101
|
Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, Kalu A, Zarrabi A, Nabavi N, Rabiee N, Sharifi E, Karimi-Maleh H, Ashrafizadeh M, Kumar AP, Wang Y. Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:214. [PMID: 35773731 PMCID: PMC9248128 DOI: 10.1186/s13046-022-02406-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Background One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterogenous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. Aim of review The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. Key scientific concepts of review The aberrant expression of lncRNAs in prostate cancer has been well-documented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azuma Kalu
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,Pathology, Sheffield Teaching Hospital, Sheffield, United Kingdom
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
102
|
Shu X, Nie Z, Luo W, Zheng Y, Han Z, Zhang H, Xia Y, Deng H, Li F, Wang S, Zhao J, He L. Babesia microti Infection Inhibits Melanoma Growth by Activating Macrophages in Mice. Front Microbiol 2022; 13:862894. [PMID: 35814662 PMCID: PMC9257138 DOI: 10.3389/fmicb.2022.862894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Babesia microti is an obligate intraerythrocytic protozoan transmitted by an Ixodes tick. Infections caused by protozoa, including Plasmodium yoelii and Toxoplasma gondii, are shown to inhibit tumor development by activating immune responses. Th1 immune response and macrophages not only are essential key factors in Babesia infection control but also play an important role in regulating tumor development. In this study, we investigated the effects of B. microti infection on melanoma in tumor-bearing mice. The results showed that B. microti infection could inhibit the growth of melanoma, significantly enlarge the spleen size (p ≤ 0.0001), and increase the survival period (over 7 days) of tumor-bearing mice. Mouse spleen immune cell analysis revealed that B. microti-infected tumor-bearing mice could increase the number of macrophages and CD4+ T cells, as well as the proportion of CD4+ T cells and M1 macrophages in the tumor. Immunohistochemical assays showed that B. microti infection could inhibit tumor angiogenesis (p ≤ 0.0032). Meanwhile, both B. microti-infected erythrocytes and culture supernatant were observed to significantly (p ≤ 0.0021) induce the mRNA expression of iNOS, IL-6, and TNF-α in macrophages. Moreover, B. microti culture supernatant could also repolarize IL-4-induced M2 macrophages to the M1 type. Overall, B. microti exerted antitumor effects by stimulating the immune system of tumor-bearing mice and inducing the polarization of immunosuppressive M2 macrophages to pro-inflammatory M1 macrophages.
Collapse
Affiliation(s)
- Xiang Shu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zheng Nie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Wanxin Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yaxin Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zhen Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Hongyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yingjun Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Han Deng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Fangjie Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Junlong Zhao,
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- Lan He,
| |
Collapse
|
103
|
Promising prognostic value of Transglutaminase type 2 and its correlation with tumor-infiltrating immune cells in skin cutaneous melanoma. Cell Death Dis 2022; 8:294. [PMID: 35725560 PMCID: PMC9209462 DOI: 10.1038/s41420-022-01087-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022]
Abstract
Tissue Transglutaminases (TGs) are crosslinking enzymes with pleiotropic functions that have been linked to the development and progression of numerous cancers, with a recent focus on their ability to remodel the tumor microenvironment. Although several pieces of evidence demonstrated their importance in the regulation of the major signaling pathways that control oncogenesis, the correlation between TGs with clinical and pathological features remains controversial and to be further explored. Moreover, an assessment of the TGs alterations together with a functional analysis associated with clinical features and prognostic values are still lacking and would help to understand these intricacies, particularly in human cancers. In the present study, we processed data from numerous public datasets to investigate TGs distribution and prognostic signature in cancer patients. Here, we found that skin cutaneous melanoma (SKCM) shows the highest abundance of TGs mutations among the other human cancers. Interestingly, among all the TGs, TG2 is the only member whose expression is associated with a better overall survival in SKCM, although its expression increases with the worsening of the tumor phenotype. Our analysis revealed a strong positive association between TG2 expression and anti-tumoral immune response, which would explain the relationship between high mRNA levels and better overall survival. Our data suggest that TG2 may be presented as a new promising immune biomarker of prognosis in SKCM, which may contribute to identifying patients who would benefit the most from adjuvant immunotherapy.
Collapse
|
104
|
Mund A, Coscia F, Kriston A, Hollandi R, Kovács F, Brunner AD, Migh E, Schweizer L, Santos A, Bzorek M, Naimy S, Rahbek-Gjerdrum LM, Dyring-Andersen B, Bulkescher J, Lukas C, Eckert MA, Lengyel E, Gnann C, Lundberg E, Horvath P, Mann M. Deep Visual Proteomics defines single-cell identity and heterogeneity. Nat Biotechnol 2022; 40:1231-1240. [PMID: 35590073 PMCID: PMC9371970 DOI: 10.1038/s41587-022-01302-5] [Citation(s) in RCA: 222] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Despite the availabilty of imaging-based and mass-spectrometry-based methods for spatial proteomics, a key challenge remains connecting images with single-cell-resolution protein abundance measurements. Here, we introduce Deep Visual Proteomics (DVP), which combines artificial-intelligence-driven image analysis of cellular phenotypes with automated single-cell or single-nucleus laser microdissection and ultra-high-sensitivity mass spectrometry. DVP links protein abundance to complex cellular or subcellular phenotypes while preserving spatial context. By individually excising nuclei from cell culture, we classified distinct cell states with proteomic profiles defined by known and uncharacterized proteins. In an archived primary melanoma tissue, DVP identified spatially resolved proteome changes as normal melanocytes transition to fully invasive melanoma, revealing pathways that change in a spatial manner as cancer progresses, such as mRNA splicing dysregulation in metastatic vertical growth that coincides with reduced interferon signaling and antigen presentation. The ability of DVP to retain precise spatial proteomic information in the tissue context has implications for the molecular profiling of clinical samples. Deep Visual Proteomics combines machine learning, automated image analysis and single-cell proteomics.
Collapse
Affiliation(s)
- Andreas Mund
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Fabian Coscia
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Spatial Proteomics Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - András Kriston
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.,Single-Cell Technologies Ltd., Szeged, Hungary
| | - Réka Hollandi
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Ferenc Kovács
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.,Single-Cell Technologies Ltd., Szeged, Hungary
| | - Andreas-David Brunner
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ede Migh
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Lisa Schweizer
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Alberto Santos
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Health Data Science, University of Copenhagen, Copenhagen, Denmark.,Big Data Institute, Li-Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Michael Bzorek
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Soraya Naimy
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Lise Mette Rahbek-Gjerdrum
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark.,Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Beatrice Dyring-Andersen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Leo Foundation Skin Immunology Research Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jutta Bulkescher
- Protein Imaging Platform, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Lukas
- Protein Imaging Platform, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark Adam Eckert
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Christian Gnann
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden.,Department of Bioengineering, Stanford University, Stanford, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary. .,Single-Cell Technologies Ltd., Szeged, Hungary. .,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| | - Matthias Mann
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
105
|
Navani V, Graves MC, Mandaliya H, Hong M, van der Westhuizen A, Martin J, Bowden NA. Melanoma: An immunotherapy journey from bench to bedside. Cancer Treat Res 2022; 183:49-89. [PMID: 35551656 DOI: 10.1007/978-3-030-96376-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanoma gave science a window into the role immune evasion plays in the development of malignancy. The entire spectrum of immune focused anti-cancer therapies has been subjected to clinical trials in this disease, with limited success until the immune checkpoint blockade era. That revolution launched first in melanoma, heralded a landscape change throughout cancer that continues to reverberate today.
