101
|
Nechepurenko IA, Kulikova DP, Kornienko VV, Afanasiev KN, Shekoyan LA, Baryshev AV, Dorofeenko AV. Evaluating the Response Time of an Optical Gas Sensor Based on Gasochromic Nanostructures. SENSORS 2021; 21:s21248472. [PMID: 34960565 PMCID: PMC8707816 DOI: 10.3390/s21248472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/01/2023]
Abstract
We propose a method for determining complex dielectric permittivity dynamics in the gasochromic oxides in the course of their interaction with a gas as well as for estimating the diffusion coefficient into a gasochromic oxide layer. The method is based on analysis of a time evolution of reflection spectra measured in the Kretschmann configuration. The method is demonstrated with a hydrogen-sensitive trilayer including an Au plasmonic film, WO3 gasochromic oxide layer, and Pt catalyst. Angular dependences of the reflectance as well as transmission spectra of the trilayer were measured in series at a constant flow of gas mixtures with hydrogen concentrations in a range of 0–0.36%, and a detection limit below 40 ppm (0.004%) of H2 was demonstrated. Response times to hydrogen were found in different ways. We show that the dielectric permittivity dynamics of WO3 must be retrieved in order to correctly evaluate the response time, whereas a direct evaluation from intensity changes for chosen wavelengths may have a high discrepancy. The proposed method gives insight into the optical properties dynamics for sensing elements based on gasochromic nanostructures.
Collapse
Affiliation(s)
- Igor A. Nechepurenko
- Dukhov Research Institute of Automatics (VNIIA), 22 Suschevskaya, 127055 Moscow, Russia; (I.A.N.); (D.P.K.); (V.V.K.); (K.N.A.); (A.V.B.)
- Department of Theoretical Physics, Moscow Institute of Physics and Technology, 9 Institutskiy Pereulok, 141700 Dolgoprudny, Russia
| | - Daria P. Kulikova
- Dukhov Research Institute of Automatics (VNIIA), 22 Suschevskaya, 127055 Moscow, Russia; (I.A.N.); (D.P.K.); (V.V.K.); (K.N.A.); (A.V.B.)
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
| | - Vladimir V. Kornienko
- Dukhov Research Institute of Automatics (VNIIA), 22 Suschevskaya, 127055 Moscow, Russia; (I.A.N.); (D.P.K.); (V.V.K.); (K.N.A.); (A.V.B.)
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
| | - Konstantin N. Afanasiev
- Dukhov Research Institute of Automatics (VNIIA), 22 Suschevskaya, 127055 Moscow, Russia; (I.A.N.); (D.P.K.); (V.V.K.); (K.N.A.); (A.V.B.)
- Institute for Theoretical and Applied Electromagnetics RAS, 13 Izhorskaya, 125412 Moscow, Russia
| | - Landzhik A. Shekoyan
- Department of Theoretical Physics, Adyghe State University, 208 Pervomayskaya, 385000 Maykop, Russia;
| | - Alexander V. Baryshev
- Dukhov Research Institute of Automatics (VNIIA), 22 Suschevskaya, 127055 Moscow, Russia; (I.A.N.); (D.P.K.); (V.V.K.); (K.N.A.); (A.V.B.)
| | - Alexander V. Dorofeenko
- Dukhov Research Institute of Automatics (VNIIA), 22 Suschevskaya, 127055 Moscow, Russia; (I.A.N.); (D.P.K.); (V.V.K.); (K.N.A.); (A.V.B.)
- Department of Theoretical Physics, Moscow Institute of Physics and Technology, 9 Institutskiy Pereulok, 141700 Dolgoprudny, Russia
- Institute for Theoretical and Applied Electromagnetics RAS, 13 Izhorskaya, 125412 Moscow, Russia
- Correspondence:
| |
Collapse
|
102
|
Rabajczyk A, Zielecka M, Popielarczyk T, Sowa T. Nanotechnology in Fire Protection-Application and Requirements. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7849. [PMID: 34947443 PMCID: PMC8707653 DOI: 10.3390/ma14247849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
Nanotechnology is used, to an increasing extent, in practically every aspect of the economy and society. One area where nanotechnology is constantly advancing is fire protection. Nanostructures are found in elements used in direct protection, such as in protective clothing, filters, and helmets. Solutions in the field of nanotechnology are also used in elements reducing the fire risk and increasing the fire safety, such as building materials and structures, paints, coatings, or fire safety equipment (e.g., fire detectors). However, new solutions may also pose a threat to the safety of people and the environment. As a result of operation or combustion and degradation processes, the emission of nano-substances with toxic properties may occur. Therefore, knowledge in this field is necessary, as it allows for the appropriate targeting and use of nanotechnology.
Collapse
Affiliation(s)
- Anna Rabajczyk
- Scientific and Research Center for Fire Protection, National Research Institute, Nadwiślańska 213, 05-420 Jozefow, Poland; (M.Z.); (T.P.); (T.S.)
| | | | | | | |
Collapse
|
103
|
Flexible Low-Temperature Ammonia Gas Sensor Based on Reduced Graphene Oxide and Molybdenum Disulfide. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Owing to harsh working environments and complex industrial requirements, traditional gas sensors are prone to deformation damage, possess a limited detection range, require a high working temperature, and display low reliability, thereby necessitating the development of flexible and low-temperature gas sensors. In this study, we developed a low-temperature polyimide (PI)-based flexible gas sensor comprising a reduced graphene oxide (rGO)/MoS2 composite. The micro-electro-mechanical system technology was used to fabricate Au electrodes on a flexible PI sheet to form a “sandwiched” sensor structure. The rGO/MoS2 composites were synthesized via a one-step hydrothermal method. The gas-sensing response was the highest for the composite comprising 10% rGO. The structure of this material was characterized, and a PI-based flexible gas sensor comprising rGO/MoS2 was fabricated. The optimal working temperature of the sensor was 141 °C, and its response-recovery time was significantly short upon exposure to 50–1500 ppm NH3. Thus, this sensor exhibited high selectivity and a wide NH3 detection range. Furthermore, it possessed the advantages of low power consumption, a short response-recovery time, a low working temperature, flexibility, and variability. Our findings provide a new framework for the development of pollutant sensors that can be utilized in an industrial environment.
Collapse
|
104
|
Ivaskovic P, Ainseba B, Nicolas Y, Toupance T, Tardy P, Thiéry D. Sensing of Airborne Infochemicals for Green Pest Management: What Is the Challenge? ACS Sens 2021; 6:3824-3840. [PMID: 34704740 DOI: 10.1021/acssensors.1c00917] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
One of the biggest global challenges for our societies is to provide natural resources to the rapidly expanding population while maintaining sustainable and ecologically friendly products. The increasing public concern about toxic insecticides has resulted in the rapid development of alternative techniques based on natural infochemicals (ICs). ICs (e.g., pheromones, allelochemicals, volatile organic compounds) are secondary metabolites produced by plants and animals and used as information vectors governing their interactions. Such chemical language is the primary focus of chemical ecology, where behavior-modifying chemicals are used as tools for green pest management. The success of ecological programs highly depends on several factors, including the amount of ICs that enclose the crop, the range of their diffusion, and the uniformity of their application, which makes precise detection and quantification of ICs essential for efficient and profitable pest control. However, the sensing of such molecules remains challenging, and the number of devices able to detect ICs in air is so far limited. In this review, we will present the advances in sensing of ICs including biochemical sensors mimicking the olfactory system, chemical sensors, and sensor arrays (e-noses). We will also present several mathematical models used in integrated pest management to describe how ICs diffuse in the ambient air and how the structure of the odor plume affects the pest dynamics.
Collapse
Affiliation(s)
- Petra Ivaskovic
- UMR 1065, Santé et Agroécologie du Vignoble, INRAE, 33140 Villenave d’Ornon, France
- UMR 5218, Laboratoire de l’Intégration du Matériau au Système, 33405 Talence, France
| | - Bedr’Eddine Ainseba
- UMR 5251, Institut de Mathématiques de Bordeaux, Université de Bordeaux, 33405 Talence, France
| | - Yohann Nicolas
- UMR 5255, Institut des Sciences Moléculaires, Université de Bordeaux, 33405 Talence, France
| | - Thierry Toupance
- UMR 5255, Institut des Sciences Moléculaires, Université de Bordeaux, 33405 Talence, France
| | - Pascal Tardy
- UMR 5218, Laboratoire de l’Intégration du Matériau au Système, 33405 Talence, France
| | - Denis Thiéry
- UMR 1065, Santé et Agroécologie du Vignoble, INRAE, 33140 Villenave d’Ornon, France
| |
Collapse
|
105
|
Dariyal P, Sharma S, Chauhan GS, Singh BP, Dhakate SR. Recent trends in gas sensing via carbon nanomaterials: outlook and challenges. NANOSCALE ADVANCES 2021; 3:6514-6544. [PMID: 36132656 PMCID: PMC9417529 DOI: 10.1039/d1na00707f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The presence of harmful and poisonous gases in the environment can have dangerous effects on human health, and therefore portable, flexible, and highly sensitive gas sensors are in high demand for environmental monitoring, pollution control, and medical diagnosis. Currently, the commercialized sensors are based on metal oxides, which generally operate at high temperatures. Additionally, the desorption of chemisorbed gas molecules is also challenging. Hence, due to the large surface area, high flexibility, and good electrical properties of carbon nanomaterials (CNMs) such as carbon nanotubes, graphene and their derivatives (graphene oxide, reduced graphene oxide, and graphene quantum dots), they are considered to be the most promising chemiresistive sensing materials, where their electrical resistance is affected by their interaction with the analyte. Further, to increase their selectivity, nanocomposites of CNMs with metal oxides, metallic nanoparticles, chalcogenides, and polymers have been studied, which exhibit better sensing capabilities even at room temperature. This review summarizes the state-of-the-art progress in research related to CNMs-based sensors. Moreover, to better understand the analyte adsorption on the surface of CNMs, various sensing mechanisms and dependent sensing parameters are discussed. Further, several existing challenges related to CNMs-based gas sensors are elucidated herein, which can pave the way for future research in this area.
