101
|
Tseng YY, Chen TY, Liu SJ. Role of Polymeric Local Drug Delivery in Multimodal Treatment of Malignant Glioma: A Review. Int J Nanomedicine 2021; 16:4597-4614. [PMID: 34267515 PMCID: PMC8275179 DOI: 10.2147/ijn.s309937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
Malignant gliomas (MGs) are the most common and devastating primary brain tumor. At present, surgical interventions, radiotherapy, and chemotherapy are only marginally effective in prolonging the life expectancy of patients with MGs. Inherent heterogeneity, aggressive invasion and infiltration, intact physical barriers, and the numerous mechanisms underlying chemotherapy and radiotherapy resistance contribute to the poor prognosis for patients with MGs. Various studies have investigated methods to overcome these obstacles in MG treatment. In this review, we address difficulties in MG treatment and focus on promising polymeric local drug delivery systems. In contrast to most local delivery systems, which are directly implanted into the residual cavity after intratumoral injection or the surgical removal of a tumor, some rapidly developing and promising nanotechnological methods—including surface-decorated nanoparticles, magnetic nanoparticles, and focused ultrasound assist transport—are administered through (systemic) intravascular injection. We also discuss further synergistic and multimodal strategies for heightening therapeutic efficacy. Finally, we outline the challenges and therapeutic potential of these polymeric drug delivery systems.
Collapse
Affiliation(s)
- Yuan-Yun Tseng
- Department of Neurosurgery, New Taipei Municipal Tu-Cheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Tai-Yuan Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkuo, Tao-Yuan, Taiwan
| |
Collapse
|
102
|
Ling TS, Chandrasegaran S, Xuan LZ, Suan TL, Elaine E, Nathan DV, Chai YH, Gunasekaran B, Salvamani S. The Potential Benefits of Nanotechnology in Treating Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5550938. [PMID: 34285915 PMCID: PMC8275379 DOI: 10.1155/2021/5550938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder that is caused by the accumulation of beta-amyloid plaques in the brain. Currently, there is no definitive cure available to treat Alzheimer's disease. The available medication in the market has the ability to only slow down its progression. However, nanotechnology has shown its superiority that can be applied for medical usage and it has a great potential in the therapy of Alzheimer's disease, specifically in the disease diagnosis and providing an alternative approach to treat Alzheimer's disease. This is done by increasing the efficiency of drug delivery by penetrating and overcoming the blood-brain barrier. Having said that, there are limitations that need to be further investigated and researched in order to minimize the adverse effects and potential toxicity and to improve drug bioavailability. The recent advances in the treatment of Alzheimer's disease using nanotechnology include the regeneration of stem cells, nanomedicine, and neuroprotection. In this review, we will discuss the advancement of nanotechnology which helps in the diagnosis and treatment of neurodegenerative disorders such as Alzheimer's disease as well as its challenges.
Collapse
Affiliation(s)
- Tan Sook Ling
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Shanthini Chandrasegaran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Low Zhi Xuan
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Tong Li Suan
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Elaine Elaine
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Durrgashini Visva Nathan
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Yam Hok Chai
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Baskaran Gunasekaran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Shamala Salvamani
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
103
|
Milane L, Dolare S, Jahan T, Amiji M. Mitochondrial nanomedicine: Subcellular organelle-specific delivery of molecular medicines. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102422. [PMID: 34175455 DOI: 10.1016/j.nano.2021.102422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
As mitochondria network together to act as the master sensors and effectors of apoptosis, ATP production, reactive oxygen species management, mitophagy/autophagy, and homeostasis; this organelle is an ideal target for pharmaceutical manipulation. Mitochondrial dysfunction contributes to many diseases, for example, β-amyloid has been shown to interfere with mitochondrial protein import and induce apoptosis in Alzheimer's Disease while some forms of Parkinson's Disease are associated with dysfunctional mitochondrial PINK1 and Parkin proteins. Mitochondrial medicine has applications in the treatment of an array of pathologies from cancer to cardiovascular disease. A challenge of mitochondrial medicine is directing therapies to a subcellular target. Nanotechnology based approaches combined with mitochondrial targeting strategies can greatly improve the clinical translation and effectiveness of mitochondrial medicine. This review discusses mitochondrial drug delivery approaches and applications of mitochondrial nanomedicines. Nanomedicine approaches have the potential to drive the success of mitochondrial therapies into the clinic.
Collapse
Affiliation(s)
- Lara Milane
- Northeastern University, Department of Pharmaceutical Sciences, Boston, MA.
| | - Saket Dolare
- Northeastern University, Department of Pharmaceutical Sciences, Boston, MA
| | - Tanjheela Jahan
- Northeastern University, Department of Pharmaceutical Sciences, Boston, MA
| | - Mansoor Amiji
- Northeastern University, Department of Pharmaceutical Sciences, Boston, MA
| |
Collapse
|
104
|
Korshoj LE, Shi W, Duan B, Kielian T. The Prospect of Nanoparticle Systems for Modulating Immune Cell Polarization During Central Nervous System Infection. Front Immunol 2021; 12:670931. [PMID: 34248952 PMCID: PMC8260670 DOI: 10.3389/fimmu.2021.670931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/03/2021] [Indexed: 01/20/2023] Open
Abstract
The blood-brain barrier (BBB) selectively restricts the entry of molecules from peripheral circulation into the central nervous system (CNS) parenchyma. Despite this protective barrier, bacteria and other pathogens can still invade the CNS, often as a consequence of immune deficiencies or complications following neurosurgical procedures. These infections are difficult to treat since many bacteria, such as Staphylococcus aureus, encode a repertoire of virulence factors, can acquire antibiotic resistance, and form biofilm. Additionally, pathogens can leverage virulence factor production to polarize host immune cells towards an anti-inflammatory phenotype, leading to chronic infection. The difficulty of pathogen clearance is magnified by the fact that antibiotics and other treatments cannot easily penetrate the BBB, which requires extended regimens to achieve therapeutic concentrations. Nanoparticle systems are rapidly emerging as a promising platform to treat a range of CNS disorders. Nanoparticles have several advantages, as they can be engineered to cross the BBB with specific functionality to increase cellular and molecular targeting, have controlled release of therapeutic agents, and superior bioavailability and circulation compared to traditional therapies. Within the CNS environment, therapeutic actions are not limited to directly targeting the pathogen, but can also be tailored to modulate immune cell activation to promote infection resolution. This perspective highlights the factors leading to infection persistence in the CNS and discusses how novel nanoparticle therapies can be engineered to provide enhanced treatment, specifically through modulation of immune cell polarization.
Collapse
Affiliation(s)
- Lee E. Korshoj
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
105
|
Trapani A, Corbo F, Agrimi G, Ditaranto N, Cioffi N, Perna F, Quivelli A, Stefàno E, Lunetti P, Muscella A, Marsigliante S, Cricenti A, Luce M, Mormile C, Cataldo A, Bellucci S. Oxidized Alginate Dopamine Conjugate: In Vitro Characterization for Nose-to-Brain Delivery Application. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3495. [PMID: 34201634 PMCID: PMC8269503 DOI: 10.3390/ma14133495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The blood-brain barrier (BBB) bypass of dopamine (DA) is still a challenge for supplying it to the neurons of Substantia Nigra mainly affected by Parkinson disease. DA prodrugs have been studied to cross the BBB, overcoming the limitations of DA hydrophilicity. Therefore, the aim of this work is the synthesis and preliminary characterization of an oxidized alginate-dopamine (AlgOX-DA) conjugate conceived for DA nose-to-brain delivery. METHODS A Schiff base was designed to connect oxidized polymeric backbone to DA and both AlgOX and AlgOX-DA were characterized in terms of Raman, XPS, FT-IR, and 1H- NMR spectroscopies, as well as in vitro mucoadhesive and release tests. RESULTS Data demonstrated that AlgOX-DA was the most mucoadhesive material among the tested ones and it released the neurotransmitter in simulated nasal fluid and in low amounts in phosphate buffer saline. Results also demonstrated the capability of scanning near-field optical microscopy to study the structural and fluorescence properties of AlgOX, fluorescently labeled with fluorescein isothiocyanate microstructures. Interestingly, in SH-SY5Y neuroblastoma cell line up to 100 μg/mL, no toxic effect was derived from AlgOX and AlgOX-DA in 24 h. CONCLUSIONS Overall, the in vitro performances of AlgOX and AlgOX-DA conjugates seem to encourage further ex vivo and in vivo studies in view of nose-to-brain administration.
Collapse
Affiliation(s)
- Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, I-70125 Bari, Italy; (F.C.); (F.P.); (A.Q.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, I-70125 Bari, Italy; (F.C.); (F.P.); (A.Q.)
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, I-70125 Bari, Italy;
| | - Nicoletta Ditaranto
- Dipartimento di Chimica and CSGI-Bari Unit, Università degli Studi di Bari Aldo Moro, I-70125 Bari, Italy; (N.D.); (N.C.)
| | - Nicola Cioffi
- Dipartimento di Chimica and CSGI-Bari Unit, Università degli Studi di Bari Aldo Moro, I-70125 Bari, Italy; (N.D.); (N.C.)
| | - Filippo Perna
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, I-70125 Bari, Italy; (F.C.); (F.P.); (A.Q.)
| | - Andrea Quivelli
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, I-70125 Bari, Italy; (F.C.); (F.P.); (A.Q.)
- Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy
| | - Erika Stefàno
- Dipartimento Scienze e Tecnologie Biologiche e Ambientali, University of Salento, I-73100 Lecce, Italy; (E.S.); (P.L.); (A.M.); (S.M.)
| | - Paola Lunetti
- Dipartimento Scienze e Tecnologie Biologiche e Ambientali, University of Salento, I-73100 Lecce, Italy; (E.S.); (P.L.); (A.M.); (S.M.)
| | - Antonella Muscella
- Dipartimento Scienze e Tecnologie Biologiche e Ambientali, University of Salento, I-73100 Lecce, Italy; (E.S.); (P.L.); (A.M.); (S.M.)
| | - Santo Marsigliante
- Dipartimento Scienze e Tecnologie Biologiche e Ambientali, University of Salento, I-73100 Lecce, Italy; (E.S.); (P.L.); (A.M.); (S.M.)
| | - Antonio Cricenti
- ISM-CNR, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy; (A.C.); (M.L.)
| | - Marco Luce
- ISM-CNR, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy; (A.C.); (M.L.)
| | - Cristina Mormile
- Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Via Enrico Fermi 54, Frascati, I-00044 Rome, Italy; (C.M.); (A.C.)