Collapse
Affiliation(s)
| | - Moira C Graves
- Centre for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, University Dr, Callaghan, NSW, 2308, Australia
| | - Hiren Mandaliya
- Calvary Mater Hospital Newcastle, Edith St, Waratah, NSW, 2298, Australia
| | - Martin Hong
- Calvary Mater Hospital Newcastle, Edith St, Waratah, NSW, 2298, Australia
| | - Andre van der Westhuizen
- Centre for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, University Dr, Callaghan, NSW, 2308, Australia.,Calvary Mater Hospital Newcastle, Edith St, Waratah, NSW, 2298, Australia
| | - Jennifer Martin
- Centre for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, University Dr, Callaghan, NSW, 2308, Australia.,John Hunter Hospital, Newcastle, NSW, Australia
| | - Nikola A Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, University Dr, Callaghan, NSW, 2308, Australia
| |
Collapse
|
106
|
Risk factors for cardiovascular mortality and melanoma-specific mortality among patients with melanoma: a SEER based study. Eur J Cancer Prev 2022; 31:293-300. [PMID: 34010239 DOI: 10.1097/cej.0000000000000690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE This study aims to identify the risk factors for cardiovascular mortality in melanoma patients. METHODS Data of melanoma patients were obtained from the Surveillance, Epidemiology, and End Results database. We used Person's chi-square test to assess the relationships between categorical variables. We used Kaplan-Meier test in the univariate analysis and Cox regression test for the multivariate analysis. Analyses were conducted using the SPSS software. RESULTS We analyzed data of 194 503 melanoma patients. Among them, 28 818 (14.8 %) died due to cardiovascular diseases. Cardiovascular-specific survival was higher in younger patients, women, married, localized disease, superficial spreading melanoma and in patients who had surgery. It was lower in patients who received chemotherapy or radiotherapy. The multivariate analysis revealed a higher risk of cardiovascular mortality in patients aged 50-64 years [hazard ratio (HR), 7.297; 95% confidence interval (CI), 6.68-7.97], patients aged ≥65 years (HR, 43.309; 95% CI, 39.706-47.240), men (HR, 1.535; 95% CI, 1.475-1.597), Blacks (HR, 1.29; 95% CI, 1.044-1.594), separated (HR, 1.286; 95% CI, 1.058-1.562), widowed (HR, 1.829; 95% CI, 1.706-1.961), patients with no or unknown history of chemotherapy (HR, 1.302; 95% CI, 1.071-1.583) or radiotherapy (HR, 1.477; 95% CI, 1.217-1.793) and patients with no surgery (HR, 1.468; 95% CI, 1.264-1.706). CONCLUSIONS In patients with melanoma, the risk of cardiovascular death is higher in older patients, men, Blacks, separated, widowed and patients with nodular or lentigo maligna melanoma. The risk is lower in married, patients with superficial spreading or acral lentiginous melanoma, and patients who had chemotherapy, radiotherapy or surgery.
Collapse
|
107
|
Aspenström P. The Role of Fast-Cycling Atypical RHO GTPases in Cancer. Cancers (Basel) 2022; 14:cancers14081961. [PMID: 35454871 PMCID: PMC9029563 DOI: 10.3390/cancers14081961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary For many years, cancer-associated mutations in RHO GTPases were not identified and observations suggesting roles for RHO GTPases in cancer were sparse. Instead, RHO GTPases were considered primarily to regulate cell morphology and cell migration, processes that rely on the dynamic behavior of the cytoskeleton. This notion is in contrast to the RAS proteins, which are famous oncogenes and found to be mutated at high incidence in human cancers. Recent advancements in the tools for large-scale genome analysis have resulted in a paradigm shift and RHO GTPases are today found altered in many cancer types. This review article deals with the recent views on the roles of RHO GTPases in cancer, with a focus on the so-called fast-cycling RHO GTPases. Abstract The RHO GTPases comprise a subfamily within the RAS superfamily of small GTP-hydrolyzing enzymes and have primarily been ascribed roles in regulation of cytoskeletal dynamics in eukaryotic cells. An oncogenic role for the RHO GTPases has been disregarded, as no activating point mutations were found for genes encoding RHO GTPases. Instead, dysregulated expression of RHO GTPases and their regulators have been identified in cancer, often in the context of increased tumor cell migration and invasion. In the new landscape of cancer genomics, activating point mutations in members of the RHO GTPases have been identified, in particular in RAC1, RHOA, and CDC42, which has suggested that RHO GTPases can indeed serve as oncogenes in certain cancer types. This review describes the current knowledge of these cancer-associated mutant RHO GTPases, with a focus on how their altered kinetics can contribute to cancer progression.
Collapse
Affiliation(s)
- Pontus Aspenström
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology (IGP), Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
108
|
Feng S, Zhou Y, Huang H, Lin Y, Zeng Y, Han S, Huang K, Liu Q, Zhu W, Yuan Z, Liang B. Nobiletin Induces Ferroptosis in Human Skin Melanoma Cells Through the GSK3β-Mediated Keap1/Nrf2/HO-1 Signalling Pathway. Front Genet 2022; 13:865073. [PMID: 35350242 PMCID: PMC8957809 DOI: 10.3389/fgene.2022.865073] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
Melanoma is an aggressive malignant skin tumour with an increasing global incidence. However, current treatments have limitations owing to the acquired tumour drug resistance. Ferroptosis is a recently discovered form of programmed cell death characterised by iron accumulation and lipid peroxidation and plays a critical role in tumour growth inhibition. Recently, ferroptosis inducers have been regarded as a promising therapeutic strategy to overcome apoptosis resistance in tumour cells. In this study, we reported that nobiletin, a natural product isolated from citrus peel, and exhibited antitumour activity by inducing ferroptosis in melanoma cells. Subsequently, we further explored the potential mechanism of nobiletin-induced ferroptosis, and found that the expression level of glycogen synthase kinase 3β (GSK3β) in the skin tissue of patients with melanoma was significantly reduced compared to that in the skin of normal tissue. Additionally, nobiletin increased GSK3β expression in melanoma cells. Moreover, the level of Kelch-like Ech-associated protein-1 (Keap1) was increased, while the level of nuclear factor erythroid 2-related factor 2 (Nrf2), and haem oxygenase-1 (HO-1) was decreased in nobiletin-treated melanoma cells, suggesting that the antioxidant defence system was downregulated. Furthermore, knockdown of GSK3β significantly reduced nobiletin-induced ferroptosis and upregulated the Keap1/Nrf2/HO-1 signalling pathway, while the opposite was observed in cells overexpressing GSK3β. In addition, molecular docking assay results indicated that nobiletin showed strong binding affinities for GSK3β, Keap1, Nrf2, and HO-1. Taken together, our results demonstrated that nobiletin could induce ferroptosis by regulating the GSK3β-mediated Keap1/Nrf2/HO-1 signalling pathway in human melanoma cells. Hence, nobiletin stands as a promising drug candidate for melanoma treatment with development prospects.