Collapse
Affiliation(s)
- Pallvi Dariyal
- Advanced Carbon Products and Metrology, CSIR-National Physical Laboratory Dr K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Sushant Sharma
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- University of Ulsan, Chemical Engineering Department Ulsan 44610 South Korea
| | - Gaurav Singh Chauhan
- Advanced Carbon Products and Metrology, CSIR-National Physical Laboratory Dr K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Bhanu Pratap Singh
- Advanced Carbon Products and Metrology, CSIR-National Physical Laboratory Dr K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Sanjay R Dhakate
- Advanced Carbon Products and Metrology, CSIR-National Physical Laboratory Dr K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
106
|
John RAB, Ruban Kumar A. A review on resistive-based gas sensors for the detection of volatile organic compounds using metal-oxide nanostructures. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108893] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
107
|
Schröder S, Briano FO, Rödjegård H, Bryzgalov M, Orelund J, Gylfason KB, Stemme G, Niklaus F. A large-area single-filament infrared emitter and its application in a spectroscopic ethanol gas sensing system. MICROSYSTEMS & NANOENGINEERING 2021; 7:87. [PMID: 34721890 PMCID: PMC8548326 DOI: 10.1038/s41378-021-00285-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/20/2021] [Accepted: 07/07/2021] [Indexed: 06/02/2023]
Abstract
Nondispersive infrared (NDIR) spectroscopy is an important technology for highly accurate and maintenance-free sensing of gases, such as ethanol and carbon dioxide. However, NDIR spectroscopy systems are currently too expensive, e.g., for consumer and automotive applications, as the infrared (IR) emitter is a critical but costly component of these systems. Here, we report on a low-cost large-area IR emitter featuring a broadband emission spectrum suitable for small NDIR gas spectroscopy systems. The infrared emitter utilizes Joule heating of a Kanthal (FeCrAl) filament that is integrated in the base substrate using an automated high-speed wire bonding process, enabling simple and rapid formation of a long meander-shaped filament. We describe the critical infrared emitter characteristics, including the effective infrared emission spectrum, thermal frequency response, and power consumption. Finally, we integrate the emitter into a handheld breath alcohol analyzer and show its operation in both laboratory and real-world settings, thereby demonstrating the potential of the emitter for future low-cost optical gas sensor applications.
Collapse
Affiliation(s)
- Stephan Schröder
- KTH Royal Institute of Technology, Micro and Nanosystems, Malvinas väg 10, Stockholm, Sweden
- SenseAir AB, Stationsgatan 12, Delsbo, Sweden
| | | | | | | | | | - Kristinn B. Gylfason
- KTH Royal Institute of Technology, Micro and Nanosystems, Malvinas väg 10, Stockholm, Sweden
| | - Göran Stemme
- KTH Royal Institute of Technology, Micro and Nanosystems, Malvinas väg 10, Stockholm, Sweden
| | - Frank Niklaus
- KTH Royal Institute of Technology, Micro and Nanosystems, Malvinas väg 10, Stockholm, Sweden
| |
Collapse
|
108
|
Rajagopalan AK, Petit C. Material Screening for Gas Sensing Using an Electronic Nose: Gas Sorption Thermodynamic and Kinetic Considerations. ACS Sens 2021; 6:3808-3821. [PMID: 34643372 DOI: 10.1021/acssensors.1c01807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To detect multiple gases in a mixture, one must employ an electronic nose or sensor array, composed of several materials, as a single material cannot resolve all the gases in a mixture accurately. Given the many candidate materials, choosing the right combination of materials to be used in an array is a challenging task. In a sensor whose sensing mechanism depends on a change in mass upon gas adsorption, both the equilibrium and kinetic characteristics of the gas-material system dictate the performance of the array. The overarching goal of this work is twofold. First, we aim to highlight the impact of thermodynamic characteristics of gas-material combination on array performance and to develop a graphical approach to rapidly screen materials. Second, we aim to highlight the need to incorporate the gas sorption kinetic characteristics to provide an accurate picture of the performance of a sensor array. To address these goals, we have developed a computational test bench that incorporates a sensor model and a gas composition estimator. To provide a generic study, we have chosen, as candidate materials, hypothetical materials that exhibit equilibrium characteristics similar to those of metal-organic frameworks. Our computational studies led to key learnings, namely, (1) exploit the shape of the sensor response as a function of gas composition for material screening purposes for gravimetric arrays; (2) incorporate both equilibrium and kinetics for gas composition estimation in a dynamic system; and (3) engineer the array by accounting for the kinetics of the materials, the feed gas flow rate, and the size of the device.
Collapse
Affiliation(s)
| | - Camille Petit
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
109
|
Chang YS, Chen FK, Tsai DC, Kuo BH, Shieu FS. N-doped reduced graphene oxide for room-temperature NO gas sensors. Sci Rep 2021; 11:20719. [PMID: 34671084 PMCID: PMC8528858 DOI: 10.1038/s41598-021-99883-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022] Open
Abstract
In this study, we use nitrogen-doped to improving the gas-sensing properties of reduced graphene oxide. Graphene oxide was prepared according to a modified Hummers' method and then nitrogen-doped reduced graphene oxide (N-rGO) was synthesized by a hydrothermal method using graphene oxide and NH4OH as precursors. The rGO is flat and smooth with a sheet-like morphology while the N-rGO exhibits folded morphology. This type of folding of the surface morphology can increase the gas sensitivity. The N-rGO and the rGO sensors showed n-type and p-type semiconducting behaviors in ambient conditions, respectively, and were responsive to low concentrations of NO gases (< 1000 ppb) at room temperature. The gas-sensing results showed that the N-rGO sensors could detect NO gas at concentrations as low as 400 ppb. The sensitivity of the N-rGO sensor to 1000 ppb NO (1.7) is much better than that of the rGO sensor (0.012). Compared with pure rGO, N-rGO exhibited a higher sensitivity and excellent reproducibility.
Collapse
Affiliation(s)
- Yu-Sung Chang
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan, Republic of China
| | - Feng-Kuan Chen
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan, Republic of China
| | - Du-Cheng Tsai
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan, Republic of China
| | - Bing-Hau Kuo
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan, Republic of China
| | - Fuh-Sheng Shieu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan, Republic of China.
| |
Collapse
|
110
|
Allsop T, Neal R. A Review: Application and Implementation of Optic Fibre Sensors for Gas Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:6755. [PMID: 34695970 PMCID: PMC8537185 DOI: 10.3390/s21206755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
At the present time, there are major concerns regarding global warming and the possible catastrophic influence of greenhouse gases on climate change has spurred the research community to investigate and develop new gas-sensing methods and devices for remote and continuous sensing. Furthermore, there are a myriad of workplaces, such as petrochemical and pharmacological industries, where reliable remote gas tests are needed so that operatives have a safe working environment. The authors have concentrated their efforts on optical fibre sensing of gases, as we became aware of their increasing range of applications. Optical fibre gas sensors are capable of remote sensing, working in various environments, and have the potential to outperform conventional metal oxide semiconductor (MOS) gas sensors. Researchers are studying a number of configurations and mechanisms to detect specific gases and ways to enhance their performances. Evidence is growing that optical fibre gas sensors are superior in a number of ways, and are likely to replace MOS gas sensors in some application areas. All sensors use a transducer to produce chemical selectivity by means of an overlay coating material that yields a binding reaction. A number of different structural designs have been, and are, under investigation. Examples include tilted Bragg gratings and long period gratings embedded in optical fibres, as well as surface plasmon resonance and intra-cavity absorption. The authors believe that a review of optical fibre gas sensing is now timely and appropriate, as it will assist current researchers and encourage research into new photonic methods and techniques.
Collapse
Affiliation(s)
- Thomas Allsop
- School of Engineering and Computer Science, University of Hull, Hull HU6 7RX, UK
- Aston Institute of Photonic Technologies (AIPT), Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ronald Neal
- School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA, UK;
| |
Collapse
|
111
|
Cheema JA, Carraher C, Plank NOV, Travas-Sejdic J, Kralicek A. Insect odorant receptor-based biosensors: Current status and prospects. Biotechnol Adv 2021; 53:107840. [PMID: 34606949 DOI: 10.1016/j.biotechadv.2021.107840] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023]
Abstract
Whilst the senses of vision and hearing have been successfully automated and miniaturized in portable formats (e.g. smart phone), this is yet to be achieved with the sense of smell. This is because the sensing challenge is not trivial as it involves navigating a chemosensory space comprising thousands of volatile organic compounds. Distinct aroma recognition is based on detecting unique combinations of volatile organic compounds. In natural olfactory systems this is accomplished by employing odorant receptors (ORs) with varying specificities, together with combinatorial neural coding mechanisms. Attempts to mimic the remarkable sensitivity and accuracy of natural olfactory systems has therefore been challenging. Current portable chemical sensors for odorant detection are neither sensitive nor selective, prompting research exploring artificial olfactory devices that use natural OR proteins for sensing. Much research activity to develop OR based biosensors has concentrated on mammalian ORs, however, insect ORs have not been explored as extensively. Insects possess an extraordinary sense of smell due to a repertoire of odorant receptors evolved to interpret olfactory cues vital to the insects' survival. The potential of insect ORs as sensing elements is only now being unlocked through recent research efforts to understand their structure, ligand binding mechanisms and development of odorant biosensors. Like their mammalian counterparts, there are many challenges with working with insect ORs. These include expression, purification and presentation of the insect OR in a stable display format compatible with an effective transduction methodology while maintaining OR structure and function. Despite these challenges, significant progress has been demonstrated in developing OR-based biosensors which exploit insect ORs in cells, lipid bilayers, liposomes and nanodisc formats. Ultrasensitive and highly selective detection of volatile organic compounds has been validated by coupling these insect OR display formats with transduction methodologies spanning optical (fluorescence) and electrical (field effect transistors, electrochemical impedance spectroscopy) techniques. This review summarizes the current status of insect OR based biosensors and their future outlook.
Collapse
Affiliation(s)
- Jamal Ahmed Cheema
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand; The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Colm Carraher
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Natalie O V Plank
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand; School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand.
| | - Andrew Kralicek
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand; Scentian Bio Limited, 1c Goring Road, Sandringham, Auckland 1025, New Zealand.
| |
Collapse
|
112
|
Valt M, Caporali M, Fabbri B, Gaiardo A, Krik S, Iacob E, Vanzetti L, Malagù C, Banchelli M, D’Andrea C, Serrano-Ruiz M, Vanni M, Peruzzini M, Guidi V. Air Stable Nickel-Decorated Black Phosphorus and Its Room-Temperature Chemiresistive Gas Sensor Capabilities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44711-44722. [PMID: 34506713 PMCID: PMC8461602 DOI: 10.1021/acsami.1c10763] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 06/13/2023]
Abstract
In the rapidly emerging field of layered two-dimensional functional materials, black phosphorus, the P-counterpart of graphene, is a potential candidate for various applications, e.g., nanoscale optoelectronics, rechargeable ion batteries, electrocatalysts, thermoelectrics, solar cells, and sensors. Black phosphorus has shown superior chemical sensing performance; in particular, it is selective for the detection of NO2, an environmental toxic gas, for which black phosphorus has highlighted high sensitivity at a ppb level. In this work, by applying a multiscale characterization approach, we demonstrated a stability and functionality improvement of nickel-decorated black phosphorus films for gas sensing prepared by a simple, reproducible, and affordable deposition technique. Furthermore, we studied the electrical behavior of these films once implemented as functional layers in gas sensors by exposing them to different gaseous compounds and under different relative humidity conditions. Finally, the influence on sensing performance of nickel nanoparticle dimensions and concentration correlated to the decoration technique and film thickness was investigated.
