101
|
Wang J, Fukuda M, Chung JJ, Wang P, Jin T. Chemical exchange sensitive MRI of glucose uptake using xylose as a contrast agent. Magn Reson Med 2020; 85:1953-1961. [PMID: 33107108 DOI: 10.1002/mrm.28557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Glucose and its analogs can be detected by CEST and chemical exchange spin-lock (CESL) MRI techniques, but sensitivity is still a bottleneck for human applications. Here, CESL and CEST sensitivity and the effect of injection on baseline physiology were evaluated for a glucose analog, xylose. METHODS The CEST and CESL sensitivity were evaluated at 9.4 T in phantoms and by in vivo rat experiments with 0.5 and 1 g/kg xylose injections. Arterial blood glucose level was sampled before and after 1 g/kg xylose injection. The effect of injection on baseline neuronal activity was measured by electrophysiology data during injections of saline, xylose, and 2-deoxy-D-glucose. RESULTS In phantoms, xylose shows similar chemical exchange sensitivity and pH-dependence with that of glucose. In rat experiments with a bolus injection, CESL shows higher sensitivity in the detection of xylose than CEST, and the sensitivity of xylose is much higher than glucose. Injection of xylose does not significantly affect blood glucose level and baseline neural activity for 1-g/kg and 0.6-g/kg doses, respectively. CONCLUSION Due to its relatively high sensitivity and safety, xylose is a promising contrast agent for the study of glucose uptake.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julius Juhyun Chung
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ping Wang
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
102
|
Zhou Y, Zhu F, Liu Y, Zheng M, Wang Y, Zhang D, Anraku Y, Zou Y, Li J, Wu H, Pang X, Tao W, Shimoni O, Bush AI, Xue X, Shi B. Blood-brain barrier-penetrating siRNA nanomedicine for Alzheimer's disease therapy. SCIENCE ADVANCES 2020; 6:6/41/eabc7031. [PMID: 33036977 PMCID: PMC7546706 DOI: 10.1126/sciadv.abc7031] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/26/2020] [Indexed: 05/21/2023]
Abstract
Toxic aggregated amyloid-β accumulation is a key pathogenic event in Alzheimer's disease (AD), which derives from amyloid precursor protein (APP) through sequential cleavage by BACE1 (β-site APP cleavage enzyme 1) and γ-secretase. Small interfering RNAs (siRNAs) show great promise for AD therapy by specific silencing of BACE1. However, lack of effective siRNA brain delivery approaches limits this strategy. Here, we developed a glycosylated "triple-interaction" stabilized polymeric siRNA nanomedicine (Gal-NP@siRNA) to target BACE1 in APP/PS1 transgenic AD mouse model. Gal-NP@siRNA exhibits superior blood stability and can efficiently penetrate the blood-brain barrier (BBB) via glycemia-controlled glucose transporter-1 (Glut1)-mediated transport, thereby ensuring that siRNAs decrease BACE1 expression and modify relative pathways. Noticeably, Gal-NP@siBACE1 administration restored the deterioration of cognitive capacity in AD mice without notable side effects. This "Trojan horse" strategy supports the utility of RNA interference therapy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yutong Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Feiyan Zhu
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yang Liu
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Meng Zheng
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Yibin Wang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dongya Zhang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yan Zou
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jia Li
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Haigang Wu
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiaobin Pang
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Olga Shimoni
- Institute for Biomedical Materials & Devices (IBMD), School of Mathematical and Physical Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China.
| | - Bingyang Shi
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
103
|
Chiba Y, Murakami R, Matsumoto K, Wakamatsu K, Nonaka W, Uemura N, Yanase K, Kamada M, Ueno M. Glucose, Fructose, and Urate Transporters in the Choroid Plexus Epithelium. Int J Mol Sci 2020; 21:E7230. [PMID: 33008107 PMCID: PMC7582461 DOI: 10.3390/ijms21197230] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
The choroid plexus plays a central role in the regulation of the microenvironment of the central nervous system by secreting the majority of the cerebrospinal fluid and controlling its composition, despite that it only represents approximately 1% of the total brain weight. In addition to a variety of transporter and channel proteins for solutes and water, the choroid plexus epithelial cells are equipped with glucose, fructose, and urate transporters that are used as energy sources or antioxidative neuroprotective substrates. This review focuses on the recent advances in the understanding of the transporters of the SLC2A and SLC5A families (GLUT1, SGLT2, GLUT5, GLUT8, and GLUT9), as well as on the urate-transporting URAT1 and BCRP/ABCG2, which are expressed in choroid plexus epithelial cells. The glucose, fructose, and urate transporters repertoire in the choroid plexus epithelium share similar features with the renal proximal tubular epithelium, although some of these transporters exhibit inversely polarized submembrane localization. Since choroid plexus epithelial cells have high energy demands for proper functioning, a decline in the expression and function of these transporters can contribute to the process of age-associated brain impairment and pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Ryuta Murakami
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Koichi Matsumoto
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Keiji Wakamatsu
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Wakako Nonaka
- Department of Supportive and Promotive Medicine of the Municipal Hospital, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Naoya Uemura
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (N.U.); (K.Y.)
| | - Ken Yanase
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (N.U.); (K.Y.)
| | - Masaki Kamada
- Department of Neurological Intractable Disease Research, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| |
Collapse
|
104
|
Ahmad Azam A, Ismail IS, Kumari Y, Shaikh MF, Abas F, Shaari K. The anti-neuroinflammatory effects of Clinacanthus nutans leaf extract on metabolism elucidated through 1H NMR in correlation with cytokines microarray. PLoS One 2020; 15:e0238503. [PMID: 32925968 PMCID: PMC7489527 DOI: 10.1371/journal.pone.0238503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Clinacanthus nutans (CN) (Acanthaceae) is well-known for its anti-inflammatory properties among Asian communities; however, there are currently no data specifically focused on the anti-inflammatory effects of CN on the brain tissue. Neuroinflammation is a common consequence of toxin intrusion to any part of the central nervous system (CNS). As an innate immune response, the CNS may react through both protective and/or toxic actions due to the activation of neuron cells producing pro- and/or anti-inflammatory cytokines in the brain. The unresolved activation of the inflammatory cytokines' response is associated with the pathogenesis of neurological disorders. The present study aimed to decipher the metabolic mechanism on the effects of 14 days oral treatment with CN aqueous extract in induced-lipopolysaccharides (LPS) rats through 1H NMR spectroscopic biomarker profiling of the brain tissue and the related cytokines. Based on the principal component analysis (PCA) of the nuclear magnetic resonance (NMR) spectral data, twenty-one metabolites in the brain tissue were profiled as biomarkers for the LPS (10 μL)-induced neuroinflammation following intracerebroventricular injection. Among the twenty-one biomarkers in the neuroinflammed rats, CN treatment of 1000 and 500 mg/kg BW successfully altered lactate, pyruvate, phosphorylcholine, glutamine, and α-ketoglutarate when compared to the negative control. Likewise, statistical isolinear multiple component analysis (SIMCA) showed that treatments by CN and the positive control drug, dextromethorphan (DXM, 5 mg/kg BW), have anti-neuroinflammatory potential. A moderate correlation, in the orthogonal partial least squares (OPLS) regression model, was found between the spectral metabolite profile and the cytokine levels. The current study revealed the existence of high levels of pro-inflammatory cytokines, namely IL-1α, IL-1β, and TNF-α in LPS-induced rats. Both CN dose treatments lowered IL-1β significantly better than DXM Interestingly, DXM and CN treatments both exhibited the upregulation of the anti-inflammatory cytokines IL-2 and 4. However, DXM has an advantage over CN in that the former also increased the expression of IL-10 of anti-inflammatory cytokines. In this study, a metabolomics approach was successfully applied to discover the mechanistic role of CN in controlling the neuroinflammatory conditions through the modulation of complex metabolite interactions in the rat brain.
Collapse
Affiliation(s)
- Amalina Ahmad Azam
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
105
|
Travica N, Ried K, Hudson I, Sali A, Scholey A, Pipingas A. The Contribution of Plasma and Brain Vitamin C on Age and Gender-Related Cognitive Differences: A Mini-Review of the Literature. Front Integr Neurosci 2020; 14:47. [PMID: 32973470 PMCID: PMC7471743 DOI: 10.3389/fnint.2020.00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence that sex differences in the brain may contribute to gender-related behavioral differences, including cognitive function. Literature has revealed gender dimorphisms in cognitive function between males and females. Additionally, several risk factors associated with cognitive decline depend on chronological age. It is well recognized that the process of aging is associated with a decline in cognitive ability and brain function. Various explanations may account for these gender-related cognitive differences and age-associated cognitive changes. Recent investigations have highlighted the importance of vitamin C in maintaining brain health and its association with cognitive function in both cognitively intact and impaired cohorts. The present review explores previous literature that has evaluated differences in plasma/brain vitamin C between genders and during aging. It then assesses whether these age and gender-related differences may affect the relationship between plasma/brain vitamin C and cognition. The purpose of this review was to examine the evidence for a link between plasma/brain vitamin C and cognition and the impact of gender and age on this relationship. Epidemiological studies have frequently shown higher vitamin C plasma concentrations in women. Similarly, aging has been systematically associated with reductions in plasma vitamin C levels. A range of animal studies has demonstrated potential gender and age-related differences in vitamin C brain distribution and utilization. The reviewed literature suggests that gender differences in plasma and brain vitamin C may potentially contribute to differences in gender-associated cognitive ability, particularly while females are pre-menopausal. Additionally, we can propose that age-associated differences in plasma and brain vitamin C may be potentially linked to age-associated cognitive differences, with older cohorts appearing more vulnerable to experience declines in plasma vitamin C concentrations alongside compromised vitamin C brain regulation. This review encourages future investigations to take into account both gender and age when assessing the link between plasma vitamin C concentrations and cognitive function. Further large scale investigations are required to assess whether differences in cognitive function between genders and age groups may be causally attributed to plasma vitamin C status and brain distribution and utilization.
Collapse
Affiliation(s)
- Nikolaj Travica
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
- The National Institute of Integrative Medicine, Melbourne, VIC, Australia
| | - Karin Ried
- The National Institute of Integrative Medicine, Melbourne, VIC, Australia
- Discipline of General Practice, University of Adelaide, Adelaide, SA, Australia
- Torrens University, Melbourne, VIC, Australia
| | - Irene Hudson
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
- School of Science, College of Science, Engineering and Health, Mathematical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
- School of Mathematical and Physical Science, University of Newcastle, Callaghan, NSW, Australia
| | - Avni Sali
- The National Institute of Integrative Medicine, Melbourne, VIC, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
106
|
dos Santos Maia M, Rodrigues GCS, de Sousa NF, Scotti MT, Scotti L, Mendonça-Junior FJB. Identification of New Targets and the Virtual Screening of Lignans against Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3098673. [PMID: 32879651 PMCID: PMC7448245 DOI: 10.1155/2020/3098673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/22/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is characterized by the progressive disturbance in cognition and affects approximately 36 million people, worldwide. However, the drugs used to treat this disease are only moderately effective and do not alter the course of the neurodegenerative process. This is because the pathogenesis of AD is mainly associated with oxidative stress, and current drugs only target two enzymes involved in neurotransmission. Therefore, the present study sought to identify potential multitarget compounds for enzymes that are directly or indirectly involved in the oxidative pathway, with minimal side effects, for AD treatment. A set of 159 lignans were submitted to studies of QSAR and molecular docking. A combined analysis was performed, based on ligand and structure, followed by the prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. The results showed that the combined analysis was able to select 139 potentially active and multitarget lignans targeting two or more enzymes, among them are c-Jun N-terminal kinase 3 (JNK-3), protein tyrosine phosphatase 1B (PTP1B), nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1), NADPH quinone oxidoreductase 1 (NQO1), phosphodiesterase 5 (PDE5), nuclear factor erythroid 2-related factor 2 (Nrf2), cycloxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS). The authors conclude that compounds (06) austrobailignan 6, (11) anolignan c, (19) 7-epi-virolin, (64) 6-[(2R,3R,4R,5R)-3,4-dimethyl-5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]-4-methoxy-1,3-benzodioxole, (116) ococymosin, and (135) mappiodoinin b have probabilities that confer neuroprotection and antioxidant activity and represent potential alternative AD treatment drugs or prototypes for the development of new drugs with anti-AD properties.