Collapse
Affiliation(s)
- Senling Feng
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongheng Zhou
- Department of Pharmacy, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongliang Huang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Lin
- Guangdong Provincial Clinical Research Center for Chinese Medicine Dermatology, Department of Dermatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yifeng Zeng
- Department of Pharmacy, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanshan Han
- Guangdong Provincial Clinical Research Center for Chinese Medicine Dermatology, Department of Dermatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Kaikai Huang
- Guangdong Provincial Clinical Research Center for Chinese Medicine Dermatology, Department of Dermatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Quanzhi Liu
- Guangdong Provincial Clinical Research Center for Chinese Medicine Dermatology, Department of Dermatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Wenting Zhu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhongwen Yuan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baoying Liang
- Guangdong Provincial Clinical Research Center for Chinese Medicine Dermatology, Department of Dermatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
109
|
Loya A, Gombos DS, Patel SP. Second Primary Malignancies in Patients With Melanoma Subtypes: Analysis of 120,299 Patients From the SEER Database (2000-2016). Front Oncol 2022; 12:853076. [PMID: 35372013 PMCID: PMC8972193 DOI: 10.3389/fonc.2022.853076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeEvaluate incidence of second primary malignancies (SPM) after non-acral cutaneous melanoma (NACM), acral lentiginous melanoma (ALM), mucosal melanoma (MM), and uveal melanoma (UM).Patients and MethodsFirst primary NACM, ALM, MM, and UM cases diagnosed 2000-2016 were extracted from SEER. Seer*Stat was used to calculate excess absolute risks (EAR) and standardized incidence ratios (SIR) of SPMs relative to a matched cohort from the general population. P-value of 0.05 determined significance.ResultsInclusion criteria was met by 109,385 patients with NACM, 2166 with ALM, 2498 with MM, and 6250 with UM. Increased incidence of malignancies occurred after NACM (SIR 1.51; 95%CI, 1.49-1.54), ALM (SIR 1.59; 95%CI, 1.40-1.81), MM (SIR 2.14; 95%CI, 1.85-2.45), and UM (SIR 1.24; 95%CI, 1.14-1.34) relative to the general population. Cutaneous melanoma occurred more frequently after NACM (SIR 9.54; 95%CI, 9.27-9.83), ALM (SIR 12.19; 95%CI, 9.70-15.14), MM (SIR 10.05; 95%CI, 7.18-13.68), and UM (SIR 2.91; 95%CI, 2.27-3.66). Patients with initial NACM (SIR 2.44; 95%CI, 1.64-3.51) and UM (SIR 44.34; 95%CI, 29.91-63.29) demonstrated increased incidence of eye and orbit melanoma. Renal malignancies occurred more frequently after NACM (SIR 1.24; 95%CI, 1.11-1.38), MM (SIR 3.54; 95%CI, 1.62-6.72) and UM (SIR 1.68; 95%CI, 1.09-2.48). Increased incidence of thyroid malignancies was observed after NACM (SIR 1.83; 95%CI, 1.61-2.06), ALM (SIR 3.74; 95%CI, 1.71-7.11), MM (SIR 4.40; 95%CI, 1.77-9.06), and UM (SIR 3.79; 95%CI, 2.52-5.47). Increased incidence of lymphoma was observed after NACM (SIR 1.20; 95%CI, 1.09-1.31) and ALM (SIR 2.06; 95%CI, 1.13-3.46).ConclusionPatients with NACM, ALM, MM, and UM have increased incidence of SPMs compared to that expected from the general population. Each of these melanoma subtypes had increased occurrence of cutaneous melanoma and thyroid cancer; some, but not all, had increased occurrence of renal malignancies, eye and orbit melanoma, and lymphoma.
Collapse
Affiliation(s)
- Asad Loya
- School of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Dan S. Gombos
- Section of Ophthalmology, Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Pediatrics, Division of Cancer Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Ophthalmology & Visual Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Sapna P. Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Sapna P. Patel,
| |
Collapse
|
110
|
da Silva GB, Yamauchi MA, Zanini D, Bagatini MD. Novel possibility for cutaneous melanoma treatment by means of rosmarinic acid action on purinergic signaling. Purinergic Signal 2022; 18:61-81. [PMID: 34741236 PMCID: PMC8570242 DOI: 10.1007/s11302-021-09821-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer cases have increased significantly in Brazil and worldwide, with cutaneous melanoma (CM) being responsible for nearly 57,000 deaths in the world. Thus, this review article aims at exploring and proposed hypotheses with respect to the possibility that RA can be a promising and alternative compound to be used as an adjuvant in melanoma treatment, acting on purinergic signaling. The scarcity of articles evidencing the action of this compound in this signaling pathway requires further studies. Considering diverse evidence found in the literature, we hypothesize that RA can be an effective candidate for the treatment of CM acting as a modulating molecule of purinergic cellular pathway through P2X7 blocking, mitigating the Warburg effect, and as antagonic molecule of the P2Y12 receptor, reducing the formation of adhesive molecules that prevent adherence in tumor cells. In this way, our proposals for CM treatment based on targeting purinergic signaling permeate the integral practice, going from intracell to extracell. Undoubtedly, much is still to be discovered and elucidated about this promising compound, this paper being an interesting work baseline to support more research studies.
Collapse
Affiliation(s)
- Gilnei Bruno da Silva
- Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Milena Ayumi Yamauchi
- Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Daniela Zanini
- Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
111
|
Guo X, Fang Y, Guo C, Jia Q, Chi Z, Li J, Qin R, Tian J, Fan R. Qa-1b functions as an oncogenic factor in mouse melanoma cells. J Dermatol Sci 2022; 105:159-169. [DOI: 10.1016/j.jdermsci.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 12/20/2022]
|
112
|
Comito F, Pagani R, Grilli G, Sperandi F, Ardizzoni A, Melotti B. Emerging Novel Therapeutic Approaches for Treatment of Advanced Cutaneous Melanoma. Cancers (Basel) 2022; 14:271. [PMID: 35053435 PMCID: PMC8773625 DOI: 10.3390/cancers14020271] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
The prognosis of patients with advanced cutaneous melanoma has radically changed in the past decade. Nevertheless, primary or acquired resistance to systemic treatment occurs in many cases, highlighting the need for novel treatment strategies. This review has the purpose of summarizing the current area of interest for the treatment of metastatic or unresectable advanced cutaneous melanoma, including data from recently completed or ongoing clinical trials. The main fields of investigation include the identification of new immune checkpoint inhibitors (anti-LAG3, GITR agonist and anti-TIGIT), adoptive cell therapy, vaccines, engineered TCR therapy, IL-2 agonists, novel targets for targeted therapy (new MEK or RAF inhibitors, HDAC, IDO, ERK, Axl, ATR and PARP inhibitors), or combination strategies (antiangiogenetic agents plus immune checkpoint inhibitors, intra-tumoral immunotherapy in combination with systemic therapy). In many cases, only preliminary efficacy data from early phase trials are available, which require confirmation in larger patient cohorts. A more in-depth knowledge of the biological effects of the molecules and identifying predictive biomarkers remain crucial for selecting patient populations most likely to benefit from novel emerging treatment strategies.
Collapse
Affiliation(s)
- Francesca Comito
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15-40138 Bologna, Italy; (G.G.); (F.S.); (A.A.); (B.M.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti, 9-40138 Bologna, Italy
| | - Rachele Pagani
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15-40138 Bologna, Italy; (G.G.); (F.S.); (A.A.); (B.M.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti, 9-40138 Bologna, Italy
| | - Giada Grilli
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15-40138 Bologna, Italy; (G.G.); (F.S.); (A.A.); (B.M.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti, 9-40138 Bologna, Italy
| | - Francesca Sperandi
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15-40138 Bologna, Italy; (G.G.); (F.S.); (A.A.); (B.M.)
| | - Andrea Ardizzoni
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15-40138 Bologna, Italy; (G.G.); (F.S.); (A.A.); (B.M.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti, 9-40138 Bologna, Italy
| | - Barbara Melotti
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15-40138 Bologna, Italy; (G.G.); (F.S.); (A.A.); (B.M.)
| |
Collapse
|
113
|
Amweg A, Tusup M, Cheng P, Picardi E, Dummer R, Levesque MP, French LE, Guenova E, Läuchli S, Kundig T, Mellett M, Pascolo S. The A to I editing landscape in melanoma and its relation to clinical outcome. RNA Biol 2022; 19:996-1006. [PMID: 35993275 PMCID: PMC9415457 DOI: 10.1080/15476286.2022.2110390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
RNA editing refers to non-transient RNA modifications that occur after transcription and prior to translation by the ribosomes. RNA editing is more widespread in cancer cells than in non-transformed cells and is associated with tumorigenesis of various cancer tissues. However, RNA editing can also generate neo-antigens that expose tumour cells to host immunosurveillance. Global RNA editing in melanoma and its relevance to clinical outcome currently remain poorly characterized. The present study compared RNA editing as well as gene expression in tumour cell lines from melanoma patients of short or long metastasis-free survival, patients relapsing or not after immuno- and targeted therapy and tumours harbouring BRAF or NRAS mutations. Overall, our results showed that NTRK gene expression can be a marker of resistance to BRAF and MEK inhibition and gives some insights of candidate genes as potential biomarkers. In addition, this study revealed an increase in Adenosine-to-Inosine editing in Alu regions and in non-repetitive regions, including the hyperediting of the MOK and DZIP3 genes in relapsed tumour samples during targeted therapy and of the ZBTB11 gene in NRAS mutated melanoma cells. Therefore, RNA editing could be a promising tool for identifying predictive markers, tumour neoantigens and targetable pathways that could help in preventing relapses during immuno- or targeted therapies.