Collapse
Affiliation(s)
- Matteo Valt
- Department
of Physics and Earth Sciences, University
of Ferrara, Via G. Saragat 1/C, Ferrara 44122, Italy
| | - Maria Caporali
- Italian
National Council for Research - Institute for the Chemistry of OrganoMetallic
Compounds (CNR ICCOM), Via Madonna del Piano 10, Sesto Fiorentino 50019, Italy
| | - Barbara Fabbri
- Department
of Physics and Earth Sciences, University
of Ferrara, Via G. Saragat 1/C, Ferrara 44122, Italy
| | - Andrea Gaiardo
- MNF
- Micro Nano Facility Unit, Sensors and Devices Center, Bruno Kessler Foundation, Via Sommarive 18, Trento 38123, Italy
| | - Soufiane Krik
- Department
of Physics and Earth Sciences, University
of Ferrara, Via G. Saragat 1/C, Ferrara 44122, Italy
- MNF
- Micro Nano Facility Unit, Sensors and Devices Center, Bruno Kessler Foundation, Via Sommarive 18, Trento 38123, Italy
| | - Erica Iacob
- MNF
- Micro Nano Facility Unit, Sensors and Devices Center, Bruno Kessler Foundation, Via Sommarive 18, Trento 38123, Italy
| | - Lia Vanzetti
- MNF
- Micro Nano Facility Unit, Sensors and Devices Center, Bruno Kessler Foundation, Via Sommarive 18, Trento 38123, Italy
| | - Cesare Malagù
- Department
of Physics and Earth Sciences, University
of Ferrara, Via G. Saragat 1/C, Ferrara 44122, Italy
| | - Martina Banchelli
- Italian
National Council for Research, Institute of Applied Physics “Nello
Carrara”, Via Madonna del Piano 10, Sesto Fiorentino 50019, Italy
| | - Cristiano D’Andrea
- Italian
National Council for Research, Institute of Applied Physics “Nello
Carrara”, Via Madonna del Piano 10, Sesto Fiorentino 50019, Italy
| | - Manuel Serrano-Ruiz
- Italian
National Council for Research - Institute for the Chemistry of OrganoMetallic
Compounds (CNR ICCOM), Via Madonna del Piano 10, Sesto Fiorentino 50019, Italy
| | - Matteo Vanni
- Italian
National Council for Research - Institute for the Chemistry of OrganoMetallic
Compounds (CNR ICCOM), Via Madonna del Piano 10, Sesto Fiorentino 50019, Italy
| | - Maurizio Peruzzini
- Italian
National Council for Research - Institute for the Chemistry of OrganoMetallic
Compounds (CNR ICCOM), Via Madonna del Piano 10, Sesto Fiorentino 50019, Italy
| | - Vincenzo Guidi
- Department
of Physics and Earth Sciences, University
of Ferrara, Via G. Saragat 1/C, Ferrara 44122, Italy
| |
Collapse
|
113
|
van der Sar IG, Wijbenga N, Nakshbandi G, Aerts JGJV, Manintveld OC, Wijsenbeek MS, Hellemons ME, Moor CC. The smell of lung disease: a review of the current status of electronic nose technology. Respir Res 2021; 22:246. [PMID: 34535144 PMCID: PMC8448171 DOI: 10.1186/s12931-021-01835-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
There is a need for timely, accurate diagnosis, and personalised management in lung diseases. Exhaled breath reflects inflammatory and metabolic processes in the human body, especially in the lungs. The analysis of exhaled breath using electronic nose (eNose) technology has gained increasing attention in the past years. This technique has great potential to be used in clinical practice as a real-time non-invasive diagnostic tool, and for monitoring disease course and therapeutic effects. To date, multiple eNoses have been developed and evaluated in clinical studies across a wide spectrum of lung diseases, mainly for diagnostic purposes. Heterogeneity in study design, analysis techniques, and differences between eNose devices currently hamper generalization and comparison of study results. Moreover, many pilot studies have been performed, while validation and implementation studies are scarce. These studies are needed before implementation in clinical practice can be realised. This review summarises the technical aspects of available eNose devices and the available evidence for clinical application of eNose technology in different lung diseases. Furthermore, recommendations for future research to pave the way for clinical implementation of eNose technology are provided.
Collapse
Affiliation(s)
- I G van der Sar
- Department of Respiratory Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - N Wijbenga
- Department of Respiratory Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - G Nakshbandi
- Department of Respiratory Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - J G J V Aerts
- Department of Respiratory Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - O C Manintveld
- Department of Cardiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - M S Wijsenbeek
- Department of Respiratory Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - M E Hellemons
- Department of Respiratory Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - C C Moor
- Department of Respiratory Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
114
|
Keerthana L, Ahmad Dar M, Dharmalingam G. Plasmonic Au-Metal Oxide Nanocomposites for High-Temperature and Harsh Environment Sensing Applications. Chem Asian J 2021; 16:3558-3584. [PMID: 34510778 DOI: 10.1002/asia.202100885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Noble metal nanoparticles like Au have long been admired for their brilliant colour, significantly influenced by plasmon resonance. When embedded in metal oxides, they exhibit unique properties which make them an excellent choice for sensing in high-temperature and harsh environment atmospheres. In this review, the various morphologies of Au nanoparticles (AuNPs) used in combination with metal oxides for sensing gases at temperatures greater than 300 °C are discussed. Theoretical discussions on the plasmon resonance properties of AuNPs as well as computational techniques like finite difference time domain (FDTD), are often used for understanding and correlating their extinction spectra and are briefed initially. The sensing properties of AuNPs embedded on a metal oxide matrix (such as TiO2 , SiO2 , NiO etc) for quantifying multiple analytes are then elucidated. The effect of high temperature as well as gas environments including corrosive atmospheres on such nanocomposites, and the different approaches to comprehend them are presented. Finally, techniques and methods to improve on the challenges associated with the realization and integration such Au-metal oxide plasmonic nanostructures for applications such as combustion monitoring, fuel cells, and other applications are discussed.
Collapse
Affiliation(s)
- L Keerthana
- Plasmonic nanomaterials laboratory, PSG Institute of Advanced Studies, Coimbatore, 641004, India
| | - Mushtaq Ahmad Dar
- Center of Excellence for Research in Engineering (CEREM), College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | | |
Collapse
|
115
|
Gantzler N, Henle EA, Thallapally PK, Fern XZ, Simon CM. Non-injective gas sensor arrays: identifying undetectable composition changes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:464003. [PMID: 34404041 DOI: 10.1088/1361-648x/ac1e49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) are nanoporous materials with good prospects as recognition elements for gas sensors owing to their adsorptive sensitivity and selectivity. A gravimetric, MOF-based sensor functions by measuring the mass of gas adsorbed in a MOF. Changes in the gas composition are expected to produce detectable changes in the mass of gas adsorbed in the MOF. In practical settings, multiple components of the gas adsorb into the MOF and contribute to the sensor response. As a result, there are typically many distinct gas compositions that produce the same single-sensor response. The response vector of a gas sensor array places multiple constraints on the gas composition. Still, if the number of degrees of freedom in the gas composition is greater than the number of MOFs in the sensor array, the map from gas compositions to response vectors will be non-injective (many-to-one). Here, we outline a mathematical method to determine undetectable changes in gas composition to which non-injective gas sensor arrays are unresponsive. This is important for understanding their limitations and vulnerabilities. We focus on gravimetric, MOF-based gas sensor arrays. Our method relies on a mixed-gas adsorption model in the MOFs comprising the sensor array, which gives the mass of gas adsorbed in each MOF as a function of the gas composition. The singular value decomposition of the Jacobian matrix of the adsorption model uncovers (i) the unresponsive directions and (ii) the responsive directions, ranked by sensitivity, in gas composition space. We illustrate the identification of unresponsive subspaces and ranked responsive directions for gas sensor arrays based on Co-MOF-74 and HKUST-1 aimed at quantitative sensing of CH4/N2/CO2/C2H6mixtures relevant to natural gas sensing.
Collapse
Affiliation(s)
- Nickolas Gantzler
- Department of Physics, Oregon State University, Corvallis, OR, United States of America
| | - E Adrian Henle
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, United States of America
| | | | - Xiaoli Z Fern
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, United States of America
| | - Cory M Simon
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
116
|
Madhaiyan G, Sun AT, Zan HW, Meng HF, Horng SF, Chen LY, Hung HW. Solution-Processed Chloroaluminum Phthalocyanine (ClAlPc) Ammonia Gas Sensor with Vertical Organic Porous Diodes. SENSORS (BASEL, SWITZERLAND) 2021; 21:5783. [PMID: 34502673 PMCID: PMC8433672 DOI: 10.3390/s21175783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 02/03/2023]
Abstract
In this research work, the gas sensing properties of halogenated chloroaluminum phthalocyanine (ClAlPc) thin films were studied at room temperature. We fabricated an air-stable ClAlPc gas sensor based on a vertical organic diode (VOD) with a porous top electrode by the solution process method. The surface morphology of the solution-processed ClAlPc thin film was examined by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The proposed ClAlPc-based VOD sensor can detect ammonia (NH3) gas at the ppb level (100~1000 ppb) at room temperature. Additionally, the ClAlPc sensor was highly selective towards NH3 gas compared to other interfering gases (NO2, ACE, NO, H2S, and CO). In addition, the device lifetime was tested by storing the device at ambient conditions. The effect of relative humidity (RH) on the ClAlPc NH3 gas sensor was also explored. The aim of this study is to extend these findings on halogenated phthalocyanine-based materials to practical electronic nose applications in the future.
Collapse
Affiliation(s)
- Govindsamy Madhaiyan
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - An-Ting Sun
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30010, Taiwan; (A.-T.S.); (S.-F.H.)
| | - Hsiao-Wen Zan
- Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer, Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Hsin-Fei Meng
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Sheng-Fu Horng
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30010, Taiwan; (A.-T.S.); (S.-F.H.)
| | - Li-Yin Chen
- Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer, Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Hsiao-Wen Hung
- Intelligent Energy-Saving Systems Division, Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 30010, Taiwan;
| |
Collapse
|
117
|
Dănilă O, Mănăilă-Maximean D, Bărar A, Loiko VA. Non-Layered Gold-Silicon and All-Silicon Frequency-Selective Metasurfaces for Potential Mid-Infrared Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2021; 21:5600. [PMID: 34451042 PMCID: PMC8402282 DOI: 10.3390/s21165600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
We report simulations on the spectral behavior of non-layered gold-silicon and all-silicon frequency-selective metasurfaces in an asymmetric element configuration in the mid-infrared spectral window of 5-5.8 μm. The non-layered layout is experimentally feasible due to recent technological advances such as nano-imprint and nano-stencil lithography, and the spectral window was chosen due to the multitude of applications in sensing and imaging. The architecture exhibits significant resonance in the window of interest as well as extended tunability by means of variation of cell element sizes and relative coordinates. The results indicate that the proposed metasurface architecture is a viable candidate for mid-infrared absorbers, sensors and imaging systems.