Collapse
Affiliation(s)
- Mayara dos Santos Maia
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Gabriela Cristina Soares Rodrigues
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Natália Ferreira de Sousa
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | |
Collapse
|
107
|
Glucose transporters in brain in health and disease. Pflugers Arch 2020; 472:1299-1343. [PMID: 32789766 PMCID: PMC7462931 DOI: 10.1007/s00424-020-02441-x] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
Energy demand of neurons in brain that is covered by glucose supply from the blood is ensured by glucose transporters in capillaries and brain cells. In brain, the facilitative diffusion glucose transporters GLUT1-6 and GLUT8, and the Na+-d-glucose cotransporters SGLT1 are expressed. The glucose transporters mediate uptake of d-glucose across the blood-brain barrier and delivery of d-glucose to astrocytes and neurons. They are critically involved in regulatory adaptations to varying energy demands in response to differing neuronal activities and glucose supply. In this review, a comprehensive overview about verified and proposed roles of cerebral glucose transporters during health and diseases is presented. Our current knowledge is mainly based on experiments performed in rodents. First, the functional properties of human glucose transporters expressed in brain and their cerebral locations are described. Thereafter, proposed physiological functions of GLUT1, GLUT2, GLUT3, GLUT4, and SGLT1 for energy supply to neurons, glucose sensing, central regulation of glucohomeostasis, and feeding behavior are compiled, and their roles in learning and memory formation are discussed. In addition, diseases are described in which functional changes of cerebral glucose transporters are relevant. These are GLUT1 deficiency syndrome (GLUT1-SD), diabetes mellitus, Alzheimer’s disease (AD), stroke, and traumatic brain injury (TBI). GLUT1-SD is caused by defect mutations in GLUT1. Diabetes and AD are associated with changed expression of glucose transporters in brain, and transporter-related energy deficiency of neurons may contribute to pathogenesis of AD. Stroke and TBI are associated with changes of glucose transporter expression that influence clinical outcome.
Collapse
|
108
|
Noe CR, Noe-Letschnig M, Handschuh P, Noe CA, Lanzenberger R. Dysfunction of the Blood-Brain Barrier-A Key Step in Neurodegeneration and Dementia. Front Aging Neurosci 2020; 12:185. [PMID: 32848697 PMCID: PMC7396716 DOI: 10.3389/fnagi.2020.00185] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium in the brain is an essential part of the blood-brain-barrier (BBB) because of its very tight structure to secure a functional and molecular separation of the brain from the rest of the body and to protect neurons from pathogens and toxins. Impaired transport of metabolites across the BBB due to its increasing dysfunction affects brain health and cognitive functioning, thus providing a starting point of neurodegenerative diseases. The term “cerebral metabolic syndrome” is proposed to highlight the importance of lifestyle factors in neurodegeneration and to describe the impact of increasing BBB dysfunction on neurodegeneration and dementia, especially in elderly patients. If untreated, the cerebral metabolic syndrome may evolve into dementia. Due to the high energy demand of the brain, impaired glucose transport across the BBB via glucose transporters as GLUT1 renders the brain increasingly susceptible to neurodegeneration. Apoptotic processes are further supported by the lack of essential metabolites of the phosphocholine synthesis. In Alzheimer’s disease (AD), inflammatory and infectious processes at the BBB increase the dysfunction and might be pace-making events. At this point, the potentially highly relevant role of the thrombocytic amyloid precursor protein (APP) in endothelial inflammation of the BBB is discussed. Chronic inflammatory processes of the BBB transmitted to an increasing number of brain areas might cause a lasting build-up of spreading, pore-forming β-amyloid fragments explaining the dramatic progression of the disease. In the view of the essential requirement of an early diagnosis to investigate and implement causal therapeutic strategies against dementia, brain imaging methods are of great importance. Therefore, status and opportunities in the field of diagnostic imaging of the living human brain will be portrayed, comprising diverse techniques such as positron emissions tomography (PET) and functional magnetic resonance imaging (fMRI) to uncover the patterns of atrophy, protein deposits, hypometabolism, and molecular as well as functional alterations in AD.
Collapse
Affiliation(s)
- Christian R Noe
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | | | - Patricia Handschuh
- Neuroimaging Lab (NIL), Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Chiara Anna Noe
- Department of Otorhinolaryngology, University Clinic St. Poelten, St. Poelten, Austria
| | - Rupert Lanzenberger
- Neuroimaging Lab (NIL), Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
109
|
Dapagliflozin improves behavioral dysfunction of Huntington's disease in rats via inhibiting apoptosis-related glycolysis. Life Sci 2020; 257:118076. [PMID: 32659371 DOI: 10.1016/j.lfs.2020.118076] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
AIMS Huntington's disease is a rare neurodegenerative disorder which is associated with defected glucose metabolism with consequent behavioral disturbance including memory and locomotion. 3-nitropropionic acid (3-NP) can cause, in high single dose, an acute striatal injury/Huntington's disease. Dapagliflozin, which is one of the longest duration of action of SGLTIs family, may be able to diminish that injury and its resultant behavioral disturbances. MATERIAL AND METHODS Forty rats were divided into four groups (n = 10 in each group): normal control group (CTRL), dapagliflozin (CTRL + DAPA) group, 3-nitropropionic acid (3-NP) group, and dapagliflozin plus 3-nitropropionic acid (DAPA + 3-NP) group. Behavioral tests (beam walking test, hanging wire test, limb withdrawal test, Y-maze spontaneous alteration, elevated plus maze) were performed with evaluating neurological scoring. In striatum, neurotransmitters (glutamate, aspartate, GABA, ACh and AChE activity) were measured. In addition, apoptosis and glycolysis markers (NF-κB, Cyt-c, lactate, HK-II activity, P53, calpain, PEA15 and TIGAR) were determined. Inflammation (IL-1β, IL-6, IL-8 and TNF-α) and autophagy (beclin-1, LC3 and DRAM) indicators were measured. Additionally, histopathological screening was conducted. KEY FINDINGS 3-Nitropropionic acid had the ability to perturb the neurotransmission which was reflected in impaired behavioral outcome. All of glycolysis, apoptosis and inflammation markers were elevated after 3-NP acute intoxication but autophagy parameters, except DRAM, were reduced. However, DAPA markedly reversed the abovementioned parameters. SIGNIFICANCE Dapagliflozin demonstrated anti-glycolytic, anti-apoptotic, anti-inflammatory and autophagic effects on 3-NP-damaged striatal cells and promoted the behavioral outcome.
Collapse
|
110
|
Early Perturbations in Glucose Utilization in Malaria-Infected Murine Erythrocytes, Liver and Brain Observed by Metabolomics. Metabolites 2020; 10:metabo10070277. [PMID: 32645891 PMCID: PMC7407383 DOI: 10.3390/metabo10070277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/15/2023] Open
Abstract
Investigation of glucose utilization during an infection is central to the study of energy metabolism. The heavy utilization of glucose by the malaria parasite, and the consequences of this process, have been investigated extensively. However, host glucose utilization during early infection has not been explored to date. In a first attempt, this article investigates the changes in the host glucose utilization in Balb/c mice infected with Plasmodium berghei ANKA using 13C-labeled glucose infusion followed by NMR spectroscopy. The results suggested significant alterations of liver, brain and red blood cell (RBC) glucose utilization during early infection when the parasitemia was <1%. At the pathway level, we observed a decrease in the shunt metabolite 2,3-bisphosphoglycerate in the RBCs. Glycolysis and pathways associated with it, along with fatty acid unsaturation, were altered in the liver. Significant changes were observed in the central carbon metabolic pathways in the brain. These results have implications in understanding the host physiology during early infection and pave the way for detailed flux analysis of the proposed perturbed pathways.
Collapse
|
111
|
Pitchaimani V, Arumugam S, Thandavarayan RA, Karuppagounder V, Afrin MR, Sreedhar R, Harima M, Nakamura M, Watanabe K, Kodama S, Fujihara K, Sone H. Brain adaptations of insulin signaling kinases, GLUT 3, p-BADser155 and nitrotyrosine expression in various hypoglycemic models of mice. Neurochem Int 2020; 137:104745. [DOI: 10.1016/j.neuint.2020.104745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 12/29/2022]
|
112
|
Martins S, Müller-Schiffmann A, Erichsen L, Bohndorf M, Wruck W, Sleegers K, Van Broeckhoven C, Korth C, Adjaye J. IPSC-Derived Neuronal Cultures Carrying the Alzheimer's Disease Associated TREM2 R47H Variant Enables the Construction of an Aβ-Induced Gene Regulatory Network. Int J Mol Sci 2020; 21:ijms21124516. [PMID: 32630447 PMCID: PMC7350255 DOI: 10.3390/ijms21124516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Genes associated with immune response and inflammation have been identified as genetic risk factors for late-onset Alzheimer´s disease (LOAD). The rare R47H variant within triggering receptor expressed on myeloid cells 2 (TREM2) has been shown to increase the risk for developing Alzheimer’s disease (AD) 2–3-fold. Here, we report the generation and characterization of a model of late-onset Alzheimer’s disease (LOAD) using lymphoblast-derived induced pluripotent stem cells (iPSCs) from patients carrying the TREM2 R47H mutation, as well as from control individuals without dementia. All iPSCs efficiently differentiated into mature neuronal cultures, however AD neuronal cultures showed a distinct gene expression profile. Furthermore, manipulation of the iPSC-derived neuronal cultures with an Aβ-S8C dimer highlighted metabolic pathways, phagosome and immune response as the most perturbed pathways in AD neuronal cultures. Through the construction of an Aβ-induced gene regulatory network, we were able to identify an Aβ signature linked to protein processing in the endoplasmic reticulum (ER), which emphasized ER-stress, as a potential causal role in LOAD. Overall, this study has shown that our AD-iPSC based model can be used for in-depth studies to better understand the molecular mechanisms underlying the etiology of LOAD and provides new opportunities for screening of potential therapeutic targets.
Collapse
Affiliation(s)
- Soraia Martins
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (M.B.); (W.W.)
| | - Andreas Müller-Schiffmann
- Department of Neuropathology, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.M.-S.); (C.K.)
| | - Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (M.B.); (W.W.)
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (M.B.); (W.W.)
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (M.B.); (W.W.)
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, VIB-Center for Molecular Neurology, University of Antwerp, 20610 Antwerp, Belgium; (K.S.); (C.V.B.)
- Department of Biomedical Sciences, University of Antwerp, 20610 Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB-Center for Molecular Neurology, University of Antwerp, 20610 Antwerp, Belgium; (K.S.); (C.V.B.)
- Department of Biomedical Sciences, University of Antwerp, 20610 Antwerp, Belgium
| | - Carsten Korth
- Department of Neuropathology, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.M.-S.); (C.K.)
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (M.B.); (W.W.)
