamination of fresh, ready to eat produce by this pathogen is especially troubling because of the ability of this bacterium to grow on produce under refrigeration temperatures. In this study, we created a library of over 8,000 plant phyllosphere-associated bacteria and screened them for the ability to inhibit the growth of L. monocytogenes in an in vitro fluorescence-based assay. One isolate, later identified as Bacillus amyloliquefaciens ALB65, was able to inhibit the fluorescence of L. monocytogenes by >30-fold in vitro. B. amyloliquefaciens ALB65 was also able to grow, persist, and reduce the growth of L. monocytogenes by >1.5 log CFU on cantaloupe melon rinds inoculated with 5 × 103 CFU at 30°C and was able to completely inhibit its growth at temperatures below 8°C. DNA sequence analysis of the B. amyloliquefaciens ALB65 genome revealed six gene clusters that are predicted to encode genes for antibiotic production; however, no plant or human virulence factors were identified. These data suggest that B. amyloliquefaciens ALB65 is an effective and safe biological control agent for the reduction of L. monocytogenes growth on intact cantaloupe melons and possibly other types of produce.IMPORTANCE Listeria monocytogenes is estimated by the Centers for Disease Control and Prevention and the U.S. Food and Drug Administration to cause disease in approximately 1,600 to 2,500 people in the United States every year. The largest known outbreak of listeriosis in the United States was associated with intact cantaloupe melons in 2011, resulting in 147 hospitalizations and 33 deaths. In this study, we demonstrated that Bacillus amyloliquefaciens ALB65 is an effective biological control agent for the reduction of L. monocytogenes growth on intact cantaloupe melons under both pre- and postharvest conditions. Furthermore, we demonstrated that B. amyloliquefaciens ALB65 can completely inhibit the growth of L. monocytogenes during cold storage (<8°C).
Collapse
|
117
|
Bansal M, Dhowlaghar N, Nannapaneni R, Kode D, Chang S, Sharma CS, McDaniel C, Kiess A. Decreased biofilm formation by planktonic cells of Listeria monocytogenes in the presence of sodium hypochlorite. Food Microbiol 2020; 96:103714. [PMID: 33494900 DOI: 10.1016/j.fm.2020.103714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/30/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
The objective of this study was to determine if the adaptation at planktonic stage to subinhibitory concentrations (SIC) of sodium hypochlorite (NaOCl) could modulate the biofilm forming ability of five Listeria monocytogenes strains V7, Scott A, FSL-N1-227, FSL F6-154 and ATCC 19116 representing serotypes 1/2a, 4b and 4c. Biofilm formation by NaOCl nonadapted and adapted L. monocytogenes planktonic cells was measured in the presence or absence of SIC of NaOCl. The biofilm formation ability of NaOCl nonadapted and adapted L. monocyotgenes planktonic cells was reduced only in the presence of NaOCl (P < 0.05). Scanning electron microscopy revealed that the continuous exposure of NaOCl induced morphological changes in the L. monocytogenes biofilm structure and reduced its attachment to polystyrene surface. The qRT-PCR results also showed that the subinhibitory NaOCl reduced biofilm formation related gene expression such as motility and quorum sensing signals (P < 0.05). These findings indicate that subinhibitory NaOCl can reduce the ability of L. monocytogenes planktonic cells to form biofilms on polystyrene surface.
Collapse
Affiliation(s)
- Mohit Bansal
- Department of Poultry Science, Mississippi State University, MS, 39762, USA
| | - Nitin Dhowlaghar
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS, 39762, USA
| | - Ramakrishna Nannapaneni
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS, 39762, USA.
| | - Divya Kode
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS, 39762, USA
| | - Sam Chang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS, 39762, USA
| | - Chander S Sharma
- Department of Poultry Science, Mississippi State University, MS, 39762, USA
| | | | - Aaron Kiess
- Department of Poultry Science, Mississippi State University, MS, 39762, USA
| |
Collapse
|
118
|
Factors contributing to Listeria monocytogenes transmission and impact on food safety. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
119
|
Liu S, Brul S, Zaat SAJ. Bacterial Persister-Cells and Spores in the Food Chain: Their Potential Inactivation by Antimicrobial Peptides (AMPs). Int J Mol Sci 2020; 21:E8967. [PMID: 33260797 PMCID: PMC7731242 DOI: 10.3390/ijms21238967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
The occurrence of bacterial pathogens in the food chain has caused a severe impact on public health and welfare in both developing and developed countries. Moreover, the existence of antimicrobial-tolerant persisting morphotypes of these pathogens including both persister-cells as well as bacterial spores contributes to difficulty in elimination and in recurrent infection. Therefore, comprehensive understanding of the behavior of these persisting bacterial forms in their environmental niche and upon infection of humans is necessary. Since traditional antimicrobials fail to kill persisters and spores due to their (extremely) low metabolic activities, antimicrobial peptides (AMPs) have been intensively investigated as one of the most promising strategies against these persisting bacterial forms, showing high efficacy of inactivation. In addition, AMP-based foodborne pathogen detection and prevention of infection has made significant progress. This review focuses on recent research on common bacterial pathogens in the food chain, their persisting morphotypes, and on AMP-based solutions. Challenges in research and application of AMPs are described.
Collapse
Affiliation(s)
- Shiqi Liu
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Stanley Brul
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
120
|
Mizan MFR, Cho HR, Ashrafudoulla M, Cho J, Hossain MI, Lee DU, Ha SD. The effect of physico-chemical treatment in reducing Listeria monocytogenes biofilms on lettuce leaf surfaces. BIOFOULING 2020; 36:1243-1255. [PMID: 33401969 DOI: 10.1080/08927014.2020.1867848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
The purpose of this research was to characterize Listeria monocytogenes from several environmental and clinical sources and assess the efficacy of single and combined physico-chemical treatments in reducing biofilm on lettuce leaves. PCR analysis of L. monocytogenes isolates collected from different clinical (10 strains) and environmental sources (12 strains) was used to look for the presence of one Listeria-specific gene and five virulence genes. Biofilms of L. monocytogenes were developed on lettuce leaves over 24 h. A 5-min ultrasound and a 300-ppm sodium hypochlorite (NaOCl) wash resulted in similar reductions in cell numbers of 0.82 log CFU cm-2. For chlorine dioxide (ClO2) at 60 ppm, the cell numbers were reduced by ∼5.45 log CFU cm-2. A combined treatment of 5 min of ultrasound plus 300 ppm NaOCl or 40 ppm ClO2, provided maximal efficacy, reducing the number of L. monocytogenes on the lettuce surface to non-detectable levels. Therefore, ClO2 has the potential to replace NaOCl for the disinfection of food products in the food industry.