Collapse
Affiliation(s)
- Austeja Amweg
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Marina Tusup
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Phil Cheng
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany.,Dr. Philip Frost, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Emmanuella Guenova
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland.,Department of Dermatology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Severin Läuchli
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Thomas Kundig
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| |
Collapse
|
114
|
Du F, Li H, Li Y, Liu Y, Li X, Dang N, Chu Q, Yan J, Fang Z, Wu H, Zhang Z, Zhu X, Li X. Identification of m6A Regulator-Associated Methylation Modification Clusters and Immune Profiles in Melanoma. Front Cell Dev Biol 2021; 9:761134. [PMID: 34993195 PMCID: PMC8724425 DOI: 10.3389/fcell.2021.761134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
RNA N6-methyladenosine (m6A) modification in tumorigenesis and progression has been highlighted and discovered in recent years. However, the molecular and clinical implications of m6A modification in melanoma tumor microenvironment (TME) and immune infiltration remain largely unknown. Here, we utilized consensus molecular clustering with nonnegative matrix factorization based on the melanoma transcriptomic profiles of 23 m6A regulators to determine the m6A modification clusters and m6A-related gene signature. Three distinct m6A modification patterns (m6A-C1, C2, and C3), which are characterized by specific m6A regulator expression, survival outcomes, and biological pathways, were identified in more than 1,000 melanoma samples. The immune profile analyses showed that these three m6A modification subtypes were highly consistent with the three known immune phenotypes: immune-desert (C1), immune-excluded (C2), and immune-inflamed (C3). Tumor digital cytometry (CIBERSORT, ssGSEA) algorithm revealed an upregulated infiltration of CD8+ T cell and NK cell in m6A-C3 subtype. An m6A scoring scheme calculated by principal component of m6A signatures stratified melanoma patients into high- and low-m6sig score subgroups; a high score was significantly associated with prolonged survival and enhanced immune infiltration. Furthermore, fewer somatic copy number alternations (SCNA) and PD-L1 expression were found in patients with high m6Sig score. In addition, patients with high m6Sig score demonstrated marked immune responses and durable clinical benefits in two independent immunotherapy cohorts. Overall, this study indicated that m6A modification is involved in melanoma tumor microenvironment immune regulation and contributes to formation of tumor immunogenicity. Comprehensive evaluation of the m6A modification pattern of individual tumors will provide more insights into molecular mechanisms of TME characterization and promote more effective personalized biotherapy strategies.
Collapse
Affiliation(s)
- Fengying Du
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Han Li
- Department of Gastroenterological Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yan Li
- Department of Respiratory and Critical care, Shandong public health clinical center, Jinan, China
| | - Yang Liu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xinyu Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qingqing Chu
- Outpatient of Podiatric Rehabilitation, Maternity and Child Health Care of Zaozhuang, Zaozhuang, China
| | - Jianjun Yan
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhen Fang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zihao Zhang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xingyu Zhu
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaokang Li
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Xiaokang Li,
| |
Collapse
|
115
|
Catalani E, Giovarelli M, Zecchini S, Perrotta C, Cervia D. Oxidative Stress and Autophagy as Key Targets in Melanoma Cell Fate. Cancers (Basel) 2021; 13:cancers13225791. [PMID: 34830947 PMCID: PMC8616245 DOI: 10.3390/cancers13225791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023] Open
Abstract
Melanoma originates from the malignant transformation of melanocytes and is one of the most aggressive forms of cancer. The recent approval of several drugs has increased the chance of survival although a significant subset of patients with metastatic melanoma do not show a long-lasting response to these treatments. The complex cross-talk between oxidative stress and the catabolic process autophagy seems to play a central role in all aspects of melanoma pathophysiology, from initiation to progression and metastasis, including drug resistance. However, determining the fine role of autophagy in cancer death and in response to redox disruption is still a fundamental challenge in order to advance both basic and translational aspects of this field. In order to summarize the interactions among reactive oxygen and nitrogen species, autophagy machinery and proliferation/growth/death/apoptosis/survival, we provide here a narrative review of the preclinical evidence for drugs/treatments that modulate oxidative stress and autophagy in melanoma cells. The significance and the potential for pharmacological targeting (also through multiple and combination approaches) of these two different events, which can contribute independently or simultaneously to the fate of melanoma, may help to define new processes and their interconnections underlying skin cancer biology and unravel new reliable approaches.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Via G.B. Grassi 74, 20157 Milano, Italy; (M.G.); (S.Z.)
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Via G.B. Grassi 74, 20157 Milano, Italy; (M.G.); (S.Z.)
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Via G.B. Grassi 74, 20157 Milano, Italy; (M.G.); (S.Z.)
- Correspondence: (C.P.); (D.C.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
- Correspondence: (C.P.); (D.C.)
| |
Collapse
|
116
|
Chen ZY, Huang JQ, Zhu Y, Chen YS, Yu XF. Comprehensive Analysis of the Immune Implication of TEX41 in Skin Cutaneous Melanoma. DISEASE MARKERS 2021; 2021:2409820. [PMID: 34795805 PMCID: PMC8595038 DOI: 10.1155/2021/2409820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 02/03/2023]
Abstract
Enhancer RNAs (eRNAs), a subclass of noncoding RNAs from enhancers, have been demonstrated to exhibit important regulatory effects on the expressions of various genes. However, the role of eRNAs in skin cutaneous melanoma (SKCM) remained largely unclear. In this study, we aimed to explore the expression and prognostic value of an enhancer RNA TEX41 in SKCM as well as the associations between TEX41 and tumor-infiltrating immune cells (TICs). We observed that TEX41 expression was distinctly increased in SKCM specimens compared with normal skin specimens using GEPIA. Survival assays based on TGCA datasets revealed that patients with low TEX41 expressions displayed a longer overall survival than those with high TEX41 expression. CIBERSORT datasets revealed that TEX41 was related to 8 types of TICs (macrophages M1, T cells regulatory, plasma cells, mast cells resting, T cells CD8, dendritic cells resting, and T cells follicular helper). Three kinds of TICs were negatively related to TEX41 expressions, including macrophages M2, NK cells resting, and macrophages M0. The expressions of TEX41 were involved in five KEGG pathways, including transcriptional misregulation in cancer, SNARE interactions in vesicular transport, mitophagy-animal, melanoma, melanogenesis, and progesterone-mediated oocyte maturation. Overall, TEX41 can be used as a novel biomarker for the prognosis of SKCM patients and is associated with TICs, indicating it as a therapeutic target for SKCM.