- Correspondence:
| |
Collapse
|
113
|
Establishment of an in Vitro Human Blood-Brain Barrier Model Derived from Induced Pluripotent Stem Cells and Comparison to a Porcine Cell-Based System. Cells 2020; 9:cells9040994. [PMID: 32316221 PMCID: PMC7226989 DOI: 10.3390/cells9040994] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
The blood-brain barrier (BBB) is responsible for the homeostasis between the cerebral vasculature and the brain and it has a key role in regulating the influx and efflux of substances, in healthy and diseased states. Stem cell technology offers the opportunity to use human brain-specific cells to establish in vitro BBB models. Here, we describe the establishment of a human BBB model in a two-dimensional monolayer culture, derived from human induced pluripotent stem cells (hiPSCs). This model was characterized by a transendothelial electrical resistance (TEER) higher than 2000 Ω∙cm2 and associated with negligible paracellular transport. The hiPSC-derived BBB model maintained the functionality of major endothelial transporter proteins and receptors. Some proprietary molecules from our central nervous system (CNS) programs were evaluated revealing comparable permeability in the human model and in the model from primary porcine brain endothelial cells (PBECs).
Collapse
|
114
|
Kubis-Kubiak A, Dyba A, Piwowar A. The Interplay between Diabetes and Alzheimer's Disease-In the Hunt for Biomarkers. Int J Mol Sci 2020; 21:ijms21082744. [PMID: 32326589 PMCID: PMC7215807 DOI: 10.3390/ijms21082744] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
The brain is an organ in which energy metabolism occurs most intensively and glucose is an essential and dominant energy substrate. There have been many studies in recent years suggesting a close relationship between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) as they have many pathophysiological features in common. The condition of hyperglycemia exposes brain cells to the detrimental effects of glucose, increasing protein glycation and is the cause of different non-psychiatric complications. Numerous observational studies show that not only hyperglycemia but also blood glucose levels near lower fasting limits (72 to 99 mg/dL) increase the incidence of AD, regardless of whether T2DM will develop in the future. As the comorbidity of these diseases and earlier development of AD in T2DM sufferers exist, new AD biomarkers are being sought for etiopathogenetic changes associated with early neurodegenerative processes as a result of carbohydrate disorders. The S100B protein seem to be interesting in this respect as it may be a potential candidate, especially important in early diagnostics of these diseases, given that it plays a role in both carbohydrate metabolism disorders and neurodegenerative processes. It is therefore necessary to clarify the relationship between the concentration of the S100B protein and glucose and insulin levels. This paper draws attention to a valuable research objective that may in the future contribute to a better diagnosis of early neurodegenerative changes, in particular in subjects with T2DM and may be a good basis for planning experiments related to this issue as well as a more detailed explanation of the relationship between the neuropathological disturbances and changes of glucose and insulin concentrations in the brain.
Collapse
Affiliation(s)
- Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
- Correspondence:
| | - Aleksandra Dyba
- Students Science Club of the Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
| |
Collapse
|
115
|
Jia Y, Wang N, Zhang Y, Xue D, Lou H, Liu X. Alteration in the Function and Expression of SLC and ABC Transporters in the Neurovascular Unit in Alzheimer's Disease and the Clinical Significance. Aging Dis 2020; 11:390-404. [PMID: 32257549 PMCID: PMC7069460 DOI: 10.14336/ad.2019.0519] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022] Open
Abstract
The neurovascular unit (NVU) plays an important role in maintaining the function of the central nervous system (CNS). Emerging evidence has indicated that the NVU changes function and molecules at the early stage of Alzheimer’s disease (AD), which initiates multiple pathways of neurodegeneration. Cell types in the NVU have become attractive targets in the interventional treatment of AD. The NVU transportation system contains a variety of proteins involved in compound transport and neurotransmission. Brain transporters can be classified as members of the solute carrier (SLC) and ATP-binding cassette (ABC) families in the NVU. Moreover, the transporters can regulate both endogenous toxins, including amyloid-beta (Aβ) and xenobiotic homeostasis, in the brains of AD patients. Genome-wide association studies (GWAS) have identified some transporter gene variants as susceptibility loci for late-onset AD. Therefore, the present study summarizes changes in blood-brain barrier (BBB) permeability in AD, identifies the location of SLC and ABC transporters in the brain and focuses on major SLC and ABC transporters that contribute to AD pathology.
Collapse
Affiliation(s)
- Yongming Jia
- 1Department of Neuropharmacology, College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Na Wang
- 2Department of Pathophysiology, Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Yingbo Zhang
- 3College of Pathology, Qiqihar Medical University, Qiqihar, China
| | - Di Xue
- 1Department of Neuropharmacology, College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Haoming Lou
- 4Department of Medicinal Chemistry and Chemistry of Chinese Materia Medica, School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xuewei Liu
- 1Department of Neuropharmacology, College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
116
|
Lee JS, Hong JM, Yoon BS, Son KS, Lee KE, Im DS, Park BN, An YS, Hwang DH, Park CB, Kim BG, Joe EH. Expression of Cellular Receptors in the Ischemic Hemisphere of Mice with Increased Glucose Uptake. Exp Neurobiol 2020; 29:70-79. [PMID: 32122109 PMCID: PMC7075656 DOI: 10.5607/en.2020.29.1.70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/16/2020] [Accepted: 02/06/2020] [Indexed: 11/19/2022] Open
Abstract
Many previous studies have shown reduced glucose uptake in the ischemic brain. In contrast, in a permanent unilateral common carotid artery occlusion (UCCAO) mouse model, our pilot experiments using 18F-fluorodeoxyglucose positron emission tomography (FDG PET) revealed that a subset of mice exhibited conspicuously high uptake of glucose in the ipsilateral hemisphere at 1 week post-occlusion (asymmetric group), whereas other mice showed symmetric uptake in both hemispheres (symmetric group). Thus, we aimed to understand the discrepancy between the two groups. Cerebral blood flow and histological/metabolic changes were analyzed using laser Doppler flowmetry and immunohistochemistry/Western blotting, respectively. Contrary to the increased glucose uptake observed in the ischemic cerebral hemisphere on FDG PET (p<0.001), cerebral blood flow tended to be lower in the asymmetric group than in the symmetric group (right to left ratio [%], 36.4±21.8 vs. 58.0±24.8, p=0.059). Neuronal death was observed only in the ischemic hemisphere of the asymmetric group. In contrast, astrocytes were more activated in the asymmetric group than in the symmetric group (p<0.05). Glucose transporter-1, and monocarboxylate transporter-1 were also upregulated in the asymmetric group, compared with the symmetric group (p<0.05, respectively). These results suggest that the increased FDG uptake was associated with relatively severe ischemia, and glucose transporter-1 upregulation and astrocyte activation. Glucose metabolism may thus be a compensatory mechanism in the moderately severe ischemic brain.
Collapse
Affiliation(s)
- Jin Soo Lee
- Department of Neurology, Ajou University School of Medicine, Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Ji Man Hong
- Department of Neurology, Ajou University School of Medicine, Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Bok Seon Yoon
- Department of Neurology, Ajou University School of Medicine, Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Keoung Sun Son
- Department of Neurology, Ajou University School of Medicine, Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Kyung Eon Lee
- School of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Doo Soon Im
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bok-Nam Park
- Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Korea
| | - Young-Sil An
- Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Korea
| | - Dong Hoon Hwang
- Department of Brain Science, Ajou University School of Medicine, Korea
| | - Chan Bae Park
- Department of Biology, Ajou University School of Medicine, Korea
| | - Byung Gon Kim
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Brain Science, Ajou University School of Medicine, Korea
| | - Eun-Hye Joe
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Brain Science, Ajou University School of Medicine, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
117
|
Leão LL, Tangen G, Barca ML, Engedal K, Santos SHS, Machado FSM, de Paula AMB, Monteiro-Junior RS. Does hyperglycemia downregulate glucose transporters in the brain? Med Hypotheses 2020; 139:109614. [PMID: 32087490 DOI: 10.1016/j.mehy.2020.109614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Diabetes is a metabolic condition associated with hyperglycemia manifested by the elevation of blood glucose levels occurring when the pancreas decreases or stops the production of insulin, in case of insulin resistance or both. The current literature supports that insulin resistance may be responsible for the memory decline associated with diabetes. Glucose transporters (GLUTs) are a family of proteins involved in glucose transport across biological membranes. GLUT-1 and GLUT-3 are involved in glucose delivery to the brain. Evidence suggests that both transporters are downregulated in chronic peripheral hyperglycemia. Here we show the mechanisms of glucose transport and its influence on cognitive function, including a hypothesis of how peripheral hyperglycemia related genes network interactions may lead to glucose transporters downregulation and its possible consequences.
Collapse
Affiliation(s)
- Luana Lemos Leão
- Post-graduate Program of Health Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Gro Tangen
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Maria Lage Barca
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Knut Engedal
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Sérgio Henrique S Santos
- Post-graduate Program of Health Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil; Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Frederico Sander M Machado
- Post-graduate Program of Health Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Alfredo Maurício B de Paula
- Post-graduate Program of Health Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Renato Sobral Monteiro-Junior
- Post-graduate Program of Health Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil; Post-Graduate Program of Medicine (Neurology/Neuroscience), Federal Fluminense University, Niterói, Rio de Janeiro, Brazil; Neuroscience of Exercise Institute, Aroldo Tourinho Hospital, Montes Claros, MG, Brazil.
| |
Collapse
|
118
|
Kim MS, Bang J, Jeon WK. The Involvement of Canonical Wnt Signaling in Memory Impairment Induced by Chronic Cerebral Hypoperfusion in Mice. Transl Stroke Res 2020; 11:734-746. [DOI: 10.1007/s12975-019-00748-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/25/2023]
|
119
|
Seo S, Kim H, Sung JH, Choi N, Lee K, Kim HN. Microphysiological systems for recapitulating physiology and function of blood-brain barrier. Biomaterials 2019; 232:119732. [PMID: 31901694 DOI: 10.1016/j.biomaterials.2019.119732] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 12/27/2022]
Abstract
Central nervous system (CNS) diseases are emerging as a major issue in an aging society. Although extensive research has focused on the development of CNS drugs, the limited transport of therapeutic agents across the blood-brain barrier (BBB) remains a major challenge. Conventional two-dimensional culture dishes do not recapitulate in vivo physiology and real-time observations of molecular transport are not possible in animal models. Recent advances in engineering techniques have enabled the generation of more physiologically relevant in vitro BBB models, and their applications have expanded from fundamental biological research to practical applications in the pharmaceutical industry. In this article, we provide an overview of recent advances in the development of in vitro BBB models, with a particular focus on the recapitulation of BBB function. The development of biomimetic BBB models is postulated to revolutionize not only fundamental biological studies but also drug screening.
Collapse
Affiliation(s)
- Suyeong Seo
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwieun Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kangwon Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
120
|
The solute carrier transporters and the brain: Physiological and pharmacological implications. Asian J Pharm Sci 2019; 15:131-144. [PMID: 32373195 PMCID: PMC7193445 DOI: 10.1016/j.ajps.2019.09.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/17/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023] Open
Abstract
Solute carriers (SLCs) are the largest family of transmembrane transporters that determine the exchange of various substances, including nutrients, ions, metabolites, and drugs across biological membranes. To date, the presence of about 287 SLC genes have been identified in the brain, among which mutations or the resultant dysfunctions of 71 SLC genes have been reported to be correlated with human brain disorders. Although increasing interest in SLCs have focused on drug development, SLCs are currently still under-explored as drug targets, especially in the brain. We summarize the main substrates and functions of SLCs that are expressed in the brain, with an emphasis on selected SLCs that are important physiologically, pathologically, and pharmacologically in the blood-brain barrier, astrocytes, and neurons. Evidence suggests that a fraction of SLCs are regulated along with the occurrences of brain disorders, among which epilepsy, neurodegenerative diseases, and autism are representative. Given the review of SLCs involved in the onset and procession of brain disorders, we hope these SLCs will be screened as promising drug targets to improve drug delivery to the brain.
