101
|
Safwat A, Sabry D, Ragiae A, Amer E, Mahmoud RH, Shamardan RM. Adipose mesenchymal stem cells-derived exosomes attenuate retina degeneration of streptozotocin-induced diabetes in rabbits. J Circ Biomark 2018; 7:1849454418807827. [PMID: 30397416 PMCID: PMC6207964 DOI: 10.1177/1849454418807827] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
This study aimed to evaluate the effect of mesenchymal stem cells (MSCs)-derived exosomes in retina regeneration of experimentally induced diabetes mellitus (DM) in a rabbit model. Exosomes are extracellular vesicles that contain many microRNAs (micRNAs), mRNAs, and proteins from their cells of origin. DM was induced by intravenous (IV) injection of streptozotocin in rabbits. MSCs were isolated from adipose tissue of rabbits. Exosomes were extracted from MSCs by ultracentrifugation. Exosomes were injected by different routes (IV, subconjunctival (SC), and intraocular (IO)). Evaluation of the treatment was carried out by histopathological examination of retinal tissues and assessment of micRNA-222 expression level in retinal tissue by real-time polymerase chain reaction. Histologically, by 12 weeks following SC exosomal treatment, the cellular components of the retina were organized in well-defined layers, while IO exosomal injection showed well-defined retinal layers which were obviously similar to layers of the normal retina. However, the retina appeared after IV exosomal injection as irregular ganglionic layer with increased thickness. MicRNA-222 expression level was significantly reduced in diabetic controls when compared to each of healthy controls and other diabetic groups with IV, SC, and IO routes of injected exosomes (0.06 ± 0.02 vs. 0.51 ± 0.07, 0.28 ± 0.08, 0.48 ± 0.06, and 0.42 ± 0.11, respectively). We detected a significant negative correlation between serum glucose and retinal tissue micRNA-222 expression level (r = -0.749, p = 0.001). We can associate the increased expression of micRNA-222 with regenerative changes of retina following administration of MSCs-derived exosomes. The study demonstrates the potency of rabbit adipose tissue-derived MSCs exosomes in retinal repair. So, exosomes are considered as novel therapeutic vectors in MSCs-based therapy through its role in shuttling of many factors including micRNA-222.
Collapse
Affiliation(s)
- A Safwat
- Department of Ophthalmology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - D Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - A Ragiae
- Department of Supplementary Science Histology and Cell Biology, Faculty of Oral and Dental Medicine, Future University, New Cairo, Egypt
| | - E Amer
- Department of Medical Biochemistry, Faculty of Pharmacy, Al Ahram Canadian University, Egypt
| | - RH Mahmoud
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Faiyum, Egypt
| | - RM Shamardan
- Department of Anatomy, Faculty of Medicine, Fayoum University, Faiyum, Egypt
| |
Collapse
|
102
|
De A, Powers B, De A, Zhou J, Sharma S, Van Veldhuizen P, Bansal A, Sharma R, Sharma M. Emblica officinalis extract downregulates pro-angiogenic molecules via upregulation of cellular and exosomal miR-375 in human ovarian cancer cells. Oncotarget 2017; 7:31484-500. [PMID: 27129171 PMCID: PMC5058772 DOI: 10.18632/oncotarget.8966] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer (OC) is highly resistant to current treatment strategies based on a combination of surgery, chemotherapy and radiation therapy. We have recently demonstrated the anti-neoplastic effect of Amla extract (Emblica officinalis, AE) on OC cells in vitro and in vivo. We hypothesized that AE attenuates growth of OC through microRNA (miR)-regulated mechanism(s). The inhibitory effect of AE on proliferation, migration and invasiveness (P≤0.001) of SKOV3 cells and >90% attenuation of tumor growth in a xenograft mouse model suggested multiple targets. RT-qPCR analysis of microRNAs associated with OC showed a >2,000-fold increase in the expression of miR-375 in AE-treated SKOV3 cells that was blocked by an exogenous miR-375 inhibitor (P≤0.001). AE also decreased the gene and protein expression of IGF1R, a target of miR-375 (P≤0.001), and SNAIL1 (P≤0.002), an EMT-associated transcription factor that represses E-cadherin expression (P≤0.003). AE increased E-cadherin expression (P≤0.001). Treatment of SKOV3 cells with AE resulted in increased miR-375 in exosomes in the medium (P≤0.01). Finally, AE significantly decreased the expression of IGF1R and SNAIL1 proteins during attenuation of SKOV3-derived xenograft tumor. Together, these results show that AE modulates cancer cells and the tumor microenvironment via activation of miR-375 and by targeting IGF1R and SNAIL1 in OC cells.
Collapse
Affiliation(s)
- Alok De
- Kansas City VA Medical Center and Midwest Biomedical Research Foundation, Kansas City, MO 64128, United States
| | - Benjamin Powers
- Kansas City VA Medical Center and Midwest Biomedical Research Foundation, Kansas City, MO 64128, United States
| | - Archana De
- Kansas City VA Medical Center and Midwest Biomedical Research Foundation, Kansas City, MO 64128, United States
| | - Jianping Zhou
- Kansas City VA Medical Center and Midwest Biomedical Research Foundation, Kansas City, MO 64128, United States
| | - Siddarth Sharma
- Kansas City VA Medical Center and Midwest Biomedical Research Foundation, Kansas City, MO 64128, United States
| | - Peter Van Veldhuizen
- Kansas City VA Medical Center and Midwest Biomedical Research Foundation, Kansas City, MO 64128, United States
| | - Ajay Bansal
- Kansas City VA Medical Center and Midwest Biomedical Research Foundation, Kansas City, MO 64128, United States
| | - Ramratan Sharma
- Kansas City VA Medical Center and Midwest Biomedical Research Foundation, Kansas City, MO 64128, United States
| | - Mukut Sharma
- Kansas City VA Medical Center and Midwest Biomedical Research Foundation, Kansas City, MO 64128, United States
| |
Collapse
|
103
|
Kai K, Dittmar RL, Sen S. Secretory microRNAs as biomarkers of cancer. Semin Cell Dev Biol 2017; 78:22-36. [PMID: 29258963 DOI: 10.1016/j.semcdb.2017.12.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression predominantly by inhibiting transcription and/or promoting degradation of target mRNAs also in addition to being involved in non-canonical mechanisms regulating transcription, translation and cell signaling processes. Extracellular secretory miRNAs, either in complex with specific proteins or encapsulated in microvesicles called exosomes, are transported between cells as means of intercellular communication. Secretory miRNAs in circulation remain functional after delivery to recipient cells, regulating target genes and their corresponding signaling pathways. Cancer cell secreted miRNA-mediated intercellular communication affects physiological processes associated with the disease, such as, angiogenesis, metabolic reprogramming, immune modulation, metastasis, and chemo-resistance. Given the stability of miRNAs in body fluids and their well-documented roles in deregulating cancer-relevant genetic pathways, there is considerable interest in developing secretory miRNAs as liquid biopsy biomarkers for detection, diagnosis and prognostication of cancer. In this review, we discuss salient features of miRNA biogenesis, secretion and function in cancer as well as the current state of secretory miRNA isolation and profiling methods. Furthermore, we discuss the challenges and opportunities of secretory miRNA biomarker assay development, which need to be addressed for clinical applications.
Collapse
Affiliation(s)
- Kazuharu Kai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Rachel L Dittmar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States; Program in Human and Molecular Genetics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, United States
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States; Program in Human and Molecular Genetics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, United States.
| |
Collapse
|
104
|
Geis-Asteggiante L, Belew AT, Clements VK, Edwards NJ, Ostrand-Rosenberg S, El-Sayed NM, Fenselau C. Differential Content of Proteins, mRNAs, and miRNAs Suggests that MDSC and Their Exosomes May Mediate Distinct Immune Suppressive Functions. J Proteome Res 2017; 17:486-498. [PMID: 29139296 DOI: 10.1021/acs.jproteome.7b00646] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are immature myeloid cells that accumulate in the circulation and the tumor microenvironment of most cancer patients. There, MDSC suppress both adaptive and innate immunity, hindering immunotherapies. The inflammatory milieu often present in cancers facilitates MDSC suppressive activity, causing aggressive tumor progression and metastasis. MDSC from tumor-bearing mice release exosomes, which carry biologically active proteins and mediate some of the immunosuppressive functions characteristic of MDSC. Studies on other cell types have shown that exosomes may also carry RNAs which can be transferred to local and distant cells, yet the mRNA and microRNA cargo of MDSC-derived exosomes has not been studied to date. Here, the cargo of MDSC and their exosomes was interrogated with the goal of identifying and characterizing molecules that may facilitate MDSC suppressive potency. Because inflammation is an established driving force for MDSC suppressive activity, we used the well-established 4T1 mouse mammary carcinoma system, which includes "conventional" as well as "inflammatory" MDSC. We provide evidence that MDSC-derived exosomes carry proteins, mRNAs, and microRNAs with different quantitative profiles than those of their parental cells. Several of these molecules have known or predicted functions consistent with MDSC suppressive activity, suggesting a potential mechanistic redundancy.