Collapse
Affiliation(s)
- Zhi-yong Chen
- Department of Burns and Plastic, The Fuling Center Hospital of Chongqing City, Fuling, Chongqing, China
| | - Jie-qing Huang
- Department of Burns and Plastic, The Fuling Center Hospital of Chongqing City, Fuling, Chongqing, China
| | - Yu Zhu
- Department of Burns and Plastic, The Fuling Center Hospital of Chongqing City, Fuling, Chongqing, China
| | - Yong-song Chen
- Department of Burns and Plastic, The Fuling Center Hospital of Chongqing City, Fuling, Chongqing, China
| | - Xue-feng Yu
- Department of Burns and Plastic, The Fuling Center Hospital of Chongqing City, Fuling, Chongqing, China
| |
Collapse
|
117
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
118
|
Fink M, Vittrup AS, Bastholt L, Svane IM, Donia M, Luczak AA, Ruhlmann CH, Guldbrandt LM, Koehler UH, Winther ML, Ellebaek E, Haslund CA, Schmidt H. Comparison of Efficacy in Patients with Metastatic Melanoma Treated with Ipilimumab and Nivolumab Who Did or Did Not Discontinue Treatment Due to Immune-Related Adverse Events: A Real-World Data Study. Cancers (Basel) 2021; 13:cancers13215550. [PMID: 34771712 PMCID: PMC8583558 DOI: 10.3390/cancers13215550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary This retrospective study of real-world patients with metastatic melanoma shows that discontinuing treatment with combination immunotherapy due to adverse events does not result in a poorer outcome compared to patients that did not discontinue due to toxicity. This is important knowledge for clinicians and patients, as discontinuing treatment may cause great anxiety for patients because they believe that it may limit the response. Abstract Immune-related adverse events (irAEs) are very prevalent when treating patients with ipilimumab and nivolumab in combination, and 30–40% of patients discontinue the treatment for this reason. It is of high clinical relevance to investigate the consequences of discontinuing the treatment early since combination therapy with ipilimumab and nivolumab is the first line of treatment for many patients with metastatic melanoma. In this follow-up study, with real-world data from the nationwide DAMMED database, we investigated whether there was a difference in progression-free survival (PFS) and overall survival (OS) for patients who discontinued or did not discontinue treatment within the first four doses of treatment due to irAEs. In total, 448 patients were treated with ipilimumab and nivolumab. Of these, 133 patients discontinued due to irAEs in the induction phase. Using the Cox proportional hazards model, there was no significant difference in PFS when comparing the group that discontinued with the group that did not discontinue. The group that discontinued had a significantly longer OS than the group that received the full length of treatment. Therefore, we conclude that there is no significant negative impact on efficacy for patients who discontinue due to irAEs in the induction phase of combination immunotherapy for metastatic melanoma.
Collapse
Affiliation(s)
- Morten Fink
- Department of Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark; (A.S.V.); (L.M.G.); (U.H.K.); (H.S.)
- Correspondence: or
| | - Anders Schwartz Vittrup
- Department of Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark; (A.S.V.); (L.M.G.); (U.H.K.); (H.S.)
| | - Lars Bastholt
- Department of Oncology, Odense University Hospital, 5000 Odense, Denmark; (L.B.); (M.L.W.)
| | - Inge Marie Svane
- National Center for Cancer Immuno Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (I.M.S.); (M.D.); (E.E.)
| | - Marco Donia
- National Center for Cancer Immuno Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (I.M.S.); (M.D.); (E.E.)
| | - Adam A. Luczak
- Department of Oncology, Aalborg University Hospital, 9100 Aalborg, Denmark; (A.A.L.); (C.A.H.)
| | - Christina H. Ruhlmann
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark;
| | - Louise Mahncke Guldbrandt
- Department of Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark; (A.S.V.); (L.M.G.); (U.H.K.); (H.S.)
| | - Ulrich Heide Koehler
- Department of Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark; (A.S.V.); (L.M.G.); (U.H.K.); (H.S.)
| | - Mette Lerche Winther
- Department of Oncology, Odense University Hospital, 5000 Odense, Denmark; (L.B.); (M.L.W.)
| | - Eva Ellebaek
- National Center for Cancer Immuno Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark; (I.M.S.); (M.D.); (E.E.)
| | | | - Henrik Schmidt
- Department of Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark; (A.S.V.); (L.M.G.); (U.H.K.); (H.S.)
| |
Collapse
|
119
|
Jęśkowiak I, Wiatrak B, Szeląg A, Mączyński M. Preclinical Study of Immunological Isoxazole Derivatives as a Potential Support for Melanoma Chemotherapy. Int J Mol Sci 2021; 22:ijms222010920. [PMID: 34681580 PMCID: PMC8535817 DOI: 10.3390/ijms222010920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Melanoma is an aggressive neoplasm derived from melanocyte precursors with a high metastatic potential. Responses to chemotherapy and immunotherapy for melanoma remain weak, underlining the urgent need to develop new therapeutic strategies for the treatment of melanoma. (2) Methods: The viability of NHDF and A375 cell cultures after the administration of the tested isoxazole derivatives was assessed after 24-h and 48-h incubation periods with the test compounds in the MTT test. ROS and NO scavenging analyses, a glycoprotein-P activity analysis, a migration assay, a test of apoptosis, and a multiple-criteria decision analysis were also performed. (3) Results: All compounds that were tested resulted in a slower migration of melanoma neoplastic cells. The mechanism of the antitumor activity of the tested compounds was confirmed-i.e., the pro-apoptotic activity of the compounds in A375 cell cultures. Compound O7K qualified for further research. (4) Conclusions: All the tested compounds inhibited the formation of melanoma metastases and demonstrated the ability to reduce the risk of developing drug resistance in the tumor. The MCDA results showed that O7K showed the strongest antitumor activity.
Collapse
Affiliation(s)
- Izabela Jęśkowiak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.W.); (A.S.)
- Correspondence:
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.W.); (A.S.)
| | - Adam Szeląg
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.W.); (A.S.)
| | - Marcin Mączyński
- Department of Organic Chemistry, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska Str., 50-556 Wrocław, Poland;
| |
Collapse
|
120
|
Tufano M, Cesaro E, Martinelli R, Pacelli R, Romano S, Romano MF. FKBP51 Affects TNF-Related Apoptosis Inducing Ligand Response in Melanoma. Front Cell Dev Biol 2021; 9:718947. [PMID: 34589486 PMCID: PMC8473884 DOI: 10.3389/fcell.2021.718947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/02/2021] [Indexed: 12/03/2022] Open
Abstract
Melanoma is one of the most immunogenic tumors and has the highest potential to elicit specific adaptive antitumor immune responses. Immune cells induce apoptosis of cancer cells either by soluble factors or by triggering cell-death pathways. Melanoma cells exploit multiple mechanisms to escape immune system tumoricidal control. FKBP51 is a relevant pro-oncogenic factor of melanoma cells supporting NF-κB-mediated resistance and cancer stemness/invasion epigenetic programs. Herein, we show that FKBP51-silencing increases TNF-related apoptosis-inducing ligand (TRAIL)-R2 (DR5) expression and sensitizes melanoma cells to TRAIL-induced apoptosis. Consistent with the general increase in histone deacetylases, as by the proteomic profile, the immune precipitation assay showed decreased acetyl-Yin Yang 1 (YY1) after FKBP51 depletion, suggesting an impaired repressor activity of this transcription factor. ChIP assay supported this hypothesis. Compared with non-silenced cells, a reduced acetyl-YY1 was found on the DR5 promoter, resulting in increased DR5 transcript levels. Using Crispr/Cas9 knockout (KO) melanoma cells, we confirmed the negative regulation of DR5 by FKBP51. We also show that KO cells displayed reduced levels of acetyl-EP300 responsible for YY1 acetylation, along with reduced acetyl-YY1. Reconstituting FKBP51 levels contrasted the effects of KO on DR5, acetyl-YY1, and acetyl-EP300 levels. In conclusion, our finding shows that FKBP51 reduces DR5 expression at the transcriptional level by promoting YY1 repressor activity. Our study supports the conclusion that targeting FKBP51 increases the expression level of DR5 and sensitivity to TRAIL-induced cell death, which can improve the tumoricidal action of immune cells.