Collapse
|
121
|
Bonfili L, Cecarini V, Gogoi O, Berardi S, Scarpona S, Angeletti M, Rossi G, Eleuteri AM. Gut microbiota manipulation through probiotics oral administration restores glucose homeostasis in a mouse model of Alzheimer's disease. Neurobiol Aging 2019; 87:35-43. [PMID: 31813629 DOI: 10.1016/j.neurobiolaging.2019.11.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 01/07/2023]
Abstract
Cerebral glucose homeostasis deregulation has a role in the pathogenesis and the progression of Alzheimer's disease (AD). Current therapies delay symptoms without definitively curing AD. We have previously shown that probiotics counteract AD progression in 3xTg-AD mice modifying gut microbiota and inducing energy metabolism and glycolysis-gluconeogenesis. Ameliorated cognition is based on higher neuroprotective gut hormones concentrations, reduced amyloid-β burden, and restored proteolytic pathways. Here, we demonstrate that probiotics oral administration improves glucose uptake in 3xTg-AD mice by restoring the brain expression levels of key glucose transporters (GLUT3, GLUT1) and insulin-like growth factor receptor β, in accordance with the diminished phosphorylation of adenosine monophosphate-activated protein kinase and protein-kinase B (Akt). In parallel, phosphorylated tau aggregates decrease in treated mice. Probiotics counteract the time-dependent increase of glycated hemoglobin and the accumulation of advanced glycation end products in AD mice, consistently with memory improvement. Collectively, our data elucidate the mechanism through which gut microbiota manipulation ameliorates impaired glucose metabolism in AD, finally delaying the disease progression.
Collapse
Affiliation(s)
- Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy.
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Olee Gogoi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Sara Berardi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Silvia Scarpona
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| |
Collapse
|
122
|
Lynch MA. Can the emerging field of immunometabolism provide insights into neuroinflammation? Prog Neurobiol 2019; 184:101719. [PMID: 31704314 DOI: 10.1016/j.pneurobio.2019.101719] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/18/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022]
Abstract
In the past few years it has become increasingly clear that an understanding of the interaction between metabolism and immune function can provide an insight into cellular responses to challenges. Significant progress has been made in terms of how macrophages are metabolically re-programmed in response to inflammatory stimuli but, to date, little emphasis has been placed on evaluating equivalent changes in microglia. The need to make progress is driven by the fact that, while microglial activation and the cell's ability to adopt an inflammatory phenotype is necessary to fulfil the neuroprotective function of the cell, persistent activation of microglia and the associated neuroinflammation is at the heart of several neurodegenerative diseases. Understanding the metabolic changes that accompany microglial responses may broaden our perspective on how dysfunction might arise and be tempered. This review will evaluate the current literature that addresses the interplay between inflammation and metabolic reprogramming in microglia, reflecting on the parallels that exist with macrophages. It will consider the changes that take place with age including those that have been reported in neurons and astrocytes with the development of non-invasive imaging techniques, and reflect on the literature that is currently available relating to metabolic reprogramming of microglia with age and in neurodegeneration. Finally it will consider the possibility that manipulating microglial metabolism may provide a valuable approach to modulating neuroinflammation.
Collapse
Affiliation(s)
- Marina A Lynch
- Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
123
|
Kang KJ, Jung KH, Choi EJ, Kim H, Do SH, Ko IO, Oh SJ, Lee YJ, Kim JY, Park JA. Monitoring Physiological Changes in Neutron-Exposed Normal Mouse Brain Using FDG-PET and DW-MRI. Radiat Res 2019; 193:54-62. [PMID: 31682543 DOI: 10.1667/rr15405.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We monitored a physiological response in a neutron-exposed normal mouse brain using two imaging tools, [18F]fluro-deoxy-D-glucose positron emission tomography ([18F]FDG-PET) and diffusion weighted-magnetic resonance imaging (DW-MRI), as an imaging biomarker. We measured the apparent diffusion coefficient (ADC) of DW-MRI and standardized uptake value (SUV) of [18F]FDG-PET, which indicated changes in the cellular environment for neutron irradiation. This approach was sensitive enough to detect cell changes that were not confirmed in hematoxylin and eosin (H&E) results. Glucose transporters (GLUT) 1 and 3, indicators of the GLUT capacity of the brain, were significantly decreased after neutron irradiation, demonstrating that the change in blood-brain-barrier (BBB) permeability affects the GLUT, with changes in both SUV and ADC values. These results demonstrate that combined imaging of the same object can be used as a quantitative indicator for in vivo pathological changes. In particular, the radiation exposure assessment of combined imaging, with specific integrated functions of [18F]FDG-PET and MRI, can be employed repeatedly for noninvasive analysis performed in clinical practice. Additionally, this study demonstrated a novel approach to assess the extent of damage to normal tissues as well as therapeutic effects on tumors.
Collapse
Affiliation(s)
- Kyung Jun Kang
- Division of Applied RI, Korea Institute Radiological and Medical Sciences, Seoul, Korea 01812
| | - Ki-Hye Jung
- Division of Applied RI, Korea Institute Radiological and Medical Sciences, Seoul, Korea 01812
| | - Eun-Ji Choi
- College of Veterinary Medicine, Konkuk University, Seoul, Korea 05029
| | - Hyosung Kim
- College of Veterinary Medicine, Konkuk University, Seoul, Korea 05029
| | - Sun Hee Do
- College of Veterinary Medicine, Konkuk University, Seoul, Korea 05029
| | - In Ok Ko
- Division of Applied RI, Korea Institute Radiological and Medical Sciences, Seoul, Korea 01812
| | - Se Jong Oh
- Division of Applied RI, Korea Institute Radiological and Medical Sciences, Seoul, Korea 01812
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute Radiological and Medical Sciences, Seoul, Korea 01812
| | - Jung Young Kim
- Division of Applied RI, Korea Institute Radiological and Medical Sciences, Seoul, Korea 01812
| | - Ji-Ae Park
- Division of Applied RI, Korea Institute Radiological and Medical Sciences, Seoul, Korea 01812
| |
Collapse
|
124
|
Choi YS, Song JE, Lee JE, Kim E, Kim CH, Kim DH, Song HT. Hyperpolarized [1-13C]lactate flux increased in the hippocampal region in diabetic mice. Mol Brain 2019; 12:88. [PMID: 31675964 PMCID: PMC6824044 DOI: 10.1186/s13041-019-0505-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 01/01/2023] Open
Abstract
Increasing evidence suggests there is a relationship between cognitive impairment and metabolic dysfunction. Diabetes is a chronic disease, and metabolic factors affecting brain metabolisms, such as serum glucose, insulin, and glucagon, are altered according to disease progression. In our previous study, we applied hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy in prediabetic mice after feeding them a 60% high-fat diet (HFD) for 6 months. Ultimately, we detected significantly increased [1-13C]lactate conversion in the whole brain and an almost five-fold increased [1-13C]lactate/pyruvate ratio in the hippocampal region. In the present study, we induced diabetes in mice by injecting streptozotocin and feeding them an HFD for 6 months. Unlike in prediabetic mice, [1-13C]lactate conversion in the diabetic mice did not differ from that in the control group, but [1-13C]lactate/total 13C ratio showed an almost 1.4-fold increase in the hippocampal region. We measured the amount of the lactate and mRNA levels of glucose transporters from isolated hippocampus and cortex samples. In the hippocampus, significantly decreased GLUT1 mRNA levels and increased lactate were detected, suggesting an inconsistency between glucose and pyruvate metabolism. Pyruvate can be produced from oxaloacetate as well as glucose. We investigated ATP citrate lyase (ACLY) because it cleaves citrate into oxaloacetate and acetyl CoA. Phosphorylated ACLY (Ser455), the active form, was increased in both hippocampus and cortex samples of mice injected with streptozotocin and fed an HFD. Also, phosphorylated ACLY/total ACLY showed a positive correlation with lactate amount in the hippocampus. Our results suggest that the brain has different responses to diabetic progression, but, in the hippocampus, maintains metabolic alteration toward increasing lactate production from the prediabetic to the diabetic stage. We suggest that ACLY-mediated pyruvate be used to support lactate levels in the hippocampus in cases of limited glucose availability.
Collapse
Affiliation(s)
- Young-Suk Choi
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jae Eun Song
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,BK21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chul Hoon Kim
- BK21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ho-Taek Song
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
125
|
Farhadi A, Vosough M, Zhang JS, Tahamtani Y, Shahpasand K. A Possible Neurodegeneration Mechanism Triggered by Diabetes. Trends Endocrinol Metab 2019; 30:692-700. [PMID: 31399291 DOI: 10.1016/j.tem.2019.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 01/14/2023]
Abstract
Several conditions result in neurodegeneration; among which diabetes mellitus (DM) is of crucial importance. Tau (τ) malfunction is a major pathological process participating in neurodegeneration. Despite extensive considerations, the actual causative link between DM and τ abnormalities remains uncertain thus far. Phosphorylated (p)-τ at Thr-Pro motifs can exist in the two distinct cis and trans conformations. cis is neurotoxic, and is accumulated upon various stress conditions, such as nutrition depletion. We assume that pathogenic cis p-τ is the central mediator of neurodegeneration in DM, and propose why different brain areas give various responses to stress conditions. We herein juxtapose recent approaches in diabetic neurodegeneration and propose a therapeutic target to stop neuronal loss during DM.
Collapse
Affiliation(s)
- Aisan Farhadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IR 19395-4644, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Jin-San Zhang
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China; Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IR 19395-4644, Iran.
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IR 19395-4644, Iran.
| |
Collapse
|
126
|
Gil-Iturbe E, Solas M, Cuadrado-Tejedo M, García-Osta A, Escoté X, Ramírez MJ, Lostao MP. GLUT12 Expression in Brain of Mouse Models of Alzheimer's Disease. Mol Neurobiol 2019; 57:798-805. [PMID: 31473905 DOI: 10.1007/s12035-019-01743-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
The brain depends on glucose as a source of energy. This implies the presence of glucose transporters, being GLUT1 and GLUT3 the most relevant. Expression of GLUT12 is found in mouse and human brain at low levels. We previously demonstrated GLUT12 upregulation in the frontal cortex of aged subjects that was even higher in aged Alzheimer's disease (AD) patients. However, the cause and the mechanism through which this increase occurs are still unknown. Here, we aimed to investigate whether the upregulation of GLUT12 in AD is related with aging or Aβ deposition in comparison with GLUT1, GLUT3, and GLUT4. In the frontal cortex of two amyloidogenic mouse models (Tg2576 and APP/PS1) GLUT12 levels were increased. Contrary, expression of GLUT1 and GLUT3 were decreased, while GLUT4 did not change. In aged mice and the senescence-accelerated model SAMP8, GLUT12 and GLUT4 were upregulated in comparison with young animals. GLUT1 and GLUT3 did not show significant changes with age. The effect of β-amyloid (Aβ) deposition was also evaluated in Aβ peptide i.c.v. injected mice. In the hippocampus, GLUT12 expression increased whereas GLUT4 was not modified. Consistent with the results in the amyloidogenic models, GLUT3 and GLUT1 were downregulated. In summary, Aβ increases GLUT12 protein expression in the brain pointing out a central role of the transporter in AD pathology and opening new perspectives for the treatment of this neurodegenerative disease.