Collapse
Affiliation(s)
- Lucía Geis-Asteggiante
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Ashton T Belew
- Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland , College Park, Maryland 20742, United States
| | - Virginia K Clements
- Department of Biological Sciences, University of Maryland Baltimore County , Baltimore, Maryland 21250, United States
| | - Nathan J Edwards
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center , Washington, D.C. 20007, United States
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland Baltimore County , Baltimore, Maryland 21250, United States
| | - Najib M El-Sayed
- Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland , College Park, Maryland 20742, United States
| | - Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
105
|
Maburutse BE, Park MR, Oh S, Kim Y. Evaluation and Characterization of Milk-derived Microvescicle Isolated from Bovine Colostrum. Korean J Food Sci Anim Resour 2017; 37:654-662. [PMID: 29147088 PMCID: PMC5686323 DOI: 10.5851/kosfa.2017.37.5.654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 11/18/2022] Open
Abstract
Extracellular microvesicles are membranous nano-sized cellular organelles secreted by a variety of cells under normal and pathological conditions and heterogeneous in size ranging from 30 nm to 1 μm. They carry functional microRNAs that can influence immunity and development. For a particular application of microvesicles, choice of isolation method is particularly important; however, their isolation methods from colostrum in particular have not been described clearly. In this work, differential ultracentrifugation as a conventional method, ultracentrifugation with some modification such as additional precipitations, ultrafiltration, sucrose gradient separation and ExoQuick™ as a commercial reagent were compared. The goal was to compare mainly microvesicular total microRNA yield, distribution and purity among the methods then select the best isolation method for bovine colostrum microvesicles based largely on microRNA yield with the view of applying the vesicles in work where vesicular micro-RNA cargo is the target bioactive component. Highest yields for vesicular microRNA were obtained using conventional methods and among them, subsequent ultracentrifugation with 100,000 g and 135,000 g conventional method 2 was selected as it had the highest RNA to protein ratio indicating that it pelleted the least protein in relation to RNA an important factor for in vivo applications to assess microvesicle functionalities without risk of contaminating non-vesicular biomaterial. Microvesicles isolated using conventional method 2 were successfully internalized by cells in vitro showing their potential to deliver their cargo into cells in vitro and in vivo in case of functional studies.
Collapse
Affiliation(s)
- Brighton E Maburutse
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 54896, Korea
| | - Mi-Ri Park
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 54896, Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Younghoon Kim
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
106
|
Stremersch S, Brans T, Braeckmans K, De Smedt S, Raemdonck K. Nucleic acid loading and fluorescent labeling of isolated extracellular vesicles requires adequate purification. Int J Pharm 2017; 548:783-792. [PMID: 29031850 DOI: 10.1016/j.ijpharm.2017.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/25/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are nanosized vesicular structures released by cells to communicate with one another. The growing interest in the (patho)physiological function and potential pharmaceutical application of these vesicles is accompanied by a vast number of new research groups entering this research field and a plethora of different protocols to separate EVs from non-vesicular components. This lack of uniformity often generates conflicting or difficult-to-compare results. Here we provide a comparative analysis of different EV isolation strategies, discussing the purity of the final isolate and highlighting the importance of purity on downstream experimental readouts. First, we show that ultracentrifugation (UC) of B16F10 melanoma cell-derived conditioned medium co-purifies proteins or protein complexes with nuclease activity. Such contaminants should be taken into account when aiming to apply EVs as delivery carriers for exogenous nucleic acids. Second, three commonly used purification strategies (i.e. precipitation, UC and density-gradient centrifugation) were evaluated for their ability to remove non-incorporated fluorescent dye (i.e. the lipophilic PKH67 dye), important when probing EV interactions with cells. For both types of impurities, endogenous and exogenous, density gradient purification outperforms the other evaluated methods. Overall, these results demonstrate that the implementation of stringent purification protocols and adequate controls is of pivotal importance to draw reliable conclusions from downstream experiments performed with EV isolates.
Collapse
Affiliation(s)
- Stephan Stremersch
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Center for Nano-and Biophotonics (NB-Photonics), Ghent University, 9000 Ghent, Belgium
| | - Toon Brans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Center for Nano-and Biophotonics (NB-Photonics), Ghent University, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Center for Nano-and Biophotonics (NB-Photonics), Ghent University, 9000 Ghent, Belgium
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
107
|
Martínez C, Rodiño-Janeiro BK, Lobo B, Stanifer ML, Klaus B, Granzow M, González-Castro AM, Salvo-Romero E, Alonso-Cotoner C, Pigrau M, Roeth R, Rappold G, Huber W, González-Silos R, Lorenzo J, de Torres I, Azpiroz F, Boulant S, Vicario M, Niesler B, Santos J. miR-16 and miR-125b are involved in barrier function dysregulation through the modulation of claudin-2 and cingulin expression in the jejunum in IBS with diarrhoea. Gut 2017; 66:1537-1538. [PMID: 28082316 PMCID: PMC5561373 DOI: 10.1136/gutjnl-2016-311477] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Micro-RNAs (miRNAs) play a crucial role in controlling intestinal epithelial barrier function partly by modulating the expression of tight junction (TJ) proteins. We have previously shown differential messenger RNA (mRNA) expression correlated with ultrastructural abnormalities of the epithelial barrier in patients with diarrhoea-predominant IBS (IBS-D). However, the participation of miRNAs in these differential mRNA-associated findings remains to be established. Our aims were (1) to identify miRNAs differentially expressed in the small bowel mucosa of patients with IBS-D and (2) to explore putative target genes specifically involved in epithelial barrier function that are controlled by specific dysregulated IBS-D miRNAs. DESIGN Healthy controls and patients meeting Rome III IBS-D criteria were studied. Intestinal tissue samples were analysed to identify potential candidates by: (a) miRNA-mRNA profiling; (b) miRNA-mRNA pairing analysis to assess the co-expression profile of miRNA-mRNA pairs; (c) pathway analysis and upstream regulator identification; (d) miRNA and target mRNA validation. Candidate miRNA-mRNA pairs were functionally assessed in intestinal epithelial cells. RESULTS IBS-D samples showed distinct miRNA and mRNA profiles compared with healthy controls. TJ signalling was associated with the IBS-D transcriptional profile. Further validation of selected genes showed consistent upregulation in 75% of genes involved in epithelial barrier function. Bioinformatic analysis of putative miRNA binding sites identified hsa-miR-125b-5p and hsa-miR-16 as regulating expression of the TJ genes CGN (cingulin) and CLDN2 (claudin-2), respectively. Consistently, protein expression of CGN and CLDN2 was upregulated in IBS-D, while the respective targeting miRNAs were downregulated. In addition, bowel dysfunction, perceived stress and depression and number of mast cells correlated with the expression of hsa-miR-125b-5p and hsa-miR-16 and their respective target proteins. CONCLUSIONS Modulation of the intestinal epithelial barrier function in IBS-D involves both transcriptional and post-transcriptional mechanisms. These molecular mechanisms include miRNAs as master regulators in controlling the expression of TJ proteins and are associated with major clinical symptoms.
Collapse
Affiliation(s)
- Cristina Martínez
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany,Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bruno K Rodiño-Janeiro
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriz Lobo
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Megan L Stanifer
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Bernd Klaus
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Martin Granzow
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | | | - Eloisa Salvo-Romero
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Carmen Alonso-Cotoner
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro deInvestigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network
| | - Marc Pigrau
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ralph Roeth
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany,nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Gudrun Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Rosa González-Silos
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Justo Lorenzo
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Inés de Torres
- Department of Pathology, Facultat de Medicina, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fernando Azpiroz
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro deInvestigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network
| | - Steeve Boulant
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany,Research Group ‘Cellular Polarity and Viral Infection’ (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - María Vicario
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro deInvestigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network
| | - Beate Niesler
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network,nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Javier Santos
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro deInvestigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network
| |
Collapse
|
108
|
Stik G, Crequit S, Petit L, Durant J, Charbord P, Jaffredo T, Durand C. Extracellular vesicles of stromal origin target and support hematopoietic stem and progenitor cells. J Cell Biol 2017. [PMID: 28630143 PMCID: PMC5496607 DOI: 10.1083/jcb.201601109] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are emerging as crucial mediators in cell-to-cell communication. Stik et al. provide evidence that EVs released by supportive stromal cells target hematopoietic stem and progenitor cells in vivo and in vitro and influence their gene expression and potential. Extracellular vesicles (EVs) have been recently reported as crucial mediators in cell-to-cell communication in development and disease. In this study, we investigate whether mesenchymal stromal cells that constitute a supportive microenvironment for hematopoietic stem and progenitor cells (HSPCs) released EVs that could affect the gene expression and function of HSPCs. By taking advantage of two fetal liver–derived stromal lines with widely differing abilities to maintain HSPCs ex vivo, we demonstrate that stromal EVs play a critical role in the regulation of HSPCs. Both supportive and nonsupportive stromal lines secreted EVs, but only those delivered by the supportive line were taken up by HSPCs ex vivo and in vivo. These EVs harbored a specific molecular signature, modulated the gene expression in HSPCs after uptake, and maintained the survival and clonogenic potential of HSPCs, presumably by preventing apoptosis. In conclusion, our study reveals that EVs are an important component of the HSPC niche, which may have major applications in regenerative medicine.