Collapse
Affiliation(s)
- Octavian Dănilă
- Physics Department, ‘Politehnica’ University of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Doina Mănăilă-Maximean
- Physics Department, ‘Politehnica’ University of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Ana Bărar
- Electronic Technology and Reliability Department, ‘Politehnica’ University of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Valery A. Loiko
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68-2 Nezavisimosti Ave., 220072 Minsk, Belarus;
| |
Collapse
|
118
|
Jia X, Roels J, Baets R, Roelkens G. A Miniaturised, Fully Integrated NDIR CO 2 Sensor On-Chip. SENSORS (BASEL, SWITZERLAND) 2021; 21:5347. [PMID: 34450789 PMCID: PMC8402227 DOI: 10.3390/s21165347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/23/2022]
Abstract
In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor is based on an integrating cylinder with access waveguides. A mid-IR LED is used as the optical source, and two mid-IR photodiodes are used as detectors. The fully integrated sensor is formed by wafer bonding of two silicon substrates. The fabricated sensor was evaluated by performing a CO2 concentration measurement, showing a limit of detection of ∼750 ppm. The cross-sensitivity of the sensor to water vapor was studied both experimentally and numerically. No notable water interference was observed in the experimental characterizations. Numerical simulations showed that the transmission change induced by water vapor absorption is much smaller than the detection limit of the sensor. A qualitative analysis on the long term stability of the sensor revealed that the long term stability of the sensor is subject to the temperature fluctuations in the laboratory. The use of relatively cheap LED and photodiodes bare chips, together with the wafer-level fabrication process of the sensor provides the potential for a low cost, highly miniaturized NDIR CO2 sensor.
Collapse
Affiliation(s)
- Xiaoning Jia
- Photonics Research Group, INTEC, Ghent University-Imec, Technologiepark 126, 9052 Gent, Belgium; (R.B.); (G.R.)
- Center for Nano- and Biophotonics, Ghent University, 9000 Gent, Belgium
| | - Joris Roels
- Melexis Technologies NV, Transportstraat 1, 3980 Tessenderlo, Belgium;
| | - Roel Baets
- Photonics Research Group, INTEC, Ghent University-Imec, Technologiepark 126, 9052 Gent, Belgium; (R.B.); (G.R.)
- Center for Nano- and Biophotonics, Ghent University, 9000 Gent, Belgium
| | - Gunther Roelkens
- Photonics Research Group, INTEC, Ghent University-Imec, Technologiepark 126, 9052 Gent, Belgium; (R.B.); (G.R.)
- Center for Nano- and Biophotonics, Ghent University, 9000 Gent, Belgium
| |
Collapse
|
119
|
The UV Effect on the Chemiresistive Response of ZnO Nanostructures to Isopropanol and Benzene at PPM Concentrations in Mixture with Dry and Wet Air. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Towards the development of low-power miniature gas detectors, there is a high interest in the research of light-activated metal oxide gas sensors capable to operate at room temperature (RT). Herein, we study ZnO nanostructures grown by the electrochemical deposition method over Si/SiO2 substrates equipped by multiple Pt electrodes to serve as on-chip gas monitors and thoroughly estimate its chemiresistive performance upon exposing to two model VOCs, isopropanol and benzene, in a wide operating temperature range, from RT to 350 °C, and LED-powered UV illumination, 380 nm wavelength; the dry air and humid-enriched, 50 rel. %, air are employed as a background. We show that the UV activation allows one to get a distinctive chemiresistive signal of the ZnO sensor to isopropanol at RT regardless of the interfering presence of H2O vapors. On the contrary, the benzene vapors do not react with UV-illuminated ZnO at RT under dry air while the humidity’s appearance gives an opportunity to detect this gas. Still, both VOCs are well detected by the ZnO sensor under heating at a 200–350 °C range independently on additional UV exciting. We employ quantum chemical calculations to explain the differences between these two VOCs’ interactions with ZnO surface by a remarkable distinction of the binding energies characterizing single molecules, which is −0.44 eV in the case of isopropanol and −3.67 eV in the case of benzene. The full covering of a ZnO supercell by H2O molecules taken for the effect’s estimation shifts the binding energies to −0.50 eV and −0.72 eV, respectively. This theory insight supports the experimental observation that benzene could not react with ZnO surface at RT under employed LED UV without humidity’s presence, indifference to isopropanol.
Collapse
|
120
|
Sensing and Delineating Mixed-VOC Composition in the Air Using a Single Metal Oxide Sensor. CLEAN TECHNOLOGIES 2021. [DOI: 10.3390/cleantechnol3030031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Monitoring volatile organic compounds (VOCs) places a crucial role in environmental pollutants control and indoor air quality. In this study, a metal-oxide (MOx) sensor detector (used in a commercially available monitor) was employed to delineate the composition of air containing three common VOCs (ethanol, acetone, and hexane) under various concentrations. Experiments with a single component and double components were conducted to investigate how the solvents interact with the metal oxide sensor. The experimental results revealed that the affinity between VOC and sensor was in the following order: acetone > ethanol > n-hexane. A mathematical model was developed, based on the experimental findings and data analysis, to convert the output resistance value of the sensor into concentration values, which, in turn, can be used to calculate a VOC-based air quality index. Empirical equations were established based on inferences of vapour composition versus resistance trends, and on an approach of using original and diluted air samples to generate two sets of resistance data per sample. The calibration of numerous model parameters allowed matching simulated curves to measured data. Therefore, the predictive mathematical model enabled quantifying the total concentration of sensed VOCs, in addition to estimating the VOC composition. This first attempt to obtain semiquantitative data from a single MOx sensor, despite the remaining selectivity challenges, is aimed at expanding the capability of mobile air pollutants monitoring devices.
Collapse
|
121
|
Chaabene M, Gassoumi B, Soury R, Ghalla H, Jabli M, Ben Chaâbane R, Allouche AR. Insights into theoretical detection of CO2, NO, CO, O2, and O3 gases molecules using Zinc phthalocyanine with peripheral mono and tetra quinoleinoxy substituents: Molecular geometries, Electronic properties, and Vibrational analysis. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
122
|
Kwiatkowski A, Drozdowska K, Smulko J. Embedded gas sensing setup for air samples analysis. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:074102. [PMID: 34340402 DOI: 10.1063/5.0050445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
This paper describes a measurement setup (eNose) designed to analyze air samples containing various volatile organic compounds (VOCs). The setup utilizes a set of resistive gas sensors of divergent gas selectivity and sensitivity. Some of the applied sensors are commercially available and were proposed recently to reduce their consumed energy. The sensors detect various VOCs at sensitivities determined by metal oxide sensors' technology and operating conditions. The setup can utilize prototype gas sensors, made of resistive layers of different compositions, as well. Their properties can be modulated by selecting operating temperature or using UV light irradiation. The unit is controlled by an embedded system M5Stack Core2 ESP32 IoT. We used this development kit to program the measurement procedure and data recording fastly. The setup utilizes an aluminum gas chamber of a volume of 220 ml, a set of electrical valves to introduce there an air sample with the help of an electrical micropump. The handling of the setup was simplified to a selection of a few operations by touch screen only without a necessity of extra training. The recorded data are saved in a memory card for further processing. The evolved setup can be upgraded to apply more advanced data processing by utilizing WiFi or Bluetooth connection. The control program was prepared using the Arduino IDE software environment and can be further advanced with ease. The applied materials and the established measurement procedure can use various air samples, including exhaled breath samples for patients' screening check-ups. We applied the same time of 10 min for response and recovery, acceptable for practical use.
Collapse
Affiliation(s)
- Andrzej Kwiatkowski
- Faculty of Electronics, Telecommunications and Informatics, and Digital Technologies Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Katarzyna Drozdowska
- Faculty of Electronics, Telecommunications and Informatics, and Digital Technologies Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Janusz Smulko
- Faculty of Electronics, Telecommunications and Informatics, and Digital Technologies Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
123
|
Kong Y, Li Y, Cui X, Su L, Ma D, Lai T, Yao L, Xiao X, Wang Y. SnO2 nanostructured materials used as gas sensors for the detection of hazardous and flammable gases: A review. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
124
|
Suresh R, Anithaa VS, Shankar R, Subramaniam V. A first principle study of heme molecule as an active adsorbent for halogenated hydrocarbons. J Mol Model 2021; 27:209. [PMID: 34173064 DOI: 10.1007/s00894-021-04821-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/09/2021] [Indexed: 11/27/2022]
Abstract
Heme, a biomolecule with complex structure and unique properties and strong adsorption of oxygen, is utilized as an adsorbing material for haloalkene gas molecules. It has been systematically investigated employing density functional theory. Among the haloalkene gases chosen in the present study, the interaction energy is maximum for CDFM (-10.66 kcal/mol) and lowest for TFM (-5.02 kcal/mol). The calculated bond stabilization energy for heme-haloalkene complexes correlates with findings of interaction energy. The noncovalent interaction between heme and haloalkenes is confirmed from the topological analysis. The energy gap values decrease on adsorption of haloalkenes along with a decrease in reactivity of the complexes.
Collapse
Affiliation(s)
- Rahul Suresh
- Department of Physics, Bharathiar University, Coimbatore, India
| | - V S Anithaa
- Department of Physics, Bharathiar University, Coimbatore, India
| | - R Shankar
- Department of Physics, Bharathiar University, Coimbatore, India
| | | |
Collapse
|
125
|
Rahmati S, Doherty W, Amani Babadi A, Akmal Che Mansor MS, Julkapli NM, Hessel V, Ostrikov K(K. Gold-Carbon Nanocomposites for Environmental Contaminant Sensing. MICROMACHINES 2021; 12:mi12060719. [PMID: 34205255 PMCID: PMC8234806 DOI: 10.3390/mi12060719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022]
Abstract
The environmental crisis, due to the rapid growth of the world population and globalisation, is a serious concern of this century. Nanoscience and nanotechnology play an important role in addressing a wide range of environmental issues with innovative and successful solutions. Identification and control of emerging chemical contaminants have received substantial interest in recent years. As a result, there is a need for reliable and rapid analytical tools capable of performing sample analysis with high sensitivity, broad selectivity, desired stability, and minimal sample handling for the detection, degradation, and removal of hazardous contaminants. In this review, various gold–carbon nanocomposites-based sensors/biosensors that have been developed thus far are explored. The electrochemical platforms, synthesis, diverse applications, and effective monitoring of environmental pollutants are investigated comparatively.