Collapse
Affiliation(s)
- Eva Gil-Iturbe
- Department of Nutrition, Food Science and Physiology, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.,Nutrition Research Centre, University of Navarra, Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Mar Cuadrado-Tejedo
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Center for Applied Medical Research (CIMA), Division of Neurosciences, University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Ana García-Osta
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Center for Applied Medical Research (CIMA), Division of Neurosciences, University of Navarra, Pamplona, Spain
| | - Xavier Escoté
- Nutrition Research Centre, University of Navarra, Pamplona, Spain.,Unitat de Nutrició i Salut, Centre Tecnològic de Catalunya, Eurecat, Reus, Spain
| | - María Javier Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María Pilar Lostao
- Department of Nutrition, Food Science and Physiology, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain. .,Nutrition Research Centre, University of Navarra, Pamplona, Spain. .,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
127
|
Sarikaya I, Sarikaya A, Sharma P. Assessing the Effect of Various Blood Glucose Levels on 18F-FDG Activity in the Brain, Liver, and Blood Pool. J Nucl Med Technol 2019; 47:313-318. [PMID: 31182660 DOI: 10.2967/jnmt.119.226969] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022] Open
Abstract
Studies have extensively analyzed the effect of hyperglycemia on 18F-FDG uptake in normal tissues and tumors. In this study, we measured SUV in the brain, liver, and blood pool in normoglycemia, hyperglycemia, and hypoglycemia to understand the effect of blood glucose on 18F-FDG uptake and to develop a formula to correct SUV. Methods: Whole-body 18F-FDG PET/CT images of adults were selected for analysis. Brain SUVmax, blood-pool SUVmean, and liver SUVmean were measured at blood glucose ranges of 61-70, 71-80, 81-90, 91-100, 101-110, 111-120, 121-130, 131-140, 141-150, 151-160, 161-170, 171-180, 181-190, 191-200, and 201 mg/dL and above. At each blood glucose range, 10 PET images were analyzed (total, 150). The mean (±SD) SUV of the brain, liver, and blood pool at each blood glucose range was calculated, and blood glucose and SUV curves were generated. Because brain and tumors show a high expression of glucose transporters 1 and 3, we generated an SUV correction formula based on percentage reduction in brain SUVmax with increasing blood glucose level. Results: Mean brain SUVmax gradually decreased with increasing blood glucose level, starting after a level of 110 mg/dL. The approximate percentage reduction in brain SUVmax was 20%, 35%, 50%, 60%, and 65% at blood glucose ranges of 111-120, 121-140, 141-160, 161-200, and 201 mg/dL and above, respectively. In the formula we generated, measured SUVmax is multiplied by a reduction factor of 1.25, 1.5, 2, 2.5, and 2.8 for the blood glucose ranges of 111-120, 121-140, 141-160, 161-200, and 201 mg/dL and above, respectively, to correct SUV. Brain SUVmax did not differ between hypoglycemic and normoglycemic patients (P > 0.05). SUVmean in the blood pool and liver was lower in hypoglycemic patients (P < 0.05) and did not differ between hyperglycemic (P > 0.05) and normoglycemic patients. Conclusion: Hyperglycemia gradually reduces brain 18F-FDG uptake, starting after a blood glucose level of 110 mg/dL. Hyperglycemia does not affect 18F-FDG activity in the liver or blood pool. Hypoglycemia does not seem to affect brain 18F-FDG uptake but appears to reduce liver and blood-pool activity. The simple formula we generated can be used to correct SUV in hyperglycemic adults in selected cases.
Collapse
Affiliation(s)
- Ismet Sarikaya
- Department of Nuclear Medicine, Kuwait University Faculty of Medicine, Safat, Kuwait
| | - Ali Sarikaya
- Department of Nuclear Medicine, Trakya University Faculty of Medicine, Edirne, Turkey; and
| | - Prem Sharma
- Dasman Diabetes Institute, Biostatistics Unit, Al Kuwayt, Kuwait
| |
Collapse
|
128
|
Zhang L, Fernandez-Kim SO, Beckett TL, Niedowicz DM, Kohler K, Dasuri K, Bruce-Keller AJ, Murphy MP, Keller JN. The db mutation improves memory in younger mice in a model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2157-2167. [PMID: 31034991 DOI: 10.1016/j.bbadis.2019.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disease, while obesity is a major global public health problem associated with the metabolic disorder type 2 diabetes mellitus (T2DM). Chronic obesity and T2DM have been identified as invariant risk factors for dementia and late-onset AD, while their impacts on the occurrence and development of AD remain unclear. As shown in our previous study, the diabetic mutation (db, Leprdb/db) induces mixed or vascular dementia in mature to middle-aged APPΔNL/ΔNL x PS1P264L/P264L knock-in mice (db/AD). In the present study, the impacts of the db mutation on young AD mice at 10 weeks of age were evaluated. The db mutation not only conferred young AD mice with severe obesity, impaired glucose regulation and activated mammalian target of rapamycin (mTOR) signaling pathway in the mouse cortex, but lead to a surprising improvement in memory. At this young age, mice also had decreased cerebral Aβ content, which we have not observed at older ages. This was unlikely to be related to altered Aβ synthesis, as both β- and γ-secretase were unchanged. The db mutation also reduced the cortical IL-1β mRNA level and IBA1 protein level in young AD mice, with no significant effect on the activation of microglia and astrocytes. We conclude that the db mutation could transitorily improve the memory of young AD mice, a finding that may be partially explained by the relatively improved glucose homeostasis in the brains of db/AD mice compared to their counterpart AD mice, suggesting that glucose regulation could be a strategy for prevention and treatment of neurodegenerative diseases like AD.
Collapse
Affiliation(s)
- Le Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, Hubei 430030, China; Institute for Dementia Research and Prevention, Pennington Biomedical Research Center/LSU System, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | - Sun-Ok Fernandez-Kim
- Institute for Dementia Research and Prevention, Pennington Biomedical Research Center/LSU System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Tina L Beckett
- Sanders Brown Center on Aging, University of Kentucky, 800 S. Limestone, Sanders Brown 211, Lexington, KY 40536-0230, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 S. Limestone, Sanders Brown 211, Lexington, KY 40536-0230, USA
| | - Dana M Niedowicz
- Sanders Brown Center on Aging, University of Kentucky, 800 S. Limestone, Sanders Brown 211, Lexington, KY 40536-0230, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 S. Limestone, Sanders Brown 211, Lexington, KY 40536-0230, USA
| | - Katharina Kohler
- Sanders Brown Center on Aging, University of Kentucky, 800 S. Limestone, Sanders Brown 211, Lexington, KY 40536-0230, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 S. Limestone, Sanders Brown 211, Lexington, KY 40536-0230, USA
| | - Kalavathi Dasuri
- Institute for Dementia Research and Prevention, Pennington Biomedical Research Center/LSU System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Annadora J Bruce-Keller
- Institute for Dementia Research and Prevention, Pennington Biomedical Research Center/LSU System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - M Paul Murphy
- Sanders Brown Center on Aging, University of Kentucky, 800 S. Limestone, Sanders Brown 211, Lexington, KY 40536-0230, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 S. Limestone, Sanders Brown 211, Lexington, KY 40536-0230, USA.
| | - Jeffrey N Keller
- Institute for Dementia Research and Prevention, Pennington Biomedical Research Center/LSU System, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| |
Collapse
|
129
|
Cisternas P, Zolezzi JM, Martinez M, Torres VI, Wong GW, Inestrosa NC. Wnt-induced activation of glucose metabolism mediates the in vivo neuroprotective roles of Wnt signaling in Alzheimer disease. J Neurochem 2019; 149:54-72. [PMID: 30300917 PMCID: PMC7680578 DOI: 10.1111/jnc.14608] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Abstract
Dysregulated Wnt signaling is linked to major neurodegenerative diseases, including Alzheimer disease (AD). In mouse models of AD, activation of the canonical Wnt signaling pathway improves learning/memory, but the mechanism for this remains unclear. The decline in brain function in AD patients correlates with reduced glucose utilization by neurons. Here, we test whether improvements in glucose metabolism mediate the neuroprotective effects of Wnt in AD mouse model. APPswe/PS1dE9 transgenic mice were used to model AD, Andrographolide or Lithium was used to activate Wnt signaling, and cytochalasin B was used to block glucose uptake. Cognitive function was assessed by novel object recognition and memory flexibility tests. Glucose uptake and the glycolytic rate were determined using radiotracer glucose. The activities of key enzymes of glycolysis such as hexokinase and phosphofructokinase, Adenosine triphosphate (ATP)/Adenosine diphosphate (ADP) levels and the pentose phosphate pathway and activity of glucose-6 phosphate dehydrogenase were measured. Wnt activators significantly improved brain glucose utilization and cognitive performance in transgenic mice. Wnt signaling enhanced glucose metabolism by increasing the expression and/or activity of hexokinase, phosphofructokinase and AMP-activated protein kinase. Inhibiting glucose uptake partially abolished the beneficial effects of Wnt signaling on learning/memory. Wnt activation also enhanced glucose metabolism in cortical and hippocampal neurons, as well as brain slices derived from APPswe/PS1E9 transgenic mice. Combined, these data provide evidence that the neuroprotective effects of Wnt signaling in AD mouse models result, at least in part, from Wnt-mediated improvements in neuronal glucose metabolism.
Collapse
Affiliation(s)
- Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan M. Zolezzi
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Milka Martinez
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Viviana. I. Torres
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - G. William Wong
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America, Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
130
|
Byun MS, Kim HJ, Yi D, Choi HJ, Baek H, Lee JH, Choe YM, Lee SH, Ko K, Sohn BK, Lee JY, Lee Y, Kim YK, Lee YS, Lee DY. Region-specific association between basal blood insulin and cerebral glucose metabolism in older adults. NEUROIMAGE-CLINICAL 2019; 22:101765. [PMID: 30904824 PMCID: PMC6434096 DOI: 10.1016/j.nicl.2019.101765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 12/31/2018] [Accepted: 03/10/2019] [Indexed: 01/30/2023]
Abstract
Background Although previous studies have suggested that insulin plays a role in brain function, it still remains unclear whether or not insulin has a region-specific association with neuronal and synaptic activity in the living human brain. We investigated the regional pattern of association between basal blood insulin and resting-state cerebral glucose metabolism (CMglu), a proxy for neuronal and synaptic activity, in older adults. Method A total of 234 nondiabetic, cognitively normal (CN) older adults underwent comprehensive clinical assessment, resting-state 18F-fluodeoxyglucose (FDG)-positron emission tomography (PET) and blood sampling to determine overnight fasting blood insulin and glucose levels, as well as apolipoprotein E (APOE) genotyping. Results An exploratory voxel-wise analysis of FDG-PET without a priori hypothesis demonstrated a positive association between basal blood insulin levels and resting-state CMglu in specific cerebral cortices and hippocampus, rather than in non-specific overall cerebral regions, even after controlling for the effects of APOE e4 carrier status, vascular risk factor score, body mass index, fasting blood glucose, and demographic variables. Particularly, a positive association of basal blood insulin with CMglu in the right posterior hippocampus and adjacent parahippocampal region as well as in the right inferior parietal region remained significant after multiple comparison correction. Conversely, no region showed negative association between basal blood insulin and CMglu. Conclusions Our finding suggests that basal fasting blood insulin may have association with neuronal and synaptic activity in specific cerebral regions, particularly in the hippocampal/parahippocampal and inferior parietal regions. We investigated regional pattern of association between basal blood insulin and resting-state cerebral glucose metabolism. Significant clusters with positive associations were found mainly in the hippocampal and inferior parietal regions. Our finding suggests a region-specific association of basal blood insulin with resting-state cerebral glucose metabolism. Further studies to elucidate underlying mechanism and implication of this region-specific association will be necessary.