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Antonino Cataldo
- Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Via Enrico Fermi 54, Frascati, I-00044 Rome, Italy; (C.M.); (A.C.)
| | - Stefano Bellucci
- Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Via Enrico Fermi 54, Frascati, I-00044 Rome, Italy; (C.M.); (A.C.)
| |
Collapse
|
106
|
Akita T, Kimura R, Akaguma S, Nagai M, Nakao Y, Tsugane M, Suzuki H, Oka JI, Yamashita C. Usefulness of cell-penetrating peptides and penetration accelerating sequence for nose-to-brain delivery of glucagon-like peptide-2. J Control Release 2021; 335:575-583. [PMID: 34116136 DOI: 10.1016/j.jconrel.2021.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 01/19/2023]
Abstract
Neuropeptides are expected as therapeutic drug candidates for central nervous system (CNS) disorders. Intracerebroventricular (i.c.v.) administration of glucagon-like peptide-2 (GLP-2) has an antidepressant-like effect not only in depression model mice but also in treatment-resistant depression model mice. However, because i.c.v. administration is very invasive, research is progressing on brain delivery using intranasal administration as a non-invasive method. After intranasal administration of the drug, there are two routes to the brain. That of direct delivery from the paracellular route of olfactory epithelium to the brain via the olfactory bulb has been studied, and that of systemic absorption via the paracellular route of respiratory epithelium has been put to practical use. The high degree of vascularization and permeability of the nasal mucosa enables drug delivery via the paracellular route that leads to systemic delivery. Therefore, suppressing systemic absorption may increase drug delivery to brain, so we focused on the transcellular route. We created a GLP-2 derivative by adding cell-penetrating peptides (CPP) and penetration accelerating sequences (PAS), which are reported to provide efficient intracellular uptake, to GLP-2. However, to deliver GLP-2 by the transcellular route, GLP-2 must not only be taken up into cells but also move out of the cells. We investigated in vitro and in vivo function of PAS-CPP-GLP-2 to enable the translocation of GLP-2 directly from the nose to the brain. Derivatization of PAS-CPP-GLP-2 prevented its degradation. In the evaluation of intracellular dynamics, PAS-CPP-GLP-2 enhanced cellular uptake by macropinocytosis with CPP and promoted escape from endosomal vesicles by PAS. This study also showed that PAS-CPP-GLP-2 can move out of cells. Furthermore, only this PAS-CPP-GLP-2 showed an antidepression-like effect within 20 min of intranasal administration. Intranasal administered PAS-CPP-GLP-2 surprisingly showed the effect at the same dose with i.c.v. administration, but intravenous administered PAS-CPP-GLP-2 did not show the effect. These results suggested that PAS-CPP-GLP-2 can be efficiently delivered from the nose to the CNS and show a pharmacological effect, demonstrating the usefulness of PAS and CPP for nose-to-brain delivery of GLP-2.
Collapse
Affiliation(s)
- Tomomi Akita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ryosuke Kimura
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Saki Akaguma
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mio Nagai
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yusuke Nakao
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mamiko Tsugane
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hiroaki Suzuki
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Jun-Ichiro Oka
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Chikamasa Yamashita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
107
|
Zolmitriptan Intranasal Spanlastics for Enhanced Migraine Treatment; Formulation Parameters Optimized via Quality by Design Approach. Sci Pharm 2021. [DOI: 10.3390/scipharm89020024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Zolmitriptan is a potent second-generation triptan prescribed for migraine attacks. It suffers low bioavailability (40%) after oral administration due to the hepatic first-pass metabolism. Spanlastics are surfactant-based elastic vesicular drug carrier systems. This study aimed to design and optimize intranasal spanlastic formulations as an alternative approach that directly targets brain delivery, enhancing its bioavailability and avoiding the first-pass effect. The quality by design approach was applied to correlate the formulation parameters (Span 60 and Tween 80 concentrations) and critical quality attributes (entrapment efficiency (EE%) and particle size). Spanlastic formulations were designed based on response surface central composite design and prepared via an ethanol injection method. Designed formulations were characterized by EE% and particle size measurements to select the optimized formula (with a combination of small particle size and high EE%). The optimized formula was further subjected to transmission electron microscopy, zeta potential measurement and ex vivo permeation study. The optimized formulation showed a particle size of 117.5 nm and EE% of 45.65%, with a low percentage of error between the observed and predicted values. Seventy percent of zolmitriptan was permeated through the nasal membrane within 30 min, and it completely permeated within 2 h with a significantly higher steady-state flux compared to plain gel. This study introduced a successful and promising intranasal formulation suitable for further brain delivery analysis.
Collapse
|
108
|
Li S, Guo C, Zhang X, Liu X, Mu J, Liu C, Peng Y, Chang M. Self-assembling modified neuropeptide S enhances nose-to-brain penetration and exerts a prolonged anxiolytic-like effect. Biomater Sci 2021; 9:4765-4777. [PMID: 34037635 DOI: 10.1039/d1bm00380a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Anxiety disorders are the most common mental diseases and can greatly disrupt everyday life. Although there has been substantial research on anxiety disorders, novel therapeutics are needed. Neuropeptide S (NPS) is a potential therapeutic candidate owing to its strong anxiolytic activity; however, some disadvantages, such as its poor metabolic stability and inability to cross the blood-brain barrier (BBB), limit its use in the clinic. Herein, inspired by nose-to-brain drug delivery strategies, an endogenous 20-amino-acid-long mNPS peptide was modified by incorporating palmitic acid into its functional Lys12 side chain (M-3), which was expected to facilitate nose-to-brain penetration and exert a prolonged anxiolytic-like effect compared to mNPS. We found that M-3 assembled into nanofibers that retained the bioactivity of NPS and exhibited obvious improvements in metabolic stability. Notably, as expected, self-assembled M-3 was able to penetrate into the brain and exert anxiolytic effects. The elevated plus-maze (EPM) results further revealed that M-3 could produce prolonged anxiolytic-like effects in mice. In vivo imaging studies revealed that self-assembled M-3 could be efficiently transported from the nasal cavity to the brain. Furthermore, when intranasally administered, this molecule exhibited a significantly prolonged anxiolytic-like effect, which further illustrated that this molecule has a potent nose-to-brain penetration in vivo. Overall, this self-assembled nanofiber showed potent nose-to-brain penetration ability and prolonged bioactivity.
Collapse
Affiliation(s)
- Shu Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Chen Guo
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Xingjiao Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Xiaojing Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Jing Mu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Chunxia Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yali Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
109
|
Akel H, Ismail R, Katona G, Sabir F, Ambrus R, Csóka I. A comparison study of lipid and polymeric nanoparticles in the nasal delivery of meloxicam: Formulation, characterization, and in vitro evaluation. Int J Pharm 2021; 604:120724. [PMID: 34023443 DOI: 10.1016/j.ijpharm.2021.120724] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022]
Abstract
With the increasingly widespread of central nervous system (CNS) disorders and the lack of sufficiently effective medication, meloxicam (MEL) has been reported as a possible medication for Alzheimer's disease (AD) management. Unfortunately, following the conventional application routes, the low brain bioavailability of MEL forms a significant limitation. The intranasal (IN) administration route is considered revolutionary for CNS medications delivery. The objective of the present study was to develop two types of nanocarriers, poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) and solid lipid nanoparticles (SLNs), for the IN delivery of MEL adapting the Quality by Design approach (QbD). Turning then to further enhance the optimized nanoformulation behavior by chitosan-coating. SLNs showed higher encapsulation efficacy (EE) and drug loading (DL) than PLGA NPs 87.26% (EE) and 2.67% (DL); 72.23% (EE) and 2.55% (DL), respectively. MEL encapsulated into the nanoformulations improved in vitro release, mucoadhesion, and permeation behavior compared to the native drug with greater superiority of chitosan-coated SLNs (C-SLNs). In vitro-in vivo correlation (IVIVC) results estimated a significant in vivo brain distribution of the nanoformulations compared to native MEL with estimated greater potential in the C-SLNs. Hence, MEL encapsulation into C-SLNs towards IN route can be promising in enhancing its brain bioavailability.
Collapse
Affiliation(s)
- Hussein Akel
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; Institute of Chemistry, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Fakhara Sabir
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|
110
|
Bakkari MA, Valiveti CK, Kaushik RS, Tummala H. Toll-like Receptor-4 (TLR4) Agonist-Based Intranasal Nanovaccine Delivery System for Inducing Systemic and Mucosal Immunity. Mol Pharm 2021; 18:2233-2241. [PMID: 34010002 DOI: 10.1021/acs.molpharmaceut.0c01256] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Eliciting a robust immune response at mucosal sites is critical in preventing the entry of mucosal pathogens such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This task is challenging to achieve without the inclusion of a strong and safe mucosal adjuvant. Previously, inulin acetate (InAc), a plant-based polymer, is shown to activate toll-like receptor-4 (TLR4) and elicit a robust systemic immune response as a vaccine adjuvant. This study investigates the potential of nanoparticles prepared with InAc (InAc-NPs) as an intranasal vaccine delivery system to generate both mucosal and systemic immune responses. InAc-NPs (∼250 nm in diameter) activated wild-type (WT) macrophages but failed to activate macrophages from TLR4 knockout mice or WT macrophages when pretreated with a TLR4 antagonist (lipopolysaccharide-RS (LPS-RS)), which indicates the selective nature of a InAc-based nanodelivery system as a TLR4 agonist. Intranasal immunization using antigen-loaded InAc-NPs generated ∼65-fold and 19-fold higher serum IgG1 and IgG2a titers against the antigen, respectively, as compared to PLGA-NPs as a delivery system. InAc-NPs have also stimulated the secretion of sIgA at various mucosal sites, including nasal-associated lymphoid tissues (NALTs), lungs, and intestine, and produced a strong memory response indicative of both humoral and cellular immune activation. Overall, by stimulating both systemic and mucosal immunity, InAc-NPs laid a basis for a potential intranasal delivery system for mucosal vaccination.
Collapse
Affiliation(s)
- Mohammed Ali Bakkari
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, South Dakota 57007, United States.,College of Pharmacy, Jazan University, Jazan 45142, Kingdom of Saudi Arabia
| | - Chaitanya K Valiveti
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota57007, United States
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, South Dakota 57007, United States
| |
Collapse
|
111
|
Truzzi E, Rustichelli C, de Oliveira Junior ER, Ferraro L, Maretti E, Graziani D, Botti G, Beggiato S, Iannuccelli V, Lima EM, Dalpiaz A, Leo E. Nasal biocompatible powder of Geraniol oil complexed with cyclodextrins for neurodegenerative diseases: physicochemical characterization and in vivo evidences of nose to brain delivery. J Control Release 2021; 335:191-202. [PMID: 34019946 DOI: 10.1016/j.jconrel.2021.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/16/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022]
Abstract
Recently, many studies have shown that plant metabolites, such as geraniol (GER), may exert anti-inflammatory effects in neurodegenerative diseases and, in particular, Parkinson's disease (PD) models. Unfortunately, delivering GER to the CNS via nose-to-brain is not feasible due to its irritant effects on the mucosae. Therefore, in the present study β-cyclodextrin (βCD) and its hydrophilic derivative hydroxypropyl-beta-cyclodextrin (HPβCD) were selected as potential carriers for GER nose-to-brain delivery. Inclusion complexes were formulated and the biocompatibility with nasal mucosae and drug bioavailability into cerebrospinal fluid (CSF) were studied in rats. It has been demonstrated by DTA, FT-IR and NMR analyses that both the CDs were able to form 1:1 GER-CD complexes, arising long-term stable powders after the freeze-drying process. GER-HPβCD-5 and GER-βCD-2 complexes exhibited comparable results, except for morphology and solubility, as demonstrated by SEM analysis and phase solubility study, respectively. Even though both complexes were able to directly and safely deliver GER to CNS, GER-βCD-2 displayed higher ability in releasing GER in the CSF. In conclusion, βCD complexes can be considered a very promising tool in delivering GER into the CNS via nose-to-brain route, preventing GER release into the bloodstream and ensuring the integrity of the nasal mucosa.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| | - Cecilia Rustichelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| | - Edilson Ribeiro de Oliveira Junior
- Faculty of Pharmacy, Laboratory of Pharmaceutical Technology - FarmaTec, Federal University of Goiás, Rua 240, esquina com 5a Avenida, s/n, Setor Universitário, Goiânia, CEP 74605-170, Brazil
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA Center, Via L. Borsari 46, I-44121 Ferrara, Italy.
| | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| | - Daniel Graziani
- School of Veterinary and Animal Sciences - Molecular, Cell and Tissue Analysis Laboratory, Federal University of Goiás, Av. Esperança. s/n. Campus Samambaia, Goiânia, GO 74690-900. Brazil
| | - Giada Botti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy.
| | - Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini - campus universitario, 66100 Chieti, Italy.
| | - Valentina Iannuccelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| | - Eliana Martins Lima
- Faculty of Pharmacy, Laboratory of Pharmaceutical Technology - FarmaTec, Federal University of Goiás, Rua 240, esquina com 5a Avenida, s/n, Setor Universitário, Goiânia, CEP 74605-170, Brazil.