Collapse
Affiliation(s)
| | - Hye Ran Cho
- Food Science and Technology Department, Chung-Ang University, Seoul, South Korea
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Seoul, South Korea
| | - Junbin Cho
- Food Science and Technology Department, Chung-Ang University, Seoul, South Korea
| | - Md Iqbal Hossain
- Food Science and Technology Department, Chung-Ang University, Seoul, South Korea
| | - Dong-Un Lee
- Food Science and Technology Department, Chung-Ang University, Seoul, South Korea
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
121
|
Medina G, Chaudhary H, Qiu Y, Nan Y, Rodas-GonzÁlez A, Yang X, Narvaez-Bravo C. Effectiveness of a Novel Rechargeable Polycationic N-Halamine Antibacterial Coating on Listeria monocytogenes Survival in Food Processing Environments. J Food Prot 2020; 83:1974-1982. [PMID: 32634215 DOI: 10.4315/jfp-20-084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/02/2020] [Indexed: 01/19/2023]
Abstract
ABSTRACT The goal of this research was to evaluate the efficacy of a novel rechargeable nonleaching polycationic N-halamine coating applied to stainless steel food contact surfaces to reduce Listeria monocytogenes contamination on ready-to-eat (RTE) foods. Four L. monocytogenes strains were inoculated onto the charged (C; chlorine activated) or noncharged (NC) N-halamine-coated steel coupon surfaces that were either intact or scratched. After inoculation, test surfaces were incubated at 2, 10, and 25°C for 0, 48, and 72 h. L. monocytogenes transfer from coated adulterated surfaces to RTE meat (beef sausages and roast beef) was also tested at 2°C. L. monocytogenes on both intact-C and scratched-C surfaces was significantly reduced at all temperatures; however, in the presence of organic material, these coatings were more effective for reducing L. monocytogenes at 2 and 10°C than at 25°C (P < 0.05). In contrast, on NC intact and scratched surfaces, reduction at 25°C increased (P < 0.05), decreasing the difference in L. monocytogenes levels between charged and noncharged intact and scratched surfaces at this temperature. Overall, greater L. monocytogenes reduction was achieved on intact-C and scratched-C (4.1 ± 0.19 log CFU/cm2) than on intact-NC and scratched-NC (2.3 ± 0.19 log CFU/cm2) surfaces at all temperatures (P < 0.05). The combination of surface condition and chlorine with coupons exposed for 2 h at 2°C in the presence of an organic load (50% meat purge) did not significantly affect the bactericidal efficacy of the N-halamine coating. Regarding transfer to RTE meat, an overall 3.7-log reduction in L. monocytogenes was observed in sausages and roast beef. These findings suggest that a novel rechargeable N-halamine coating on stainless steel surfaces can inactivate L. monocytogenes. HIGHLIGHTS
Collapse
Affiliation(s)
- Gerardo Medina
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (ORCID: https://orcid.org/0000-0002-6873-4444 [C.N.B.])
| | - Harshita Chaudhary
- Exigence Technologies, 200-135 Innovation Drive, Winnipeg, Manitoba, Canada, R3T 6A8
| | - Yang Qiu
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (ORCID: https://orcid.org/0000-0002-6873-4444 [C.N.B.])
| | - Yuchen Nan
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (ORCID: https://orcid.org/0000-0002-6873-4444 [C.N.B.])
| | - Argenis Rodas-GonzÁlez
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (ORCID: https://orcid.org/0000-0002-6873-4444 [C.N.B.])
| | - Xianqin Yang
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, 6000C and E Trail, Lacombe, Alberta, Canada T4L 1V7
| | - Claudia Narvaez-Bravo
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (ORCID: https://orcid.org/0000-0002-6873-4444 [C.N.B.])
| |
Collapse
|
122
|
Bustamante F, Maury-Sintjago E, Leal FC, Acuña S, Aguirre J, Troncoso M, Figueroa G, Parra-Flores J. Presence of Listeria monocytogenes in Ready-to-Eat Artisanal Chilean Foods. Microorganisms 2020; 8:microorganisms8111669. [PMID: 33121209 PMCID: PMC7694154 DOI: 10.3390/microorganisms8111669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Ready-to-eat (RTE) artisanal foods are very popular, but they can be contaminated by Listeria monocytogenes. The aim was to determine the presence of L. monocytogenes in artisanal RTE foods and evaluate its food safety risk. We analyzed 400 RTE artisanal food samples requiring minimal (fresh products manufactured by a primary producer) or moderate processing (culinary products for sale from the home, restaurants such as small cafés, or on the street). Listeria monocytogenes was isolated according to the ISO 11290-1:2017 standard, detected with VIDAS equipment, and identified by real-time polymerase chain reaction (PCR). A small subset (n = 8) of the strains were further characterized for evaluation. The antibiotic resistance profile was determined by the CLSI methodology, and the virulence genes hlyA, prfA, and inlA were detected by PCR. Genotyping was performed by pulsed-field gel electrophoresis (PFGE). Listeria monocytogenes was detected in 7.5% of RTE artisanal foods. On the basis of food type, positivity in minimally processed artisanal foods was 11.6%, significantly different from moderately processed foods with 6.2% positivity (p > 0.05). All the L. monocytogenes strains (n = 8) amplified the three virulence genes, while six strains exhibited premature stop codons (PMSC) in the inlA gene; two strains were resistant to ampicillin and one strain was resistant to sulfamethoxazole-trimethoprim. Seven strains were 1/2a serotype and one was a 4b strain. The sampled RTE artisanal foods did not meet the microbiological criteria for L. monocytogenes according to the Chilean Food Sanitary Regulations. The presence of virulence factors and antibiotic-resistant strains make the consumption of RTE artisanal foods a risk for the hypersensitive population that consumes them.
Collapse
Affiliation(s)
- Fernanda Bustamante
- Environmental and Public Health Laboratory, Universidad del Bío-Bío, Regional Secreatariat of the Ministry of Health in Maule, Talca 3461637, Chile;
| | - Eduard Maury-Sintjago
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3800708, Chile;
| | - Fabiola Cerda Leal
- Department of Food Engineering, Universidad del Bío-Bío, Chillán 3800708, Chile; (F.C.L.); (S.A.)
| | - Sergio Acuña
- Department of Food Engineering, Universidad del Bío-Bío, Chillán 3800708, Chile; (F.C.L.); (S.A.)
| | - Juan Aguirre
- Department of Agricultural Industry and Enology, Universidad de Chile, Santiago 8820808, Chile;
| | - Miriam Troncoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago 7830490, Chile; (M.T.); (G.F.)
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago 7830490, Chile; (M.T.); (G.F.)
| | - Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3800708, Chile;
- Correspondence:
| |
Collapse
|
123
|
Matle I, Mbatha KR, Madoroba E. A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. ACTA ACUST UNITED AC 2020; 87:e1-e20. [PMID: 33054262 PMCID: PMC7565150 DOI: 10.4102/ojvr.v87i1.1869] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Listeria monocytogenes is a zoonotic food-borne pathogen that is associated with serious public health and economic implications. In animals, L. monocytogenes can be associated with clinical listeriosis, which is characterised by symptoms such as abortion, encephalitis and septicaemia. In human beings, listeriosis symptoms include encephalitis, septicaemia and meningitis. In addition, listeriosis may cause gastroenteric symptoms in human beings and still births or spontaneous abortions in pregnant women. In the last few years, a number of reported outbreaks and sporadic cases associated with consumption of contaminated meat and meat products with L. monocytogenes have increased in developing countries. A variety of virulence factors play a role in the pathogenicity of L. monocytogenes. This zoonotic pathogen can be diagnosed using both classical microbiological techniques and molecular-based methods. There is limited information about L. monocytogenes recovered from meat and meat products in African countries. This review strives to: (1) provide information on prevalence and control measures of L. monocytogenes along the meat value chain, (2) describe the epidemiology of L. monocytogenes (3) provide an overview of different methods for detection and typing of L. monocytogenes for epidemiological, regulatory and trading purposes and (4) discuss the pathogenicity, virulence traits and antimicrobial resistance profiles of L. monocytogenes.