Collapse
Affiliation(s)
- Min Soo Byun
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Psychiatry, Changsan Convalescent Hospital, Changwon, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Hyo Jung Choi
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Hyewon Baek
- Department of Neuropsychiatry, Kyunggi Provincial Hospital for the Elderly, Yongin, Republic of Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Min Choe
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
| | - Seung Hoon Lee
- Department of Neuropsychiatry, Bucheon Geriatric Medical Center, Bucheon, Republic of Korea
| | - Kang Ko
- Department of Neuropsychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Bo Kyung Sohn
- Department of Psychiatry, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Younghwa Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | | |
Collapse
|
131
|
Kahl KG, Stapel B, Frieling H. Link between depression and cardiovascular diseases due to epigenomics and proteomics: Focus on energy metabolism. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:146-157. [PMID: 30194950 DOI: 10.1016/j.pnpbp.2018.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/13/2018] [Accepted: 09/05/2018] [Indexed: 12/11/2022]
Abstract
Major depression is the most common mental disorder and a leading cause of years lived with disability. In addition to the burden attributed to depressive symptoms and reduced daily life functioning, people with major depression are at increased risk of premature mortality, particularly due to cardiovascular diseases. Several studies point to a bi-directional relation between major depression and cardiovascular diseases, thereby indicating that both diseases may share common pathophysiological pathways. These include lifestyle factors (e.g. physical activity, smoking behavior), dysfunctions of endocrine systems (e.g. hypothalamus-pituitary adrenal axis), and a dysbalance of pro- and anti-inflammatory factors. Furthermore, recent research point to the role of epigenomic and proteomic factors, that are reviewed here with a particular focus on the mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Kai G Kahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany.
| | - Britta Stapel
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany
| |
Collapse
|
132
|
Cortini F, Roma F, Villa C. Emerging roles of long non-coding RNAs in the pathogenesis of Alzheimer's disease. Ageing Res Rev 2019; 50:19-26. [PMID: 30610928 DOI: 10.1016/j.arr.2019.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/31/2018] [Accepted: 01/01/2019] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is a heterogeneous neurodegenerative disorder and represents the most common form of senile dementia. The pathogenesis of AD is not yet completely understood and no curative treatment is currently available. With the recent advancement in transcriptome-wide profiling approach, several non-coding RNAs (ncRNAs) have been identified. Among them, long non-coding RNAs (lncRNAs), which are long transcripts without apparent protein-coding capacity, have received increasing interest for their involvement in a wide range of biological processes as regulatory molecules. Recent studies have suggested that lncRNAs play a role in AD pathogenesis, although their specific influences in the disorder remain to be largely unknown. Herein, we will summarize the biology and mechanisms of action of the best characterized dysregulated lncRNAs in AD, focusing the attention on their potential role in the disease pathogenesis. A deeper understanding of the molecular mechanisms and the complex network of interactions in which they are implicated should open the doors to new research considering lncRNAs as novel therapeutic targets and prognostic/diagnostic biomarkers.
Collapse
Affiliation(s)
- Francesca Cortini
- Department of Clinical Sciences and Community Health, University of Milan, IRCCS Ca' Granda Foundation, Milan, Italy; UOC Occupational Medicine, Department of Medicine Preventive Services, IRCCS Ca Granda Foundation Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Roma
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
133
|
Gabbouj S, Natunen T, Koivisto H, Jokivarsi K, Takalo M, Marttinen M, Wittrahm R, Kemppainen S, Naderi R, Posado-Fernández A, Ryhänen S, Mäkinen P, Paldanius KM, Doria G, Poutiainen P, Flores O, Haapasalo A, Tanila H, Hiltunen M. Intranasal insulin activates Akt2 signaling pathway in the hippocampus of wild-type but not in APP/PS1 Alzheimer model mice. Neurobiol Aging 2019; 75:98-108. [DOI: 10.1016/j.neurobiolaging.2018.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
|
134
|
Goluch-Koniuszy Z, Drozd R. Modified Diet Supplementation With Group B Vitamins Changes Antioxidant Defense Activity Of Brain. INT J VITAM NUTR RES 2019; 87:159-168. [PMID: 27710701 DOI: 10.1024/0300-9831/a000279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The research aimed at effect of modified diet and supplementation with synthetic B vitamins on brain antioxidant status evaluation. Forty male Wistar rats were divided into 4 groups (n = 10); group I - fed Basic Diet (BD), groups II-IV - Modified Diet (MD), where wheat flour replaced 83.5 % wheat and sucrose replaced 50 % maize. Groups I-II received only water, while group III (MD + AS) was given an aqueous vitamins solution supplementing deficiency from diet modification (MD + Adequate Supplementation: B1-0.94, B2-0.48, B6-0.5, niacin-1.9 mg); group IV (MD + ES) received a solution in order to supplement deficiency resulting from the change in diet and recommended prophylactic dose of vitamins (MD + Excessive Supplementation: B1-3.1, B2-2.3, B6-2.4, niacin-6.65 mg). The experimental phase lasted 6 weeks. Blood serum was examined, to determine glucose and iron concentration; determination of FRAP in plasma, in brain tissue the activities of GST, GPx, CAT, SOD, SH content, and FRAP. It was found that MD and MD + AS did not influence cereal antioxidant status. In brain tissue, MD + ES group exhibited an increased glycaemia (7.49 mmol×l-1 p = 0.038) and increased activity of antioxidant enzymes activity (GST 0,099 U/mg protein p = 0.005; GPx 0,039 U/mg protein p = 0.007). Brain tissue of rats also exhibited larger content of protein bond SH in comparison to BD, MD and MD + AS groups (SH 414.6 mmol/g wet weight p < 0.001; p < 0.005). These findings suggest that, an excessive supplementation with vitamins B and niacin, in sucrose rich diet, may lead to enhancing activity of cellular antioxidant defense in brain tissue of rats.
Collapse
Affiliation(s)
- Zuzanna Goluch-Koniuszy
- 1 Department of Human Nutrition Physiology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Szczecin, Poland
| | - Radosław Drozd
- 2 Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Poland
| |
Collapse
|
135
|
Mechanisms Associated with Type 2 Diabetes as a Risk Factor for Alzheimer-Related Pathology. Mol Neurobiol 2019; 56:5815-5834. [PMID: 30684218 DOI: 10.1007/s12035-019-1475-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Current evidence suggests dementia and pathology in Alzheimer's Disease (AD) are both dependent and independent of amyloid processing and can be induced by multiple 'hits' on vital neuronal functions. Type 2 diabetes (T2D) poses the most important risk factor for developing AD after ageing and dysfunctional IR/PI3K/Akt signalling is a major contributor in both diseases. We developed a model of T2D, coupling subdiabetogenic doses of streptozotocin (STZ) with a human junk food (HJF) diet to more closely mimic the human condition. Over 35 weeks, this induced classic signs of T2D (hyperglycemia and insulin dysfunction) and a modest, but stable deficit in spatial recognition memory, with very little long-term modification of proteins in or associated with IR/PI3K/Akt signalling in CA1 of the hippocampus. Intracerebroventricular infusion of soluble amyloid beta 42 (Aβ42) to mimic the early preclinical rise in Aβ alone induced a more severe, but short-lasting deficits in memory and deregulation of proteins. Infusion of Aβ on the T2D phenotype exacerbated and prolonged the memory deficits over approximately 4 months, and induced more severe aberrant regulation of proteins associated with autophagy, inflammation and glucose uptake from the periphery. A mild form of environmental enrichment transiently rescued memory deficits and could reverse the regulation of some, but not all protein changes. Together, these data identify mechanisms by which T2D could create a modest dysfunctional neuronal milieu via multiple and parallel inputs that permits the development of pathological events identified in AD and memory deficits when Aβ levels are transiently effective in the brain.
Collapse
|
136
|
Gonçalves CA, Rodrigues L, Bobermin LD, Zanotto C, Vizuete A, Quincozes-Santos A, Souza DO, Leite MC. Glycolysis-Derived Compounds From Astrocytes That Modulate Synaptic Communication. Front Neurosci 2019; 12:1035. [PMID: 30728759 PMCID: PMC6351787 DOI: 10.3389/fnins.2018.01035] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022] Open
Abstract
Based on the concept of the tripartite synapse, we have reviewed the role of glucose-derived compounds in glycolytic pathways in astroglial cells. Glucose provides energy and substrate replenishment for brain activity, such as glutamate and lipid synthesis. In addition, glucose metabolism in the astroglial cytoplasm results in products such as lactate, methylglyoxal, and glutathione, which modulate receptors and channels in neurons. Glucose has four potential destinations in neural cells, and it is possible to propose a crossroads in “X” that can be used to describe these four destinations. Glucose-6P can be used either for glycogen synthesis or the pentose phosphate pathway on the left and right arms of the X, respectively. Fructose-6P continues through the glycolysis pathway until pyruvate is formed but can also act as the initial compound in the hexosamine pathway, representing the left and right legs of the X, respectively. We describe each glucose destination and its regulation, indicating the products of these pathways and how they can affect synaptic communication. Extracellular L-lactate, either generated from glucose or from glycogen, binds to HCAR1, a specific receptor that is abundantly localized in perivascular and post-synaptic membranes and regulates synaptic plasticity. Methylglyoxal, a product of a deviation of glycolysis, and its derivative D-lactate are also released by astrocytes and bind to GABAA receptors and HCAR1, respectively. Glutathione, in addition to its antioxidant role, also binds to ionotropic glutamate receptors in the synaptic cleft. Finally, we examined the hexosamine pathway and evaluated the effect of GlcNAc-modification on key proteins that regulate the other glucose destinations.
Collapse
Affiliation(s)
- Carlos-Alberto Gonçalves
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Letícia Rodrigues
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Larissa D Bobermin
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Caroline Zanotto
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Adriana Vizuete
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - André Quincozes-Santos
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo O Souza
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marina C Leite
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
137
|
Bila I, Dzydzan O, Brodyak I, Sybirna N. Agmatine Prevents Oxidative-nitrative Stress in Blood Leukocytes Under Streptozotocin-induced Diabetes Mellitus. Open Life Sci 2019; 14:299-310. [PMID: 33817163 PMCID: PMC7874780 DOI: 10.1515/biol-2019-0033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/04/2019] [Indexed: 12/28/2022] Open
Abstract
Changes in cellular metabolism, development of oxidative-nitrative stress and intensification of glycation and lipid peroxidation (LPO), are significant processes that occur during diabetes mellitus (DM)-associated chronic hyperglycemia. These processes contribute to deviations in the structural organization and functional activity of leukocytes. The development of oxidative-nitrative stress in peripheral blood cells during DM can be prevented by agmatine, an endogenous metabolite of L-arginine, which is a nitric oxide synthase (NOS) inhibitor, and possesses hypoglycemic properties. The administration of agmatine to animals with DM lead to the inhibition of both constitutive and inducible NOS in leukocytes, which in turn decreased total nitrite/nitrate (NOx) levels. Additionally, we observed corresponding increases in reduced glutathione content and activity of antioxidant enzymes (SOD, CAT, GPx, GR), along with decreased levels of the thiobarbituric acid reactive substance, advanced oxidation protein products (AOPPs) and advanced glycosylation end-products (AGEs) as compared to the non-treated diabetic group. Our results indicate that treatment of diabetic animals with agmatine restores redox homeostasis and a balances antioxidant defence system enzymes in leukocytes. This corrective effect on the functional capacity of leukocytes is exerted by preventing oxidative-nitrative stress in animals with DM.