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy.
| | - Eliana Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| |
Collapse
|
112
|
de Barros C, Aranha N, Severino P, Souto EB, Zielińska A, Lopes A, Rios A, Batain F, Crescencio K, Chaud M, Alves T. Quality by Design Approach for the Development of Liposome Carrying Ghrelin for Intranasal Administration. Pharmaceutics 2021; 13:pharmaceutics13050686. [PMID: 34068793 PMCID: PMC8151022 DOI: 10.3390/pharmaceutics13050686] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
The therapeutic use of peptides has increasingly recognized in the development of new therapies. However, the susceptible enzymatic cleavage is a barrier that needs to overcome. Nose-to-brain delivery associated with liposomes can protect peptides against biodegradation and improve the accessibility to brain targets. The aim was to develop a liposomal formulation as ghrelin carrier. The quality by design (QbD) approach was used as a strategy for method development. The initial risk assessments were carried out using a fishbone diagram. A screening design study was performed for the critical material attributes/critical process parameters (CMAs/CPPs) on critical quality attributes (CQAs). Liposomes were obtained by hydrating phospholipid films, followed by extrusion or homogenization, and coated with chitosan. The optimized liposome formulation was produced by high-pressure homogenization coated with chitosan, and the resulted were liposomes size 72.25 ± 1.46 nm, PDI of 0.300 ± 0.027, the zeta potential of 50.3 ± 1.46 mV, and encapsulation efficiency of 53.2%. Moreover, chitosan coating improved performance in ex vivo permeation and mucoadhesion analyzes when compared to the uncoated liposome. In this context, chitosan coating is essential for the performance of the formulations in the ex vivo permeation and mucoadhesion analyzes. The intranasal administration of ghrelin liposomes coated with chitosan offers an innovative opportunity to treat cachexia.
Collapse
Affiliation(s)
- Cecília de Barros
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba 18078-005, São Paulo, Brazil; (C.d.B.); (A.R.); (F.B.); (K.C.)
| | - Norberto Aranha
- Technological and Environmental Processes, University of Sorocaba, Sorocaba 18078-005, São Paulo, Brazil;
| | - Patrícia Severino
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Sergipe, Brazil;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Ciências da Saúde, 3000-548 Coimbra, Portugal;
| | - Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland;
| | - André Lopes
- Faculty of Pharmaceutical Science, University of Campinas, Campinas 13083-871, São Paulo, Brazil;
| | - Alessandra Rios
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba 18078-005, São Paulo, Brazil; (C.d.B.); (A.R.); (F.B.); (K.C.)
| | - Fernando Batain
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba 18078-005, São Paulo, Brazil; (C.d.B.); (A.R.); (F.B.); (K.C.)
| | - Kessi Crescencio
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba 18078-005, São Paulo, Brazil; (C.d.B.); (A.R.); (F.B.); (K.C.)
| | - Marco Chaud
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba 18078-005, São Paulo, Brazil; (C.d.B.); (A.R.); (F.B.); (K.C.)
- Technological and Environmental Processes, University of Sorocaba, Sorocaba 18078-005, São Paulo, Brazil;
- College of Bioprocess and Biotechnology Engineering, University of Sorocaba, Sorocaba 18023-000, Sâo Paulo, Brazil
- Correspondence: (M.C.); (T.A.)
| | - Thais Alves
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba 18078-005, São Paulo, Brazil; (C.d.B.); (A.R.); (F.B.); (K.C.)
- Technological Innovation Agency of Sorocaba, Sorocaba Technology Park, Itavuvu Avenue, Sorocaba 18078-005, São Paulo, Brazil
- Correspondence: (M.C.); (T.A.)
| |
Collapse
|
113
|
Mostafavi E, Medina-Cruz D, Vernet-Crua A, Chen J, Cholula-Díaz JL, Guisbiers G, Webster TJ. Green nanomedicine: the path to the next generation of nanomaterials for diagnosing brain tumors and therapeutics? Expert Opin Drug Deliv 2021; 18:715-736. [PMID: 33332168 DOI: 10.1080/17425247.2021.1865306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Current brain cancer treatments, based on radiotherapy and chemotherapy, are sometimes successful, but they are not free of drawbacks.Areas covered: Traditional methods for the treatment of brain tumors are discussed here with new solutions presented, among which the application of nanotechnology has demonstrated promising results over the past decade. The traditional synthesis of nanostructures, which relies on the use of physicochemical methodologies are discussed, and their associated concerns in terms of environmental and health impact due to the production of toxic by-products, need for toxic catalysts, and their lack of biocompatibility are presented. An overview of the current situation for treating brain tumors using nanotechnological-based approaches is introduced, and some of the latest advances in the application of green nanomaterials (NMs) for the effective targeting of brain tumors are presented.Expert opinion: Green nanotechnology is introduced as a potential solution to toxic NMs through the application of environmentally friendly and cost-effective protocols using living organisms and biomolecules. The current status of this field, such as those involving clinical trials, is included, and the possible limitations of green-NMs and potential ways to avoid those limitations are discussed so that the field can potentially evolve.
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ada Vernet-Crua
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Junjiang Chen
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Gregory Guisbiers
- Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
114
|
Carvalho GC, Araujo VHS, Fonseca-Santos B, de Araújo JTC, de Souza MPC, Duarte JL, Chorilli M. Highlights in poloxamer-based drug delivery systems as strategy at local application for vaginal infections. Int J Pharm 2021; 602:120635. [PMID: 33895295 DOI: 10.1016/j.ijpharm.2021.120635] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/02/2023]
Abstract
Infectious diseases related to the vagina include diseases caused by the imbalance of the vaginal flora and by sexually transmitted infections. Some of these present themselves as a public health problem due to the lack of efficient treatment that leads to their complete cure, and others due to the growing resistance to drugs used in therapy. In this sense, new treatment strategies are desirable, with vaginal administration rout being a great choice since can bypass first-pass metabolism and decrease drug interactions and adverse effects. However, it is worth highlighting limitations related to patient's discomfort at application time. Thereby, the use of poloxamer-based drug delivery systems is desirable due its stimuli-sensitive characteristic. Therefore, the present review reports a brief overview of poloxamer properties, biological behavior and advances in poloxamer applications in controlled drug release systems for infectious diseases related to the vagina treatment and prevention.
Collapse
Affiliation(s)
- Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Victor Hugo Sousa Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), 13083-871 Campinas, Brazil
| | | | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil.
| |
Collapse
|
115
|
Sesame Oil-Based Nanostructured Lipid Carriers of Nicergoline, Intranasal Delivery System for Brain Targeting of Synergistic Cerebrovascular Protection. Pharmaceutics 2021; 13:pharmaceutics13040581. [PMID: 33921796 PMCID: PMC8072759 DOI: 10.3390/pharmaceutics13040581] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Nicergoline (NIC) is a semisynthetic ergot alkaloid derivative applied for treatment of dementia and other cerebrovascular disorders. The efficacy of sesame oil to slow and reverse the symptoms of neurodegenerative cognitive disorders has been proven. This work aimed to formulate and optimize sesame oil-based NIC-nanostructured lipid carriers (NIC–NLCs) for intranasal (IN) delivery with expected synergistic and augmented neuroprotective properties. The NIC–NLC were prepared using sesame oil as a liquid lipid. A three-level, three-factor Box–Behnken design was applied to statistically optimize the effect of sesame oil (%) of the total lipid, surfactant concentration, and sonication time on particle size, zeta potential, and entrapment efficacy as responses. Solid-state characterization, release profile, and ex vivo nasal permeation in comparison to NIC solution (NIC–SOL) was studied. In vivo bioavailability from optimized NIC–NLC and NIC–SOL following IN and IV administration was evaluated and compared. The optimized NIC–NLC formula showed an average particle size of 111.18 nm, zeta potential of −15.4 mV, 95.11% entrapment efficacy (%), and 4.6% loading capacity. The NIC–NLC formula showed a biphasic, extended-release profile (72% after 48 h). Permeation of the NIC–NLC formula showed a 2.3 enhancement ratio. Bioavailability studies showed a 1.67 and 4.57 fold increase in plasma and brain following IN administration. The results also indicated efficient direct nose-to-brain targeting properties with the brain-targeting efficiency (BTE%) and direct transport percentage (DTP%) of 187.3% and 56.6%, respectively, after IN administration. Thus, sesame oil-based NIC–NLC can be considered as a promising IN delivery system for direct and efficient brain targeting with improved bioavailability and expected augmented neuroprotective action for the treatment of dementia.
Collapse
|
116
|
Veronesi MC, Graner BD, Cheng SH, Zamora M, Zarrinmayeh H, Chen CT, Das SK, Vannier MW. Aerosolized In Vivo 3D Localization of Nose-to-Brain Nanocarrier Delivery Using Multimodality Neuroimaging in a Rat Model-Protocol Development. Pharmaceutics 2021; 13:pharmaceutics13030391. [PMID: 33804222 PMCID: PMC8001876 DOI: 10.3390/pharmaceutics13030391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 01/27/2023] Open
Abstract
The fate of intranasal aerosolized radiolabeled polymeric micellar nanoparticles (LPNPs) was tracked with positron emission tomography/computer tomography (PET/CT) imaging in a rat model to measure nose-to-brain delivery. A quantitative temporal and spatial testing protocol for new radio-nanotheranostic agents was sought in vivo. LPNPs labeled with a zirconium 89 (89Zr) PET tracer were administered via intranasal or intravenous delivery, followed by serial PET/CT imaging. After 2 h of continuous imaging, the animals were sacrificed, and the brain substructures (olfactory bulb, forebrain, and brainstem) were isolated. The activity in each brain region was measured for comparison with the corresponding PET/CT region of interest via activity measurements. Serial imaging of the LPNPs (100 nm PLA–PEG–DSPE+89Zr) delivered intranasally via nasal tubing demonstrated increased activity in the brain after 1 and 2 h following intranasal drug delivery (INDD) compared to intravenous administration, which correlated with ex vivo gamma counting and autoradiography. Although assessment of delivery from nose to brain is a promising approach, the technology has several limitations that require further development. An experimental protocol for aerosolized intranasal delivery is presented herein, which may provide a platform for better targeting the olfactory epithelium.
Collapse
Affiliation(s)
- Michael C. Veronesi
- The Department of Radiology and Imaging Sciences, School of Medicine, Indiana University Indianapolis, Indianapolis, IN 46202, USA; (B.D.G.); (H.Z.)