Collapse
Affiliation(s)
- Itumeleng Matle
- Bacteriology Division, Agricultural Research Council - Onderstepoort Veterinary Research, Onderstepoort, Pretoria, South Africa; and, Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida.
| | | | | |
Collapse
|
124
|
Sant'Anna PB, de Melo Franco BD, Maffei DF. Microbiological safety of ready-to-eat minimally processed vegetables in Brazil: an overview. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4664-4670. [PMID: 32329100 DOI: 10.1002/jsfa.10438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The market of ready-to-eat minimally processed vegetables (RTE-MPV) is increasing in Brazil and many other countries. During processing, these vegetables go through several steps that modify their natural structure while maintaining the same nutritional and sensory attributes as the fresh produce. One of the most important steps is washing-disinfection, which aims to reduce the microbial load, prevent cross-contamination and inactivate pathogenic microorganisms that may be present. Nonetheless, the presence of pathogens and occurrence of foodborne illnesses associated with consumption of RTE-MPV concern consumers, governments and the food industry. This review brings an overview on the microbiological safety of RTE-MPV, focusing on Brazilian findings. Most of the published data are on detection of Salmonella spp. and Listeria monocytogenes, indicating that their prevalence may range from 0.4% to 12.5% and from 0.6% to 3.1%, respectively. The presence of these pathogens in fresh produce is unacceptable and risky, mainly in RTE-MPV, because consumers expect them to be clean and sanitized and consequently safe for consumption without any additional care. Therefore, proper control during the production of RTE-MPV is mandatory to guarantee products with quality and safety to consumers. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pedro B Sant'Anna
- Department of Biological Sciences, 'Luiz de Queiroz' College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Bernadette Dg de Melo Franco
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Food Research Center (FoRC-CEPID), Sao Paulo, Brazil
| | - Daniele F Maffei
- Food Research Center (FoRC-CEPID), Sao Paulo, Brazil
- Department of Agri-food Industry, Food and Nutrition, 'Luiz de Queiroz' College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| |
Collapse
|
125
|
Opportunities for broadening the application of cell wall lytic enzymes. Appl Microbiol Biotechnol 2020; 104:9019-9040. [DOI: 10.1007/s00253-020-10862-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 01/21/2023]
|
126
|
Imperato JN, Xu D, Romagnoli PA, Qiu Z, Perez P, Khairallah C, Pham QM, Andrusaite A, Bravo-Blas A, Milling SWF, Lefrancois L, Khanna KM, Puddington L, Sheridan BS. Mucosal CD8 T Cell Responses Are Shaped by Batf3-DC After Foodborne Listeria monocytogenes Infection. Front Immunol 2020; 11:575967. [PMID: 33042159 PMCID: PMC7518468 DOI: 10.3389/fimmu.2020.575967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
While immune responses have been rigorously examined after intravenous Listeria monocytogenes (Lm) infection, less is understood about its dissemination from the intestines or the induction of adaptive immunity after more physiologic models of foodborne infection. Consequently, this study focused on early events in the intestinal mucosa and draining mesenteric lymph nodes (MLN) using foodborne infection of mice with Lm modified to invade murine intestinal epithelium (InlAMLm). InlAMLm trafficked intracellularly from the intestines to the MLN and were associated with Batf3-independent dendritic cells (DC) in the lymphatics. Consistent with this, InlAMLm initially disseminated from the gut to the MLN normally in Batf3–/– mice. Activated migratory DC accumulated in the MLN by 3 days post-infection and surrounded foci of InlAMLm. At this time Batf3–/– mice displayed reduced InlAMLm burdens, implicating cDC1 in maximal bacterial accumulation in the MLN. Batf3–/– mice also exhibited profound defects in the induction and gut-homing of InlAMLm-specific effector CD8 T cells. Restoration of pathogen burden did not rescue antigen-specific CD8 T cell responses in Batf3–/– mice, indicating a critical role for Batf3 in generating anti-InlAMLm immunity following foodborne infection. Collectively, these data suggest that DC play diverse, dynamic roles in the early events following foodborne InlAMLm infection and in driving the establishment of intestinal Lm-specific effector T cells.
Collapse
Affiliation(s)
- Jessica Nancy Imperato
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Daqi Xu
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Pablo A Romagnoli
- Centro de Investigacion en Medicina Traslacional Severo Amuchastegui, Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Pedro Perez
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Camille Khairallah
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Quynh-Mai Pham
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Anna Andrusaite
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | - Simon W F Milling
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Leo Lefrancois
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Kamal M Khanna
- Department of Microbiology, New York University, New York City, NY, United States
| | - Lynn Puddington
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
127
|
Saravanakumar K, Sathiyaseelan A, Mariadoss AVA, Chelliah R, Hu X, Oh DH, Wang MH. Lactobacillus rhamnosus GG and Biochemical Agents Enrich the Shelf Life of Fresh-Cut Bell Pepper ( Capsicum annuum L. var. grossum (L.) Sendt). Foods 2020; 9:E1252. [PMID: 32906734 PMCID: PMC7555232 DOI: 10.3390/foods9091252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 11/29/2022] Open
Abstract
This work analyzed the individual and combined effects of biochemical additives and probiotic strain Lactobacillus rhamnosus GG on red and yellow fresh-cut bell pepper (R- and Y-FCBP, respectively) stored at two different temperatures (4 °C and 15 °C) for 15 days. The results revealed that the combined application of biochemical additives and L. rhamnosus GG inhibited the colonization of total bacterial counts (25.10%), total Salmonella counts (38.32%), total Listeria counts (23.75%), and total fungal counts (61.90%) in FCBP. Total bacterial colonization was found to be higher in R-FCBP (1188.09 ± 9.25 CFU g-1) than Y-FCBP (863.96 ± 7.21 CFU g-1). The storage at 4 °C was prevented 35.38% of microbial colonization in FCBP. Importantly, the L. rhamnosus GG count remained for up to 12 days. Moreover, the combined inoculation of the biochemical additives and L. rhamnosus GG treatments (T3) maintained the quality of R- and Y-FCBP for up to 12 days at 4 °C without any loss of antioxidant properties. This work reports the successful utilization of L. rhamnosus GG as a preservative agent for maintaining the quality of FCBP by preventing microbial colonization.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea or (K.S.); (A.S.); (A.V.A.M.); (X.H.)
| | - Anbazhagan Sathiyaseelan
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea or (K.S.); (A.S.); (A.V.A.M.); (X.H.)
| | - Arokia Vijaya Anand Mariadoss
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea or (K.S.); (A.S.); (A.V.A.M.); (X.H.)
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology College of Biotechnology and Bioscience, Kangwon National University, Chuncheon 24341, Korea; (R.C.); (D.H.O.)
| | - Xiaowen Hu
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea or (K.S.); (A.S.); (A.V.A.M.); (X.H.)
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology College of Biotechnology and Bioscience, Kangwon National University, Chuncheon 24341, Korea; (R.C.); (D.H.O.)
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea or (K.S.); (A.S.); (A.V.A.M.); (X.H.)
| |
Collapse
|
128
|
Al-Shabib NA, Husain FM, Nadeem M, Khan MS, Al-Qurainy F, Alyousef AA, Arshad M, Khan A, Khan JM, Alam P, Albalawi T, Shahzad SA. Bio-inspired facile fabrication of silver nanoparticles from in vitro grown shoots of Tamarix nilotica: explication of its potential in impeding growth and biofilms of Listeria monocytogenes and assessment of wound healing ability. RSC Adv 2020; 10:30139-30149. [PMID: 35518236 PMCID: PMC9056294 DOI: 10.1039/d0ra04587j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/23/2020] [Indexed: 11/21/2022] Open
Abstract
Novel, safe, and effective antilisterial agents are required in order to prevent Listeria monocytogenes infections and maintain food safety. This study synthesized silver nanoparticles (AgNPs) from the shoot extract of in vitro-grown Tamarix nilotica (TN) and characterized them using X-ray diffraction, Fourier transform infrared spectroscopy, UV-visible spectroscopy, dynamic light scattering, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS), and transmission electron microscopy (TEM). We also assessed the antilisterial potential of the synthesized TN-AgNPs by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against two strains of L. monocytogenes and L. innocua. TN-AgNPs (2×MICs) showed a significant decrease in growth in all Listeria test strains. Release of cellular content and cell morphology analysis of TN-AgNP-treated bacterial cells demonstrated the mechanism of bactericidal activity of AgNPs. In addition, TN-AgNPs induced a significant decrease in swimming motility (62-71%), biofilm formation (57-64%), and preformed biofilms (48-58%) in all Listeria test strains at sub-inhibitory concentrations. Microtitre plate assay results for biofilm inhibition were confirmed by SEM and CLSM visualization of TN-AgNP-treated and TN-AgNP-untreated Listeria test strains. TN-AgNPs also showed wound-healing activity in MCF-7 cells by inhibiting cell migration in a scratch plate assay. TN-AgNP-induced enhanced reactive oxygen species generation in treated cells could be a plausible reason for the biofilm inhibitory activity of AgNPs. TN-AgNPs having antilisterial, antibiofilm, and wound-healing properties can be effectively used to prevent L. monocytogenes infections in the food industry and healthcare.