Collapse
Affiliation(s)
- Gregoire Stik
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| | - Simon Crequit
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| | - Laurence Petit
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| | - Jennifer Durant
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| | - Pierre Charbord
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| | - Thierry Jaffredo
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| | - Charles Durand
- Sorbonne Universités, University Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique 7622, Institut National de la Santé et de la Recherche Médicale U 1156, Institute de Biologie Paris Siene, Laboratoire de Biologie du Développement, Paris, France
| |
Collapse
|
109
|
Association of Extracellular Membrane Vesicles with Cutaneous Wound Healing. Int J Mol Sci 2017; 18:ijms18050956. [PMID: 28468315 PMCID: PMC5454869 DOI: 10.3390/ijms18050956] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed vesicles that are released into the extracellular environment by various cell types, which can be classified as apoptotic bodies, microvesicles and exosomes. EVs have been shown to carry DNA, small RNAs, proteins and membrane lipids which are derived from the parental cells. Recently, several studies have demonstrated that EVs can regulate many biological processes, such as cancer progression, the immune response, cell proliferation, cell migration and blood vessel tube formation. This regulation is achieved through the release and transport of EVs and the transfer of their parental cell-derived molecular cargo to recipient cells. This thereby influences various physiological and sometimes pathological functions within the target cells. While intensive investigation of EVs has focused on pathological processes, the involvement of EVs in normal wound healing is less clear; however, recent preliminarily investigations have produced some initial insights. This review will provide an overview of EVs and discuss the current literature regarding the role of EVs in wound healing, especially, their influence on coagulation, cell proliferation, migration, angiogenesis, collagen production and extracellular matrix remodelling.
Collapse
|
110
|
Morhayim J, van de Peppel J, Dudakovic A, Chiba H, van Wijnen AJ, van Leeuwen JP. Molecular characterization of human osteoblast-derived extracellular vesicle mRNA using next-generation sequencing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1133-1141. [PMID: 28347747 DOI: 10.1016/j.bbamcr.2017.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/27/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022]
Abstract
Extracellular vesicles (EVs) are membrane-bound intercellular communication vehicles that transport proteins, lipids and nucleic acids with regulatory capacity between cells. RNA profiling using microarrays and sequencing technologies has revolutionized the discovery of EV-RNA content, which is crucial to understand the molecular mechanism of EV function. Recent studies have indicated that EVs are enriched with specific RNAs compared to the originating cells suggestive of an active sorting mechanism. Here, we present the comparative transcriptome analysis of human osteoblasts and their corresponding EVs using next-generation sequencing. We demonstrate that osteoblast-EVs are specifically depleted of cellular mRNAs that encode proteins involved in basic cellular activities, such as cytoskeletal functions, cell survival and apoptosis. In contrast, EVs are significantly enriched with 254 mRNAs that are associated with protein translation and RNA processing. Moreover, mRNAs enriched in EVs encode proteins important for communication with the neighboring cells, in particular with osteoclasts, adipocytes and hematopoietic stem cells. These findings provide the foundation for understanding the molecular mechanism and function of EV-mediated interactions between osteoblasts and the surrounding bone microenvironment.
Collapse
Affiliation(s)
- Jess Morhayim
- Department of Internal Medicine, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands.
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Hideki Chiba
- Fukushima Medical University School of Medicine, Hikarigaoka, 960-1295 Fukushima, Japan.
| | | | - Johannes P van Leeuwen
- Department of Internal Medicine, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands.
| |
Collapse
|
111
|
Rashed MH, Kanlikilicer P, Rodriguez-Aguayo C, Pichler M, Bayraktar R, Bayraktar E, Ivan C, Filant J, Silva A, Aslan B, Denizli M, Mitra R, Ozpolat B, Calin GA, Sood AK, Abd-Ellah MF, Helal GK, Berestein GL. Exosomal miR-940 maintains SRC-mediated oncogenic activity in cancer cells: a possible role for exosomal disposal of tumor suppressor miRNAs. Oncotarget 2017; 8:20145-20164. [PMID: 28423620 PMCID: PMC5386751 DOI: 10.18632/oncotarget.15525] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes have emerged as important mediators of diverse biological functions including tumor suppression, tumor progression, invasion, immune escape and cell-to-cell communication, through the release of molecules such as mRNAs, miRNAs, and proteins. Here, we identified differentially expressed exosomal miRNAs between normal epithelial ovarian cell line and both resistant and sensitive ovarian cancer (OC) cell lines. We found miR-940 as abundant in exosomes from SKOV3-IP1, HeyA8, and HeyA8-MDR cells. The high expression of miR-940 is associated with better survival in patients with ovarian serous cystadenocarcinoma. Ectopic expression of miR-940 inhibited proliferation, colony formation, invasion, and migration and triggered G0/G1 cell cycle arrest and apoptosis in OC cells. Overexpression of miR-940 also inhibited tumor cell growth in vivo. We showed that proto-oncogene tyrosine-protein kinase (SRC) is directly targeted by miR-940 and that miR-940 inhibited SRC expression at mRNA and protein levels. Following this inhibition, the expression of proteins downstream of SRC, such as FAK, paxillin and Akt was also reduced. Collectively, our results suggest that OC cells secrete the tumor-suppressive miR-940 into the extracellular environment via exosomes, to maintain their invasiveness and tumorigenic phenotype.
Collapse
Affiliation(s)
- Mohammed H Rashed
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Pinar Kanlikilicer
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Pichler
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justyna Filant
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andreia Silva
- Instituto de Investigação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, Universidade do Porto, Porto, Portugal
| | - Burcu Aslan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Merve Denizli
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rahul Mitra
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K. Sood
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed F. Abd-Ellah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Gouda K. Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Gabriel Lopez Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
112
|
Wu Y, Deng W, McGinley EC, Klinke DJ. Melanoma exosomes deliver a complex biological payload that upregulates PTPN11 to suppress T lymphocyte function. Pigment Cell Melanoma Res 2017; 30:203-218. [PMID: 27930879 DOI: 10.1111/pcmr.12564] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 11/21/2016] [Indexed: 12/15/2022]
Abstract
As exosomes are emerging as a new mode of intercellular communication, we hypothesized that the payload contained within exosomes is shaped by somatic evolution. To test this, we assayed the impact on primary CD8+ T-cell function, a key mechanism for antitumor immunity, of exosomes derived from three melanoma-related cell lines. While morphologically similar, exosomes from each cell line were functionally different, as B16F0 exosomes dose-dependently suppressed T-cell proliferation. In contrast, Cloudman S91 exosomes promoted T-cell proliferation and Melan-A exosomes had a negligible effect on primary CD8+ T cells. Mechanistically, transcript profiling suggested that exosomal mRNA is enriched for full-length mRNAs that target immune-related pathways. Interestingly, B16F0 exosomes were unique in that they contained both protein and mRNA for PTPN11, which inhibited T-cell proliferation. Collectively, the results suggest that upregulation of PTPN11 by B16F0 exosomes to tumor infiltrating lymphocytes would bypass the extracellular control of the immune checkpoints.