- Correspondence:
| | - Brian D. Graner
- The Department of Radiology and Imaging Sciences, School of Medicine, Indiana University Indianapolis, Indianapolis, IN 46202, USA; (B.D.G.); (H.Z.)
| | - Shih-Hsun Cheng
- The Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (S.-H.C.); (M.Z.); (C.-T.C.); (M.W.V.)
| | - Marta Zamora
- The Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (S.-H.C.); (M.Z.); (C.-T.C.); (M.W.V.)
| | - Hamideh Zarrinmayeh
- The Department of Radiology and Imaging Sciences, School of Medicine, Indiana University Indianapolis, Indianapolis, IN 46202, USA; (B.D.G.); (H.Z.)
| | - Chin-Tu Chen
- The Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (S.-H.C.); (M.Z.); (C.-T.C.); (M.W.V.)
| | - Sudip K. Das
- The Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Butler University, Indianapolis, IN 46208, USA;
| | - Michael W. Vannier
- The Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (S.-H.C.); (M.Z.); (C.-T.C.); (M.W.V.)
| |
Collapse
|
117
|
Di Gioia S, Trapani A, Cassano R, Di Gioia ML, Trombino S, Cellamare S, Bolognino I, Hossain MN, Sanna E, Trapani G, Conese M. Nose-to-brain delivery: A comparative study between carboxymethyl chitosan based conjugates of dopamine. Int J Pharm 2021; 599:120453. [PMID: 33675929 DOI: 10.1016/j.ijpharm.2021.120453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 11/25/2022]
Abstract
Herein, the synthesis of a novel polymeric conjugate N,O-CMCS-Dopamine (DA) based on an amide linkage is reported. The performances of this conjugate were compared with those of an analogous N,O-CMCS-DA ester conjugate previously studied (Cassano et al., 2020) to gain insight into their potential utility for Parkinson's disease treatment. The new amide conjugate was synthesized by standard carbodiimide coupling procedure and characterized by FT-IR, 1H NMR spectroscopies and thermal analysis (Differential Scanning Calorimetry). In vitro mucoadhesive studies in simulated nasal fluid (SNF) evidenced high adhesive effect of both ester and amide conjugates. Results demonstrated that the amide conjugate exerted an important role to prevent DA spontaneous autoxidation both under stressed conditions and physiological mimicking ones. MTT test indicated cytocompatibility of the amide conjugate with Olfactory Ensheating Cells (OECs), which were shown by cytofluorimetry to internalize efficiently the conjugate. Overall, among the two conjugates herein studied, the N,O-CMCS-DA amide conjugate seems a promising candidate for improving the delivery of DA by nose-to-brain administration.
Collapse
Affiliation(s)
- Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy.
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy.
| | - Maria Luisa Di Gioia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Saverio Cellamare
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Isabella Bolognino
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Md Niamat Hossain
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Enrico Sanna
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Cagliari, Italy
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
118
|
Dalvi AV, Ravi PR, Uppuluri CT, Mahajan RR, Katke SV, Deshpande VS. Thermosensitive nasal in situ gelling systems of rufinamide formulated using modified tamarind seed xyloglucan for direct nose-to-brain delivery: design, physical characterization, and in vivo evaluation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-020-00505-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
119
|
Prasanna P, Upadhyay A. Flavonoid-Based Nanomedicines in Alzheimer's Disease Therapeutics: Promises Made, a Long Way To Go. ACS Pharmacol Transl Sci 2021; 4:74-95. [PMID: 33615162 PMCID: PMC7887745 DOI: 10.1021/acsptsci.0c00224] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is characterized by the continuous decline of the cognitive abilities manifested due to the accumulation of large aggregates of amyloid-beta 42 (Aβ42), the formation of neurofibrillary tangles of hyper-phosphorylated forms of microtubule-associated tau protein, which may lead to many alterations at the cellular and systemic level. The current therapeutic strategies primarily focus on alleviating pathological symptoms rather than providing a possible cure. AD is one of the highly studied but least understood neurological problems and remains an unresolved condition of human brain degeneration. Over the years, multiple naturally derived small molecules, including plant products, microbial isolates, and some metabolic byproducts, have been projected as supplements reducing the risk or possible treatment of the disease. However, unfortunately, none has met the expected success. One major challenge for most medications is their ability to cross the blood-brain barrier (BBB). In past decades, nanotechnology-based interventions have offered an alternative platform to address the problem of the successful delivery of the drugs to the specific targets. Interestingly, the exciting interface of natural products and nanomedicine is delivering promising results in AD treatment. The potential applications of flavonoids, the plant-derived compounds best known for their antioxidant activities, and their amalgamation with nanomedicinal approaches may lead to highly effective therapeutic strategies for treating well-known neurodegenerative diseases. In the present review, we explore the possibilities and recent developments on an exciting combination of flavonoids and nanoparticles in AD.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research, Hajipur, Bihar, India 844102
| | - Arun Upadhyay
- Department
of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandar Sindari, Kishangarh Ajmer, Rajasthan, India 305817
| |
Collapse
|
120
|
Hao R, Sun B, Yang L, Ma C, Li S. RVG29-modified microRNA-loaded nanoparticles improve ischemic brain injury by nasal delivery. Drug Deliv 2021; 27:772-781. [PMID: 32400219 PMCID: PMC7269067 DOI: 10.1080/10717544.2020.1760960] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Effective nose-to-brain delivery needs to be developed to treat neurodegenerative diseases. Regulating miR-124 can effectively improve the symptoms of ischemic brain injury and provide a certain protective effect from brain damage after cerebral ischemia. We used rat models of middle cerebral artery occlusion (t-MCAO) with ischemic brain injury, and we delivered RVG29-NPs-miR124 intranasally to treat neurological damage after cerebral ischemia. Rhoa and neurological scores in rats treated by intranasal administration of RVG29-PEG-PLGA/miRNA-124 were significantly lower than those in PEG-PLGA/miRNA-124 nasal administration and RVG29-PLGA/miRNA-124 nasal administration group treated rats. These results indicate that the nose-to-brain delivery of PLGA/miRNA-124 conjugated with PEG and RVG29 alleviated the symptoms of cerebral ischemia-reperfusion injury. Thus, nasal delivery of RVG29-PEG-PLGA/miRNA-124 could be a new method for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Rubin Hao
- Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, ChangChun, Jilin, China
| | - Bixi Sun
- School of Pharmaceutical Sciences, Jilin University, ChangChun, Jilin, China
| | - Lihua Yang
- Affiliated Hospital of Changchun University of Chinese medicine, ChangChun, Jilin, China
| | - Chun Ma
- Affiliated Hospital of Changchun University of Chinese medicine, ChangChun, Jilin, China
| | - Shuling Li
- Affiliated Hospital of Changchun University of Chinese medicine, ChangChun, Jilin, China
| |
Collapse
|
121
|
Perrelli A, Fatehbasharzad P, Benedetti V, Ferraris C, Fontanella M, De Luca E, Moglianetti M, Battaglia L, Retta SF. Towards precision nanomedicine for cerebrovascular diseases with emphasis on Cerebral Cavernous Malformation (CCM). Expert Opin Drug Deliv 2021; 18:849-876. [PMID: 33406376 DOI: 10.1080/17425247.2021.1873273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Cerebrovascular diseases encompass various disorders of the brain vasculature, such as ischemic/hemorrhagic strokes, aneurysms, and vascular malformations, also affecting the central nervous system leading to a large variety of transient or permanent neurological disorders. They represent major causes of mortality and long-term disability worldwide, and some of them can be inherited, including Cerebral Cavernous Malformation (CCM), an autosomal dominant cerebrovascular disease linked to mutations in CCM1/KRIT1, CCM2, or CCM3/PDCD10 genes.Areas covered: Besides marked clinical and etiological heterogeneity, some commonalities are emerging among distinct cerebrovascular diseases, including key pathogenetic roles of oxidative stress and inflammation, which are increasingly recognized as major disease hallmarks and therapeutic targets. This review provides a comprehensive overview of the different clinical features and common pathogenetic determinants of cerebrovascular diseases, highlighting major challenges, including the pressing need for new diagnostic and therapeutic strategies, and focusing on emerging innovative features and promising benefits of nanomedicine strategies for early detection and targeted treatment of such diseases.Expert opinion: Specifically, we describe and discuss the multiple physico-chemical features and unique biological advantages of nanosystems, including nanodiagnostics, nanotherapeutics, and nanotheranostics, that may help improving diagnosis and treatment of cerebrovascular diseases and neurological comorbidities, with an emphasis on CCM disease.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Parisa Fatehbasharzad
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Valerio Benedetti
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, Torino, Italy
| | - Marco Fontanella
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Elisa De Luca
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Institute for Microelectronics and Microsystems (IMM), CNR, Lecce, Italy
| | - Mauro Moglianetti
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Istituto Italiano Di Tecnologia, Nanobiointeractions & Nanodiagnostics, Genova, Italy
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, Torino, Italy
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| |
Collapse
|
122
|
Majcher MJ, Babar A, Lofts A, Leung A, Li X, Abu-Hijleh F, Smeets NMB, Mishra RK, Hoare T. In situ-gelling starch nanoparticle (SNP)/O-carboxymethyl chitosan (CMCh) nanoparticle network hydrogels for the intranasal delivery of an antipsychotic peptide. J Control Release 2020; 330:738-752. [PMID: 33383097 DOI: 10.1016/j.jconrel.2020.12.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/04/2020] [Accepted: 12/24/2020] [Indexed: 01/27/2023]
Abstract
Existing oral or injectable antipsychotic drug delivery strategies typically demonstrate low bioavailability to targeted brain regions, incentivizing the development of alternative delivery strategies. Delivery via the nasal cavity circumvents multiple barriers for reaching the brain but requires drug delivery vehicles with very specific properties to be effective. Herein, we report in situ-gelling and degradable bulk nanoparticle network hydrogels consisting of oxidized starch nanoparticles (SNPs) and carboxymethyl chitosan (CMCh) that enable intranasal delivery via spray, high nasal mucosal retention, and functional controlled release of the peptide drug PAOPA, a positive allosteric modulator of dopamine D2 receptor. PAOPA-loaded SNP-CMCh hydrogels can alleviate negative symptoms like behavioural abnormalities associated with schizophrenia (i.e. decreased social interaction time) for up to 72 h in an MK-801-induced pre-clinical rat model of schizophrenia at a low drug dosage (0.5 mg/kg); in comparison, conventional PAOPA administration via the intraperitoneal route requires twice the PAOPA dose to achieve a therapeutic effect that persists for only a few hours. This strategy offers potential for substantially decreasing re-administration frequencies and overall drug doses (and thus side-effects) of a range of potential antipsychotic drugs via a minimally-invasive administration route.
Collapse
Affiliation(s)
- Michael J Majcher
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Ali Babar
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Andrew Lofts
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Ashlyn Leung
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Xiaoyun Li
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Fahed Abu-Hijleh
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Niels M B Smeets
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada
| | - Ram K Mishra
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
123
|
Development and Study of Nanoemulsions and Nanoemulsion-Based Hydrogels for the Encapsulation of Lipophilic Compounds. NANOMATERIALS 2020; 10:nano10122464. [PMID: 33317080 PMCID: PMC7763598 DOI: 10.3390/nano10122464] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022]
Abstract
Biocompatible nanoemulsions and nanoemulsion-based hydrogels were formulated for the encapsulation and delivery of vitamin D3 and curcumin. The aforementioned systems were structurally studied applying dynamic light scattering (DLS), electron paramagnetic resonance (EPR) spectroscopy and viscometry. In vitro studies were conducted using Franz diffusion cells to investigate the release of the bioactive compounds from the nanocarriers. The cytotoxicity of the nanoemulsions was investigated using the thiazolyl blue tetrazolium bromide (MTT) cell proliferation assay and RPMI 2650 nasal epithelial cells as in vitro model. DLS measurements showed that vitamin D3 and curcumin addition in the dispersed phase of the nanoemulsions caused an increase in the size of the oil droplets from 78.6 ± 0.2 nm to 83.6 ± 0.3 nm and from 78.6 ± 0.2 nm to 165.6 ± 1.0 nm, respectively. Loaded nanoemulsions, in both cases, were stable for 60 days of storage at 25 °C. EPR spectroscopy revealed participation of vitamin D3 and curcumin in the surfactants monolayer. In vitro release rates of both lipophilic compounds from the nanoemulsions were comparable to the corresponding ones from the nanoemulsion-based hydrogels. The developed o/w nanoemulsions did not exhibit cytotoxic effect up to the concentration threshold of 1 mg/mL in the cell culture medium.