Collapse
Affiliation(s)
- Martina Tufano
- Dipartimento di Medicina Molecolaree Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Elena Cesaro
- Dipartimento di Medicina Molecolaree Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Rosanna Martinelli
- Dipartimento di Medicina, Chirurgia ed Odontoiatria, Università degli Studi di Salerno, Baronissi, Italy
| | - Roberto Pacelli
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Simona Romano
- Dipartimento di Medicina Molecolaree Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Maria Fiammetta Romano
- Dipartimento di Medicina Molecolaree Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
121
|
Hamieh M, Chatillon JF, Dupel E, Bayeux F, Fauquembergue E, Maby P, Drouet A, Duval-Modeste AB, Adriouch S, Boyer O, Latouche JB. Generation of Pure Highly Functional Human Anti-Tumor Specific Cytotoxic T Lymphocytes With Stem Cell-Like Memory Features for Melanoma Immunotherapy. Front Immunol 2021; 12:674276. [PMID: 34566953 PMCID: PMC8456028 DOI: 10.3389/fimmu.2021.674276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/13/2021] [Indexed: 02/03/2023] Open
Abstract
Adoptive immunotherapy based on the transfer of anti-tumor cytotoxic T lymphocytes (CTLs) is a promising strategy to cure cancers. However, rapid expansion of numerous highly functional CTLs with long-lived features remains a challenge. Here, we constructed NIH/3T3 mouse fibroblast-based artificial antigen presenting cells (AAPCs) and precisely evaluated their ability to circumvent this difficulty. These AAPCs stably express the essential molecules involved in CTL activation in the HLA-A*0201 context and an immunogenic HLA-A*0201 restricted analogue peptide derived from MART-1, an auto-antigen overexpressed in melanoma. Using these AAPCs and pentamer-based magnetic bead-sorting, we defined, in a preclinical setting, the optimal conditions to expand pure MART-1-specific CTLs. Numerous highly purified MART-1-specific CTLs were rapidly obtained from healthy donors and melanoma patients. Both TCR repertoire and CDR3 sequence analyses revealed that MART-1-specific CTL responses were similar to those reported in the literature and obtained with autologous or allogeneic presenting cells. These MART-1-specific CTLs were highly cytotoxic against HLA-A*0201+ MART-1+ tumor cells. Moreover, they harbored a suitable phenotype for immunotherapy, with effector memory, central memory and, most importantly, stem cell-like memory T cell features. Notably, the cells harboring stem cell-like memory phenotype features were capable of self-renewal and of differentiation into potent effector anti-tumor T cells. These "off-the-shelf" AAPCs represent a unique tool to rapidly and easily expand large numbers of long-lived highly functional pure specific CTLs with stem cell-like memory T cell properties, for the development of efficient adoptive immunotherapy strategies against cancers.
Collapse
Affiliation(s)
- Mohamad Hamieh
- Normandie University, UNIROUEN, Inserm U1245, Institute for Research and Innovation in Biomedecine (IRIB), Rouen, France
| | - Jean-François Chatillon
- Normandie University, UNIROUEN, Inserm U1234 - Pathophysiology, Autoimmunity, Neuromuscular diseases and regenerative THERapies (PANTHER), IRIB, Rouen, France
| | - Estelle Dupel
- Normandie University, UNIROUEN, Inserm U1245, Institute for Research and Innovation in Biomedecine (IRIB), Rouen, France
| | - Florence Bayeux
- Normandie University, UNIROUEN, Inserm U1234 - Pathophysiology, Autoimmunity, Neuromuscular diseases and regenerative THERapies (PANTHER), IRIB, Rouen, France
| | - Emilie Fauquembergue
- Normandie University, UNIROUEN, Inserm U1245, Institute for Research and Innovation in Biomedecine (IRIB), Rouen, France
| | - Pauline Maby
- Normandie University, UNIROUEN, Inserm U1245, Institute for Research and Innovation in Biomedecine (IRIB), Rouen, France
| | - Aurelie Drouet
- Normandie University, UNIROUEN, Inserm U1245, Institute for Research and Innovation in Biomedecine (IRIB), Rouen, France
| | | | - Sahil Adriouch
- Normandie University, UNIROUEN, Inserm U1234 - Pathophysiology, Autoimmunity, Neuromuscular diseases and regenerative THERapies (PANTHER), IRIB, Rouen, France
| | - Olivier Boyer
- Normandie University, UNIROUEN, Inserm U1234 - Pathophysiology, Autoimmunity, Neuromuscular diseases and regenerative THERapies (PANTHER), IRIB, Rouen, France.,Department of Immunology and Biotherapy, Rouen University Hospital, Rouen, France
| | - Jean-Baptiste Latouche
- Normandie University, UNIROUEN, Inserm U1245, Institute for Research and Innovation in Biomedecine (IRIB), Rouen, France.,Department of Genetics, Rouen University Hospital, Rouen, France
| |
Collapse
|
122
|
Dobre EG, Constantin C, Costache M, Neagu M. Interrogating Epigenome toward Personalized Approach in Cutaneous Melanoma. J Pers Med 2021; 11:901. [PMID: 34575678 PMCID: PMC8467841 DOI: 10.3390/jpm11090901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic alterations have emerged as essential contributors in the pathogenesis of various human diseases, including cutaneous melanoma (CM). Unlike genetic changes, epigenetic modifications are highly dynamic and reversible and thus easy to regulate. Here, we present a comprehensive review of the latest research findings on the role of genetic and epigenetic alterations in CM initiation and development. We believe that a better understanding of how aberrant DNA methylation and histone modifications, along with other molecular processes, affect the genesis and clinical behavior of CM can provide the clinical management of this disease a wide range of diagnostic and prognostic biomarkers, as well as potential therapeutic targets that can be used to prevent or abrogate drug resistance. We will also approach the modalities by which these epigenetic alterations can be used to customize the therapeutic algorithms in CM, the current status of epi-therapies, and the preliminary results of epigenetic and traditional combinatorial pharmacological approaches in this fatal disease.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Marieta Costache
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
| | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
123
|
Eddy K, Chen S. Glutamatergic Signaling a Therapeutic Vulnerability in Melanoma. Cancers (Basel) 2021; 13:3874. [PMID: 34359771 PMCID: PMC8345431 DOI: 10.3390/cancers13153874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023] Open
Abstract
Like other cancers, melanomas are associated with the hyperactivation of two major cell signaling cascades, the MAPK and PI3K/AKT pathways. Both pathways are activated by numerous genes implicated in the development and progression of melanomas such as mutated BRAF, RAS, and NF1. Our lab was the first to identify yet another driver of melanoma, Metabotropic Glutamate Receptor 1 (protein: mGluR1, mouse gene: Grm1, human gene: GRM1), upstream of the MAPK and PI3K/AKT pathways. Binding of glutamate, the natural ligand of mGluR1, activates MAPK and PI3K/AKT pathways and sets in motion the deregulated cellular responses in cell growth, cell survival, and cell metastasis. In this review, we will assess the proposed modes of action that mediate the oncogenic properties of mGluR1 in melanoma and possible application of anti-glutamatergic signaling modulator(s) as therapeutic strategy for the treatment of melanomas.
Collapse
Affiliation(s)
- Kevinn Eddy
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
124
|
Revythis A, Shah S, Kutka M, Moschetta M, Ozturk MA, Pappas-Gogos G, Ioannidou E, Sheriff M, Rassy E, Boussios S. Unraveling the Wide Spectrum of Melanoma Biomarkers. Diagnostics (Basel) 2021; 11:diagnostics11081341. [PMID: 34441278 PMCID: PMC8391989 DOI: 10.3390/diagnostics11081341] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
The use of biomarkers in medicine has become essential in clinical practice in order to help with diagnosis, prognostication and prediction of treatment response. Since Alexander Breslow’s original report on “melanoma and prognostic values of thickness”, providing the first biomarker for melanoma, many promising new biomarkers have followed. These include serum markers, such as lactate dehydrogenase and S100 calcium-binding protein B. However, as our understanding of the DNA mutational profile progresses, new gene targets and proteins have been identified. These include point mutations, such as mutations of the BRAF gene and tumour suppressor gene tP53. At present, only a small number of the available biomarkers are being utilised, but this may soon change as more studies are published. The aim of this article is to provide a comprehensive review of melanoma biomarkers and their utility for current and, potentially, future clinical practice.