Collapse
Affiliation(s)
- Yueting Wu
- Department of Chemical and Biomedical Engineering, WVU Cancer Institute, Morgantown, WV, USA
| | - Wentao Deng
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Emily Chambers McGinley
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - David J Klinke
- Department of Chemical and Biomedical Engineering, WVU Cancer Institute, Morgantown, WV, USA.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
113
|
Lázaro-Ibáñez E, Lunavat TR, Jang SC, Escobedo-Lucea C, Oliver-De La Cruz J, Siljander P, Lötvall J, Yliperttula M. Distinct prostate cancer-related mRNA cargo in extracellular vesicle subsets from prostate cell lines. BMC Cancer 2017; 17:92. [PMID: 28143451 PMCID: PMC5286827 DOI: 10.1186/s12885-017-3087-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/24/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Multiple types of extracellular vesicles (EVs), including microvesicles (MVs) and exosomes (EXOs), are released by all cells constituting part of the cellular EV secretome. The bioactive cargo of EVs can be shuffled between cells and consists of lipids, metabolites, proteins, and nucleic acids, including multiple RNA species from non-coding RNAs to messenger RNAs (mRNAs). In this study, we hypothesized that the mRNA cargo of EVs could differ based on the EV cellular origin and subpopulation analyzed. METHODS We isolated MVs and EXOs from PC-3 and LNCaP prostate cancer cells by differential centrifugation and compared them to EVs derived from the benign PNT2 prostate cells. The relative mRNA levels of 84 prostate cancer-related genes were investigated and validated using quantitative reverse transcription PCR arrays. RESULTS Based on the mRNA abundance, MVs rather than EXOs were enriched in the analyzed transcripts, providing a snapshot of the tumor transcriptome. LNCaP MVs specifically contained significantly increased mRNA levels of NK3 Homeobox 1 (NKX3-1), transmembrane protease serine 2 (TMPRSS2), and tumor protein 53 (TP53) genes, whereas PC-3 MVs carried increased mRNA levels of several genes including, caveolin-2 (CAV2), glutathione S-transferase pi 1 (GSTP1), pescadillo ribosomal biogenesis factor 1 (PES1), calmodulin regulated spectrin associated protein 1 (CAMSAP1), zinc-finger protein 185 (ZNF185), and others compared to PNT2 MVs. Additionally, ETS variant 1 (ETV1) and fatty acid synthase (FASN) mRNAs identified in LNCaP- and PC-3- derived MVs highly correlated with prostate cancer progression. CONCLUSIONS Our study provides new understandings of the variability of the mRNA cargo of MVs and EXOs from different cell lines despite same cancer origin, which is essential to better understand the the proportion of the cell transcriptome that can be detected within EVs and to evaluate their role in disease diagnosis.
Collapse
Affiliation(s)
- Elisa Lázaro-Ibáñez
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland. .,Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, 40530, Sweden.
| | - Taral R Lunavat
- Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Su Chul Jang
- Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Carmen Escobedo-Lucea
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland.,Institute for Advanced Biomedical Engineering, Tokyo Women´s Medical University (TWINS), Tokyo, 162 8666, Japan
| | - Jorge Oliver-De La Cruz
- Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
| | - Pia Siljander
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland.,Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Helsinki, 00014, Finland
| | - Jan Lötvall
- Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, 40530, Sweden.
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland.,Division of Pharmaceutical Sciences, Faculty of Pharmacy, University of Padova, Padova, 35131, Italy
| |
Collapse
|
114
|
Jung JH, Fu X, Yang PC. Exosomes Generated From iPSC-Derivatives: New Direction for Stem Cell Therapy in Human Heart Diseases. Circ Res 2017; 120:407-417. [PMID: 28104773 PMCID: PMC5260934 DOI: 10.1161/circresaha.116.309307] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in modern society. The adult heart innately lacks the capacity to repair and regenerate the damaged myocardium from ischemic injury. Limited understanding of cardiac tissue repair process hampers the development of effective therapeutic solutions to treat CVD such as ischemic cardiomyopathy. In recent years, rapid emergence of induced pluripotent stem cells (iPSC) and iPSC-derived cardiomyocytes presents a valuable opportunity to replenish the functional cells to the heart. The therapeutic effects of iPSC-derived cells have been investigated in many preclinical studies. However, the underlying mechanisms of iPSC-derived cell therapy are still unclear, and limited engraftment of iPSC-derived cardiomyocytes is well known. One facet of their mechanism is the paracrine effect of the transplanted cells. Microvesicles such as exosomes secreted from the iPSC-derived cardiomyocytes exert protective effects by transferring the endogenous molecules to salvage the injured neighboring cells by regulating apoptosis, inflammation, fibrosis, and angiogenesis. In this review, we will focus on the current advances in the exosomes from iPSC derivatives and discuss their therapeutic potential in the treatment of CVD.
Collapse
Affiliation(s)
- Ji-Hye Jung
- From the Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA
| | - Xuebin Fu
- From the Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA
| | - Phillip C Yang
- From the Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA.
| |
Collapse
|
115
|
Zhang D, Lee H, Zhu Z, Minhas JK, Jin Y. Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 2017; 312:L110-L121. [PMID: 27881406 PMCID: PMC5283929 DOI: 10.1152/ajplung.00423.2016] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 01/10/2023] Open
Abstract
Exosomes are nanovesicles secreted by cells and contain various molecules including protein, lipid, and DNA/RNA. They are crucial mediators of the intercellular communication and serve as promising vehicles for drug delivery and gene therapy. Recently, accumulating evidence suggests that microRNAs (miRNAs) may serve as new and potentially powerful targets for therapeutic interventions against various human diseases. However, steadily and effectively delivering miRNA mimics or inhibitors to target cells remains a major obstacle. To enhance the efficacy of exosome-mediated delivery of miRNA molecules, it is crucial to develop a convenient and efficient method to enrich specific miRNAs or antisense oligos in isolated exosomes. Here we report a novel method to prepare specific miRNA molecule-loaded exosomes. Using a modified calcium chloride-mediated transfection method, we successfully enhanced the designated miRNA mimics or inhibitors in isolated exosomes directly, instead of transfecting their mother cells. We also compared this method with direct transfection of exosomes using electroporation. Both methods confirmed that exosomes can serve as cargos to deliver a robustly increased amount of selected miRNA mimic(s) or inhibitor(s) to the recipient cells. Delivery of these miRNA molecule enriched-exosomes subsequently results in highly efficient overexpression or deletion of the designated miRNAs in the recipient cells both in vivo and in vitro. Additionally, we confirmed that exosome-delivered miRNA mimics or inhibitors are functional in the recipient cells. Collectively, we developed a novel protocol to conveniently manipulate exosomal miRNAs with high efficiency and successfully deliver the exosomal miRNA molecules to recipient cells.
Collapse
Affiliation(s)
- Duo Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, Massachusetts; and
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, Massachusetts; and
| | - Ziwen Zhu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, Massachusetts; and
| | - Jasleen K Minhas
- Department of Medicine, North Shore Medical Center, Salem Hospital, Boston, Massachusetts
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, Massachusetts; and
| |
Collapse
|
116
|
Nazimek K, Bryniarski K, Askenase PW. Functions of Exosomes and Microbial Extracellular Vesicles in Allergy and Contact and Delayed-Type Hypersensitivity. Int Arch Allergy Immunol 2016; 171:1-26. [PMID: 27820941 PMCID: PMC5131095 DOI: 10.1159/000449249] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles, such as exosomes, are newly recognized intercellular conveyors of functional molecular mechanisms. Notably, they transfer RNAs and proteins between different cells that can then participate in the complex pathogenesis of allergic and related hypersensitivity responses and disease mechanisms, as described herein. This review highlights this important new appreciation of the in vivo participation of such extracellular vesicles in the interactions between allergy-mediating cells. We take into account paracrine epigenetic exchanges mediated by surrounding stromal cells and the endocrine receipt of exosomes from distant cells via the circulation. Exosomes are natural ancient nanoparticles of life. They are made by all cells and in some form by all species down to fungi and bacteria, and are present in all fluids. Besides a new focus on their role in the transmission of genetic regulation, exosome transfer of allergens was recently shown to induce allergic inflammation. Importantly, regulatory and tolerogenic exosomes can potently inhibit allergy and hypersensitivity responses, usually acting nonspecifically, but can also proceed in an antigen-specific manner due to the coating of the exosome surface with antibodies. Deep analysis of processes mediated by exosomes should result in the development of early diagnostic biomarkers, as well as allergen-specific, preventive and therapeutic strategies. These will likely significantly diminish the risks of current allergen-specific parenteral desensitization procedures, and of the use of systemic immunosuppressive drugs. Since extracellular vesicles are physiological, they can be fashioned for the specific delivery of therapeutic molecular instructions through easily tolerated, noninvasive routes, such as oral ingestion, nasal administration, and perhaps even inhalation.