Collapse
|
124
|
Recent advancement and development of chitin and chitosan-based nanocomposite for drug delivery: Critical approach to clinical research. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
125
|
Elsenosy FM, Abdelbary GA, Elshafeey AH, Elsayed I, Fares AR. Brain Targeting of Duloxetine HCL via Intranasal Delivery of Loaded Cubosomal Gel: In vitro Characterization, ex vivo Permeation, and in vivo Biodistribution Studies. Int J Nanomedicine 2020; 15:9517-9537. [PMID: 33324051 PMCID: PMC7732760 DOI: 10.2147/ijn.s277352] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Duloxetine (DLX) is dual serotonin and norepinephrine reuptake inhibitor suffering from limited bioavailability (≈ 40%) due to extensive hepatic metabolism. This work aims to formulate and evaluate DLX intranasal thermoreversible cubosomal gels to enhance its bioavailability and ensure efficient brain targeting. Materials and Methods Cubo-gels were prepared by 33 central composite design with three independent factors, lipid ratio (glycerol monooleate: glycerol tripalmitate), Pluronic F127%, and Pluronic F68%. The prepared formulations were evaluated for their particle size (PS), gelling temperature (GT), entrapment efficiency (EE%), and in vitro release. The cubo-gel with the highest desirability (0.88) was chosen as the optimized formulation. DLX cubo-gel was evaluated using differential scanning calorimetry, Fourier-transform infrared spectroscopy, X-ray powder diffraction, and transmission electron microscopy. Cytotoxicity study, ex vivo permeation study and in vivo bio-distribution study were conducted to evaluate the safety and efficacy of brain targeting. Results The optimum cubo-gel was composed of 3.76 lipid ratio, 20% w/v PF127, and 5% w/v PF68. It had PS of 265.13 ± 9.85 nm, GT of 32 ± 0.05°C, EE% of 98.13 ± 0.50%, and showed controlled release behavior where 33% DLX was released within 6 hrs. The plain in situ cubo-gel had a significantly higher IC50 compared to DLX solution and DLX-loaded in situ cubo-gel. The ex vivo permeation study showed 1.27 enhancement in the drug permeation from DLX in situ cubo-gel. According to the in vivo bio-distribution study in plasma and brain, the intranasal DLX in situ cubo-gel showed a 1.96 fold improvement in brain bioavailability compared to the intranasal solution. Its BTE% and DTP% were 137.77 and 10.5, respectively, indicating efficient brain targeting after intranasal administration. Conclusion Accordingly, intranasal DLX in situ cubo-gel can be considered as an innovative nano-carrier delivery system for bioavailability enhancement and efficient brain targeting of DLX to maximize its effect.
Collapse
Affiliation(s)
| | - Ghada Ahmed Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed Hassen Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutical Sciences, College of Pharmacy and Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Ahmed Roshdy Fares
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
126
|
Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, Fatahi Y, Dinarvand R, Tahriri M, Tayebi L, Hamblin MR, Webster TJ. Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer's Disease. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000076] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Navid Rabiee
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Sepideh Ahmadi
- Student Research Committee Department of Medical Biotechnology School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
- Cellular and Molecular Biology Research Center Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
| | - Ronak Afshari
- Department of Physics Sharif University of Technology P.O. Box 11155‐9161 Tehran Iran
| | - Samira Khalaji
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mohammad Rabiee
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Universal Scientific Education and Research Network (USERN) Tehran 15875‐4413 Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
| | - Mohammadreza Tahriri
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Lobat Tayebi
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston USA
- Department of Dermatology Harvard Medical School Boston USA
- Laser Research Centre Faculty of Health Science University of Johannesburg Doornfontein 2028 South Africa
| | - Thomas J. Webster
- Department of Chemical Engineering Northeastern University Boston MA 02115 USA
| |
Collapse
|
127
|
Tashima T. Shortcut Approaches to Substance Delivery into the Brain Based on Intranasal Administration Using Nanodelivery Strategies for Insulin. Molecules 2020; 25:E5188. [PMID: 33171799 PMCID: PMC7664636 DOI: 10.3390/molecules25215188] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
The direct delivery of central nervous system (CNS) drugs into the brain after administration is an ideal concept due to its effectiveness and non-toxicity. However, the blood-brain barrier (BBB) prevents drugs from penetrating the capillary endothelial cells, blocking their entry into the brain. Thus, alternative approaches must be developed. The nasal cavity directly leads from the olfactory epithelium to the brain through the cribriform plate of the skull bone. Nose-to-brain drug delivery could solve the BBB-related repulsion problem. Recently, it has been revealed that insulin improved Alzheimer's disease (AD)-related dementia. Several ongoing AD clinical trials investigate the use of intranasal insulin delivery. Related to the real trajectory, intranasal labeled-insulins demonstrated distribution into the brain not only along the olfactory nerve but also the trigeminal nerve. Nonetheless, intranasally administered insulin was delivered into the brain. Therefore, insulin conjugates with covalent or non-covalent cargos, such as AD or other CNS drugs, could potentially contribute to a promising strategy to cure CNS-related diseases. In this review, I will introduce the CNS drug delivery approach into the brain using nanodelivery strategies for insulin through transcellular routes based on receptor-mediated transcytosis or through paracellular routes based on escaping the tight junction at the olfactory epithelium.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama, Kanagawa 222-0035, Japan
| |
Collapse
|
128
|
Vo NTN, Huang L, Lemos H, Mellor A, Novakovic K. Poly(ethylene glycol)‐interpenetrated genipin‐crosslinked chitosan hydrogels: Structure, pH responsiveness, gelation kinetics, and rheology. J Appl Polym Sci 2020. [DOI: 10.1002/app.49259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nga T. N. Vo
- School of Engineering Newcastle University Newcastle Upon Tyne UK
| | - Lei Huang
- Translational and Clinical Research Newcastle University Newcastle Upon Tyne UK
| | - Henrique Lemos
- Translational and Clinical Research Newcastle University Newcastle Upon Tyne UK
| | - Andrew Mellor
- Translational and Clinical Research Newcastle University Newcastle Upon Tyne UK
| | | |
Collapse
|
129
|
Bicker J, Fortuna A, Alves G, Falcão A. Nose-to-brain Delivery of Natural Compounds for the Treatment of Central Nervous System Disorders. Curr Pharm Des 2020; 26:594-619. [PMID: 31939728 DOI: 10.2174/1381612826666200115101544] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Several natural compounds have demonstrated potential for the treatment of central nervous system disorders such as ischemic cerebrovascular disease, glioblastoma, neuropathic pain, neurodegenerative diseases, multiple sclerosis and migraine. This is due to their well-known antioxidant, anti-inflammatory, neuroprotective, anti-tumor, anti-ischemic and analgesic properties. Nevertheless, many of these molecules have poor aqueous solubility, low bioavailability and extensive gastrointestinal and/or hepatic first-pass metabolism, leading to a quick elimination as well as low serum and tissue concentrations. Thus, the intranasal route emerged as a viable alternative to oral or parenteral administration, by enabling a direct transport into the brain through the olfactory and trigeminal nerves. With this approach, the blood-brain barrier is circumvented and peripheral exposure is reduced, thereby minimizing possible adverse effects. OBJECTIVE Herein, brain-targeting strategies for nose-to-brain delivery of natural compounds, including flavonoids, cannabinoids, essential oils and terpenes, will be reviewed and discussed. Brain and plasma pharmacokinetics of these molecules will be analyzed and related to their physicochemical characteristics and formulation properties. CONCLUSION Natural compounds constitute relevant alternatives for the treatment of brain diseases but often require loading into nanocarrier systems to reach the central nervous system in sufficient concentrations. Future challenges lie in a deeper characterization of their therapeutic mechanisms and in the development of effective, safe and brain-targeted delivery systems for their intranasal administration.
Collapse
Affiliation(s)
- Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
130
|
Albarki MA, Donovan MD. Bigger or Smaller? Size and Loading Effects on Nanoparticle Uptake Efficiency in the Nasal Mucosa. AAPS PharmSciTech 2020; 21:294. [PMID: 33099728 DOI: 10.1208/s12249-020-01837-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/01/2020] [Indexed: 01/24/2023] Open
Abstract
PLGA nanoparticles hold great promise for nasal administration, but only with careful design will efficient, effective, and safe delivery systems be developed. To better understand the size dependence of nasal epithelial uptake, PLGA nanoparticles (60 nm or 125 nm) loaded with Nile Red were prepared, and their uptake into excised sections of bovine nasal respiratory or olfactory mucosa was measured for 30 or 60 min. The epithelial layer and the submucosal tissues were separated, and the amount of Nile Red was used to calculate the number of nanoparticles in each tissue region. Both particle sizes were able to be internalized into the nasal tissues in as little as 30 min, but their total uptake represented less than 5% of the nanoparticles available. Nanoparticles were present both in the epithelial cells and in the submucosal tissues, and greater numbers of the 60-nm particles were present in the submucosa than the epithelium, while greater numbers of the 125-nm particles remained in the epithelial cell layer. The amount of Nile Red recovered from the mucosal tissues after exposure to 125-nm nanoparticles was at least 2-fold greater than from the 60-nm nanoparticles, however, due to the higher (~ 9-fold) loading capacity of the larger particles. The greater mass transfer of the Nile Red from the larger particles suggests that it may not be necessary to develop small nanoparticulate delivery systems for efficient drug delivery via the nasal mucosa. Well-designed nanoparticles with diameters > 100 nm show good uptake into the nasal epithelium and are capable of transfer to the submucosal tissues, near the location of significant populations of blood and lymphatic vessels. Graphical abstract.
Collapse
|
131
|
Khadka B, Lee JY, Park DH, Kim KT, Bae JS. The Role of Natural Compounds and their Nanocarriers in the Treatment of CNS Inflammation. Biomolecules 2020; 10:E1401. [PMID: 33019651 PMCID: PMC7601486 DOI: 10.3390/biom10101401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation, which is involved in various inflammatory cascades in nervous tissues, can result in persistent and chronic apoptotic neuronal cell death and programmed cell death, triggering various degenerative disorders of the central nervous system (CNS). The neuroprotective effects of natural compounds against neuroinflammation are mainly mediated by their antioxidant, anti-inflammatory, and antiapoptotic properties that specifically promote or inhibit various molecular signal transduction pathways. However, natural compounds have several limitations, such as their pharmacokinetic properties and stability, which hinder their clinical development and use as medicines. This review discusses the molecular mechanisms of neuroinflammation and degenerative diseases of CNS. In addition, it emphasizes potential natural compounds and their promising nanocarriers for overcoming their limitations in the treatment of neuroinflammation. Moreover, recent promising CNS inflammation-targeted nanocarrier systems implementing lesion site-specific active targeting strategies for CNS inflammation are also discussed.