Collapse
Affiliation(s)
- Nasser A Al-Shabib
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University 2456 Riyadh 11451 Kingdom of Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University 2456 Riyadh 11451 Kingdom of Saudi Arabia
| | - Mohammad Nadeem
- Department of Botany and Microbiology, College of Science, King Saud University 2456 Riyadh 11451 Kingdom of Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University 2456 Riyadh 11451 Kingdom of Saudi Arabia
| | - Fahad Al-Qurainy
- Department of Botany and Microbiology, College of Science, King Saud University 2456 Riyadh 11451 Kingdom of Saudi Arabia
| | - Abdullah A Alyousef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University 2460 Riyadh 11451 Kingdom of Saudi Arabia
| | - Mohammed Arshad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University 2460 Riyadh 11451 Kingdom of Saudi Arabia
| | - Altaf Khan
- Department of Pharmacology and Toxicology, Central Laboratory, College of Pharmacy, King Saud University 2460 Riyadh 11451 Kingdom of Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University 2456 Riyadh 11451 Kingdom of Saudi Arabia
| | - Pravej Alam
- Department of Biology, Prince Sattam bin Abdulaziz Univrsity Alkharj Kingdom of Saudi Arabia
| | - Thamer Albalawi
- Department of Biology, Prince Sattam bin Abdulaziz Univrsity Alkharj Kingdom of Saudi Arabia
| | - Syed Ali Shahzad
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University 2456 Riyadh 11451 Kingdom of Saudi Arabia
| |
Collapse
|
129
|
Ogunniyi AD, Tenzin S, Ferro S, Venter H, Pi H, Amorico T, Deo P, Trott DJ. A pH-neutral electrolyzed oxidizing water significantly reduces microbial contamination of fresh spinach leaves. Food Microbiol 2020; 93:103614. [PMID: 32912586 DOI: 10.1016/j.fm.2020.103614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/14/2020] [Accepted: 07/30/2020] [Indexed: 11/30/2022]
Abstract
There are growing demands globally to use safe, efficacious and environmentally friendly sanitizers for post-harvest treatment of fresh produce to reduce or eliminate spoilage and foodborne pathogens. Here, we compared the efficacy of a pH-neutral electrolyzed oxidizing water (Ecas4 Anolyte; ECAS) with that of an approved peroxyacetic acid-based sanitizer (Ecolab Tsunami® 100) in reducing the total microbial load and inoculated Escherichia coli, Salmonella Enteritidis and Listeria innocua populations on post-harvest baby spinach leaves over 10 days. The impact of both sanitizers on the overall quality of the spinach leaves during storage was also assessed by shelf life and vitamin C content measurements. ECAS at 50 ppm and 85 ppm significantly reduced the bacterial load compared to tap water-treated or untreated (control) leaves, and at similar levels (approx. 10-fold reduction) to those achieved using 50 ppm of Ecolab Tsunami® 100. While there were no obvious deleterious effects of treatment with 50 ppm Tsunami® 100 or ECAS at 50 ppm and 85 ppm on plant leaf appearance, tap water-treated and untreated leaves showed some yellowing, bruising and sliming. Given its safety, efficacy and environmentally-friendly characteristics, ECAS could be a viable alternative to chemical-based sanitizers for post-harvest treatment of fresh produce.
Collapse
Affiliation(s)
- Abiodun D Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, Australia.
| | - Sangay Tenzin
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, Australia
| | - Sergio Ferro
- Ecas4 Australia, Unit 8 / 1 London Road, Mile End South, 5031, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Hongfei Pi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, Australia
| | - Tony Amorico
- Ecas4 Australia, Unit 8 / 1 London Road, Mile End South, 5031, Australia
| | - Permal Deo
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia.
| | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, Australia
| |
Collapse
|
130
|
Total Coliform and Generic E. coli Levels, and Salmonella Presence in Eight Experimental Aquaponics and Hydroponics Systems: A Brief Report Highlighting Exploratory Data. HORTICULTURAE 2020; 6. [PMID: 34336990 PMCID: PMC8323784 DOI: 10.3390/horticulturae6030042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although many studies have investigated foodborne pathogen prevalence in conventional produce production environments, relatively few have investigated prevalence in aquaponics and hydroponics systems. This study sought to address this knowledge gap by enumerating total coliform and generic E. coli levels, and testing for Salmonella presence in circulating water samples collected from five hydroponic systems and three aquaponic systems (No. of samples = 79). While total coliform levels ranged between 6.3 Most Probable Number (MPN)/100-mL and the upper limit of detection (2496 MPN/100-mL), only three samples had detectable levels of E. coli and no samples had detectable levels of Salmonella. Of the three E. coli positive samples, two samples had just one MPN of E. coli/100-mL while the third had 53.9 MPN of E. coli/100-mL. While the sample size reported here was small and site selection was not randomized, this study adds key data on the microbial quality of aquaponics and hydroponics systems to the literature. Moreover, these data suggest that contamination in these systems occurs at relatively low-levels, and that future studies are needed to more fully explore when and how microbial contamination of aquaponics and hydroponic systems is likely to occur.
Collapse
|
131
|
Combined treatment of nut by-product extracts and peracetic acid against Listeria monocytogenes on red mustard and kale leaves. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
132
|
Timbe PPR, Motta ADS, Isaía HA, Brandelli A. Polymeric nanoparticles loaded with
Baccharis dracunculifolia
DC essential oil: Preparation, characterization, and antibacterial activity in milk. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Palmira Penina Raúl Timbe
- Laboratório de Bioquímica e Microbiologia Aplicada Departamento de Ciência de Alimentos Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Amanda de Souza Motta
- Departamento de Microbiologia, Imunologia e Parasitologia Instituto de Ciências Básicas da Saúde Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Henrique Ataíde Isaía
- Laboratório de Bioquímica e Microbiologia Aplicada Departamento de Ciência de Alimentos Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada Departamento de Ciência de Alimentos Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
133
|
Agriopoulou S, Stamatelopoulou E, Sachadyn-Król M, Varzakas T. Lactic Acid Bacteria as Antibacterial Agents to Extend the Shelf Life of Fresh and Minimally Processed Fruits and Vegetables: Quality and Safety Aspects. Microorganisms 2020; 8:E952. [PMID: 32599824 PMCID: PMC7356186 DOI: 10.3390/microorganisms8060952] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Eating fresh fruits and vegetables is, undoubtedly, a healthy habit that should be adopted by everyone (particularly due to the nutrients and functional properties of fruits and vegetables). However, at the same time, due to their production in the external environment, there is an increased risk of their being infected with various pathogenic microorganisms, some of which cause serious foodborne illnesses. In order to preserve and distribute safe, raw, and minimally processed fruits and vegetables, many strategies have been proposed, including bioprotection. The use of lactic acid bacteria in raw and minimally processed fruits and vegetables helps to better maintain their quality by extending their shelf life, causing a significant reduction and inhibition of the action of important foodborne pathogens. The antibacterial effect of lactic acid bacteria is attributed to its ability to produce antimicrobial compounds, including bacteriocins, with strong competitive action against many microorganisms. The use of bacteriocins, both separately and in combination with edible coatings, is considered a very promising approach for microbiological quality, and safety for postharvest storage of raw and minimally processed fruits and vegetables. Therefore, the purpose of the review is to discuss the biopreservation of fresh fruits and vegetables through the use of lactic acid bacteria as a green and safe technique.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| | - Eygenia Stamatelopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| | - Monika Sachadyn-Król