Collapse
Affiliation(s)
- Ivanna Bila
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, Ukraine, 4, Hrushevskyi Str, Lviv 79005, Ukraine
| | - Olha Dzydzan
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, Ukraine, 4, Hrushevskyi Str, Lviv 79005, Ukraine
| | - Iryna Brodyak
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, Ukraine, 4, Hrushevskyi Str, Lviv 79005, Ukraine
| | - Natalia Sybirna
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, Ukraine, 4, Hrushevskyi Str, Lviv 79005, Ukraine
| |
Collapse
|
138
|
Bruns I, Sauer B, Burger MC, Eriksson J, Hofmann U, Braun Y, Harter PN, Luger AL, Ronellenfitsch MW, Steinbach JP, Rieger J. Disruption of peroxisome proliferator-activated receptor γ coactivator (PGC)-1α reverts key features of the neoplastic phenotype of glioma cells. J Biol Chem 2018; 294:3037-3050. [PMID: 30578297 DOI: 10.1074/jbc.ra118.006993] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 12/30/2022] Open
Abstract
The peroxisome proliferator-activated receptor γ coactivator (PGC)-1α is a master regulator of mitochondrial biogenesis and controls metabolism by coordinating transcriptional events. Here, we interrogated whether PGC-1α is involved in tumor growth and the metabolic flexibility of glioblastoma cells. PGC-1α was expressed in a subset of established glioma cell lines and primary glioblastoma cell cultures. Furthermore, a higher PGC-1α expression was associated with an adverse outcome in the TCGA glioblastoma dataset. Suppression of PGC-1α expression by shRNA in the PGC-1α-positive U343MG glioblastoma line suppressed mitochondrial gene expression, reduced mitochondrial membrane potential, and diminished oxygen as well as glucose consumption, and lactate production. Compatible with the known PGC-1α functions in reactive oxygen species (ROS) metabolism, glioblastoma cells deficient in PGC-1α displayed ROS accumulation, had reduced RNA levels of proteins involved in ROS detoxification, and were more susceptible to death induction by H2O2 compared with control cells. PGC-1αsh cells also had impaired proliferation and migration rates in vitro and displayed less stem cell characteristics. Complementary effects were observed in PGC-1α-low LNT-229 cells engineered to overexpress PGC-1α. In an in vivo xenograft experiment, tumors formed by U343MG PGC-1αsh glioblastoma cells grew much slower than control tumors and were less invasive. Interestingly, the PGC-1α knockdown conferred protection against hypoxia-induced cell death, probably as a result of less active anabolic pathways, and this effect was associated with reduced epidermal growth factor expression and mammalian target of rapamycin signaling. In summary, PGC-1α modifies the neoplastic phenotype of glioblastoma cells toward more aggressive behavior and therefore makes PGC-1α a potential target for anti-glioblastoma therapies.
Collapse
Affiliation(s)
- Ines Bruns
- From the Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany.,the German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt.,the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,the University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Benedikt Sauer
- From the Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany.,the German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt.,the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,the University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Michael C Burger
- From the Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany.,the German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt.,the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,the University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Jule Eriksson
- From the Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany.,the Department of Neurology, University of Basel, 4031 Basel, Switzerland
| | - Ute Hofmann
- the Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany.,the University of Tübingen, 72074 Tübingen, Germany
| | - Yannick Braun
- the Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany, and
| | - Patrick N Harter
- the German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt.,the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,the University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany.,the Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany, and
| | - Anna-Luisa Luger
- From the Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany.,the German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt.,the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,the University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Michael W Ronellenfitsch
- From the Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany, .,the German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt.,the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,the University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Joachim P Steinbach
- From the Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany, .,the German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt.,the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,the University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Johannes Rieger
- From the Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany.,the Interdisciplinary Division of Neuro-Oncology, Hertie Institute of Clinical Brain Research, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
139
|
Van Dyken P, Lacoste B. Impact of Metabolic Syndrome on Neuroinflammation and the Blood-Brain Barrier. Front Neurosci 2018; 12:930. [PMID: 30618559 PMCID: PMC6297847 DOI: 10.3389/fnins.2018.00930] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
Metabolic syndrome, which includes diabetes and obesity, is one of the most widespread medical conditions. It induces systemic inflammation, causing far reaching effects on the body that are still being uncovered. Neuropathologies triggered by metabolic syndrome often result from increased permeability of the blood-brain-barrier (BBB). The BBB, a system designed to restrict entry of toxins, immune cells, and pathogens to the brain, is vital for proper neuronal function. Local and systemic inflammation induced by obesity or type 2 diabetes mellitus can cause BBB breakdown, decreased removal of waste, and increased infiltration of immune cells. This leads to disruption of glial and neuronal cells, causing hormonal dysregulation, increased immune sensitivity, or cognitive impairment depending on the affected brain region. Inflammatory effects of metabolic syndrome have been linked to neurodegenerative diseases. In this review, we discuss the effects of obesity and diabetes-induced inflammation on the BBB, the roles played by leptin and insulin resistance, as well as BBB changes occurring at the molecular level. We explore signaling pathways including VEGF, HIFs, PKC, Rho/ROCK, eNOS, and miRNAs. Finally, we discuss the broader implications of neural inflammation, including its connection to Alzheimer's disease, multiple sclerosis, and the gut microbiome.
Collapse
Affiliation(s)
- Peter Van Dyken
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
140
|
Femminella GD, Thayanandan T, Calsolaro V, Komici K, Rengo G, Corbi G, Ferrara N. Imaging and Molecular Mechanisms of Alzheimer's Disease: A Review. Int J Mol Sci 2018; 19:E3702. [PMID: 30469491 PMCID: PMC6321449 DOI: 10.3390/ijms19123702] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is the most common form of dementia and is a significant burden for affected patients, carers, and health systems. Great advances have been made in understanding its pathophysiology, to a point that we are moving from a purely clinical diagnosis to a biological one based on the use of biomarkers. Among those, imaging biomarkers are invaluable in Alzheimer's, as they provide an in vivo window to the pathological processes occurring in Alzheimer's brain. While some imaging techniques are still under evaluation in the research setting, some have reached widespread clinical use. In this review, we provide an overview of the most commonly used imaging biomarkers in Alzheimer's disease, from molecular PET imaging to structural MRI, emphasising the concept that multimodal imaging would likely prove to be the optimal tool in the future of Alzheimer's research and clinical practice.
Collapse
Affiliation(s)
| | - Tony Thayanandan
- Imperial Memory Unit, Charing Cross Hospital, Imperial College London, London W6 8RF, UK.
| | - Valeria Calsolaro
- Neurology Imaging Unit, Imperial College London, London W12 0NN, UK.
| | - Klara Komici
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy.
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy.
- Istituti Clinici Scientifici Maugeri SPA-Società Benefit, IRCCS, 82037 Telese Terme, Italy.
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy.
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy.
- Istituti Clinici Scientifici Maugeri SPA-Società Benefit, IRCCS, 82037 Telese Terme, Italy.
| |
Collapse
|
141
|
Sandoval KE, Wooten JS, Harris MP, Schaller ML, Umbaugh DS, Witt KA. Mfsd2a and Glut1 Brain Nutrient Transporters Expression Increase with 32-Week Low and High Lard Compared with Fish-Oil Dietary Treatment in C57Bl/6 Mice. Curr Dev Nutr 2018; 2:nzy065. [PMID: 30338310 PMCID: PMC6186908 DOI: 10.1093/cdn/nzy065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/27/2018] [Accepted: 07/26/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Diet-mediated alterations of critical brain nutrient transporters, major facilitator super family domain-containing 2a (Mfsd2a) and glucose transporter 1 (Glut1), have wide reaching implications in brain health and disease. OBJECTIVE The aim of the study was to examine the impact of long-term low- and high-fat diets with lard or fish oil on critical brain nutrient transporters, Mfsd2a and Glut1. METHODS Eight-week-old male C57BL/6 mice were fed 1 of the following 4 diets for 32 wk: 10% of kcal from lard, 10% of kcal from fish oil, 41% of kcal from lard, or 41% of kcal from fish oil. Body weight and blood chemistries delineated dietary effects. Cortical and subcortical Mfsd2a and Glut1 mRNA and protein expression were evaluated, with other supportive nutrient-sensitive targets also assessed for mRNA expression changes. RESULTS Fish-oil diets increased cortical Mfsd2a mRNA expression compared with lard diets. Subcortical Mfsd2a mRNA expression decreased as the percentage of fat in the diet increased. There was an interaction between the type and percentage of fat with cortical and subcortical Mfsd2a and cortical Glut1 protein expression. In the lard diet groups, protein expression of cortical and subcortical Mfsd2a and cortical Glut1 significantly increased as fat percentage increased. As the fat percentage increased in the fish-oil diet groups, protein expression of cortical and subcortical Mfsd2a and cortical Glut1 did not change. When comparing the fish-oil groups with 10% lard, cortical Mfsd2a protein expression was significantly higher in the 10% and 41% fish-oil groups, whereas cortical Glut1 protein expression was significantly higher in only the 10% fish-oil group. A positive correlation between cortical peroxisome proliferator-activated receptor γ mRNA expression and Mfsd2a protein expression was shown. CONCLUSION Corresponding to chronic dietary treatment, an interaction between the type of fat and the percentage of fat exists respective to changes in brain expression of the key nutrient transporters Mfsd2a and Glut1.