Collapse
Affiliation(s)
- Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Philip W. Askenase
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
117
|
Soares VYR, Atai NA, Fujita T, Dilwali S, Sivaraman S, Landegger LD, Hochberg FH, Oliveira CAPC, Bahmad F, Breakefield XO, Stankovic KM. Extracellular vesicles derived from human vestibular schwannomas associated with poor hearing damage cochlear cells. Neuro Oncol 2016; 18:1498-1507. [PMID: 27194145 PMCID: PMC5063517 DOI: 10.1093/neuonc/now099] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/13/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Vestibular schwannoma (VS) is a tumor of the vestibular nerve that transmits balance information from the inner ear to the brain. Sensorineural hearing loss occurs in 95% of patients with these tumors, but the cause of this loss is not well understood. We posit a role of VS-secreted extracellular vesicles (EVs) as a major contributing factor in cochlear nerve damage. METHODS Using differential centrifugation, we isolated EVs from VS cell line HEI-193 and primary cultured human VS cells from patients with good hearing or poor hearing. The EVs were characterized using a Nanosight device and transmission electron microscopy and by extracting their RNA content. The EVs' effects on cultured murine spiral ganglion cells and organotypic cochlear cultures were studied using a transwell dual-culture system and by direct labeling of EVs with PKH-67 dye. EV-induced changes in cochlear cells were quantified using confocal immunohistochemistry. Transfection of VS cells with a green fluorescent protein-containing plasmid was confirmed with reverse transcription PCR. RESULTS Human VS cells, from patients with poor hearing, produced EVs that could damage both cultured murine cochlear sensory cells and neurons. In contrast, EVs derived from VS cells from patients with good hearing did not damage the cultured cochlear cells. CONCLUSIONS This is the first report on EVs derived from VSs and on the capacity of EVs from VSs from patients with hearing loss to selectively damage cochlear cells, thereby identifying a potential novel mechanism of VS-associated sensorineural hearing loss.
Collapse
Affiliation(s)
- Vitor Y R Soares
- Department of Otolaryngology, Eaton Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts (V.Y.R.S., T.F., S.D., L.D.L., K.M.S.); Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts (V.Y.R.S., T.F., L.D.L., K.M.S.); Health Science Program and Department of Otolaryngology, University of Brasilia, Brasília, Distrito Federal, Brazil (V.Y.R.S., C.A.P.C.O., F.B.); University of Amsterdam, Amsterdam, the Netherlands (N.A.A.); Department of Neurology and Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Charlestown, Massachusetts (N.A.A., S.S., X.O.B.); Harvard-MIT Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts (S.D., K.M.S); Department of Neurosurgery, University of California at San Diego, San Diego, California (F.H.H.)
| | - Nadia A Atai
- Department of Otolaryngology, Eaton Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts (V.Y.R.S., T.F., S.D., L.D.L., K.M.S.); Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts (V.Y.R.S., T.F., L.D.L., K.M.S.); Health Science Program and Department of Otolaryngology, University of Brasilia, Brasília, Distrito Federal, Brazil (V.Y.R.S., C.A.P.C.O., F.B.); University of Amsterdam, Amsterdam, the Netherlands (N.A.A.); Department of Neurology and Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Charlestown, Massachusetts (N.A.A., S.S., X.O.B.); Harvard-MIT Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts (S.D., K.M.S); Department of Neurosurgery, University of California at San Diego, San Diego, California (F.H.H.)
| | - Takeshi Fujita
- Department of Otolaryngology, Eaton Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts (V.Y.R.S., T.F., S.D., L.D.L., K.M.S.); Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts (V.Y.R.S., T.F., L.D.L., K.M.S.); Health Science Program and Department of Otolaryngology, University of Brasilia, Brasília, Distrito Federal, Brazil (V.Y.R.S., C.A.P.C.O., F.B.); University of Amsterdam, Amsterdam, the Netherlands (N.A.A.); Department of Neurology and Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Charlestown, Massachusetts (N.A.A., S.S., X.O.B.); Harvard-MIT Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts (S.D., K.M.S); Department of Neurosurgery, University of California at San Diego, San Diego, California (F.H.H.)
| | - Sonam Dilwali
- Department of Otolaryngology, Eaton Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts (V.Y.R.S., T.F., S.D., L.D.L., K.M.S.); Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts (V.Y.R.S., T.F., L.D.L., K.M.S.); Health Science Program and Department of Otolaryngology, University of Brasilia, Brasília, Distrito Federal, Brazil (V.Y.R.S., C.A.P.C.O., F.B.); University of Amsterdam, Amsterdam, the Netherlands (N.A.A.); Department of Neurology and Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Charlestown, Massachusetts (N.A.A., S.S., X.O.B.); Harvard-MIT Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts (S.D., K.M.S); Department of Neurosurgery, University of California at San Diego, San Diego, California (F.H.H.)
| | - Sarada Sivaraman
- Department of Otolaryngology, Eaton Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts (V.Y.R.S., T.F., S.D., L.D.L., K.M.S.); Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts (V.Y.R.S., T.F., L.D.L., K.M.S.); Health Science Program and Department of Otolaryngology, University of Brasilia, Brasília, Distrito Federal, Brazil (V.Y.R.S., C.A.P.C.O., F.B.); University of Amsterdam, Amsterdam, the Netherlands (N.A.A.); Department of Neurology and Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Charlestown, Massachusetts (N.A.A., S.S., X.O.B.); Harvard-MIT Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts (S.D., K.M.S); Department of Neurosurgery, University of California at San Diego, San Diego, California (F.H.H.)
| | - Lukas D Landegger
- Department of Otolaryngology, Eaton Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts (V.Y.R.S., T.F., S.D., L.D.L., K.M.S.); Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts (V.Y.R.S., T.F., L.D.L., K.M.S.); Health Science Program and Department of Otolaryngology, University of Brasilia, Brasília, Distrito Federal, Brazil (V.Y.R.S., C.A.P.C.O., F.B.); University of Amsterdam, Amsterdam, the Netherlands (N.A.A.); Department of Neurology and Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Charlestown, Massachusetts (N.A.A., S.S., X.O.B.); Harvard-MIT Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts (S.D., K.M.S); Department of Neurosurgery, University of California at San Diego, San Diego, California (F.H.H.)
| | - Fred H Hochberg
- Department of Otolaryngology, Eaton Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts (V.Y.R.S., T.F., S.D., L.D.L., K.M.S.); Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts (V.Y.R.S., T.F., L.D.L., K.M.S.); Health Science Program and Department of Otolaryngology, University of Brasilia, Brasília, Distrito Federal, Brazil (V.Y.R.S., C.A.P.C.O., F.B.); University of Amsterdam, Amsterdam, the Netherlands (N.A.A.); Department of Neurology and Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Charlestown, Massachusetts (N.A.A., S.S., X.O.B.); Harvard-MIT Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts (S.D., K.M.S); Department of Neurosurgery, University of California at San Diego, San Diego, California (F.H.H.)
| | - Carlos A P C Oliveira
- Department of Otolaryngology, Eaton Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts (V.Y.R.S., T.F., S.D., L.D.L., K.M.S.); Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts (V.Y.R.S., T.F., L.D.L., K.M.S.); Health Science Program and Department of Otolaryngology, University of Brasilia, Brasília, Distrito Federal, Brazil (V.Y.R.S., C.A.P.C.O., F.B.); University of Amsterdam, Amsterdam, the Netherlands (N.A.A.); Department of Neurology and Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Charlestown, Massachusetts (N.A.A., S.S., X.O.B.); Harvard-MIT Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts (S.D., K.M.S); Department of Neurosurgery, University of California at San Diego, San Diego, California (F.H.H.)
| | - Fayez Bahmad
- Department of Otolaryngology, Eaton Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts (V.Y.R.S., T.F., S.D., L.D.L., K.M.S.); Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts (V.Y.R.S., T.F., L.D.L., K.M.S.); Health Science Program and Department of Otolaryngology, University of Brasilia, Brasília, Distrito Federal, Brazil (V.Y.R.S., C.A.P.C.O., F.B.); University of Amsterdam, Amsterdam, the Netherlands (N.A.A.); Department of Neurology and Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Charlestown, Massachusetts (N.A.A., S.S., X.O.B.); Harvard-MIT Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts (S.D., K.M.S); Department of Neurosurgery, University of California at San Diego, San Diego, California (F.H.H.)
| | - Xandra O Breakefield
- Department of Otolaryngology, Eaton Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts (V.Y.R.S., T.F., S.D., L.D.L., K.M.S.); Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts (V.Y.R.S., T.F., L.D.L., K.M.S.); Health Science Program and Department of Otolaryngology, University of Brasilia, Brasília, Distrito Federal, Brazil (V.Y.R.S., C.A.P.C.O., F.B.); University of Amsterdam, Amsterdam, the Netherlands (N.A.A.); Department of Neurology and Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Charlestown, Massachusetts (N.A.A., S.S., X.O.B.); Harvard-MIT Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts (S.D., K.M.S); Department of Neurosurgery, University of California at San Diego, San Diego, California (F.H.H.)