- Department of Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, 20950 Lublin, Poland;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| |
Collapse
|
134
|
Porto-Fett ACS, Shane LE, Shoyer BA, Osoria M, Jung Y, Luchansky JB. Inactivation of Shiga Toxin-Producing Escherichia coli and Listeria monocytogenes within Plant versus Beef Burgers in Response to High Pressure Processing. J Food Prot 2020; 83:865-873. [PMID: 32027738 DOI: 10.4315/jfp-19-558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/15/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT We evaluated high pressure processing to lower levels of Shiga toxin-producing Escherichia coli (STEC) and Listeria monocytogenes inoculated into samples of plant or beef burgers. Multistrain cocktails of STEC and L. monocytogenes were separately inoculated (∼7.0 log CFU/g) into plant burgers or ground beef. Refrigerated (i.e., 4°C) or frozen (i.e., -20°C) samples (25 g each) were subsequently exposed to 350 MPa for up to 9 or 18 min or 600 MPa for up to 4.5 or 12 min. When refrigerated plant or beef burger samples were treated at 350 MPa for up to 9 min, levels of STEC were reduced by ca. 0.7 to 1.3 log CFU/g. However, when refrigerated plant or beef burger samples were treated at 350 MPa for up to 9 min, levels of L. monocytogenes remained relatively unchanged (ca. ≤0.3-log CFU/g decrease) in plant burger samples but were reduced by ca. 0.3 to 2.0 log CFU/g in ground beef. When refrigerated plant or beef burger samples were treated at 600 MPa for up to 4.5 min, levels of STEC and L. monocytogenes were reduced by ca. 0.7 to 4.1 and ca. 0.3 to 5.6 log CFU/g, respectively. Similarly, when frozen plant and beef burger samples were treated at 350 MPa up to 18 min, reductions of ca. 1.7 to 3.6 and ca. 0.6 to 3.6 log CFU/g in STEC and L. monocytogenes numbers, respectively, were observed. Exposure of frozen plant or beef burger samples to 600 MPa for up to 12 min resulted in reductions of ca. 2.4 to 4.4 and ca. 1.8 to 3.4 log CFU/g in levels of STEC and L. monocytogenes, respectively. Via empirical observation, pressurization did not adversely affect the color of plant burger samples, whereas appreciable changes in color were observed in pressurized ground beef. These data confirm that time and pressure levels already validated for control of STEC and L. monocytogenes in ground beef will likely be equally effective toward these same pathogens in plant burgers without causing untoward effects on product color. HIGHLIGHTS
Collapse
Affiliation(s)
- Anna C S Porto-Fett
- U.S. Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA (ORCID: https://orcid.org/0000-0002-2689-6402 [A.C.S.P.F.]; https://orcid.org/0000-0003-2377-8651 [J.B.L.])
| | - Laura E Shane
- U.S. Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA (ORCID: https://orcid.org/0000-0002-2689-6402 [A.C.S.P.F.]; https://orcid.org/0000-0003-2377-8651 [J.B.L.])
| | - Bradley A Shoyer
- U.S. Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA (ORCID: https://orcid.org/0000-0002-2689-6402 [A.C.S.P.F.]; https://orcid.org/0000-0003-2377-8651 [J.B.L.])
| | - Manuela Osoria
- U.S. Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA (ORCID: https://orcid.org/0000-0002-2689-6402 [A.C.S.P.F.]; https://orcid.org/0000-0003-2377-8651 [J.B.L.])
| | - Yangjin Jung
- U.S. Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA (ORCID: https://orcid.org/0000-0002-2689-6402 [A.C.S.P.F.]; https://orcid.org/0000-0003-2377-8651 [J.B.L.])
| | - John B Luchansky
- U.S. Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA (ORCID: https://orcid.org/0000-0002-2689-6402 [A.C.S.P.F.]; https://orcid.org/0000-0003-2377-8651 [J.B.L.])
| |
Collapse
|
135
|
Quantitative analysis and influences of contact dynamics on bacterial cross-contamination from contaminated fresh produce. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
136
|
Wu ST, Burnett J, Wang J, Hammons SR, Veenhuizen DR, Oliver HF. Infrastructure, sanitation, and management practices impact Listeria monocytogenes prevalence in retail grocery produce environments. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
137
|
Iwu CD, Okoh AI. Characterization of antibiogram fingerprints in Listeria monocytogenes recovered from irrigation water and agricultural soil samples. PLoS One 2020; 15:e0228956. [PMID: 32040533 PMCID: PMC7010277 DOI: 10.1371/journal.pone.0228956] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/26/2020] [Indexed: 11/30/2022] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen and the etiologic agent of listeriosis, which can be disseminated within the agricultural environment particularly soil and irrigation water, contaminate farm produce and cause high mortality and morbidity among vulnerable individuals. This study assessed the incidence and antibiogram of L. monocytogenes recovered from irrigation water and agricultural soil samples collected from Chris Hani and Amathole District Municipalities (DMs) in Eastern Cape Province, South Africa. The distribution of presumptive L. monocytogenes in irrigation water and agricultural soil samples was done using the standard plate count method, while polymerase chain reaction (PCR) was used to identify the isolates. The confirmed isolates were screened for 9 key virulence markers using PCR after which they were subjected to antibiotic susceptibility testing against 18 antibiotics used for the alleviation of listeriosis using the disk diffusion method. Relevant putative antibiotic resistance genes in the resistant variants were screened for using PCR. The distribution of L. monocytogenes in irrigation water samples was statistically significant (P ≤ 0.05) and ranged from log10 1.00 CFU/100ml to log10 3.75 CFU/100 ml. In agricultural soil samples, the distribution ranged significantly (P ≤ 0.05) from log10 2.10 CFU/g to log10 3.51 CFU/g. Of the 117 presumptive L. monocytogenes recovered from irrigation water samples and 183 presumptive L. monocytogenes isolated from agricultural soil samples, 8 (6.8%) and 12 (6.6%) isolates were confirmed respectively. Nine virulence genes including inlA, inlB, inlC, inlJ, actA, hlyA, plcA, plcB, and iap were detected in all the isolates. The proportion of the isolates exhibiting phenotypic resistance against the test antimicrobials followed the order: tetracycline (90%), doxycycline (85%), cefotaxime (80%), penicillin (80%), chloramphenicol (70%), linezolid (65%), erythromycin (60%) and trimethoprim/sulfamethoxazole (55%). The isolates exhibited multiple antibiotic resistance against 3 or more antibiotics and the MAR indices of all the multidrug isolates were ≥0.2. The isolates harboured antibiotic resistance genes including tetA, tetB, tetC, sulI, sulII, aadA, aac(3)-IIa and ESBLs including blaTEM, blaCTX-M group 9, blaVEBas well as AmpC. None of the isolates harboured the carbapenemases. We conclude that irrigation water and agricultural soil collected from Chris Hani and Amathole District Municipalities (DMs) in Eastern Cape Province of South Africa are reservoirs and potential transmission routes of multidrug-resistant L. monocytogenes to the food web and consequently threat to public health.