Collapse
Affiliation(s)
| | - Joshua S Wooten
- Applied Health, School of Education, Health, and Human Behavior, Southern Illinois University Edwardsville, Edwardsville, IL
| | - Mathew P Harris
- Applied Health, School of Education, Health, and Human Behavior, Southern Illinois University Edwardsville, Edwardsville, IL
| | - Megan L Schaller
- Applied Health, School of Education, Health, and Human Behavior, Southern Illinois University Edwardsville, Edwardsville, IL
| | - David S Umbaugh
- Pharmaceutical Sciences, School of Pharmacy, Edwardsville, IL
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Edwardsville, IL
| |
Collapse
|
142
|
Sifat AE, Vaidya B, Kaisar MA, Cucullo L, Abbruscato TJ. Nicotine and electronic cigarette (E-Cig) exposure decreases brain glucose utilization in ischemic stroke. J Neurochem 2018; 147:204-221. [PMID: 30062776 PMCID: PMC6394831 DOI: 10.1111/jnc.14561] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/27/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022]
Abstract
Previous studies in our laboratory have shown that nicotine exposure decreases glucose transport across the blood-brain barrier in ischemia-reperfusion conditions. We hypothesize that nicotine can also dysregulate brain parenchymal glucose utilization by altering glucose transporters with effects on sensitivity to ischemic stroke. In this study, we investigated the effects of nicotine exposure on neuronal glucose utilization using an in vitro ischemic stroke model. We also tested the effects of e-Cig vaping on ischemic brain glucose utilization using an acute brain slice technique. Primary cortical neurons and brain slices were subjected to oxygen-glucose deprivation followed by reoxygenation to mimic ischemia-reperfusion injury. We estimated brain cell glucose utilization by measuring the uptake of [3 H] deoxy-d-glucose. Immunofluorescence and western blotting were done to characterize glucose transporters (GLUTs) and α7 nicotinic acetylcholine receptor (nAChR) expression. Furthermore, we used a glycolytic stress test to measure the effects of nicotine exposure on neuronal glucose metabolism. We observed that short- and long-term nicotine/cotinine exposure significantly decreased neuronal glucose utilization in ischemic conditions and the non-specific nAChR antagonist, mecamylamine reversed this effect. Nicotine/cotinine exposure also decreased neuronal GLUT1 and up-regulated α7 nAChR expression and decreased glycolysis. Exposure of mice to e-Cig vapor for 7 days likewise decreases brain glucose uptake under normoxic and ischemic conditions along with down-regulation of GLUT1 and GLUT3 expressions. These data support, from a cerebrovascular perspective, that nicotine and/or e-Cig vaping induce a state of glucose deprivation at the neurovascular unit which could lead to enhanced ischemic brain injury and/or stroke risk. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Mohammad A Kaisar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| |
Collapse
|
143
|
Neural Deletion of Glucose Transporter Isoform 3 Creates Distinct Postnatal and Adult Neurobehavioral Phenotypes. J Neurosci 2018; 38:9579-9599. [PMID: 30232223 DOI: 10.1523/jneurosci.0503-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 01/14/2023] Open
Abstract
We created a neural-specific conditional murine glut3 (Slc2A3) deletion (glut3 flox/flox/nestin-Cre+) to examine the effect of a lack of Glut3 on neurodevelopment. Compared with age-matched glut3 flox/flox = WT and heterozygotes (glut3 flox/+/nestin-Cre+), we found that a >90% reduction in male and female brain Glut3 occurred by postnatal day 15 (PN15) in glut3 flox/flox/nestin-Cre+ This genetic manipulation caused a diminution in brain weight and cortical thickness at PN15, a reduced number of dendritic spines, and fewer ultrasonic vocalizations. Patch-clamp recordings of cortical pyramidal neurons revealed increased frequency of bicuculline-induced paroxysmal discharges as well as reduced latency, attesting to a functional synaptic and cortical hyperexcitability. Concomitant stunting with lower glucose concentrations despite increased milk intake shortened the lifespan, failing rescue by a ketogenic diet. This led to creating glut3 flox/flox/CaMK2α-Cre+ mice lacking Glut3 in the adult male limbic system. These mice had normal lifespan, displayed reduced IPSCs in cortical pyramidal neurons, less anxiety/fear, and lowered spatial memory and motor abilities but heightened exploratory and social responses. These distinct postnatal and adult phenotypes, based upon whether glut3 gene is globally or restrictively absent, have implications for humans who carry copy number variations and present with neurodevelopmental disorders.SIGNIFICANCE STATEMENT Lack of the key brain-specific glucose transporter 3 gene found in neurons during early postnatal life results in significant stunting, a reduction in dendritic spines found on neuronal processes and brain size, heightened neuronal excitability, along with a shortened lifespan. When occurring in the adult and limited to the limbic system alone, lack of this gene in neurons reduces the fear of spatial exploration and socialization but does not affect the lifespan. These features are distinct heralding differences between postnatal and adult phenotypes based upon whether the same gene is globally or restrictively lacking. These findings have implications for humans who carry copy number variations pertinent to this gene and have been described to present with neurodevelopmental disorders.
Collapse
|
144
|
Sifat AE, Vaidya B, Villalba H, Albekairi TH, Abbruscato TJ. Neurovascular unit transport responses to ischemia and common coexisting conditions: smoking and diabetes. Am J Physiol Cell Physiol 2018; 316:C2-C15. [PMID: 30207783 DOI: 10.1152/ajpcell.00187.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transporters at the neurovascular unit (NVU) are vital for the regulation of normal brain physiology via ion, water, and nutrients movement. In ischemic stroke, the reduction of cerebral blood flow causes several complex pathophysiological changes in the brain, one of which includes alterations of the NVU transporters, which can exacerbate stroke outcome by increased brain edema (by altering ion, water, and glutamate transporters), altered energy metabolism (by altering glucose transporters), and enhanced drug toxicity (by altering efflux transporters). Smoking and diabetes are common risk factors as well as coexisting conditions in ischemic stroke that are also reported to change the expression and function of NVU transporters. Coexistence of these conditions could cause an additive effect in terms of the alterations of brain transporters that might lead to worsened ischemic stroke prognosis and recovery. In this review, we have discussed the effects of ischemic stroke, smoking, and diabetes on some essential NVU transporters and how the simultaneous presence of these conditions can affect the clinical outcome after an ischemic episode. Further scientific investigations are required to elucidate changes in NVU transport in cerebral ischemia, which can lead to better, personalized therapeutic interventions tailor-made for these comorbid conditions.
Collapse
Affiliation(s)
- Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thamer H Albekairi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| |
Collapse
|
145
|
Pinho TS, Verde DM, Correia SC, Cardoso SM, Moreira PI. O-GlcNAcylation and neuronal energy status: Implications for Alzheimer's disease. Ageing Res Rev 2018; 46:32-41. [PMID: 29787816 DOI: 10.1016/j.arr.2018.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/03/2018] [Accepted: 05/14/2018] [Indexed: 02/05/2023]
Abstract
Since the first clinical case reported more than 100 years ago, it has been a long and winding road to demystify the initial pathological events underling the onset of Alzheimer's disease (AD). Fortunately, advanced imaging techniques extended the knowledge regarding AD origin, being well accepted that a decline in brain glucose metabolism occurs during the prodromal phases of AD and is aggravated with the progression of the disease. In this sense, in the last decades, the post-translational modification O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) has emerged as a potential causative link between hampered brain glucose metabolism and AD pathology. This is not surprising taking into account that this dynamic post-translational modification acts as a metabolic sensor that links glucose metabolism to normal neuronal functioning. Within this scenario, the present review aims to summarize the current understanding on the role of O-GlcNAcylation in neuronal physiology and AD pathology, emphasizing the close association of this post-translational modification with the emergence of AD-related hallmarks and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Tiffany S Pinho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Diogo M Verde
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sónia C Correia
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Susana M Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
146
|
Emerging Concepts in Brain Glucose Metabolic Functions: From Glucose Sensing to How the Sweet Taste of Glucose Regulates Its Own Metabolism in Astrocytes and Neurons. Neuromolecular Med 2018; 20:281-300. [DOI: 10.1007/s12017-018-8503-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022]
|
147
|
Jin T, Mehrens H, Wang P, Kim SG. Chemical exchange-sensitive spin-lock MRI of glucose analog 3-O-methyl-d-glucose in normal and ischemic brain. J Cereb Blood Flow Metab 2018; 38:869-880. [PMID: 28485194 PMCID: PMC5987935 DOI: 10.1177/0271678x17707419] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glucose transport is important for understanding brain glucose metabolism. We studied glucose transport with a presumably non-toxic and non-metabolizable glucose analog, 3-O-methyl-d-glucose, using a chemical exchange-sensitive spin-lock MRI technique at 9.4 Tesla. 3-O-methyl-d-glucose showed comparable chemical exchange properties with d-glucose and 2-deoxy-d-glucose in phantoms, and higher and lower chemical exchange-sensitive spin-lock sensitivity than Glc and 2-deoxy-d-glucose in in vivo experiments, respectively. The changes of the spin-lattice relaxation rate in the rotating frame (Δ R1ρ) in normal rat brain peaked at ∼15 min after the intravenous injection of 1 g/kg 3-O-methyl-d-glucose and almost maintained a plateau for >1 h. Doses up to 4 g/kg 3-O-methyl-d-glucose were linearly correlated with Δ R1ρ. In rats with focal ischemic stroke, chemical exchange-sensitive spin-lock with 3-O-methyl-d-glucose injection at 1 h after stroke onset showed reduced Δ R1ρ in the ischemic core but higher Δ R1ρ in the peri-core region compared to normal tissue, which progressed into the ischemic core at 3 h after stroke onset. This suggests that the hyper-chemical exchange-sensitive spin-lock region observed at 1 h is the ischemic penumbra at-risk of infarct. In summary, 3-O-methyl-d-glucose-chemical exchange-sensitive spin-lock can be a sensitive MRI technique to probe the glucose transport in normal and ischemic brains.
Collapse
Affiliation(s)
- Tao Jin
- 1 NeuroImaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.,2 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hunter Mehrens
- 1 NeuroImaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ping Wang
- 1 NeuroImaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seong-Gi Kim
- 3 Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea.,4 Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
148
|
Mullins R, Reiter D, Kapogiannis D. Magnetic resonance spectroscopy reveals abnormalities of glucose metabolism in the Alzheimer's brain. Ann Clin Transl Neurol 2018; 5:262-272. [PMID: 29560372 PMCID: PMC5846391 DOI: 10.1002/acn3.530] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 01/28/2023] Open
Abstract
Objective Brain glucose hypometabolism is a prominent feature of Alzheimer's disease (AD), and in this case-control study we used Magnetic Resonance Spectroscopy (MRS) to assess AD-related differences in the posterior cingulate/precuneal ratio of glucose, lactate, and other metabolites. Methods J-modulated Point-Resolved Spectroscopy (J-PRESS) and Prior-Knowledge Fitting (ProFit) software was used to measure glucose and other metabolites in the posterior cingulate/precuneus of 25 AD, 27 older controls, and 27 younger control participants. Clinical assessments for AD participants included cognitive performance measures, insulin resistance metrics and CSF biomarkers. Results AD participants showed substantially elevated glucose, lactate, and ascorbate levels compared to older (and younger) controls. In addition, the precuneal glucose elevation discriminated well between AD participants and older controls. Myo-inositol correlated with CSF p-Tau181P, total Tau, and the Clinical Dementia Rating (CDR) sum-of-boxes score within the AD group. Interpretation Higher glucose to creatine ratios in the AD brain likely reflect lower glucose utilization. Our findings reveal pronounced metabolic abnormalities in the AD brain and strongly suggest that brain glucose merits further investigation as a candidate AD biomarker.
Collapse
Affiliation(s)
- Roger Mullins
- Laboratory of NeurosciencesIntramural Research ProgramNational Institute on Aging/National Institutes of Health (NIA/NIH)BaltimoreMaryland
| | - David Reiter
- Laboratory of Clinical InvestigationNational Institute on Aging Intramural Research Program (NIA‐IRP)BaltimoreMaryland
| | - Dimitrios Kapogiannis
- Laboratory of NeurosciencesIntramural Research ProgramNational Institute on Aging/National Institutes of Health (NIA/NIH)BaltimoreMaryland
| |
Collapse
|
149
|
Nday CM, Eleftheriadou D, Jackson G. Shared pathological pathways of Alzheimer's disease with specific comorbidities: current perspectives and interventions. J Neurochem 2018; 144:360-389. [PMID: 29164610 DOI: 10.1111/jnc.14256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) belongs to one of the most multifactorial, complex and heterogeneous morbidity-leading disorders. Despite the extensive research in the field, AD pathogenesis is still at some extend obscure. Mechanisms linking AD with certain comorbidities, namely diabetes mellitus, obesity and dyslipidemia, are increasingly gaining importance, mainly because of their potential role in promoting AD development and exacerbation. Their exact cognitive impairment trajectories, however, remain to be fully elucidated. The current review aims to offer a clear and comprehensive description of the state-of-the-art approaches focused on generating in-depth knowledge regarding the overlapping pathology of AD and its concomitant ailments. Thorough understanding of associated alterations on a number of molecular, metabolic and hormonal pathways, will contribute to the further development of novel and integrated theranostics, as well as targeted interventions that may be beneficial for individuals with age-related cognitive decline.
Collapse
Affiliation(s)
- Christiane M Nday
- Department of Chemical Engineering, Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Eleftheriadou
- Department of Chemical Engineering, Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Graham Jackson
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
150
|
Biswas J, Gupta S, Verma DK, Gupta P, Singh A, Tiwari S, Goswami P, Sharma S, Singh S. Involvement of glucose related energy crisis and endoplasmic reticulum stress: Insinuation of streptozotocin induced Alzheimer's like pathology. Cell Signal 2018; 42:211-226. [DOI: 10.1016/j.cellsig.2017.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/05/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022]
|