| | - Konstantina M Stankovic
- Department of Otolaryngology, Eaton Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts (V.Y.R.S., T.F., S.D., L.D.L., K.M.S.); Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts (V.Y.R.S., T.F., L.D.L., K.M.S.); Health Science Program and Department of Otolaryngology, University of Brasilia, Brasília, Distrito Federal, Brazil (V.Y.R.S., C.A.P.C.O., F.B.); University of Amsterdam, Amsterdam, the Netherlands (N.A.A.); Department of Neurology and Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Charlestown, Massachusetts (N.A.A., S.S., X.O.B.); Harvard-MIT Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts (S.D., K.M.S); Department of Neurosurgery, University of California at San Diego, San Diego, California (F.H.H.)
| |
Collapse
|
118
|
Abstract
Stem cells are critical to maintaining steady-state organ homeostasis and regenerating injured tissues. Recent intriguing reports implicate extracellular vesicles (EVs) as carriers for the distribution of morphogens and growth and differentiation factors from tissue parenchymal cells to stem cells, and conversely, stem cell-derived EVs carrying certain proteins and nucleic acids can support healing of injured tissues. We describe approaches to make use of engineered EVs as technology platforms in therapeutics and diagnostics in the context of stem cells. For some regenerative therapies, natural and engineered EVs from stem cells may be superior to single-molecule drugs, biologics, whole cells, and synthetic liposome or nanoparticle formulations because of the ease of bioengineering with multiple factors while retaining superior biocompatibility and biostability and posing fewer risks for abnormal differentiation or neoplastic transformation. Finally, we provide an overview of current challenges and future directions of EVs as potential therapeutic alternatives to cells for clinical applications.
Collapse
Affiliation(s)
- Milad Riazifar
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Egest J Pone
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, The Sahlgrenska Academy, Göteborg University, SE-405 30 Göteborg, Sweden.,Codiak BioSciences Inc., Woburn, Massachusetts 01801
| | - Weian Zhao
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
119
|
Suzuki E, Fujita D, Takahashi M, Oba S, Nishimatsu H. Stem cell-derived exosomes as a therapeutic tool for cardiovascular disease. World J Stem Cells 2016; 8:297-305. [PMID: 27679686 PMCID: PMC5031891 DOI: 10.4252/wjsc.v8.i9.297] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/12/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been used to treat patients suffering from acute myocardial infarction (AMI) and subsequent heart failure. Although it was originally assumed that MSCs differentiated into heart cells such as cardiomyocytes, recent evidence suggests that the differentiation capacity of MSCs is minimal and that injected MSCs restore cardiac function via the secretion of paracrine factors. MSCs secrete paracrine factors in not only naked forms but also membrane vesicles including exosomes containing bioactive substances such as proteins, messenger RNAs, and microRNAs. Although the details remain unclear, these bioactive molecules are selectively sorted in exosomes that are then released from donor cells in a regulated manner. Furthermore, exosomes are specifically internalized by recipient cells via ligand-receptor interactions. Thus, exosomes are promising natural vehicles that stably and specifically transport bioactive molecules to recipient cells. Indeed, stem cell-derived exosomes have been successfully used to treat cardiovascular disease (CVD), such as AMI, stroke, and pulmonary hypertension, in animal models, and their efficacy has been demonstrated. Therefore, exosome administration may be a promising strategy for the treatment of CVD. Furthermore, modifications of exosomal contents may enhance their therapeutic effects. Future clinical studies are required to confirm the efficacy of exosome treatment for CVD.
Collapse
|
120
|
Ammerpohl O, Scheufele S, Siebert R. Analysen epigenetischer Marker aus Liquid Biopsies: Informationen von jenseits des Genoms. MED GENET-BERLIN 2016. [DOI: 10.1007/s11825-016-0093-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Zusammenfassung
Die Analyse epigenetischer Marker aus Liquid Biopsies erlaubt Einblicke in physiologische und pathologische Prozesse im Körper einer Person, die über die reine Sequenzinformation hinausgehen. Insbesondere das DNA-Methylierungsmuster sowie die Expressionsmuster von mRNA und ncRNA sind aus Liquid Biopsies erfassbar. Damit werden ganze Gruppen neuer potenzieller Biomarker einer nicht invasiven und ökonomischen Diagnostik zugänglich. Darüber hinaus und im Gegensatz zur reinen DNA-Sequenzanalyse von Liquid Biopsies erlaubt die hohe Gewebespezifität epigenetischer Marker auch die Bestimmung der Herkunft der analysierten Nukleinsäuren z. B. in Bezug auf ein betroffenes Organ. Angesichts der fallenden Kosten für Sequenzierungen und des technologischen Fortschritts, der die Nachweisgrenzen immer weiter zu immer sensitiveren Anwendungen verschiebt, könnten epigenetische Untersuchungen aus Liquid Biopsies den Trend zu einer Individualisierung in der Medizin weiter forcieren.
Collapse
Affiliation(s)
- Ole Ammerpohl
- Aff1 grid.9764.c 0000000121539986 Institut für Humangenetik Christian‑Albrechts‑Universität zu Kiel Schwanenweg 24 24105 Kiel Deutschland
- Aff2 grid.412468.d 0000000406462097 Universitätsklinikum Schleswig-Holstein Campus Kiel Kiel Deutschland
- Aff3 grid.452624.3 Airway Research Center North (ARCN) German Center for Lung Research (DZL) Gießen Deutschland
| | - Swetlana Scheufele
- Aff1 grid.9764.c 0000000121539986 Institut für Humangenetik Christian‑Albrechts‑Universität zu Kiel Schwanenweg 24 24105 Kiel Deutschland
- Aff2 grid.412468.d 0000000406462097 Universitätsklinikum Schleswig-Holstein Campus Kiel Kiel Deutschland
- Aff3 grid.452624.3 Airway Research Center North (ARCN) German Center for Lung Research (DZL) Gießen Deutschland
| | - Reiner Siebert
- Aff3 grid.452624.3 Airway Research Center North (ARCN) German Center for Lung Research (DZL) Gießen Deutschland
- Aff4 grid.6582.9 0000000419369748 Institut für Humangenetik Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| |
Collapse
|
121
|
Diener Y, Bosio A, Bissels U. Delivery of RNA-based molecules to human hematopoietic stem and progenitor cells for modulation of gene expression. Exp Hematol 2016; 44:991-1001. [PMID: 27576131 DOI: 10.1016/j.exphem.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/01/2016] [Accepted: 08/18/2016] [Indexed: 12/26/2022]
Abstract
Gene modulation of human hematopoietic stem and progenitor cells (HSPCs) harbors great potential for therapeutic application of these cells and presents a versatile tool in basic research to enhance our understanding of HSPC biology. However, stable genetic modification might be adverse, particularly in clinical settings. Here, we review a broad range of approaches to transient, nonviral modulation of protein expression with a focus on RNA-based methods. We compare different delivery methods and describe the usefulness of RNA molecules for overexpression as well as downregulation of proteins in HSPCs.
Collapse
Affiliation(s)
| | | | - Ute Bissels
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany.
| |
Collapse
|
122
|
Weilner S, Schraml E, Wieser M, Messner P, Schneider K, Wassermann K, Micutkova L, Fortschegger K, Maier AB, Westendorp R, Resch H, Wolbank S, Redl H, Jansen‐Dürr P, Pietschmann P, Grillari‐Voglauer R, Grillari J. Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells. Aging Cell 2016; 15:744-54. [PMID: 27146333 PMCID: PMC4933673 DOI: 10.1111/acel.12484] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2016] [Indexed: 11/29/2022] Open
Abstract
Damage to cells and tissues is one of the driving forces of aging and age-related diseases. Various repair systems are in place to counteract this functional decline. In particular, the property of adult stem cells to self-renew and differentiate is essential for tissue homeostasis and regeneration. However, their functionality declines with age (Rando, 2006). One organ that is notably affected by the reduced differentiation capacity of stem cells with age is the skeleton. Here, we found that circulating microvesicles impact on the osteogenic differentiation capacity of mesenchymal stem cells in a donor-age-dependent way. While searching for factors mediating the inhibitory effect of elderly derived microvesicles on osteogenesis, we identified miR-31 as a crucial component. We demonstrated that miR-31 is present at elevated levels in the plasma of elderly and of osteoporosis patients. As a potential source of its secretion, we identified senescent endothelial cells, which are known to increase during aging in vivo (Erusalimsky, 2009). Endothelial miR-31 is secreted within senescent cell-derived microvesicles and taken up by mesenchymal stem cells where it inhibits osteogenic differentiation by knocking down its target Frizzled-3. Therefore, we suggest that microvesicular miR-31 in the plasma of elderly might play a role in the pathogenesis of age-related impaired bone formation and that miR-31 might be a valuable plasma-based biomarker for aging and for a systemic environment that does not favor cell-based therapies whenever osteogenesis is a limiting factor.