Collapse
Affiliation(s)
- Chidozie Declan Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
138
|
Palma F, Brauge T, Radomski N, Mallet L, Felten A, Mistou MY, Brisabois A, Guillier L, Midelet-Bourdin G. Dynamics of mobile genetic elements of Listeria monocytogenes persisting in ready-to-eat seafood processing plants in France. BMC Genomics 2020; 21:130. [PMID: 32028892 PMCID: PMC7006209 DOI: 10.1186/s12864-020-6544-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/30/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Listeria monocytogenes Clonal Complexes (CCs) have been epidemiologically associated with foods, especially ready-to-eat (RTE) products for which the most likely source of contamination depends on the occurrence of persisting clones in food-processing environments (FPEs). As the ability of L. monocytogenes to adapt to environmental stressors met in the food chain challenges the efforts to its eradication from FPEs, the threat of persistent strains to the food industry and public health authorities continues to rise. In this study, 94 food and FPEs L. monocytogenes isolates, representing persistent subtypes contaminating three French seafood facilities over 2-6 years, were whole-genome sequenced to characterize their genetic diversity and determine the biomarkers associated with long-term survival in FPEs. RESULTS Food and FPEs isolates belonged to five CCs, comprising long-term intra- and inter-plant persisting clones. Mobile genetic elements (MGEs) such as plasmids, prophages and transposons were highly conserved within CCs, some of which harboured genes for resistance to chemical compounds and biocides used in the processing plants. Some of these genes were found in a 90.8 kbp plasmid, predicted to be" mobilizable", identical in isolates from CC204 and CC155, and highly similar to an 81.6 kbp plasmid from isolates belonging to CC7. These similarities suggest horizontal transfer between isolates, accompanied by deletion and homologous recombination in isolates from CC7. Prophage profiles characterized persistent clonal strains and several prophage-loci were plant-associated. Notably, a persistent clone from CC101 harboured a novel 31.5 kbp genomic island that we named Listeria genomic island 3 (LGI3), composed by plant-associated loci and chromosomally integrating cadmium-resistance determinants cadA1C. CONCLUSIONS Genome-wide analysis indicated that inter- and intra-plant persisting clones harbour conserved MGEs, likely acquired in FPEs and maintained by selective pressures. The presence of closely related plasmids in L. monocytogenes CCs supports the hypothesis of horizontal gene transfer conferring enhanced survival to FPE-associated stressors, especially in hard-to-clean harbourage sites. Investigating the MGEs evolutionary and transmission dynamics provides additional resolution to trace-back potentially persistent clones. The biomarkers herein discovered provide new tools for better designing effective strategies for the removal or reduction of resident L. monocytogenes in FPEs to prevent contamination of RTE seafood.
Collapse
Affiliation(s)
- Federica Palma
- ANSES, Laboratory for Food Safety, University Paris-Est, Maisons-Alfort, France
| | - Thomas Brauge
- ANSES, Laboratory for Food Safety, Boulogne-sur-Mer, France
| | - Nicolas Radomski
- ANSES, Laboratory for Food Safety, University Paris-Est, Maisons-Alfort, France
| | - Ludovic Mallet
- ANSES, Laboratory for Food Safety, University Paris-Est, Maisons-Alfort, France
| | - Arnaud Felten
- ANSES, Laboratory for Food Safety, University Paris-Est, Maisons-Alfort, France
| | - Michel-Yves Mistou
- ANSES, Laboratory for Food Safety, University Paris-Est, Maisons-Alfort, France
- INRAE, MaIAGE, University Paris-Saclay, Jouy-en-Josas, France
| | - Anne Brisabois
- ANSES, Laboratory for Food Safety, University Paris-Est, Maisons-Alfort, France
- ANSES, Laboratory for Food Safety, Boulogne-sur-Mer, France
| | - Laurent Guillier
- ANSES, Laboratory for Food Safety, University Paris-Est, Maisons-Alfort, France
| | | |
Collapse
|
139
|
Ramos B, Brandão TRS, Teixeira P, Silva CLM. Biopreservation approaches to reduce Listeria monocytogenes in fresh vegetables. Food Microbiol 2020; 85:103282. [PMID: 31500713 DOI: 10.1016/j.fm.2019.103282] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/21/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Two biopreservation approaches for fresh lettuce, rocket salad, parsley and spinach were studied. The potential of Pediococcus pentosaceus DT016, as a protective culture, to suppress Listeria monocytogenes in vegetables during storage was evaluated. The pathogen numbers in the vegetables inoculated with P. pentosaceus DT016 were significantly (p < 0.01) lower throughout the storage period and, at the last storage day, a minimum difference of 1.4 log CFU/g was reported when compared with the vegetables without the protective culture. Moreover, by using two levels of L. monocytogenes (about 6 and 4 log CFU/g), it was observed that the antagonist effect of P. pentosaceus was higher for the lower pathogen numbers. The second approach evaluated a pediocin DT016 solution to inactivate and control L. monocytogenes proliferation. The pathogen load was studied after washing with: water, chlorine and the pediocin solution and along storage at 4 °C. Comparing the various washing solutions, the vegetables washed with pediocin presented significantly (p < 0.01) lower pathogen numbers throughout storage, by a minimum of 3.2 and 2.7 log CFU/g, than in vegetables washed with water and chlorine, respectively. The proposed methodologies are promising alternatives to maintain the safety of fresh vegetables during extended storage at refrigeration temperature.
Collapse
Affiliation(s)
- Bárbara Ramos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Teresa R S Brandão
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Cristina L M Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
140
|
Estrada EM, Hamilton AM, Sullivan GB, Wiedmann M, Critzer FJ, Strawn LK. Prevalence, Persistence, and Diversity of Listeria monocytogenes and Listeria Species in Produce Packinghouses in Three U.S. States. J Food Prot 2020; 83:277-286. [PMID: 31961227 DOI: 10.4315/0362-028x.jfp-19-411] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/15/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Listeria monocytogenes has emerged as a food safety concern for several produce commodities. Although L. monocytogenes contamination can occur throughout the supply chain, contamination from the packinghouse environment represents a particular challenge and has been linked to outbreaks and recalls. This study aimed to investigate the prevalence, persistence, and diversity of L. monocytogenes and other species of Listeria in produce packinghouses. A longitudinal study was performed in 11 packinghouses (whose commodities included microgreen, peach, apple, tomato, broccoli, cauliflower, and cucumber) in three U.S. states. In each packinghouse, 34 to 47 sites representing zones 2 to 4 were selected and swabbed. Packinghouses were visited four times over the packing season, and samples were tested for Listeria by following the U.S. Food and Drug Administration's Bacteriological Analytical Manual methods. Presumptive Listeria-positive isolates were confirmed by PCR. Species and allelic type (AT) were identified by sigB sequencing for up to eight isolates per sample. Among 1,588 samples tested, 50 (3.2%), 42 (2.7%), and 10 (0.6%) samples were positive for L. monocytogenes only, Listeria spp. (excluding L. monocytogenes) only, and both L. monocytogenes and Listeria spp., respectively. Five species of Listeria (L. monocytogenes, L. innocua, L. seeligeri, L. welshimeri, and L. marthii) were identified, and L. monocytogenes was the most prevalent species. The 102 Listeria-positive samples yielded 128 representative isolates (i.e., defined as isolates from a given sample with a different AT). Approximately 21% (21 of 102) of the Listeria-positive samples contained two or more ATs. A high AT diversity (0.95 Simpson's diversity index) was observed among Listeria isolates. There were three cases of L. monocytogenes or Listeria spp. repeated isolation (site testing positive at least twice) based on AT data. Data from this study also support the importance of drain and moisture management, because Listeria were most prevalent in samples collected from drain, cold storage, and wet nonfood contact surface sites. HIGHLIGHTS
Collapse
Affiliation(s)
- Erika M Estrada
- Department of Food Science and Technology, Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, Virginia 23420
| | - Alexis M Hamilton
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996
| | | | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | - Faith J Critzer
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996
| | - Laura K Strawn
- Department of Food Science and Technology, Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, Virginia 23420
| |
Collapse
|
141
|
Kaptchouang Tchatchouang CD, Fri J, De Santi M, Brandi G, Schiavano GF, Amagliani G, Ateba CN. Listeriosis Outbreak in South Africa: A Comparative Analysis with Previously Reported Cases Worldwide. Microorganisms 2020; 8:E135. [PMID: 31963542 PMCID: PMC7023107 DOI: 10.3390/microorganisms8010135] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 01/01/2023] Open
Abstract
Listeria species are Gram-positive, rod-shaped, facultative anaerobic bacteria, which do not produce endospores. The genus, Listeria, currently comprises 17 characterised species of which only two (L. monocytogenes and L. ivanovii) are known to be pathogenic to humans. Food products and related processing environments are commonly contaminated with pathogenic species. Outbreaks and sporadic cases of human infections resulted in considerable economic loss. South Africa witnessed the world's largest listeriosis outbreak, characterised by a progressive increase in cases of the disease from January 2017 to July 2018. Of the 1060 laboratory-confirmed cases of listeriosis reported by the National Institute of Communicable Diseases (NICD), 216 deaths were recorded. Epidemiological investigations indicated that ready-to-eat processed meat products from a food production facility contaminated with L. monocytogenes was responsible for the outbreak. Multilocus sequence typing (MLST) revealed that a large proportion (91%) of the isolates from patients were sequence type 6 (ST6). Recent studies revealed a recurrent occurrence of small outbreaks of listeriosis with more severe side-effects in humans. This review provides a comparative analysis of a recently reported and most severe outbreak of listeriosis in South Africa, with those previously encountered in other countries worldwide. The review focuses on the transmission of the pathogen, clinical symptoms of the disease and its pathogenicity. The review also focuses on the major outbreaks of listeriosis reported in different parts of the world, sources of contamination, morbidity, and mortality rates as well as cost implications. Based on data generated during the outbreak of the disease in South Africa, listeriosis was added to the South African list of mandatory notifiable medical conditions. Surveillance systems were strengthened in the South African food chain in order to assist in preventing and facilitating early detection of both sporadic cases and outbreaks of infections caused by these pathogens in humans.