Collapse
Affiliation(s)
- Bikram Khadka
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam 58554, Korea;
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea;
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam 58554, Korea;
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMR1, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
132
|
Shringarpure M, Gharat S, Momin M, Omri A. Management of epileptic disorders using nanotechnology-based strategies for nose-to-brain drug delivery. Expert Opin Drug Deliv 2020; 18:169-185. [PMID: 32921169 DOI: 10.1080/17425247.2021.1823965] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Epilepsy, a major neurological disorder affects about 1% of the Indian population. The discovery of noninvasive strategies for epilepsy presents a challenge for the scientists. Different types of nose-to-brain dosage-forms have been studied for epilepsy management. It aims to give new perspectives for developing new and existing anti-epileptic drugs. Combining nanotechnology with nose-to-brain approach can help in promoting the treatment efficacy by site-specific delivery. Also, it will minimize the side-effects and patient noncompliance observed in conventional administration routes. Peptide delivery can be an interesting approach for the management of epilepsy. Drug-loaded intranasal nanoformulations exhibit diverse prospective potentials in the management of epilepsy. Considering that, nanotherapy using nose-to-brain delivery as a prospective technique for the efficient management of epilepsy is reviewed. AREAS COVERED The authors have compiled all recently available data pertaining to the nose-to-brain delivery of therapeutics using nanotechnological strategies. The fundamental mechanism of nose-to-brain delivery, claims for intranasal delivery and medical devices for epilepsy are discussed. EXPERT OPINION Drug-loaded intranasal nanoformulations exhibit different prospective potentials in the management of epilepsy. Considering the foregoing research done in the field of nanotechnology, globally, authors propose nose-to-brain delivery of nanoformulations as a potential technique for the efficient management of epilepsy.
Collapse
Affiliation(s)
- Mihika Shringarpure
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India.,SVKM's Shri C B Patel Research Center for Chemistry and Biological Sciences, Mumbai, Maharashtra, India
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
133
|
Fonseca-Santos B, Chorilli M. The uses of resveratrol for neurological diseases treatment and insights for nanotechnology based-drug delivery systems. Int J Pharm 2020; 589:119832. [PMID: 32877730 DOI: 10.1016/j.ijpharm.2020.119832] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Neurological disorders have been growing in recent years and are highly prevalent globally. Resveratrol (RES) is a natural product from plant sources such as grape skins. This compound has shown biological activity in many diseases, in particular, those that act on the central nervous system. The mechanism of action and the key points in neurological disorders were described and show the targeted mechanism of action. Due to the insolubility of this compound; the use of nanotechnology-based systems has been proposed for the incorporation of RES and RES-loaded nanocarriers have been designed for intranasal administration, oral or parenteral routes to deliver it to the brain. In general, these nanosystems have shown to be effective in many studies, pharmacological and pharmacokinetic assays, as well as some cell studies. The outcomes show that RES has been reported in human clinical trials for some neurological diseases, although no studies were performed in humans using nanocarriers, animal and/or cellular models have been reported to show good results regarding therapeutics on neurological diseases. Thus, the use of this nutraceutical has shown true for neurological diseases and its loading into nanocarriers displaying good results on the stability, delivery and targeting to the brain.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo 14801-903, Brazil
| | - Marlus Chorilli
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo 14801-903, Brazil.
| |
Collapse
|
134
|
Cortés H, Alcalá-Alcalá S, Caballero-Florán IH, Bernal-Chávez SA, Ávalos-Fuentes A, González-Torres M, González-Del Carmen M, Figueroa-González G, Reyes-Hernández OD, Floran B, Del Prado-Audelo ML, Leyva-Gómez G. A Reevaluation of Chitosan-Decorated Nanoparticles to Cross the Blood-Brain Barrier. MEMBRANES 2020; 10:E212. [PMID: 32872576 PMCID: PMC7559907 DOI: 10.3390/membranes10090212] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier (BBB) is a sophisticated and very selective dynamic interface composed of endothelial cells expressing enzymes, transport systems, and receptors that regulate the passage of nutrients, ions, oxygen, and other essential molecules to the brain, regulating its homeostasis. Moreover, the BBB performs a vital function in protecting the brain from pathogens and other dangerous agents in the blood circulation. Despite its crucial role, this barrier represents a difficult obstacle for the treatment of brain diseases because many therapeutic agents cannot cross it. Thus, different strategies based on nanoparticles have been explored in recent years. Concerning this, chitosan-decorated nanoparticles have demonstrated enormous potential for drug delivery across the BBB and treatment of Alzheimer's disease, Parkinson's disease, gliomas, cerebral ischemia, and schizophrenia. Our main objective was to highlight the high potential of chitosan adsorption to improve the penetrability through the BBB of nanoformulations for diseases of CNS. Therefore, we describe the BBB structure and function, as well as the routes of chitosan for crossing it. Moreover, we define the methods of decoration of nanoparticles with chitosan and provide numerous examples of their potential utilization in a variety of brain diseases. Lastly, we discuss future directions, mentioning the need for extensive characterization of proposed nanoformulations and clinical trials for evaluation of their efficacy.
Collapse
Affiliation(s)
- Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico;
| | - Sergio Alcalá-Alcalá
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.H.C.-F.); (S.A.B.-C.); (M.L.D.P.-A.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (A.Á.-F.); (B.F.)
| | - Sergio A. Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.H.C.-F.); (S.A.B.-C.); (M.L.D.P.-A.)
| | - Arturo Ávalos-Fuentes
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (A.Á.-F.); (B.F.)
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico;
| | | | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de Mexico 09230, Mexico;
| | - Octavio D. Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de Mexico 09230, Mexico;
| | - Benjamín Floran
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (A.Á.-F.); (B.F.)
| | - María L. Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.H.C.-F.); (S.A.B.-C.); (M.L.D.P.-A.)
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de Mexico 14380, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.H.C.-F.); (S.A.B.-C.); (M.L.D.P.-A.)
| |
Collapse
|
135
|
Chitosan-coated PLGA nanoparticles for the nasal delivery of ropinirole hydrochloride: In vitro and ex vivo evaluation of efficacy and safety. Int J Pharm 2020; 589:119776. [PMID: 32818538 DOI: 10.1016/j.ijpharm.2020.119776] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/27/2023]
Abstract
Nose-to-brain delivery is an attractive route for direct drug delivery to the central nervous system (CNS), avoiding hepatic first-pass metabolism and solving blood-brain barrier passage issues. Therefore, the aim of the present study was the development of PLGA and PLGA/chitosan (chit) nanoparticles (NPs) with mucoadhesive properties, able to encapsulate ropinirole hydrochloride (RH), an anti-Parkinsonian dopaminergic agonist, and suitable to promote RH delivery across the nasal mucosa. NPs produced by nanoprecipitation showed spherical shape and a mean average size of 98.8 nm and 468.0 nm (PLGA and PLGA/chit, respectively). RH loaded PLGA/chit NPs showed a complete release of the drug in simulated nasal electrolyte solution (SNES) over the period of 24 h and increased the permeation of RH through sheep nasal mucosa by 3.22-fold in comparison to PLGA NPs. None of RH loaded NPs induced hemolysis in whole blood or the production of reactive oxygen species (ROS) in Raw 264.7 cells. On their turn, PLGA/chit NPs decreased cell viability of Raw 264.7 cells and Peripheral Blood Mononuclear Cells (PBMCs) in a concentration-dependent manner. These results revealed that, particularly PLGA/chit NPs, could be a valuable carrier for the delivery of RH to the CNS, opening a new path for Parkinson's disease therapy.
Collapse
|
136
|
Intranasal administration of budesonide-loaded nanocapsule microagglomerates as an innovative strategy for asthma treatment. Drug Deliv Transl Res 2020; 10:1700-1715. [PMID: 32789546 DOI: 10.1007/s13346-020-00813-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The co-existence with rhinitis limits the control of asthma. Compared with oral H1 receptor antagonists, intranasal corticosteroids have been demonstrated to provide greater relief of all symptoms of rhinitis and are recommended as first-line treatment for allergic rhinitis. Intrinsic limitations of nasal delivery, such as the presence of the protective mucous layer, the relentless mucociliary clearance, and the consequent reduced residence time of the formulation in the nasal cavity, limit budesonide efficacy to the treatment of local nasal symptoms. To overcome these limitations and to enable the treatment of asthma via nasal administration, we developed a budesonide-loaded lipid-core nanocapsule (BudNC) microagglomerate powder by spray-drying using a one-step innovative approach. BudNC was obtained, as a white powder, using L-leucine as adjuvant with 75 ± 6% yield. The powder showed a bimodal size distribution curve by laser diffraction with a principal peak just above 3 μm and a second one around 0.45 μm and a drug content determined by HPLC of 8.7 mg of budesonide per gram. In vivo after nasal administration, BudNC showed an improved efficacy in terms of reduction of immune cell influx; production of eotaxin-1, the main inflammatory chemokine; and arrest of airways remodeling when compared with a commercial budesonide product in both short- and long-term asthma models. In addition, data showed that the results in the long-term asthma model were more compelling than the results obtained in the short-term model. Graphical abstract.
Collapse
|
137
|
Sipos B, Szabó-Révész P, Csóka I, Pallagi E, Dobó DG, Bélteky P, Kónya Z, Deák Á, Janovák L, Katona G. Quality by Design Based Formulation Study of Meloxicam-Loaded Polymeric Micelles for Intranasal Administration. Pharmaceutics 2020; 12:697. [PMID: 32722099 PMCID: PMC7464185 DOI: 10.3390/pharmaceutics12080697] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Our study aimed to develop an "ex tempore" reconstitutable, viscosity enhancer- and preservative-free meloxicam (MEL)-loaded polymeric micelle formulation, via Quality by Design (QbD) approach, exploiting the nose-to-brain pathway, as a suitable tool in the treatment of neuroinflammation. The anti-neuroinflammatory effect of nose-to-brain NSAID polymeric micelles was not studied previously, therefore its investigation is promising. Critical product parameters, encapsulation efficiency (89.4%), Z-average (101.22 ± 2.8 nm) and polydispersity index (0.149 ± 0.7) and zeta potential (-25.2 ± 0.4 mV) met the requirements of the intranasal drug delivery system (nanoDDS) and the targeted profile liquid formulation was transformed into a solid preservative-free product by freeze-drying. The viscosity (32.5 ± 0.28 mPas) and hypotonic osmolality (240 mOsmol/L) of the reconstituted formulation provides proper and enhanced absorption and probably guarantees the administration of the liquid dosage form (nasal drop and spray). The developed formulation resulted in more than 20 times faster MEL dissolution rate and five-fold higher nasal permeability compared to starting MEL. The prediction of IVIVC confirmed the great potential for in vivo brain distribution of MEL. The nose-to-brain delivery of NSAIDs such as MEL by means of nanoDDS as polymeric micelles offers an innovative opportunity to treat neuroinflammation more effectively.