Collapse
Affiliation(s)
- Shahrooz Rahmati
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane 4000, Australia;
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology (QUT), Brisbane 4000, Australia;
- Centre for Material Science, Queensland University of Technology (QUT), Queensland, Brisbane, Brisbane 4000, Australia
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Graduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence: (S.R.); (N.M.J.)
| | - William Doherty
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology (QUT), Brisbane 4000, Australia;
| | - Arman Amani Babadi
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Muhamad Syamim Akmal Che Mansor
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Graduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nurhidayatullaili Muhd Julkapli
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Graduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence: (S.R.); (N.M.J.)
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia;
- School of Engineering, University of Warwick, Library Rd, Coventry CV4 7AL, UK
| | - Kostya (Ken) Ostrikov
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane 4000, Australia;
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology (QUT), Brisbane 4000, Australia;
- Centre for Material Science, Queensland University of Technology (QUT), Queensland, Brisbane, Brisbane 4000, Australia
| |
Collapse
|
126
|
Gorokh G, Bogomazova N, Taleb A, Zhylinski V, Galkovsky T, Zakhlebayeva A, Lozovenko A, Iji M, Fedosenko V, Tolstoy V. Spatially Ordered Matrix of Nanostructured Tin-Tungsten Oxides Nanocomposites Formed by Ionic Layer Deposition for Gas Sensing. SENSORS 2021; 21:s21124169. [PMID: 34204562 PMCID: PMC8233897 DOI: 10.3390/s21124169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022]
Abstract
The process of layer-by-layer ionic deposition of tin-tungsten oxide films on smooth silicon substrates and nanoporous anodic alumina matrices has been studied. To achieve the film deposition, solutions containing cationic SnF2 or SnCl2 and anionic Na2WO4 or (NH4)2O·WO3 precursors have been used. The effect of the solution compositions on the films deposition rates, morphology, composition, and properties was investigated. Possible mechanisms of tin-tungsten oxide films deposition into the pores and on the surface of anodic alumina are discussed. The electro-physical and gas-sensitive properties of nanostructured SnxWyOz films have been investigated. The prepared nanocomposites exhibit stable semiconductor properties characterized by high resistance and low temperature coefficient of electrical resistance of about 1.6 × 10−3 K−1. The sensitivity of the SnxWyOz films to 2 and 10 ppm concentrations of ammonia at 523 K was 0.35 and 1.17, respectively. At concentrations of 1 and 2 ppm of nitrogen dioxide, the sensitivity was 0.48 and 1.4, respectively, at a temperature of 473 K. At the temperature of 573 K, the sensitivity of 1.3 was obtained for 100 ppm of ethanol. The prepared nanostructured tin-tungsten oxide films showed promising gas-sensitivity, which makes them a good candidate for the manufacturing of gas sensors with high sensitivity and low power consumption.
Collapse
Affiliation(s)
- Gennady Gorokh
- R&D Laboratory of Nanotechnologies, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus; (G.G.); (A.Z.); (A.L.); (M.I.); (V.F.)
| | - Natalia Bogomazova
- Department of Chemistry, Technology of Electrochemical Production and Electronic Materials, Belarusian State Technological University, 220006 Minsk, Belarus; (N.B.); (V.Z.); (T.G.)
| | - Abdelhafed Taleb
- Chimie ParisTech, Institut de Recherche de Chimie Paris, Paris Science & Lettres (PSL) University—CNRS, 75005 Paris, France
- Sorbonne Université, 75231 Paris, France
- Correspondence: ; Tel.: +33-1-85-78-41-97
| | - Valery Zhylinski
- Department of Chemistry, Technology of Electrochemical Production and Electronic Materials, Belarusian State Technological University, 220006 Minsk, Belarus; (N.B.); (V.Z.); (T.G.)
| | - Timur Galkovsky
- Department of Chemistry, Technology of Electrochemical Production and Electronic Materials, Belarusian State Technological University, 220006 Minsk, Belarus; (N.B.); (V.Z.); (T.G.)
| | - Anna Zakhlebayeva
- R&D Laboratory of Nanotechnologies, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus; (G.G.); (A.Z.); (A.L.); (M.I.); (V.F.)
| | - Andrei Lozovenko
- R&D Laboratory of Nanotechnologies, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus; (G.G.); (A.Z.); (A.L.); (M.I.); (V.F.)
| | - Michael Iji
- R&D Laboratory of Nanotechnologies, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus; (G.G.); (A.Z.); (A.L.); (M.I.); (V.F.)
| | - Vladimir Fedosenko
- R&D Laboratory of Nanotechnologies, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus; (G.G.); (A.Z.); (A.L.); (M.I.); (V.F.)
| | - Valeri Tolstoy
- R&D Laboratory of Programmable Layer-by-Layer Synthesis of Multinanolayers of Hybrid Compounds, St. Petersburg University, 199034 St. Petersburg, Russia;
| |
Collapse
|
127
|
Kalidoss R, Kothalam R, Manikandan A, Jaganathan SK, Khan A, Asiri AM. Socio-economic demands and challenges for non-invasive disease diagnosis through a portable breathalyzer by the incorporation of 2D nanosheets and SMO nanocomposites. RSC Adv 2021; 11:21216-21234. [PMID: 35478818 PMCID: PMC9034087 DOI: 10.1039/d1ra02554f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/23/2021] [Indexed: 12/15/2022] Open
Abstract
Breath analysis for non-invasive clinical diagnostics and treatment progression has penetrated the research community owing to the technological developments in novel sensing nanomaterials. The trace level selective detection of volatile organic compounds (VOCs) in breath facilitates the study of physiological disorder and real-time health monitoring. This review focuses on advancements in chemiresistive gas sensor technology for biomarker detection associated with different diseases. Emphasis is placed on selective biomarker detection by semiconducting metal oxide (SMO) nanostructures, 2-dimensional nanomaterials (2DMs) and nanocomposites through various optimization strategies and sensing mechanisms. Their synergistic properties for incorporation in a portable breathalyzer have been elucidated. Furthermore, the socio-economic demands of a breathalyzer in terms of recent establishment of startups globally and challenges of a breathalyzer are critically reviewed. This initiative is aimed at highlighting the challenges and scope for improvement to realize a high performance chemiresistive gas sensor for non-invasive disease diagnosis. Breath analysis for non-invasive clinical diagnostics and treatment progression has penetrated the research community owing to the technological developments in novel sensing nanomaterials.![]()
Collapse
Affiliation(s)
- Ramji Kalidoss
- Department of Biomedical Engineering, Bharath Institute of Higher Education and Research Selaiyur Tamil Nadu 600 073 India +91-9840-959832
| | - Radhakrishnan Kothalam
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603 203 India
| | - A Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research Selaiyur Tamil Nadu 600 073 India.,Centre for Nanoscience and Nanotechnology, Bharath Institute of Higher Education and Research Selaiyur Tamil Nadu 600 073 India
| | - Saravana Kumar Jaganathan
- Bionanotechnology Research Group, Ton Duc Thang University Ho Chi Minh City Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam.,Department of Engineering, Faculty of Science and Engineering, University of Hull HU6 7RX UK
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
128
|
Goff A, Aukarasereenont P, Nguyen CK, Grant R, Syed N, Zavabeti A, Elbourne A, Daeneke T. An exploration into two-dimensional metal oxides, and other 2D materials, synthesised via liquid metal printing and transfer techniques. Dalton Trans 2021; 50:7513-7526. [PMID: 33977926 DOI: 10.1039/d0dt04364h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two-dimensional (2D) metal oxides can be difficult to synthesise, and scaling up production using traditional methods is challenging. However, a new liquid metal-based technique, that utilises both "top-down" and "bottom-up" processes, has recently been introduced. These liquids oxidise to form an oxide surface "skin" which may be exfoliated as a 2D flake and subsequently used in various electronic devices and chemical reactions.
Collapse
Affiliation(s)
- Abigail Goff
- School of Engineering, RMIT University, Melbourne, VIC, 3001 Australia.
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Zhao P, Ho HL, Jin W, Fan S, Gao S, Wang Y. Hollow-core fiber photothermal methane sensor with temperature compensation. OPTICS LETTERS 2021; 46:2762-2765. [PMID: 34061107 DOI: 10.1364/ol.426812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
We demonstrate a high sensitivity all-fiber spectroscopic methane sensor based on photothermal interferometry. With a 2.4-m-long anti-resonant hollow-core fiber, a 1654 nm distributed feedback laser, and a Raman fiber amplifier, a noise-equivalent concentration of ${\sim}{4.3}\;{\rm ppb}$ methane is achieved at the room temperature and pressure of ${\sim}{1}\;{\rm bar}$. The effects of temperature on the photothermal phase modulation as well as the stability of the interferometer are studied. By introducing a temperature-dependent compensation factor and stabilizing the interferometer at quadrature, signal instability of ${\sim}{2.1}\%$ is demonstrated for temperature variation from 296 to 373 K.
Collapse
|
130
|
González E, Casanova-Chafer J, Alagh A, Romero A, Vilanova X, Acosta S, Cossement D, Bittencourt C, Llobet E. On the Use of Pulsed UV or Visible Light Activated Gas Sensing of Reducing and Oxidising Species with WO 3 and WS 2 Nanomaterials. SENSORS 2021; 21:s21113736. [PMID: 34072115 PMCID: PMC8199237 DOI: 10.3390/s21113736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/02/2022]
Abstract
This paper presents a methodology to quantify oxidizing and reducing gases using n-type and p-type chemiresistive sensors, respectively. Low temperature sensor heating with pulsed UV or visible light modulation is used together with the application of the fast Fourier transform (FFT) to extract sensor response features. These features are further processed via principal component analysis (PCA) and principal component regression (PCR) for achieving gas discrimination and building concentration prediction models with R2 values up to 98% and RMSE values as low as 5% for the total gas concentration range studied. UV and visible light were used to study the influence of the light wavelength in the prediction model performance. We demonstrate that n-type and p-type sensors need to be used together for achieving good quantification of oxidizing and reducing species, respectively, since the semiconductor type defines the prediction model’s effectiveness towards an oxidizing or reducing gas. The presented method reduces considerably the total time needed to quantify the gas concentration compared with the results obtained in a previous work. The use of visible light LEDs for performing pulsed light modulation enhances system performance and considerably reduces cost in comparison to previously reported UV light-based approaches.
Collapse
Affiliation(s)
- Ernesto González
- Electronic Engineering, Uiversitat Rovira i Virgili, 43007 Tarragona, Spain; (E.G.); (J.C.-C.); (A.A.); (A.R.); (E.L.)
| | - Juan Casanova-Chafer
- Electronic Engineering, Uiversitat Rovira i Virgili, 43007 Tarragona, Spain; (E.G.); (J.C.-C.); (A.A.); (A.R.); (E.L.)
| | - Aanchal Alagh
- Electronic Engineering, Uiversitat Rovira i Virgili, 43007 Tarragona, Spain; (E.G.); (J.C.-C.); (A.A.); (A.R.); (E.L.)
| | - Alfonso Romero
- Electronic Engineering, Uiversitat Rovira i Virgili, 43007 Tarragona, Spain; (E.G.); (J.C.-C.); (A.A.); (A.R.); (E.L.)
| | - Xavier Vilanova
- Electronic Engineering, Uiversitat Rovira i Virgili, 43007 Tarragona, Spain; (E.G.); (J.C.-C.); (A.A.); (A.R.); (E.L.)