Collapse
Affiliation(s)
- Antonios Revythis
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Sidrah Shah
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Mikolaj Kutka
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Michele Moschetta
- CHUV, Lausanne University Hospital, Rue du Bugnon, 21 CH-1011 Lausanne, Switzerland;
| | - Mehmet Akif Ozturk
- Department of Internal Medicine, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey;
| | - George Pappas-Gogos
- Department of Surgery, University Hospital of Ioannina, 45111 Ioannina, Greece;
| | - Evangelia Ioannidou
- Department of Paediatrics and Child Health, West Suffolk Hospital NHS Foundation Trust, Hardwick Lane, Bury St Edmunds IP33 2QZ, UK;
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK;
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy Institut, 94805 Villejuif, France;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Correspondence: or or
| |
Collapse
|
125
|
Saellstrom S, Sadeghi A, Eriksson E, Segall T, Dimopoulou M, Korsgren O, Loskog AS, Tötterman TH, Hemminki A, Ronnberg H. Adenoviral CD40 Ligand Immunotherapy in 32 Canine Malignant Melanomas-Long-Term Follow Up. Front Vet Sci 2021; 8:695222. [PMID: 34368282 PMCID: PMC8342889 DOI: 10.3389/fvets.2021.695222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/25/2021] [Indexed: 01/13/2023] Open
Abstract
Malignant melanoma is a serious disease in both humans and dogs, and the high metastatic potential results in poor prognosis for many patients. Its similarities with human melanoma make spontaneous canine melanoma an excellent model for comparative studies of novel therapies and tumor biology. Gene therapy using adenoviruses encoding the immunostimulatory gene CD40L (AdCD40L) has shown promise in initial clinical trials enrolling human patients with various malignancies including melanoma. We report a study of local AdCD40L treatment in 32 cases of canine melanoma (23 oral, 5 cutaneous, 3 ungual and 1 conjunctival). Eight patients were World Health Organization (WHO) stage I, 9 were stage II, 12 stage III, and 3 stage IV. One to six intratumoral injections of AdCD40L were given every seven days, combined with cytoreductive surgery in 20 cases and only immunotherapy in 12 cases. Tumor tissue was infiltrated with T and B lymphocytes after treatment, suggesting immune stimulation. The best overall response based on result of immunotherapy included 7 complete responses, 5 partial responses, 5 stable and 2 progressive disease statuses according to the World Health Organization response criteria. Median survival was 285 days (range 20–3435 d). Our results suggest that local AdCD40L therapy is safe and could have beneficial effects in dogs, supporting further treatment development. Clinical translation to human patients is ongoing.
Collapse
Affiliation(s)
- Sara Saellstrom
- University Animal Hospital, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Arian Sadeghi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Emma Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Thomas Segall
- National Veterinary Institute, Department of Pathology and Wildlife Diseases, Uppsala, Sweden
| | - Maria Dimopoulou
- University Animal Hospital, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Angelica Si Loskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Thomas H Tötterman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Henrik Ronnberg
- Center of Clinical Comparative Oncology (C3O), Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| |
Collapse
|
126
|
Trappetti V, Fazzari JM, Fernandez-Palomo C, Scheidegger M, Volarevic V, Martin OA, Djonov VG. Microbeam Radiotherapy-A Novel Therapeutic Approach to Overcome Radioresistance and Enhance Anti-Tumour Response in Melanoma. Int J Mol Sci 2021; 22:7755. [PMID: 34299373 PMCID: PMC8303317 DOI: 10.3390/ijms22147755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the deadliest type of skin cancer, due to its invasiveness and limited treatment efficacy. The main therapy for primary melanoma and solitary organ metastases is wide excision. Adjuvant therapy, such as chemotherapy and targeted therapies are mainly used for disseminated disease. Radiotherapy (RT) is a powerful treatment option used in more than 50% of cancer patients, however, conventional RT alone is unable to eradicate melanoma. Its general radioresistance is attributed to overexpression of repair genes in combination with cascades of biochemical repair mechanisms. A novel sophisticated technique based on synchrotron-generated, spatially fractionated RT, called Microbeam Radiation Therapy (MRT), has been shown to overcome these treatment limitations by allowing increased dose delivery. With MRT, a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose microbeams that are tens of micrometres wide and spaced a few hundred micrometres apart. Different preclinical models demonstrated that MRT has the potential to completely ablate tumours, or significantly improve tumour control while dramatically reducing normal tissue toxicity. Here, we discuss the role of conventional RT-induced immunity and the potential for MRT to enhance local and systemic anti-tumour immune responses. Comparative gene expression analysis from preclinical tumour models indicated a specific gene signature for an 'MRT-induced immune effect'. This focused review highlights the potential of MRT to overcome the inherent radioresistance of melanoma which could be further enhanced for future clinical use with combined treatment strategies, in particular, immunotherapy.
Collapse
Affiliation(s)
- Verdiana Trappetti
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Jennifer M. Fazzari
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Cristian Fernandez-Palomo
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Maximilian Scheidegger
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Vladislav Volarevic
- Department of Genetics, Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Olga A. Martin
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
- Peter MacCallum Cancer Centre, Division of Radiation Oncology, Melbourne, VIC 3000, Australia
- University of Melbourne, Parkville, VIC 3010, Australia
| | - Valentin G. Djonov
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| |
Collapse
|
127
|
Fejza A, Polano M, Camicia L, Poletto E, Carobolante G, Toffoli G, Mongiat M, Andreuzzi E. The Efficacy of Anti-PD-L1 Treatment in Melanoma Is Associated with the Expression of the ECM Molecule EMILIN2. Int J Mol Sci 2021; 22:ijms22147511. [PMID: 34299131 PMCID: PMC8306837 DOI: 10.3390/ijms22147511] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
The use of immune checkpoint inhibitors has revolutionized the treatment of melanoma patients, leading to remarkable improvements in the cure. However, to ensure a safe and effective treatment, there is the need to develop markers to identify the patients that would most likely respond to the therapies. The microenvironment is gaining attention in this context, since it can regulate both the immunotherapy efficacyand angiogenesis, which is known to be affected by treatment. Here, we investigated the putative role of the ECM molecule EMILIN-2, a tumor suppressive and pro-angiogenic molecule. We verified that the EMILIN2 expression is variable among melanoma patients and is associated with the response to PD-L1 inhibitors. Consistently, in preclinical settings, the absence of EMILIN-2 is associated with higher PD-L1 expression and increased immunotherapy efficacy. We verified that EMILIN-2 modulates PD-L1 expression in melanoma cells through indirect immune-dependent mechanisms. Notably, upon PD-L1 blockage, Emilin2−/− mice displayed improved intra-tumoral vessel normalization and decreased tumor hypoxia. Finally, we provide evidence indicating that the inclusion of EMILIN2 in a number of gene expression signatures improves their predictive potential, a further indication that the analysis of this molecule may be key for the development of new markers to predict immunotherapy efficacy.
Collapse
Affiliation(s)
- Albina Fejza
- Division of Molecular Oncology, Department of Research and Diagnosis, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (A.F.); (L.C.); (E.P.); (G.C.)
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (M.P.); (G.T.)
| | - Lucrezia Camicia
- Division of Molecular Oncology, Department of Research and Diagnosis, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (A.F.); (L.C.); (E.P.); (G.C.)
| | - Evelina Poletto
- Division of Molecular Oncology, Department of Research and Diagnosis, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (A.F.); (L.C.); (E.P.); (G.C.)
| | - Greta Carobolante
- Division of Molecular Oncology, Department of Research and Diagnosis, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (A.F.); (L.C.); (E.P.); (G.C.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (M.P.); (G.T.)
| | - Maurizio Mongiat
- Division of Molecular Oncology, Department of Research and Diagnosis, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (A.F.); (L.C.); (E.P.); (G.C.)