Collapse
Affiliation(s)
- Bence Sipos
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (B.S.); (P.S.-R.); (I.C.); (E.P.); (D.G.D.)
| | - Piroska Szabó-Révész
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (B.S.); (P.S.-R.); (I.C.); (E.P.); (D.G.D.)
| | - Ildikó Csóka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (B.S.); (P.S.-R.); (I.C.); (E.P.); (D.G.D.)
| | - Edina Pallagi
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (B.S.); (P.S.-R.); (I.C.); (E.P.); (D.G.D.)
| | - Dorina Gabriella Dobó
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (B.S.); (P.S.-R.); (I.C.); (E.P.); (D.G.D.)
| | - Péter Bélteky
- Faculty of Science and Informatics, Department of Applied & Environmental Chemistry, H-6720 Szeged, Hungary; (P.B.); (Z.K.)
| | - Zoltán Kónya
- Faculty of Science and Informatics, Department of Applied & Environmental Chemistry, H-6720 Szeged, Hungary; (P.B.); (Z.K.)
| | - Ágota Deák
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, H-6720 Szeged, Hungary; (Á.D.); (L.J.)
| | - László Janovák
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, H-6720 Szeged, Hungary; (Á.D.); (L.J.)
| | - Gábor Katona
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary; (B.S.); (P.S.-R.); (I.C.); (E.P.); (D.G.D.)
| |
Collapse
|
138
|
Matías-Guiu J, Matías-Guiu JA, Montero-Escribano P, Barcia JA, Canales-Aguirre AA, Mateos-Diaz JC, Gómez-Pinedo U. Particles Containing Cells as a Strategy to Promote Remyelination in Patients With Multiple Sclerosis. Front Neurol 2020; 11:638. [PMID: 32733364 PMCID: PMC7358567 DOI: 10.3389/fneur.2020.00638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
The repair of demyelinated lesions is a key objective in multiple sclerosis research. Remyelination fundamentally depends on oligodendrocyte progenitor cells (OPC) reaching the lesion; this is influenced by numerous factors including age, disease progression time, inflammatory activity, and the pool of OPCs available, whether they be NG2 cells or cells derived from neural stem cells. Administering OPCs has been proposed as a potential cell therapy; however, these cells can only be administered directly. This article discusses the potential administration of OPCs encapsulated within hydrogel particles composed of biocompatible biomaterials, via the nose-to-brain pathway. We also discuss conditions for the indication of this therapy, and such related issues as the influence on endogenous remyelination, migration of OPCs to demyelinated areas, and the immune response, given the autoimmune nature of multiple sclerosis. Chitosan and derivatives constitute the most promising biomaterial for this purpose, although these issues must be addressed. In conclusion, this line of research may yield an alternative to the remyelinating drugs currently being studied.
Collapse
Affiliation(s)
- Jorge Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain.,Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Jordi A Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Paloma Montero-Escribano
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan A Barcia
- Department of Neurosurgery, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Alejandro A Canales-Aguirre
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Juan C Mateos-Diaz
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de 12 Jalisco, CIATEJ, Zapopan, Mexico
| | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
139
|
de Oliveira Junior ER, Santos LCR, Salomão MA, Nascimento TL, de Almeida Ribeiro Oliveira G, Lião LM, Lima EM. Nose-to-brain drug delivery mediated by polymeric nanoparticles: influence of PEG surface coating. Drug Deliv Transl Res 2020; 10:1688-1699. [PMID: 32613550 DOI: 10.1007/s13346-020-00816-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intranasal administration of mucus-penetrating nanoparticles is an emerging trend to increase drug delivery to the brain. In order to overcome rapid nasal mucociliary clearance, low epithelial permeation, and local enzymatic degradation, we investigated the influence of PEGylation on nose-to-brain delivery of polycaprolactone (PCL) nanoparticles (PCL-NPs) encapsulating bexarotene, a potential neuroprotective compound. PEGylation with 1, 3, 5, and 10% PCL-PEG did not affect particle diameter or morphology. Upon incubation with artificial nasal mucus, only 5 and 10% of PCL-PEG coating were able to ensure NP stability and homogeneity in mucus. Rapid mucus-penetrating ability was observed for 98.8% of PCL-PEG5% NPs and for 99.5% of PCL-PEG10% NPs. Conversely, the motion of non-modified PCL-NPs was markedly slower. Fluorescence microscopy showed that the presence of PEG on NP surface did not reduce their uptake by RMPI 2650 cells. Fluorescence tomography images evidenced higher translocation into the brain for PCL-PEG5% NPs. Bexarotene loaded into PCL-PEG5% NPs resulted in area under the curve in the brain (AUCbrain) 3 and 2-fold higher than that for the drug dispersion and for non-PEGylated NPs (p < 0.05), indicating that approximately 4% of the dose was directly delivered to the brain. Combined, these results indicate that PEGylation of PCL-NPs with PCL-PEG5% is able to reduce NP interactions with the mucus, leading to a more efficient drug delivery to the brain following intranasal administration. Graphical abstract.
Collapse
Affiliation(s)
- Edilson Ribeiro de Oliveira Junior
- FarmaTec - Centro de PD&I de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO, 74605-170, Brazil
| | - Lílian Cristina Rosa Santos
- FarmaTec - Centro de PD&I de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO, 74605-170, Brazil
| | - Mariana Arraes Salomão
- FarmaTec - Centro de PD&I de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO, 74605-170, Brazil
| | - Thais Leite Nascimento
- FarmaTec - Centro de PD&I de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO, 74605-170, Brazil
| | | | - Luciano Morais Lião
- LabRMN, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Eliana Martins Lima
- FarmaTec - Centro de PD&I de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, 5ª Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO, 74605-170, Brazil.
| |
Collapse
|
140
|
Li G, Sun X, Wan X, Wang D. Lactoferrin-Loaded PEG/PLA Block Copolymer Targeted With Anti-Transferrin Receptor Antibodies for Alzheimer Disease. Dose Response 2020; 18:1559325820917836. [PMID: 32863801 PMCID: PMC7430085 DOI: 10.1177/1559325820917836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 11/15/2022] Open
Abstract
Last few years, struggles have been reported to develop the nanovesicles for drug delivery via the brain-blood barrier (BBB). Novel drugs, for instance, iAβ5, are efficient to inhibit the aggregates connected to the treatment of Alzheimer disease and are being evaluated, but most of the reports reflect some drawbacks of the drugs to reach the brain in preferred concentrations owing to the less BBB penetrability of the surface dimensions. In this report, we designed and developed a new approach to enhance the transport of drug via BBB, constructed with lactoferrin (Lf)-coated polyethylene glycol-polylactide nanoparticles (Lf-PPN) with superficial monoclonal antibody-functionalized antitransferrin receptor and anti-Aβ to deliver the iAβ5 hooked on the brain. The porcine brain capillary endothelial cells were utilized as BBB typically to examine the framework efficacy and toxicity. The cellular uptake of the immuno-nanoparticles with measured conveyance of the iAβ5 peptide was significantly enhanced and associated with Lf-PPN without monoclonal antibody functionalizations.
Collapse
Affiliation(s)
- Guichen Li
- Department of Clinical Psychology, Qingdao Mental Health Center, Qingdao, China
| | - Xianghong Sun
- Second Elderly Ward, Qingdao Mental Health Center, Qingdao, China
| | - Xiaona Wan
- Second Elderly Ward, Qingdao Mental Health Center, Qingdao, China
| | - Dongming Wang
- Second Elderly Ward, Qingdao Mental Health Center, Qingdao, China
| |
Collapse
|
141
|
Sola P, Krishnamurthy P, Chintamaneni PK, Pindiprolu SKS, Kumari M. Novel drug delivery systems of β2 adrenoreceptor agonists to suppress SNCA gene expression and mitochondrial oxidative stress in Parkinson’s disease management. Expert Opin Drug Deliv 2020; 17:1119-1132. [DOI: 10.1080/17425247.2020.1779218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy (A Constituent College of JSS Academy of Higher Education & Research), Ooty, The Nilgiris, Tamil Nadu, India
| | - Praveen Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (A Constituent College of JSS Academy of Higher Education & Research), Ooty, The Nilgiris, Tamil Nadu, India
| | - Pavan Kumar Chintamaneni
- Department of Pharmacology, JSS College of Pharmacy (A Constituent College of JSS Academy of Higher Education & Research), Ooty, The Nilgiris, Tamil Nadu, India
| | - Sai Kiran S.S Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy (A Constituent College of JSS Academy of Higher Education & Research), Ooty, The Nilgiris, Tamil Nadu, India
| | - Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy (A Constituent College of JSS Academy of Higher Education & Research), Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
142
|
Gieszinger P, Stefania Csaba N, Garcia-Fuentes M, Prasanna M, Gáspár R, Sztojkov-Ivanov A, Ducza E, Márki Á, Janáky T, Kecskeméti G, Katona G, Szabó-Révész P, Ambrus R. Preparation and characterization of lamotrigine containing nanocapsules for nasal administration. Eur J Pharm Biopharm 2020; 153:177-186. [PMID: 32531424 DOI: 10.1016/j.ejpb.2020.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/12/2020] [Accepted: 06/07/2020] [Indexed: 10/24/2022]
Abstract
Nanocapsules (NCs) have become one of the most researched nanostructured drug delivery systems due to their advantageous properties and versatility. NCs can enhance the bioavailabiliy of hydrophobic drugs by impoving their solubility and permeability. Also, they can protect these active pharmaceutical agents (APIs) from the physiological environment with preventing e.g. the enzymatic degradation. NCs can be used for many administration routes: e.g. oral, dermal, nasal and ocular formulations are exisiting in liquid and solid forms. The nose is one of the most interesting alternative drug administration route, because local, systemic and direct central nervous system (CNS) delivery can be achived; this could be utilized in the therapy of CNS diseases. Therefore, the goal of this study was to design, prepare and investigate a novel, lamotrigin containing NC formulation for nasal administration. The determination of micrometric parameters (particle size, polydispersity index, surface charge), in vitro (drug loading capacity, release and permeability investigations) and in vivo characterization of the formulations were performed in the study. The results indicate that the formulation could be a promising alternative of lamotrigine (LAM) as the NCs were around 305 nm size with high encapsulation efficiency (58.44%). Moreover, the LAM showed rapid and high release from the NCs in vitro and considerable penetration to the brain tissues was observed during the in vivo study.
Collapse
Affiliation(s)
- Péter Gieszinger
- University of Szeged, Inderdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, Eötvös u. 6., H-6720 Szeged, Hungary
| | - Noemi Stefania Csaba
- University of Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), 15782 Campus Vida, Santiago de Compostela, Spain.
| | - Marcos Garcia-Fuentes
- University of Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), 15782 Campus Vida, Santiago de Compostela, Spain.
| | - Maruthi Prasanna
- University of Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), 15782 Campus Vida, Santiago de Compostela, Spain
| | - Róbert Gáspár
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary.
| | - Anita Sztojkov-Ivanov
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Árpád Márki
- Department of Medical Physics and Informatics, University of Szeged, Faculty of Medicine, H-6720 Szeged, Korányi fasor 9., Hungary.
| | - Tamás Janáky
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Gábor Kecskeméti
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Gábor Katona
- University of Szeged, Inderdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, Eötvös u. 6., H-6720 Szeged, Hungary.
| | - Piroska Szabó-Révész
- University of Szeged, Inderdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, Eötvös u. 6., H-6720 Szeged, Hungary.
| | - Rita Ambrus
- University of Szeged, Inderdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, Eötvös u. 6., H-6720 Szeged, Hungary.