Collapse
Affiliation(s)
| | - Justine Fri
- Department of Microbiology, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.)
| | - Mauro De Santi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, via S. Chiara 27, 61029 Urbino (PU), Italy; (M.D.S.); (G.B.); (G.A.)
- Department of Humanities, University of Urbino Carlo Bo, via Bramante 17, 61029 Urbino (PU), Italy;
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, via S. Chiara 27, 61029 Urbino (PU), Italy; (M.D.S.); (G.B.); (G.A.)
- Department of Humanities, University of Urbino Carlo Bo, via Bramante 17, 61029 Urbino (PU), Italy;
| | | | - Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, via S. Chiara 27, 61029 Urbino (PU), Italy; (M.D.S.); (G.B.); (G.A.)
| | - Collins Njie Ateba
- Department of Microbiology, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.)
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Mmabatho, Mafikeng 2735, South Africa
| |
Collapse
|
142
|
Stratakos AC, Ijaz UZ, Ward P, Linton M, Kelly C, Pinkerton L, Scates P, McBride J, Pet I, Criste A, Stef D, Couto JM, Sloan WT, Dorrell N, Wren BW, Stef L, Gundogdu O, Corcionivoschi N. In vitro and in vivo characterisation of Listeria monocytogenes outbreak isolates. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
143
|
Osman KM, Kappell AD, Fox EM, Orabi A, Samir A. Prevalence, Pathogenicity, Virulence, Antibiotic Resistance, and Phylogenetic Analysis of Biofilm-Producing Listeria monocytogenes Isolated from Different Ecological Niches in Egypt: Food, Humans, Animals, and Environment. Pathogens 2019; 9:E5. [PMID: 31861483 PMCID: PMC7168649 DOI: 10.3390/pathogens9010005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Serious outbreaks of foodborne disease have been caused by Listeria monocytogenes found in retail delicatessens and the severity of disease is significant, with high hospitalization and mortality rates. Little is understood about the formidable public health threat of L. monocytogenes in all four niches, humans, animals, food, and environment, in Egypt. This study analyzed the presence of L. monocytogenes collected from the four environmental niches and bioinformatics analysis was implemented to analyze and compare the data. PCR was used to detect virulence genes encoded by pathogenicity island (LIPI-1). prfA amino acid substation that causes constitutive expression of virulence was common in 77.7% of isolates. BLAST analysis did not match other isolates in the NCBI database, suggesting this may be a characteristic of the region associated with these isolates. A second group included the NH1 isolate originating in China, and BLAST analysis showed this prfA allele was shared with isolates from other global locations, such as Europe and North America. Identification of possible links and transmission pathways between the four niches helps to decrease the risk of disease in humans, to take more specific control measures in the context of disease prevention, to limit economic losses associated with food recalls, and highlights the need for treatment options.
Collapse
Affiliation(s)
- Kamelia M. Osman
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt; (A.O.); (A.S.)
| | - Anthony D. Kappell
- Water Quality Center, Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA;
| | - Edward M. Fox
- Department of Applied Sciences, North Umbria University, Newcastle upon Tyne NE1 2SU, UK;
| | - Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt; (A.O.); (A.S.)
| | - Ahmed Samir
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt; (A.O.); (A.S.)
| |
Collapse
|
144
|
Kang JH, Song KB. Antibacterial activity of the noni fruit extract against Listeria monocytogenes and its applicability as a natural sanitizer for the washing of fresh-cut produce. Food Microbiol 2019; 84:103260. [PMID: 31421758 DOI: 10.1016/j.fm.2019.103260] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/03/2023]
Abstract
This study was conducted to investigate the antibacterial activity of the noni fruit extract (NFE) against Listeria monocytogenes (ATCC, 19111 and 19115) and assess its applicability for the washing of fresh-cut produce. Based on the results of the disc diffusion test, L. monocytogenes (ATCC, 19111 and 19115) was susceptible to the activity of NFE than other pathogens studied. Additionally, results of the time-kill assay indicated that NFE at a concentration of 0.5-0.7% effectively killed L. monocytogenes within 7 h. Furthermore, analysis of the intracellular components such as nucleic acids and proteins released from the bacterial cells and their SEM imaging revealed that NFE could increase the membrane permeability of cells resulting in their death. Compared to their unwashed samples, washing of romaine lettuce, spinach, and kale with 0.5% NFE gave a reduction of 1.47, 2.28, and 3.38 log CFU/g, respectively against L. monocytogenes (ATCC, 19111 and 19115), which is significantly different to that of NaOCl. A significant correlation was observed between the antibacterial effect induced due to NFE washing with the surface roughness of the fresh-cut produce than its surface hydrophobicity. Moreover, washing with NFE was not found to affect the color of the samples. These results indicated that NFE demonstrates good antibacterial activity against L. monocytogenes and can be used as a natural sanitizer to ensure the microbiological safety of fresh-cut produce.
Collapse
Affiliation(s)
- Ji-Hoon Kang
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyung Bin Song
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
145
|
The Role of Pathogenic E. coli in Fresh Vegetables: Behavior, Contamination Factors, and Preventive Measures. Int J Microbiol 2019; 2019:2894328. [PMID: 31885595 PMCID: PMC6899298 DOI: 10.1155/2019/2894328] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022] Open
Abstract
Many raw vegetables, such as tomato, chili, onion, lettuce, arugula, spinach, and cilantro, are incorporated into fresh dishes including ready-to-eat salads and sauces. The consumption of these foods confers a high nutritional value to the human diet. However, the number of foodborne outbreaks associated with fresh produce has been increasing, with Escherichia coli being the most common pathogen associated with them. In humans, pathogenic E. coli strains cause diarrhea, hemorrhagic colitis, hemolytic uremic syndrome, and other indications. Vegetables can be contaminated with E. coli at any point from pre- to postharvest. This bacterium is able to survive in many environmental conditions due to a variety of mechanisms, such as adhesion to surfaces and internalization in fresh products, thereby limiting the usefulness of conventional processing and chemical sanitizing methods used by the food industry. The aim of this review is to provide a general description of the behavior and importance of pathogenic E. coli in ready-to-eat vegetable dishes. This information can contribute to the development of effective control measures for enhancing food safety.