Collapse
Affiliation(s)
- Sylvia Weilner
- Department of BiotechnologyBOKU ‐ University of Natural Resources and Life Sciences ViennaMuthgasse 181190ViennaAustria
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CenterDonaueschingenstrasse 13A‐1200ViennaAustria
- Evercyte GmbHMuthgasse 181190ViennaAustria
| | - Elisabeth Schraml
- Department of BiotechnologyBOKU ‐ University of Natural Resources and Life Sciences ViennaMuthgasse 181190ViennaAustria
| | - Matthias Wieser
- Department of BiotechnologyBOKU ‐ University of Natural Resources and Life Sciences ViennaMuthgasse 181190ViennaAustria
- ACIBMuthgasse 181190ViennaAustria
| | - Paul Messner
- Department of NanoBiotechnologyVienna Institute of BioTechnologyUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - Karl Schneider
- Department of BiotechnologyBOKU ‐ University of Natural Resources and Life Sciences ViennaMuthgasse 181190ViennaAustria
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CenterDonaueschingenstrasse 13A‐1200ViennaAustria
| | - Klemens Wassermann
- Department of BiotechnologyBOKU ‐ University of Natural Resources and Life Sciences ViennaMuthgasse 181190ViennaAustria
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CenterDonaueschingenstrasse 13A‐1200ViennaAustria
| | - Lucia Micutkova
- Institute of Biomedical Aging ResearchAustrian Academy of SciencesViennaAustria
| | - Klaus Fortschegger
- Children's Cancer Research Institute (CCRI)St. Anna KinderkrebsforschungViennaAustria
| | - Andrea B. Maier
- Department of Medicine and Aged CareRoyal Melbourne HospitalUniversity of MelbourneMelbourneAustralia
- Department of Human Movement SciencesMOVE Research Institute AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Rudi Westendorp
- Department of public health and center for healthy aginguniversity of CopenhagenDenmark
| | - Heinrich Resch
- Department of Medicine 2St. Vincent Hospital1060ViennaAustria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CenterDonaueschingenstrasse 13A‐1200ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CenterDonaueschingenstrasse 13A‐1200ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Pidder Jansen‐Dürr
- Institute of Biomedical Aging ResearchAustrian Academy of SciencesViennaAustria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy ResearchCenter of PathophysiologyInfectiology and ImmunologyMedical University of Vienna1090ViennaAustria
| | - Regina Grillari‐Voglauer
- Department of BiotechnologyBOKU ‐ University of Natural Resources and Life Sciences ViennaMuthgasse 181190ViennaAustria
- Evercyte GmbHMuthgasse 181190ViennaAustria
- ACIBMuthgasse 181190ViennaAustria
| | - Johannes Grillari
- Department of BiotechnologyBOKU ‐ University of Natural Resources and Life Sciences ViennaMuthgasse 181190ViennaAustria
- Evercyte GmbHMuthgasse 181190ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| |
Collapse
|
123
|
Fritz JV, Heintz-Buschart A, Ghosal A, Wampach L, Etheridge A, Galas D, Wilmes P. Sources and Functions of Extracellular Small RNAs in Human Circulation. Annu Rev Nutr 2016; 36:301-36. [PMID: 27215587 PMCID: PMC5479634 DOI: 10.1146/annurev-nutr-071715-050711] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Various biotypes of endogenous small RNAs (sRNAs) have been detected in human circulation, including microRNAs, transfer RNAs, ribosomal RNA, and yRNA fragments. These extracellular sRNAs (ex-sRNAs) are packaged and secreted by many different cell types. Ex-sRNAs exhibit differences in abundance in several disease states and have, therefore, been proposed for use as effective biomarkers. Furthermore, exosome-borne ex-sRNAs have been reported to elicit physiological responses in acceptor cells. Exogenous ex-sRNAs derived from diet (most prominently from plants) and microorganisms have also been reported in human blood. Essential issues that remain to be conclusively addressed concern the (a) presence and sources of exogenous ex-sRNAs in human bodily fluids, (b) detection and measurement of ex-sRNAs in human circulation, (c) selectivity of ex-sRNA export and import, (d) sensitivity and specificity of ex-sRNA delivery to cellular targets, and (e) cell-, tissue-, organ-, and organism-wide impacts of ex-sRNA-mediated cell-to-cell communication. We survey the present state of knowledge of most of these issues in this review.
Collapse
MESH Headings
- Animals
- Biological Transport
- Biomarkers/blood
- Cell Communication
- Diet
- Gastrointestinal Microbiome/immunology
- Gene Expression Regulation
- Host-Parasite Interactions
- Host-Pathogen Interactions
- Humans
- Immunity, Innate
- MicroRNAs/blood
- MicroRNAs/metabolism
- Models, Biological
- RNA, Bacterial/blood
- RNA, Bacterial/metabolism
- RNA, Plant/blood
- RNA, Plant/metabolism
- RNA, Ribosomal/blood
- RNA, Ribosomal/metabolism
- RNA, Small Interfering/blood
- RNA, Small Interfering/metabolism
- RNA, Small Untranslated/blood
- RNA, Small Untranslated/metabolism
- RNA, Transfer/blood
- RNA, Transfer/metabolism
- RNA, Viral/blood
- RNA, Viral/metabolism
Collapse
Affiliation(s)
- Joëlle V Fritz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Anubrata Ghosal
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Linda Wampach
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Alton Etheridge
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - David Galas
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| |
Collapse
|
124
|
Barger JF, Rahman MA, Jackson D, Acunzo M, Nana-Sinkam SP. Extracellular miRNAs as biomarkers in cancer. Food Chem Toxicol 2016; 98:66-72. [PMID: 27311798 DOI: 10.1016/j.fct.2016.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
Cancer is the leading cause of death worldwide. Despite significant progress in the field leading to identification of molecular signatures of individual tumors and the development of targeted therapies, early cancer diagnosis remains a clinical challenge. The emerging era of personalized medicine has intensified research towards biomarkers that can be obtained via noninvasive means. The recent discovery of extracellular vesicles (EVs), nano-vesicles secreted by the cell, in circulation has stimulated interest in their clinical utility as cancer biomarkers. EVs are secreted from all types of cells and their contents reflect the physiological and pathological state of the cell. Multiple clinical trials are underway investigating the clinical potential of EV content to serve as biomarkers and therapeutics. However, much work remains to translate EV content into clinical application.
Collapse
Affiliation(s)
- Jennifer F Barger
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Mohammad A Rahman
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Devine Jackson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mario Acunzo
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - S Patrick Nana-Sinkam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA; Division of Medical Oncology, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
125
|
Endzeliņš E, Melne V, Kalniņa Z, Lietuvietis V, Riekstiņa U, Llorente A, Linē A. Diagnostic, prognostic and predictive value of cell-free miRNAs in prostate cancer: a systematic review. Mol Cancer 2016; 15:41. [PMID: 27189160 PMCID: PMC4870749 DOI: 10.1186/s12943-016-0523-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/12/2016] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer, the second most frequently diagnosed cancer in males worldwide, is estimated to be diagnosed in 1.1 million men per year. Introduction of PSA testing substantially improved early detection of prostate cancer, however it also led to overdiagnosis and subsequent overtreatment of patients with an indolent disease. Treatment outcome and management of prostate cancer could be improved by the development of non-invasive biomarker assays that aid in increasing the sensitivity and specificity of prostate cancer screening, help to distinguish aggressive from indolent disease and guide therapeutic decisions. Prostate cancer cells release miRNAs into the bloodstream, where they exist incorporated into ribonucleoprotein complexes or extracellular vesicles. Later, cell-free miRNAs have been found in various other biofluids. The initial RNA sequencing studies suggested that most of the circulating cell-free miRNAs in healthy individuals are derived from blood cells, while specific disease-associated miRNA signatures may appear in the circulation of patients affected with various diseases, including cancer. This raised a hope that cell-free miRNAs may serve as non-invasive biomarkers for prostate cancer. Indeed, a number of cell-free miRNAs that potentially may serve as diagnostic, prognostic or predictive biomarkers have been discovered in blood or other biofluids of prostate cancer patients and need to be validated in appropriately designed longitudinal studies and clinical trials. In this review, we systematically summarise studies investigating cell-free miRNAs in biofluids of prostate cancer patients and discuss the utility of the identified biomarkers in various clinical scenarios. Furthermore, we discuss the possible mechanisms of miRNA release into biofluids and outline the biological questions and technical challenges that have arisen from these studies.