- Correspondence: ; Tel.: +34-977-558-502
| | - Selene Acosta
- Chimie des Interactions Plasma e Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, 7000 Mons, Belgium; (S.A.); (C.B.)
| | | | - Carla Bittencourt
- Chimie des Interactions Plasma e Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, 7000 Mons, Belgium; (S.A.); (C.B.)
| | - Eduard Llobet
- Electronic Engineering, Uiversitat Rovira i Virgili, 43007 Tarragona, Spain; (E.G.); (J.C.-C.); (A.A.); (A.R.); (E.L.)
| |
Collapse
|
131
|
Cao J, Chen Q, Wang X, Zhang Q, Yu HD, Huang X, Huang W. Recent Development of Gas Sensing Platforms Based on 2D Atomic Crystals. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9863038. [PMID: 33982003 PMCID: PMC8086560 DOI: 10.34133/2021/9863038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/22/2021] [Indexed: 11/24/2022]
Abstract
Sensors, capable of detecting trace amounts of gas molecules or volatile organic compounds (VOCs), are in great demand for environmental monitoring, food safety, health diagnostics, and national defense. In the era of the Internet of Things (IoT) and big data, the requirements on gas sensors, in addition to sensitivity and selectivity, have been increasingly placed on sensor simplicity, room temperature operation, ease for integration, and flexibility. The key to meet these requirements is the development of high-performance gas sensing materials. Two-dimensional (2D) atomic crystals, emerged after graphene, have demonstrated a number of attractive properties that are beneficial to gas sensing, such as the versatile and tunable electronic/optoelectronic properties of metal chalcogenides (MCs), the rich surface chemistry and good conductivity of MXenes, and the anisotropic structural and electronic properties of black phosphorus (BP). While most gas sensors based on 2D atomic crystals have been incorporated in the setup of a chemiresistor, field-effect transistor (FET), quartz crystal microbalance (QCM), or optical fiber, their working principles that involve gas adsorption, charge transfer, surface reaction, mass loading, and/or change of the refractive index vary from material to material. Understanding the gas-solid interaction and the subsequent signal transduction pathways is essential not only for improving the performance of existing sensing materials but also for searching new and advanced ones. In this review, we aim to provide an overview of the recent development of gas sensors based on various 2D atomic crystals from both the experimental and theoretical investigations. We will particularly focus on the sensing mechanisms and working principles of the related sensors, as well as approaches to enhance their sensing performances. Finally, we summarize the whole article and provide future perspectives for the development of gas sensors with 2D materials.
Collapse
Affiliation(s)
- Jiacheng Cao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qian Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xiaoshan Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qiang Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Hai-Dong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Xiao Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| |
Collapse
|
132
|
Marikutsa A, Rumyantseva M, Konstantinova EA, Gaskov A. The Key Role of Active Sites in the Development of Selective Metal Oxide Sensor Materials. SENSORS 2021; 21:s21072554. [PMID: 33917353 PMCID: PMC8061888 DOI: 10.3390/s21072554] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/28/2022]
Abstract
Development of sensor materials based on metal oxide semiconductors (MOS) for selective gas sensors is challenging for the tasks of air quality monitoring, early fire detection, gas leaks search, breath analysis, etc. An extensive range of sensor materials has been elaborated, but no consistent guidelines can be found for choosing a material composition targeting the selective detection of specific gases. Fundamental relations between material composition and sensing behavior have not been unambiguously established. In the present review, we summarize our recent works on the research of active sites and gas sensing behavior of n-type semiconductor metal oxides with different composition (simple oxides ZnO, In2O3, SnO2, WO3; mixed-metal oxides BaSnO3, Bi2WO6), and functionalized by catalytic noble metals (Ru, Pd, Au). The materials were variously characterized. The composition, metal-oxygen bonding, microstructure, active sites, sensing behavior, and interaction routes with gases (CO, NH3, SO2, VOC, NO2) were examined. The key role of active sites in determining the selectivity of sensor materials is substantiated. It was shown that the metal-oxygen bond energy of the MOS correlates with the surface acidity and the concentration of surface oxygen species and oxygen vacancies, which control the adsorption and redox conversion of analyte gas molecules. The effects of cations in mixed-metal oxides on the sensitivity and selectivity of BaSnO3 and Bi2WO6 to SO2 and VOCs, respectively, are rationalized. The determining role of catalytic noble metals in oxidation of reducing analyte gases and the impact of acid sites of MOS to gas adsorption are demonstrated.
Collapse
Affiliation(s)
- Artem Marikutsa
- Chemistry Department, Moscow State University, 119991 Moscow, Russia; (M.R.); (A.G.)
- Correspondence:
| | - Marina Rumyantseva
- Chemistry Department, Moscow State University, 119991 Moscow, Russia; (M.R.); (A.G.)
| | - Elizaveta A. Konstantinova
- Physics Department, Moscow State University, 119991 Moscow, Russia;
- Faculty of Nano-, Bio-, Information and Cognitive Technologies, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Alexander Gaskov
- Chemistry Department, Moscow State University, 119991 Moscow, Russia; (M.R.); (A.G.)
| |
Collapse
|
133
|
Abstract
The evolution of low-cost sensors (LCSs) has made the spatio-temporal mapping of indoor air quality (IAQ) possible in real-time but the availability of a diverse set of LCSs make their selection challenging. Converting individual sensors into a sensing network requires the knowledge of diverse research disciplines, which we aim to bring together by making IAQ an advanced feature of smart homes. The aim of this review is to discuss the advanced home automation technologies for the monitoring and control of IAQ through networked air pollution LCSs. The key steps that can allow transforming conventional homes into smart homes are sensor selection, deployment strategies, data processing, and development of predictive models. A detailed synthesis of air pollution LCSs allowed us to summarise their advantages and drawbacks for spatio-temporal mapping of IAQ. We concluded that the performance evaluation of LCSs under controlled laboratory conditions prior to deployment is recommended for quality assurance/control (QA/QC), however, routine calibration or implementing statistical techniques during operational times, especially during long-term monitoring, is required for a network of sensors. The deployment height of sensors could vary purposefully as per location and exposure height of the occupants inside home environments for a spatio-temporal mapping. Appropriate data processing tools are needed to handle a huge amount of multivariate data to automate pre-/post-processing tasks, leading to more scalable, reliable and adaptable solutions. The review also showed the potential of using machine learning technique for predicting spatio-temporal IAQ in LCS networked-systems.
Collapse
|
134
|
Gautam YK, Sharma K, Tyagi S, Ambedkar AK, Chaudhary M, Pal Singh B. Nanostructured metal oxide semiconductor-based sensors for greenhouse gas detection: progress and challenges. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201324. [PMID: 33959316 PMCID: PMC8074944 DOI: 10.1098/rsos.201324] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/10/2021] [Indexed: 05/25/2023]
Abstract
Climate change and global warming have been two massive concerns for the scientific community during the last few decades. Anthropogenic emissions of greenhouse gases (GHGs) have greatly amplified the level of greenhouse gases in the Earth's atmosphere which results in the gradual heating of the atmosphere. The precise measurement and reliable quantification of GHGs emission in the environment are of the utmost priority for the study of climate change. The detection of GHGs such as carbon dioxide, methane, nitrous oxide and ozone is the first and foremost step in finding the solution to manage and reduce the concentration of these gases in the Earth's atmosphere. The nanostructured metal oxide semiconductor (NMOS) based technologies for sensing GHGs emission have been found most reliable and accurate. Owing to their fascinating structural and morphological properties metal oxide semiconductors become an important class of materials for GHGs emission sensing technology. In this review article, the current concentration of GHGs in the Earth's environment, dominant sources of anthropogenic emissions of these gases and consequently their possible impacts on human life have been described briefly. Further, the different available technologies for GHG sensors along with their principle of operation have been largely discussed. The advantages and disadvantages of each sensor technology have also been highlighted. In particular, this article presents a comprehensive study on the development of various NMOS-based GHGs sensors and their performance analysis in order to establish a strong detection technology for the anthropogenic GHGs. In the last, the scope for improved sensitivity, selectivity and response time for these sensors, their future trends and outlook for researchers are suggested in the conclusion of this article.
Collapse
Affiliation(s)
- Yogendra K. Gautam
- Smart Materials and Sensor Laboratory, Department of Physics, CCS University, Meerut, Uttar Pradesh 250004, India
| | - Kavita Sharma
- Smart Materials and Sensor Laboratory, Department of Physics, CCS University, Meerut, Uttar Pradesh 250004, India
| | - Shrestha Tyagi
- Smart Materials and Sensor Laboratory, Department of Physics, CCS University, Meerut, Uttar Pradesh 250004, India
| | - Anit K. Ambedkar
- Smart Materials and Sensor Laboratory, Department of Physics, CCS University, Meerut, Uttar Pradesh 250004, India
| | - Manika Chaudhary
- Smart Materials and Sensor Laboratory, Department of Physics, CCS University, Meerut, Uttar Pradesh 250004, India
| | - Beer Pal Singh
- Smart Materials and Sensor Laboratory, Department of Physics, CCS University, Meerut, Uttar Pradesh 250004, India
| |
Collapse
|
135
|
Liu L, Huan H, Li W, Mandelis A, Wang Y, Zhang L, Zhang X, Yin X, Wu Y, Shao X. Highly sensitive broadband differential infrared photoacoustic spectroscopy with wavelet denoising algorithm for trace gas detection. PHOTOACOUSTICS 2021; 21:100228. [PMID: 33365230 PMCID: PMC7749430 DOI: 10.1016/j.pacs.2020.100228] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/28/2020] [Accepted: 12/03/2020] [Indexed: 05/11/2023]
Abstract
Enhancement of trace gas detectability using photoacoustic spectroscopy requires the effective suppression of strong background noise for practical applications. An upgraded infrared broadband trace gas detection configuration was investigated based on a Fourier transform infrared (FTIR) spectrometer equipped with specially designed T-resonators and simultaneous differential optical and photoacoustic measurement capabilities. By using acetylene and local air as appropriate samples, the detectivity of the differential photoacoustic mode was demonstrated to be far better than the pure optical approach both theoretically and experimentally, due to the effectiveness of light-correlated coherent noise suppression of non-intrinsic optical baseline signals. The wavelet domain denoising algorithm with the optimized parameters was introduced in detail to greatly improve the signal-to-noise ratio by denoising the incoherent ambient interference with respect to the differential photoacoustic measurement. The results showed enhancement of sensitivity to acetylene from 5 ppmv (original differential mode) to 806 ppbv, a fivefold improvement. With the suppression of background noise accomplished by the optimized wavelet domain denoising algorithm, the broadband differential photoacoustic trace gas detection was shown to be an effective approach for trace gas detection.