- Correspondence: (M.M.); (E.A.)
| | - Eva Andreuzzi
- Division of Molecular Oncology, Department of Research and Diagnosis, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (A.F.); (L.C.); (E.P.); (G.C.)
- Correspondence: (M.M.); (E.A.)
| |
Collapse
|
128
|
Hwang J, Zhang W, Dhananjay Y, An EK, Kwak M, You S, Lee PCW, Jin JO. Astragalus membranaceus polysaccharides potentiate the growth-inhibitory activity of immune checkpoint inhibitors against pulmonary metastatic melanoma in mice. Int J Biol Macromol 2021; 182:1292-1300. [PMID: 34000307 DOI: 10.1016/j.ijbiomac.2021.05.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Astragalus membranaceus (A. membranaceus) is commonly used in various herbal formulations to treat several human and animal diseases. Polysaccharides, which are the major bioactive components in the A. membranaceus, exhibit various bioactive properties. However, the ability of A. membranaceus polysaccharides (APS) to activate the mucosal immune response has not been examined. We examined the effect of intranasal administration of APS on mucosal immune cell activation and the growth-inhibitory activity against pulmonary metastatic melanoma in mice by combination treatment with immune checkpoint blockade. The intranasal treatment of APS increased the number of lineage-CD11c+ dendritic cell (DCs) in the mesenteric lymph nodes (mLN) through the upregulation of CC-chemokine receptor 7 expression. Moreover, intranasal treatment of APS activated DCs, which further stimulated natural killer (NK) and T cells in the mLN. The APS/anti-PD-L1 antibody combination inhibited the pulmonary infiltration of B16 melanoma cells. The depletion of NK cells and CD8 T cells in mice mitigated the anti-cancer effect of this combination, thereby highlighting the critical role of NK cells and CD8 T cells in mediating anti-cancer immunity. These findings demonstrated that APS could be used as a topical mucosal adjuvant to enhance the immune check point inhibitor anti-cancer effect.
Collapse
Affiliation(s)
- Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Yadav Dhananjay
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eun-Koung An
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung Daehangno, Gangneung, Gangwon 210-702, South Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
129
|
Furue M, Furue M. OX40L-OX40 Signaling in Atopic Dermatitis. J Clin Med 2021; 10:jcm10122578. [PMID: 34208041 PMCID: PMC8230615 DOI: 10.3390/jcm10122578] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
OX40 is one of the co-stimulatory molecules expressed on T cells, and it is engaged by OX40L, primarily expressed on professional antigen-presenting cells such as dendritic cells. The OX40L-OX40 axis is involved in the sustained activation and expansion of effector T and effector memory T cells, but it is not active in naïve and resting memory T cells. Ligation of OX40 by OX40L accelerates both T helper 1 (Th1) and T helper 2 (Th2) effector cell differentiation. Recent therapeutic success in clinical trials highlights the importance of the OX40L-OX40 axis as a promising target for the treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Masutaka Furue
- Department of Dermatology, Kyushu University, Higashiku, Fukuoka 812-8582, Japan
- Correspondence: ; Tel.: +81-90-2518-9125
| | - Mihoko Furue
- 1-19-20 Momochi, Sawara-ku, Fukuoka 814-0006, Japan;
| |
Collapse
|
130
|
Liao Y, Jia X, Ren Y, Deji Z, Gesang Y, Ning N, Feng H, Yu H, Wei A. Suppressive role of microRNA-130b-3p in ferroptosis in melanoma cells correlates with DKK1 inhibition and Nrf2-HO-1 pathway activation. Hum Cell 2021; 34:1532-1544. [PMID: 34117611 DOI: 10.1007/s13577-021-00557-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Cell death pathways related to ferroptosis are implicated in the progression of melanoma. Emerging data reporting the upregulation of microRNA (miR)-130b-3p in melanoma indicate the potential implication of miR-130b-3p in this malignancy. Herein, we aimed to identify whether and how miR-130b-3p regulated ferroptosis in melanoma cells. Melanoma cells (A375, G-361) were treated with erastin or RSL3 to mimic ferroptosis in vitro. Viability, lipid peroxidation level and ferrous ion content in melanoma cells were then assessed in response to manipulation of miR-130b-3p expression. Luciferase assay was conducted to determine the binding of miR-130b-3p to Dickkopf1 (DKK1). Western blot assay was conducted to determine the expression of molecules related to nuclear factor-erythroid 2 p45-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. The results indicated that miR-130b-3p exerted an inhibitory role in erastin or RSL3-induced ferroptosis, evidenced by reductions in lipid peroxidation and ferrous ion content. By suppressing the expression of target gene DKK1, miR-130b-3p activated the Nrf2/HO-1 pathway, whereby repressing ferroptosis. miR-130b-3p blocked the antitumor activity of erastin. Further, in vitro findings were reproduced in an in vivo murine model. Together, these data suggest the potential of miR-130b-3p to inhibit ferroptosis in melanoma cells and the mechanism was related to DKK1-mediated Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Yangying Liao
- Department of Dermatology, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal University)Hunan Province, No. 61, Jiefang West Road, Changsha, 410005, People's Republic of China
| | - Xiaomin Jia
- Department of Pathology, Lhasa People's Hospital of Tibet Autonomous Region, Lhasa, 850000, People's Republic of China
| | - Yi Ren
- Beijing Jishuitan Hospital, Beijing, 100035, People's Republic of China
| | - Zhuoga Deji
- Department of Pathology, Lhasa People's Hospital of Tibet Autonomous Region, Lhasa, 850000, People's Republic of China
| | - Yuzhen Gesang
- Department of Pathology, Lhasa People's Hospital of Tibet Autonomous Region, Lhasa, 850000, People's Republic of China
| | - Ning Ning
- Medical Department, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, People's Republic of China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal University)Hunan Province, No. 61, Jiefang West Road, Changsha, 410005, People's Republic of China.
| | - Hong Yu
- Department of Pathology, The Third People's Hospital of Shenzhen, Shenzhen, 518100, People's Republic of China
| | - An Wei
- Department of Ultrasound, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Changsha, 410005, Hunan Province, People's Republic of China.
| |
Collapse
|
131
|
Eddy K, Shah R, Chen S. Decoding Melanoma Development and Progression: Identification of Therapeutic Vulnerabilities. Front Oncol 2021; 10:626129. [PMID: 33614507 PMCID: PMC7891057 DOI: 10.3389/fonc.2020.626129] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Melanoma, a cancer of the skin, arises from transformed melanocytes. Melanoma has the highest mutational burden of any cancer partially attributed to UV induced DNA damage. Localized melanoma is “curable” by surgical resection and is followed by radiation therapy to eliminate any remaining cancer cells. Targeted therapies against components of the MAPK signaling cascade and immunotherapies which block immune checkpoints have shown remarkable clinical responses, however with the onset of resistance in most patients, and, disease relapse, these patients eventually become refractory to treatments. Although great advances have been made in our understanding of the metastatic process in cancers including melanoma, therapy failure suggests that much remains to be learned and understood about the multi-step process of tumor metastasis. In this review we provide an overview of melanocytic transformation into malignant melanoma and key molecular events that occur during this evolution. A better understanding of the complex processes entailing cancer cell dissemination will improve the mechanistic driven design of therapies that target specific steps involved in cancer metastasis to improve clinical response rates and overall survival in all cancer patients.
Collapse
Affiliation(s)
- Kevinn Eddy
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ, United States.,Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ, United States
| | - Raj Shah
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ, United States.,Joint Graduate Program in Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Suzie Chen
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ, United States.,Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|