| |
Collapse
|
143
|
Shamarekh KS, Gad HA, Soliman ME, Sammour OA. Development and evaluation of protamine-coated PLGA nanoparticles for nose-to-brain delivery of tacrine: In-vitro and in-vivo assessment. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
144
|
Sun Y, Li L, Xie H, Wang Y, Gao S, Zhang L, Bo F, Yang S, Feng A. Primary Studies on Construction and Evaluation of Ion-Sensitive in situ Gel Loaded with Paeonol-Solid Lipid Nanoparticles for Intranasal Drug Delivery. Int J Nanomedicine 2020; 15:3137-3160. [PMID: 32440115 PMCID: PMC7210040 DOI: 10.2147/ijn.s247935] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Paeonol (PAE) is a potential central neuroprotective agent with poor water solubility and rapid metabolism in vivo. The key to improve the clinical application of PAE in the treatment of neurodegenerative diseases is to improve the brain delivery of it. The purpose of this study was to construct a paeonol-solid lipid nanoparticles-in situ gel (PAE-SLNs-ISG) drug delivery system based on nose-brain transport pathway. MATERIALS AND METHODS In this study, the stability of PAE in simulated biological samples was studied firstly in order to clarify the reasons for low oral bioavailability. Paeonol-solid lipid nanoparticles (PAE-SLNs) were prepared by high-temperature emulsification-low-temperature curing combined with ultrasound. The PAE-SLNs-ISG drug delivery system was constructed, and related formulation optimization, preparation characterization, cell evaluation and in vivo evaluation were performed. RESULTS The metabolic mechanism of PAE incubated in the liver microsomes metabolic system was in accordance with the first-order kinetics, and the half-life was 0.23 h. PAE-SLNs were polyhedral or spherical particles with good dispersion and the particle size was 166.79 nm ± 2.92 nm. PAE-SLNs-ISG solution was a Newtonian fluid with a viscosity of 44.36 mPa · S ± 2.89 mPa · S. The viscosity of PAE-SLNs-ISG gel was 1542.19 mPa · S ± 19.30 mPa · S, and the rheological evaluation showed that the gel was a non-Newtonian pseudoplastic fluid with shear thinning, thixotropy and yield value. The release mechanism of PAE from PAE-SLNs was drug diffusion; the release mechanism of PAE from PAE-SLNs-ISG was a synergistic effect of skeleton erosion and drug diffusion. The cell viabilities of PAE-SLNs and PAE-SLNs-ISG in the concentration range of 0.001 µg/mL to 10 µg/mL were higher than 90%, showing a low level of cytotoxicity. The geometric mean fluorescent intensities of RPMI 2650 cells incubated with fluorescein isothiocyanate-solid lipid nanoparticles (FITC-SLNs) for 1 h, 4 h and 6 h were 1841 ± 24, 2261 ± 27 and 2757 ± 22, respectively. Cyanine7 NHS ester-solid lipid nanoparticles-in situ gel (Cy7-SLNs-ISG) accumulated effectively in the brain area after administration through the olfactory area, and the fluorescence response was observed in olfactory bulb, cerebellum and striatum. CONCLUSION SLNs-ISG nose-brain drug delivery system can effectively deliver SLNs to brain regions, and it is a potentially effective strategy to realize the brain region delivery of PAE.
Collapse
Affiliation(s)
- Yue Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Lingjun Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Huichao Xie
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, People’s Republic of China
| | - Yuzhen Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Shuang Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Li Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Fumin Bo
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Shanjing Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Anjie Feng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| |
Collapse
|
145
|
Zakir F, Ahmad A, Farooq U, Mirza MA, Tripathi A, Singh D, Shakeel F, Mohapatra S, Ahmad FJ, Kohli K. Design and development of a commercially viable in situ nanoemulgel for the treatment of postmenopausal osteoporosis. Nanomedicine (Lond) 2020; 15:1167-1187. [PMID: 32370601 DOI: 10.2217/nnm-2020-0079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Aim: To investigate the potential of a thermosensitive intranasal formulation of raloxifene hydrochloride (RH) for systemic delivery with the possibility of enhanced bioavailability and anti-osteoporotic efficacy. Methods: In this work, a commercially scalable nanoemulsion in thermosensitive gel, aligned with better clinical acceptability, has been developed and evaluated. Results: A significant 7.4-fold improvement in bioavailability of RH was recorded when compared with marketed tablets. Likewise, in vivo pharmacodynamics studies suggested 162% enhanced bone density and significantly improved biochemical markers compared with per-oral marketed tablet. Conclusion: The formulation, being safe and patient compliant, successfully tuned anti-osteoporotic effects with improved therapeutic performance. Further, the work provided an exceptional lead to carry out the study in clinical settings.
Collapse
Affiliation(s)
- Foziyah Zakir
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Adil Ahmad
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Uzma Farooq
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Alok Tripathi
- Endocrinology Division, Central Drug Research Institute, BS-10/1, Sec 10, Jankipuram Ext, Sitapur Road, P.O. Box 173, Lucknow, Uttar Pradesh, 226031, India
| | - Divya Singh
- Endocrinology Division, Central Drug Research Institute, BS-10/1, Sec 10, Jankipuram Ext, Sitapur Road, P.O. Box 173, Lucknow, Uttar Pradesh, 226031, India
| | - Faiyaz Shakeel
- Center of Excellence in Biotechnology Research (CEBR), Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Sradhanjali Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
146
|
Mitsou E, Pletsa V, Sotiroudis GT, Panine P, Zoumpanioti M, Xenakis A. Development of a microemulsion for encapsulation and delivery of gallic acid. The role of chitosan. Colloids Surf B Biointerfaces 2020; 190:110974. [PMID: 32208193 DOI: 10.1016/j.colsurfb.2020.110974] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 02/04/2023]
Abstract
A novel water-in-oil (W/O) microemulsion based on natural oils, namely extra virgin olive oil (EVOO) and sunflower oil (SO), in the presence of non-ionic surfactants was successfully formulated. The novel microemulsion was used as a carrier for gallic acid (GA) to assure its protection and efficacy upon nasal administration. The work presents evidence that this microemulsion can be used as a nasal formulation for the delivery of polar antioxidants, especially, after incorporation of chitosan (CH) in its aqueous phase. The structure of the system was studied by Small Angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS) and Electron Paramagnetic Resonance (EPR) spectroscopy techniques. By the addition of CH, the diameter of the microemulsion remained unaltered at 47 nm whereas after the incorporation of GA, micelles with 51 nm diameter were detected. The dynamic properties of the surfactant monolayer were affected by both the incorporation of CH and GA. Moreover, the antioxidant activity of the latter remained unaltered (99 %). RPMI 2650 cell line was used as the in vitro model for cell viability and for GA nasal epithelial transport studies after microemulsion administration. The results suggested that the nasal epithelial permeation of GA was enhanced, 3 h post administration, by the presence of 0.2 % v/v microemulsion in the culture medium. However, the concentration of the transported antioxidant in the presence of CH was higher indicating the polymer's effect on the transport of the GA. The study revealed that nasal administration of hydrophilic antioxidants could be used as an alternative route besides oral administration.
Collapse
Affiliation(s)
- Evgenia Mitsou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vassileos Constantinou Ave., 11635, Athens, Greece
| | - Vasiliki Pletsa
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vassileos Constantinou Ave., 11635, Athens, Greece
| | - George T Sotiroudis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vassileos Constantinou Ave., 11635, Athens, Greece
| | - Pierre Panine
- Xenocs SA, 1-3 allée du Nanomètre, 38000, Grenoble, France
| | - Maria Zoumpanioti
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vassileos Constantinou Ave., 11635, Athens, Greece
| | - Aristotelis Xenakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vassileos Constantinou Ave., 11635, Athens, Greece.
| |
Collapse
|
147
|
Nasal formulations for drug administration and characterization of nasal preparations in drug delivery. Ther Deliv 2020; 11:183-191. [PMID: 32046624 DOI: 10.4155/tde-2019-0086] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This special report gives an insight in the rationale of utilizing the nasal cavity for drug administration and the formulation as well as characterization of nasal preparations. As the nose is an easy-to-access, noninvasive and versatile location for absorption, this route of delivery will play an increasingly important role in future drug product development both for new and repurposed drugs. The nose can be utilized for local and systemic delivery including drug delivery to the central nervous system and the immune system. Typical formulation strategies and future developments are reviewed, which nowadays mostly comprise liquid formulations. Although they are straight forward to develop, a number of aspects from choice of solvent, osmolarity, pH, viscosity and more need to be considered, which determine formulation characteristics, not at least nasal deposition. Nasal powders offer higher stability and, along with more sophisticated nasal devices, may play a major role in the future.
Collapse
|
148
|
Abstract
Nose-to-brain delivery represents a big challenge. In fact there is a large number of neurological diseases that require therapies in which the drug must reach the brain, avoiding the difficulties due to the blood-brain barrier (BBB) and the problems connected with systemic administration, such as drug bioavailability and side-effects. For these reasons the development of nasal formulations able to deliver the drug directly into the brain is of increasing importance. This Editorial regards the contributions present in the Special Issue "Nose-to-Brain Delivery".
Collapse
|
149
|
Forbes B, Bommer R, Goole J, Hellfritzsch M, De Kruijf W, Lambert P, Caivano G, Regard A, Schiaretti F, Trenkel M, Vecellio L, Williams G, Sonvico F, Scherließ R. A consensus research agenda for optimising nasal drug delivery. Expert Opin Drug Deliv 2020; 17:127-132. [PMID: 31928241 DOI: 10.1080/17425247.2020.1714589] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nasal drug delivery has specific challenges which are distinct from oral inhalation, alongside which it is often considered. The next generation of nasal products will be required to deliver new classes of molecule, e.g. vaccines, biologics and drugs with action in the brain or sinuses, to local and systemic therapeutic targets. Innovations and new tools/knowledge are required to design products to deliver these therapeutic agents to the right target at the right time in the right patients. We report the outcomes of an expert meeting convened to consider gaps in knowledge and unmet research needs in terms of (i) formulation and devices, (ii) meaningful product characterization and modeling, (iii) opportunities to modify absorption and clearance. Important research questions were identified in the areas of device and formulation innovation, critical quality attributes for different nasal products, development of nasal casts for drug deposition studies, improved experimental models, the use of simulations and nasal delivery in special populations. We offer these questions as a stimulus to research and suggest that they might be addressed most effectively by collaborative research endeavors.
Collapse
Affiliation(s)
- Ben Forbes
- King's College London, Institute of Pharmaceutical Science, London, UK
| | | | - Jonathan Goole
- TIPs department, CP 165/67, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Marie Hellfritzsch
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
| | | | - Pierre Lambert
- TIPs department, CP 165/67, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Grazia Caivano
- Chiesi Farmaceutici S.p.A., Largo Francesco Belloli 11/A, Parma, Italy
| | - Alain Regard
- Nemera Insight Innovation Center, La Verpilière, France
| | | | - Marie Trenkel
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
| | - Laurent Vecellio
- Nemera Insight Innovation Center, La Verpilière, France.,Centre d'étude des pathologies respiratoires (CEPR), UMR, Université de Tours, INSERM, Tours, France
| | | | | | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
| |
Collapse
|
150
|
Development of Meloxicam-Human Serum Albumin Nanoparticles for Nose-to-Brain Delivery via Application of a Quality by Design Approach. Pharmaceutics 2020; 12:pharmaceutics12020097. [PMID: 31991767 PMCID: PMC7076499 DOI: 10.3390/pharmaceutics12020097] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to optimize the formulation of meloxicam (MEL)-containing human serum albumin (HSA) nanoparticles for nose-to-brain via a quality by design (QbD) approach. Liquid and dried formulations of nanoparticles containing Tween 80 and without the surfactant were investigated. Various properties, such as the Z-average, zeta potential, encapsulation efficacy (EE), conjugation of MEL and HSA, physical stability, in vitro dissolution, in vitro permeability, and in vivo plasma and brain distribution of MEL were characterized. From a stability point of view, a solid product (Mel-HSA-Tween) is recommended for further development since it met the desired critical parameters (176 ± 0.3 nm Z-average, 0.205 ± 0.01 PdI, -14.1 ± 0.7 mV zeta potential) after 6 months of storage. In vitro examination showed a significantly increased drug dissolution and permeability of MEL-containing nanoparticles, especially in the case of applying Tween 80. The in vivo studies confirmed both the trans-epithelial and axonal transport of nanoparticles, and a significantly higher cerebral concentration of MEL was detected with nose-to-brain delivery, in comparison with intravenous or per os administration. These results indicate intranasal the administration of optimized MEL-containing HSA formulations as a potentially applicable "value-added" product for the treatment of neuroinflammation.
Collapse
|