Collapse
Affiliation(s)
- Lixian Liu
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, 710071, China
- Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
- School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Huiting Huan
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, 710071, China
- Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
- School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wei Li
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, 710071, China
| | - Andreas Mandelis
- Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
- School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yafei Wang
- School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Le Zhang
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, 710071, China
| | - Xueshi Zhang
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, 710071, China
| | - Xukun Yin
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, 710071, China
| | - Yuxiang Wu
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, 710071, China
| | - Xiaopeng Shao
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, 710071, China
- Corresponding author at: School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, 710071, China.
| |
Collapse
|
136
|
Khatib M, Zohar O, Haick H. Self-Healing Soft Sensors: From Material Design to Implementation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004190. [PMID: 33533124 DOI: 10.1002/adma.202004190] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/25/2020] [Indexed: 05/20/2023]
Abstract
The demand for interfacing electronics in everyday life is rapidly accelerating, with an ever-growing number of applications in wearable electronics and electronic skins for robotics, prosthetics, and other purposes. Soft sensors that efficiently detect environmental or biological/physiological stimuli have been extensively studied due to their essential role in creating the necessary interfaces for these applications. Unfortunately, due to their natural softness, these sensors are highly sensitive to structural and mechanical damage. The integration of natural properties, such as self-healing, into these systems should improve their reliability, stability, and long-term performance. Recent studies on self-healing soft sensors for varying chemical and physical parameters are herein reviewed. In addition, contemporary studies on material design, device structure, and fabrication methods for sensing platforms are also discussed. Finally, the main challenges and future perspectives in this field are introduced, while focusing on the most promising examples and directions already reported.
Collapse
Affiliation(s)
- Muhammad Khatib
- The Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Orr Zohar
- The Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Hossam Haick
- The Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
137
|
Lu YS, Vijayakumar S, Chaix A, Pimentel BR, Bentz KC, Li S, Chan A, Wahl C, Ha JS, Hunka DE, Boss GR, Cohen SM, Sailor MJ. Remote Detection of HCN, HF, and Nerve Agent Vapors Based on Self-Referencing, Dye-Impregnated Porous Silicon Photonic Crystals. ACS Sens 2021; 6:418-428. [PMID: 33263399 DOI: 10.1021/acssensors.0c01931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A one-dimensional photonic crystal is prepared from porous silicon (pSi) and impregnated with a chemically specific colorimetric indicator dye to provide a self-referenced vapor sensor for the selective detection of hydrogen fluoride (HF), hydrogen cyanide (HCN), and the chemical nerve agent diisopropyl fluorophosphate (DFP). The photonic crystal is prepared with two stop bands: one that coincides with the optical absorbance of the relevant activated indicator dye and the other in a spectrally "clear" region, to provide a reference. The inner pore walls of the pSi sample are then modified with octadecylsilane to provide a hydrophobic interior, and the indicator dye of interest is then loaded into the mesoporous matrix. Remote analyte detection is achieved by measurement of the intensity ratio of the two stop bands in the white light reflectance spectrum, which provides a means to reliably detect colorimetric changes in the indicator dye. Indicator dyes were chosen for their specificity for the relevant agents: rhodamine-imidazole (RDI) for HF and DFP, and monocyanocobinamide (MCbi) for HCN. The ratiometric readout allows detection of HF and HCN at concentrations (14 and 5 ppm, respectively) that are below their respective IDLH (immediately dangerous to life and health) concentrations (30 ppm for HF; 50 ppm for HCN); detection of DFP at a concentration of 114 ppb is also demonstrated. The approach is insensitive to potential interferents such as ammonia, hydrogen chloride, octane, and the 43-component mixture of VOCs known as EPA TO-14A, and to variations in relative humidity (20-80% RH). Detection of HF and HCN spiked into the complex mixture EPA TO-14A is demonstrated. The approach provides a general means to construct robust remote detection systems for chemical agents.
Collapse
Affiliation(s)
- Yi-Sheng Lu
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Sanahan Vijayakumar
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Arnaud Chaix
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Brian R. Pimentel
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Kyle C. Bentz
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Sheng Li
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Adriano Chan
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Charlotte Wahl
- Leidos, 10260 Campus Point Drive, San Diego, California 92121, United States
| | - James S. Ha
- Leidos, 10260 Campus Point Drive, San Diego, California 92121, United States
| | - Deborah E. Hunka
- Leidos, 10260 Campus Point Drive, San Diego, California 92121, United States
| | - Gerry R. Boss
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Seth M. Cohen
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Michael J. Sailor
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
138
|
Trzpil W, Maurin N, Rousseau R, Ayache D, Vicet A, Bahriz M. Analytic Optimization of Cantilevers for Photoacoustic Gas Sensor with Capacitive Transduction. SENSORS 2021; 21:s21041489. [PMID: 33669992 PMCID: PMC7926384 DOI: 10.3390/s21041489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022]
Abstract
We propose a new concept of photoacoustic gas sensing based on capacitive transduction which allows full integration while conserving the required characteristics of the sensor. For the sensor’s performance optimization, trial and error method is not feasible due to economic and time constrains. Therefore, we focus on a theoretical optimization of the sensor reinforced by computational methods implemented in a Python programming environment. We present an analytic model to optimize the geometry of a cantilever used as a capacitive transducer in photoacoustic spectroscopy. We describe all the physical parameters which have to be considered for this optimization (photoacoustic force, damping, mechanical susceptibility, capacitive transduction, etc.). These parameters are characterized by opposite trends. They are studied and compared to obtain geometric values for which the signal output and signal-to-noise ratio are maximized.
Collapse
|
139
|
Kim S, Brady J, Al-Badani F, Yu S, Hart J, Jung S, Tran TT, Myung NV. Nanoengineering Approaches Toward Artificial Nose. Front Chem 2021; 9:629329. [PMID: 33681147 PMCID: PMC7935515 DOI: 10.3389/fchem.2021.629329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Significant scientific efforts have been made to mimic and potentially supersede the mammalian nose using artificial noses based on arrays of individual cross-sensitive gas sensors over the past couple decades. To this end, thousands of research articles have been published regarding the design of gas sensor arrays to function as artificial noses. Nanoengineered materials possessing high surface area for enhanced reaction kinetics and uniquely tunable optical, electronic, and optoelectronic properties have been extensively used as gas sensing materials in single gas sensors and sensor arrays. Therefore, nanoengineered materials address some of the shortcomings in sensitivity and selectivity inherent in microscale and macroscale materials for chemical sensors. In this article, the fundamental gas sensing mechanisms are briefly reviewed for each material class and sensing modality (electrical, optical, optoelectronic), followed by a survey and review of the various strategies for engineering or functionalizing these nanomaterials to improve their gas sensing selectivity, sensitivity and other measures of gas sensing performance. Specifically, one major focus of this review is on nanoscale materials and nanoengineering approaches for semiconducting metal oxides, transition metal dichalcogenides, carbonaceous nanomaterials, conducting polymers, and others as used in single gas sensors or sensor arrays for electrical sensing modality. Additionally, this review discusses the various nano-enabled techniques and materials of optical gas detection modality, including photonic crystals, surface plasmonic sensing, and nanoscale waveguides. Strategies for improving or tuning the sensitivity and selectivity of materials toward different gases are given priority due to the importance of having cross-sensitivity and selectivity toward various analytes in designing an effective artificial nose. Furthermore, optoelectrical sensing, which has to date not served as a common sensing modality, is also reviewed to highlight potential research directions. We close with some perspective on the future development of artificial noses which utilize optical and electrical sensing modalities, with additional focus on the less researched optoelectronic sensing modality.
Collapse
Affiliation(s)
- Sanggon Kim
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, United States
| | - Jacob Brady
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, United States
| | - Faraj Al-Badani
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, United States
| | - Sooyoun Yu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Joseph Hart
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Sungyong Jung
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Thien-Toan Tran
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Nosang V. Myung
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
140
|
Wang Y, Feng Y, Adamu AI, Dasa MK, Antonio-Lopez JE, Amezcua-Correa R, Markos C. Mid-infrared photoacoustic gas monitoring driven by a gas-filled hollow-core fiber laser. Sci Rep 2021; 11:3512. [PMID: 33568763 PMCID: PMC7876039 DOI: 10.1038/s41598-021-83041-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/27/2021] [Indexed: 11/30/2022] Open
Abstract
Development of novel mid-infrared (MIR) lasers could ultimately boost emerging detection technologies towards innovative spectroscopic and imaging solutions. Photoacoustic (PA) modality has been heralded for years as one of the most powerful detection tools enabling high signal-to-noise ratio analysis. Here, we demonstrate a novel, compact and sensitive MIR-PA system for carbon dioxide (CO2) monitoring at its strongest absorption band by combining a gas-filled fiber laser and PA technology. Specifically, the PA signals were excited by a custom-made hydrogen (H2) based MIR Raman fiber laser source with a pulse energy of ⁓ 18 μJ, quantum efficiency of ⁓ 80% and peak power of ⁓ 3.9 kW. A CO2 detection limit of 605 ppbv was attained from the Allan deviation. This work constitutes an alternative method for advanced high-sensitivity gas detection.
Collapse
Affiliation(s)
- Yazhou Wang
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| | - Yuyang Feng
- COPAC A/S, Diplomvej 381, 2800, Kongens Lyngby, Denmark
| | - Abubakar I Adamu
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Manoj K Dasa
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - J E Antonio-Lopez
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - Rodrigo Amezcua-Correa
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - Christos Markos
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.,NORBLIS IVS, Virumgade 35D, 2830, Virum, Denmark
| |
Collapse
|
141
|
Impact of Residual Water Vapor on the Simultaneous Measurements of Trace CH4 and N2O in Air with Cavity Ring-Down Spectroscopy. ATMOSPHERE 2021. [DOI: 10.3390/atmos12020221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methane (CH4) and nitrous oxide (N2O) are among the most important atmospheric greenhouse gases. A gas sensor based on a tunable 7.6 μm continuous-wave external-cavity mode-hop-free (EC-MHF) quantum cascade laser (from 1290 to 1350 cm−1) cavity ring-down spectroscopy (CRDS) technique was developed for the simultaneous detection of CH4 and N2O in ambient air with water vapor (H2O) mostly removed via molecular sieve drying to minimize the impact of H2O on the simultaneous measurements. Still, due to the broad and strong absorption spectrum of H2O in the entire mid-infrared (mid-IR) spectral range, residual H2O in the dried ambient air due to incomplete drying and leakage, if not properly accounted for, could cause a significant influence on the measurement accuracy of the simultaneous CH4 and N2O detection. In this paper, the impact of residual H2O on the simultaneous CH4 and N2O measurements were analyzed by comparing the CH4 and N2O concentrations determined from the measured spectrum in the spectral range from 1311 to 1312.1 cm−1 via simultaneous CH4 and N2O measurements and that determined from the measured spectrum in the spectral range from 1311 to 1313 cm−1 via simultaneous CH4, N2O, and H2O measurements. The measured dependence of CH4 and N2O concentration errors on the simultaneously determined H2O concentration indicated that the residual H2O caused an under-estimation of CH4 concentration and over-estimation of N2O concentration. The H2O induced CH4 and N2O concentration errors were approximately linearly proportional to the residual H2O concentration. For the measurement of air flowing at 3 L per min, the residual H2O concentration was stabilized to approximately 14 ppmv, and the corresponding H2O induced errors were −1.3 ppbv for CH4 and 3.7 ppbv for N2O, respectively.