Collapse
|
146
|
Kayode AJ, Igbinosa EO, Okoh AI. Overview of listeriosis in the Southern African Hemisphere—Review. J Food Saf 2019. [DOI: 10.1111/jfs.12732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Adeoye J. Kayode
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and MicrobiologyUniversity of Fort Hare Alice South Africa
- SAMRC Microbial Water Quality Monitoring CenterUniversity of Fort Hare Alice South Africa
| | - Etinosa O. Igbinosa
- Department of Microbiology, Faculty of Life SciencesPrivate Mail Bag 1154, University of Benin Benin City Nigeria
| | - Anthony I. Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and MicrobiologyUniversity of Fort Hare Alice South Africa
- SAMRC Microbial Water Quality Monitoring CenterUniversity of Fort Hare Alice South Africa
| |
Collapse
|
147
|
Taylor AJ, Stasiewicz MJ. Persistent and sporadic Listeria monocytogenes strains do not differ when growing at 37 °C, in planktonic state, under different food associated stresses or energy sources. BMC Microbiol 2019; 19:257. [PMID: 31744459 PMCID: PMC6862832 DOI: 10.1186/s12866-019-1631-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Background The foodborne pathogen Listeria monocytogenes causes the potentially lethal disease listeriosis. Within food-associated environments, L. monocytogenes can persist for long periods and increase the risk of contamination by continued presence in processing facilities or other food-associated environments. Most research on phenotyping of persistent L. monocytogenes’ has explored biofilm formation and sanitizer resistance, with less data examining persistent L. monocytogenes’ phenotypic responses to extrinsic factors, such as variations in osmotic pressure, pH, and energy source availability. It was hypothesized that isolates of persistent strains are able to grow, and grow faster, under a broader range of intrinsic and extrinsic factors compared to closely related isolates of sporadic strains. Results To test this hypothesis, 95 isolates (representing 74 isolates of 20 persistent strains and 21 isolates of sporadic strains) from a series of previous studies in retail delis, were grown at 37 °C, in (i) stress conditions: salt (0, 5, and 10% NaCl), pH (5.2, 7.2, and 9.2), and sanitizer (benzalkonium chloride, 0, 2, and 5 μg/mL) and (ii) energy sources: 25 mM glucose, cellobiose, glycogen, fructose, lactose, and sucrose; the original goal was to follow up with low temperature experiments for treatments where significant differences were observed. Growth rate and the ability to grow of 95 isolates were determined using high-throughput, OD600, growth curves. All stress conditions reduced growth rates in isolates compared to control (p < 0.05). In addition, growth varied by the tested energy sources. In chemically defined, minimal media there was a trend toward more isolates showing growth in all replicates using cellobiose (p = 0.052) compared to the control (glucose) and fewer isolates able to grow in glycogen (p = 0.02), lactose (p = 2.2 × 10− 16), and sucrose (p = 2.2 × 10− 16). Still, at least one isolate was able to consistently grow in every replicate for each energy source. Conclusions The central hypothesis was rejected, as there was not a significant difference in growth rate or ability to grow for retail deli isolates of persistent strains compared to sporadic strains for any treatments at 37 °C. Therefore, these data suggest that persistence is likely not determined by a phenotype unique to persistent strains grown at 37 °C and exposed to extrinsic stresses or variation in energy sources.
Collapse
Affiliation(s)
- Alexander J Taylor
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew J Stasiewicz
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
148
|
Iwu CD, Okoh AI. Preharvest Transmission Routes of Fresh Produce Associated Bacterial Pathogens with Outbreak Potentials: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4407. [PMID: 31717976 PMCID: PMC6888529 DOI: 10.3390/ijerph16224407] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
Disease outbreaks caused by the ingestion of contaminated vegetables and fruits pose a significant problem to human health. The sources of contamination of these food products at the preharvest level of agricultural production, most importantly, agricultural soil and irrigation water, serve as potential reservoirs of some clinically significant foodborne pathogenic bacteria. These clinically important bacteria include: Klebsiella spp., Salmonella spp., Citrobacter spp., Shigella spp., Enterobacter spp., Listeria monocytogenes and pathogenic E. coli (and E. coli O157:H7) all of which have the potential to cause disease outbreaks. Most of these pathogens acquire antimicrobial resistance (AR) determinants due to AR selective pressure within the agroecosystem and become resistant against most available treatment options, further aggravating risks to human and environmental health, and food safety. This review critically outlines the following issues with regards to fresh produce; the global burden of fresh produce-related foodborne diseases, contamination between the continuum of farm to table, preharvest transmission routes, AR profiles, and possible interventions to minimize the preharvest contamination of fresh produce. This review reveals that the primary production niches of the agro-ecosystem play a significant role in the transmission of fresh produce associated pathogens as well as their resistant variants, thus detrimental to food safety and public health.
Collapse
Affiliation(s)
- Chidozie Declan Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
149
|
Quorum sensing in food spoilage and natural-based strategies for its inhibition. Food Res Int 2019; 127:108754. [PMID: 31882100 DOI: 10.1016/j.foodres.2019.108754] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/27/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
Abstract
Food can harbor a variety of microorganisms including spoilage and pathogenic bacteria. Many bacterial processes, including production of degrading enzymes, virulence factors, and biofilm formation are known to depend on cell density through a process called quorum sensing (QS), in which cells communicate by synthesizing, detecting and reacting to small diffusible signaling molecules - autoinducers (AI). The disruption of QS could decisively contribute to control the expression of many harmful bacterial phenotypes. Several quorum sensing inhibitors (QSI) have been extensively studied, being many of them of natural origin. This review provides an analysis on the role of QS in food spoilage and biofilm formation within the food industry. QSI from natural sources are also reviewed towards their putative future applications to prolong shelf life of food products and decrease foodborne pathogenicity.
Collapse
|
150
|
Machado-Moreira B, Richards K, Brennan F, Abram F, Burgess CM. Microbial Contamination of Fresh Produce: What, Where, and How? Compr Rev Food Sci Food Saf 2019; 18:1727-1750. [PMID: 33336968 DOI: 10.1111/1541-4337.12487] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/07/2019] [Accepted: 07/10/2019] [Indexed: 01/02/2023]
Abstract
Promotion of healthier lifestyles has led to an increase in consumption of fresh produce. Such foodstuffs may expose consumers to increased risk of foodborne disease, as often they are not subjected to processing steps to ensure effective removal or inactivation of pathogenic microorganisms before consumption. Consequently, reports of ready-to-eat fruit and vegetable related disease outbreak occurrences have increased substantially in recent years, and information regarding these events is often not readily available. Identifying the nature and source of microbial contamination of these foodstuffs is critical for developing appropriate mitigation measures to be implemented by food producers. This review aimed to identify the foodstuffs most susceptible to microbial contamination and the microorganisms responsible for disease outbreaks from information available in peer-reviewed scientific publications. A total of 571 outbreaks were identified from 1980 to 2016, accounting for 72,855 infections and 173 deaths. Contaminated leafy green vegetables were responsible for 51.7% of reported outbreaks. Contaminated soft fruits caused 27.8% of infections. Pathogenic strains of Escherichia coli and Salmonella, norovirus, and hepatitis A accounted for the majority of cases. Large outbreaks resulted in particular biases such as the observation that contaminated sprouted plants caused 31.8% of deaths. Where known, contamination mainly occurred via contaminated seeds, water, and contaminated food handlers. There is a critical need for standardized datasets regarding all aspects of disease outbreaks, including how foodstuffs are contaminated with pathogenic microorganisms. Providing food business operators with this knowledge will allow them to implement better strategies to improve safety and quality of fresh produce.
Collapse
Affiliation(s)
- Bernardino Machado-Moreira
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland.,Functional Environmental Microbiology, National Univ. of Ireland Galway, Galway, Ireland
| | - Karl Richards
- Teagasc Johnstown Castle Environmental Research Centre, Wexford, Ireland
| | - Fiona Brennan
- Teagasc Johnstown Castle Environmental Research Centre, Wexford, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, National Univ. of Ireland Galway, Galway, Ireland
| | | |
Collapse
|