Collapse
|
142
|
Banga I, Paul A, Sardesai AU, Muthukumar S, Prasad S. M.A.T.H: Methanol vapor analytics through handheld sensing platform. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
143
|
Vitoria I, Ruiz Zamarreño C, Ozcariz A, Matias IR. Fiber Optic Gas Sensors Based on Lossy Mode Resonances and Sensing Materials Used Therefor: A Comprehensive Review. SENSORS 2021; 21:s21030731. [PMID: 33499050 PMCID: PMC7865789 DOI: 10.3390/s21030731] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022]
Abstract
Pollution in cities induces harmful effects on human health, which continuously increases the global demand of gas sensors for air quality control and monitoring. In the same manner, the industrial sector requests new gas sensors for their productive processes. Moreover, the association between exhaled gases and a wide range of diseases or health conditions opens the door for new diagnostic applications. The large number of applications for gas sensors has permitted the development of multiple sensing technologies. Among them, optical fiber gas sensors enable their utilization in remote locations, confined spaces or hostile environments as well as corrosive or explosive atmospheres. Particularly, Lossy Mode Resonance (LMR)-based optical fiber sensors employ the traditional metal oxides used for gas sensing purposes for the generation of the resonances. Some research has been conducted on the development of LMR-based optical fiber gas sensors; however, they have not been fully exploited yet and offer optimal possibilities for improvement. This review gives the reader a complete overview of the works focused on the utilization of LMR-based optical fiber sensors for gas sensing applications, summarizing the materials used for the development of these sensors as well as the fabrication procedures and the performance of these devices.
Collapse
Affiliation(s)
- Ignacio Vitoria
- Electrical, Electronic and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (I.V.); (A.O.); (I.R.M.)
- Institute of Smart Cities (ISC), Public University of Navarra, 31006 Pamplona, Spain
| | - Carlos Ruiz Zamarreño
- Electrical, Electronic and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (I.V.); (A.O.); (I.R.M.)
- Institute of Smart Cities (ISC), Public University of Navarra, 31006 Pamplona, Spain
- Correspondence:
| | - Aritz Ozcariz
- Electrical, Electronic and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (I.V.); (A.O.); (I.R.M.)
| | - Ignacio R. Matias
- Electrical, Electronic and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (I.V.); (A.O.); (I.R.M.)
- Institute of Smart Cities (ISC), Public University of Navarra, 31006 Pamplona, Spain
| |
Collapse
|
144
|
Meyer JR, Kim CS, Kim M, Canedy CL, Merritt CD, Bewley WW, Vurgaftman I. Interband Cascade Photonic Integrated Circuits on Native III-V Chip. SENSORS 2021; 21:s21020599. [PMID: 33467034 PMCID: PMC7830904 DOI: 10.3390/s21020599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/22/2022]
Abstract
We describe how a midwave infrared photonic integrated circuit (PIC) that combines lasers, detectors, passive waveguides, and other optical elements may be constructed on the native GaSb substrate of an interband cascade laser (ICL) structure. The active and passive building blocks may be used, for example, to fabricate an on-chip chemical detection system with a passive sensing waveguide that evanescently couples to an ambient sample gas. A variety of highly compact architectures are described, some of which incorporate both the sensing waveguide and detector into a laser cavity defined by two high-reflectivity cleaved facets. We also describe an edge-emitting laser configuration that optimizes stability by minimizing parasitic feedback from external optical elements, and which can potentially operate with lower drive power than any mid-IR laser now available. While ICL-based PICs processed on GaSb serve to illustrate the various configurations, many of the proposed concepts apply equally to quantum-cascade-laser (QCL)-based PICs processed on InP, and PICs that integrate III-V lasers and detectors on silicon. With mature processing, it should become possible to mass-produce hundreds of individual PICs on the same chip which, when singulated, will realize chemical sensing by an extremely compact and inexpensive package.
Collapse
Affiliation(s)
- Jerry R. Meyer
- Naval Research Laboratory, Code 5613, Washington, DC 20375, USA; (C.S.K.); (C.L.C.); (C.D.M.); (W.W.B.); (I.V.)
- Correspondence:
| | - Chul Soo Kim
- Naval Research Laboratory, Code 5613, Washington, DC 20375, USA; (C.S.K.); (C.L.C.); (C.D.M.); (W.W.B.); (I.V.)
| | - Mijin Kim
- Jacobs Corporation, Hanover, MD 21076, USA;
| | - Chadwick L. Canedy
- Naval Research Laboratory, Code 5613, Washington, DC 20375, USA; (C.S.K.); (C.L.C.); (C.D.M.); (W.W.B.); (I.V.)
| | - Charles D. Merritt
- Naval Research Laboratory, Code 5613, Washington, DC 20375, USA; (C.S.K.); (C.L.C.); (C.D.M.); (W.W.B.); (I.V.)
| | - William W. Bewley
- Naval Research Laboratory, Code 5613, Washington, DC 20375, USA; (C.S.K.); (C.L.C.); (C.D.M.); (W.W.B.); (I.V.)
| | - Igor Vurgaftman
- Naval Research Laboratory, Code 5613, Washington, DC 20375, USA; (C.S.K.); (C.L.C.); (C.D.M.); (W.W.B.); (I.V.)
| |
Collapse
|
145
|
Andrić S, Tomašević-Ilić T, Bošković MV, Sarajlić M, Vasiljević-Radović D, Smiljanić MM, Spasenović M. Ultrafast humidity sensor based on liquid phase exfoliated graphene. NANOTECHNOLOGY 2021; 32:025505. [PMID: 32942262 DOI: 10.1088/1361-6528/abb973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Humidity sensing is important to a variety of technologies and industries, ranging from environmental and industrial monitoring to medical applications. Although humidity sensors abound, few available solutions are thin, transparent, compatible with large-area sensor production and flexible, and almost none are fast enough to perform human respiration monitoring through breath detection or real-time finger proximity monitoring via skin humidity sensing. This work describes chemiresistive graphene-based humidity sensors produced in few steps with facile liquid phase exfoliation followed by Langmuir-Blodgett assembly that enables active areas of practically any size. The graphene sensors provide a unique mix of performance parameters, exhibiting resistance changes up to 10% with varying humidity, linear performance over relative humidity (RH) levels between 8% and 95%, weak response to other constituents of air, flexibility, transparency of nearly 80%, and response times of 30 ms. The fast response to humidity is shown to be useful for respiration monitoring and real-time finger proximity detection, with potential applications in flexible touchless interactive panels.
Collapse
Affiliation(s)
- Stevan Andrić
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Tijana Tomašević-Ilić
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080, Belgrade, Serbia
| | - Marko V Bošković
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Milija Sarajlić
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Dana Vasiljević-Radović
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Milče M Smiljanić
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Marko Spasenović
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| |
Collapse
|
146
|
Polythiophene derivatives as chemical sensors: a DFT study on the influence of side groups. J Mol Model 2021; 27:17. [PMID: 33409576 DOI: 10.1007/s00894-020-04632-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Conjugated polymers have been considered promising candidates for applications in chemical sensors, mainly due to their high versatility of synthesis, low cost, light weight, and suitable optoelectronic properties. In this context, polythiophene (PT) derivatives have been successfully employed. However, at the same time that the versatility of the synthesis allows the production of varied derivatives, the complexity of interactions with analytes hinders an efficient design of compounds with improved sensing properties. In the present report, electronic structure calculations were employed to identify promising PT derivatives for chemical sensor applications. Structural, optoelectronic, and reactivity properties of a set of branched PT derivatives were evaluated. Adsorption studies considering different gaseous compounds were conducted for selected systems. The results suggest that an appropriate choice of the side groups can lead to derivatives with improved sensorial properties. In particular, PT-CN derivative was identified as the most promising compound for high sensitive chemical sensors towards SO2 and NH3 analytes.
Collapse
|
147
|
Shukla P, Saxena P, Madhwal D, Bhardwaj N, Jain VK. Prototyping of a highly sensitive and selective chemisresistive sensor based on pencil graphite for the rapid detection of NO 2 and NH 3. NEW J CHEM 2021. [DOI: 10.1039/d0nj05594h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Commercially available high quality 9B pencil graphite was used for sensing of trace concentrations of nitrogen dioxide (NO2) and ammonia (NH3) at sub-ppm levels in air at ambient temperature and pressure.
Collapse
Affiliation(s)
- Prashant Shukla
- Amity Institute for Advanced Research and Studies (Materials & Devices)
- Amity University
- Noida-201303
- India
| | - Pooja Saxena
- G. L. Bajaj Institute of Technology and Management
- Greater Noida
- India
| | - Devinder Madhwal
- Amity Institute for Advanced Research and Studies (Materials & Devices)
- Amity University
- Noida-201303
- India
| | - Nitin Bhardwaj
- Amity Institute for Advanced Research and Studies (Materials & Devices)
- Amity University
- Noida-201303
- India
| | - V. K. Jain
- Amity Institute for Advanced Research and Studies (Materials & Devices)
- Amity University
- Noida-201303
- India
| |
Collapse
|
148
|
Raza W, Ahmad K. Room Temperature Gas Sensor Based on Reduced Graphene Oxide for Environmental Monitoring. HANDBOOK OF NANOMATERIALS AND NANOCOMPOSITES FOR ENERGY AND ENVIRONMENTAL APPLICATIONS 2021. [DOI: 10.1007/978-3-030-36268-3_193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
149
|
madlul SF, Mahan NK, Ali EM, Abd AN. Synthesis of CdS:Cu5% thin films by chemical method based on silicon for gas sensor applications. MATERIALS TODAY: PROCEEDINGS 2021; 45:5800-5803. [DOI: 10.1016/j.matpr.2021.03.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
150
|
Fan J, Li H, Hu H, Niu Y, Hao R, Umar A, Al-Assiri M, Alsaiari MA, Wang Y. An insight into improvement of room temperature formaldehyde sensitivity for graphene-based gas sensors. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|