Collapse
Affiliation(s)
- Edgars Endzeliņš
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Vita Melne
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia.,Riga Stradiņš University, Dzirciema Str 16, Riga, LV-1007, Latvia
| | - Zane Kalniņa
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Vilnis Lietuvietis
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia.,Riga Stradiņš University, Dzirciema Str 16, Riga, LV-1007, Latvia
| | - Una Riekstiņa
- Faculty of Medicine, University of Latvia, 19 Raina blvd., Riga, LV-1586, Latvia
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379, Oslo, Norway
| | - Aija Linē
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia.
| |
Collapse
|
126
|
Yin R, Guo L, Zhang W, Zheng J. The Pleiotropic Effects of miRNAs on Tumor Angiogenesis. J Cell Biochem 2016; 116:1807-15. [PMID: 24115097 DOI: 10.1002/jcb.24679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/12/2013] [Indexed: 12/19/2022]
Abstract
Angiogenesis, the process of new blood vessel formation and growth from already existing venules is critical in vascular development and homeostasis controlled by the balance of pro- and anti-angiogenic factors. Emerging evidence indicates the development, progression, and metastasis of various human cancers are strongly relied on angiogenesis. However, molecular mechanisms that underlie the complex regulation of angiogenic processes are still not fully elucidated. Recent studies revealed that microRNAs (miRNAs) were important regulators of tumor angiogenesis and the entire research in this area has entered into a so-called "miRNAs era." Thus, miRNAs might be important therapeutic targets or biomarkers for cancer. Due to the complexity of miRNA regulating mechanisms, how specific miRNAs intersect with and modulate tumor angiogenesis is still unclear. The conflicting results of the same miRNAs from different groups indicated that miRNAs might possess potent activity in a cell type or cell context specific manner. Here, we present a summary of latest advances in understanding the roles of angiogenic miRNAs as potential tools or targets in cancer therapy.
Collapse
Affiliation(s)
- Runting Yin
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, P.R. China.,Jiangsu Province Key Laboratory of Tumor Biological Therapy, Xuzhou Medical College, Xuzhou 221000, P.R. China
| | - Le Guo
- School of Laboratory Medicine, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Wei Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, P.R. China
| | - Junnian Zheng
- Jiangsu Province Key Laboratory of Tumor Biological Therapy, Xuzhou Medical College, Xuzhou 221000, P.R. China
| |
Collapse
|
127
|
Iftikhar H, Carney GE. Evidence and potential in vivo functions for biofluid miRNAs: From expression profiling to functional testing: Potential roles of extracellular miRNAs as indicators of physiological change and as agents of intercellular information exchange. Bioessays 2016; 38:367-78. [PMID: 26934338 DOI: 10.1002/bies.201500130] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A controversial hypothesis in RNA biology is that extracellular microRNAs (miRNAs), including those in biofluids, have non-cell-autonomous activities. Several studies have characterized biofluid miRNA profiles in healthy or diseased individuals but generally have failed to identify distinct disease signatures. It remains unclear whether alterations in fluid miRNA levels are simply indicators of physiological change or whether miRNAs are taken up by new cells at concentrations sufficient to affect gene expression. There are limitations to biofluid miRNA studies performed to date: methodology for isolating and quantifying biofluid miRNAs is not standardized across studies; mechanistic details of miRNA release and uptake are incomplete; and efforts to assess non-cell-autonomous effects of extracellular miRNAs have employed predominantly in vitro strategies. We describe controversies and questions that need to be addressed to test possible in vivo roles of extracellular miRNAs and propose model organisms with rich genetic toolkits for carrying out in vivo functional analyses.
Collapse
Affiliation(s)
- Hina Iftikhar
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Ginger E Carney
- Department of Biology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
128
|
Rauschenberger L, Staar D, Thom K, Scharf C, Venz S, Homuth G, Schlüter R, Brandenburg LO, Ziegler P, Zimmermann U, Weitschies W, Völker U, Lendeckel U, Walther R, Burchardt M, Stope MB. Exosomal particles secreted by prostate cancer cells are potent mRNA and protein vehicles for the interference of tumor and tumor environment. Prostate 2016; 76:409-24. [PMID: 26643154 DOI: 10.1002/pros.23132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/20/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Remodeling of the tumor environment and the modulation of tumor associated non-malignant cells are essential events in tumor progression. Exosomes are small membranous vesicles of 50-150 nm in diameter, which are secreted into the extracellular space and supposedly serve as vehicles for signal and effector molecules to modulate adjacent target cells. We characterized the mRNA and protein composition as well as cellular functions of prostate cancer cell-derived exosomes. METHODS Exosomes were prepared from prostate cancer cell culture supernatant by ultracentrifugation and subsequently characterized by dynamic light scattering and electron microscopy. Exosomal mRNA and protein composition were analyzed by DNA microarrays and gel electrophoresis coupled with mass spectrometry. Physiological effects of exosomes were studied by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase release cell assays. Using a SILAC approach, putative uptake of exosomal human proteins in canine cells and canine de novo synthesis of proteins specified by exosome-transferred human mRNA was analyzed in MDCK cells via mass spectrometry. RESULTS Preparations of exosomes revealed typical cup shaped particles of 150 nm in diameter. Analysis of mRNA and protein composition of exosomes exhibited a wide range of mRNA and protein species. Interestingly, the packaging of at least small proteins into exosomes was apparently unspecific, as shown with the example of two model proteins. In cell culture incubation experiments exosomal preparations of prostate cancer cells caused anti-proliferative effects. MS analysis revealed the uptake of exosomal human proteins into canine cells after 6 hr of incubation. CONCLUSIONS The results reveal a distinct exosomal functionality in the modulation of the prostatic tumor adjacent environment. The multitude of translocated factors implies the induction of numerous effects in tumor-associated target cells, including impact on cellular growth.
Collapse
Affiliation(s)
| | - Doreen Staar
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Kathleen Thom
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Christian Scharf
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Simone Venz
- Department of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Institute of Microbiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | | | - Patrick Ziegler
- Department of Occupational and Social Medicine, RWTH Aachen University, Aachen, Germany
| | - Uwe Zimmermann
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Werner Weitschies
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Lendeckel
- Department of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Reinhard Walther
- Department of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
129
|
Zhao H, Yang L, Baddour J, Achreja A, Bernard V, Moss T, Marini JC, Tudawe T, Seviour EG, San Lucas FA, Alvarez H, Gupta S, Maiti SN, Cooper L, Peehl D, Ram PT, Maitra A, Nagrath D. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife 2016; 5:e10250. [PMID: 26920219 PMCID: PMC4841778 DOI: 10.7554/elife.10250] [Citation(s) in RCA: 719] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/26/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions. DOI:http://dx.doi.org/10.7554/eLife.10250.001 Cancer cells behave differently from healthy cells in many ways. Healthy cells rely on structures called mitochondria to provide them with energy via a process that requires oxygen. However cancer cells don’t rely on this process, and instead release energy by breaking down sugars outside of the mitochondria. This may explain why cancer cells are able to thrive even when little oxygen is available. Cancer cells also interact with neighboring cells called fibroblasts, which are a major part of a tumor’s microenvironment, and recruit them into the tumors. The fibroblasts communicate with cancer cells, in part, by releasing chemical messengers packaged into tiny bubble-like structures called exosomes. Recent studies have suggested that these exosomes may help cancer cells to thrive, but there are many questions remaining about how they might do this. Now, Zhao et al. show that the fibroblasts smuggle essential nutrients to cancer cells via the exosomes and disable oxygen-based energy production in cancer cells. First, exosomes released by cancer-associated fibroblasts from people with prostate cancer were collected and marked with a green dye. Next, the green-labeled exosomes were mixed with prostate cancer cells, and shown to be absorbed by the cells. Oxygen-based energy release was dramatically reduced in the exosome-absorbing cells, and sugar-based energy release increased. Next, Zhao et al examined the contents of the exosomes, and found that they contain the building blocks of proteins, fats, and other important molecules. Next, the experiments revealed that both prostate cancer and pancreatic cancer cells deprived of nutrients can use these smuggled resources to continue to grow. Importantly, this process did not involve the protein Kras, which previous studies had show helps cancer cells absorb nutrients. These findings suggest that preventing exosomes from smuggling resources to starving cancer cells might be an effective strategy to treat cancers. DOI:http://dx.doi.org/10.7554/eLife.10250.002
Collapse
Affiliation(s)
- Hongyun Zhao
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, United States
| | - Lifeng Yang
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, United States
| | - Joelle Baddour
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, United States
| | - Abhinav Achreja
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, United States
| | - Vincent Bernard
- Departments of Pathology and Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Tyler Moss
- Department of Systems Biology, University of Texas, MD Anderson, Houston, United States
| | | | - Thavisha Tudawe
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, United States
| | - Elena G Seviour
- Department of Systems Biology, University of Texas, MD Anderson, Houston, United States
| | - F Anthony San Lucas
- Departments of Pathology and Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Hector Alvarez
- Departments of Pathology and Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Sonal Gupta
- Departments of Pathology and Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Sourindra N Maiti
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Laurence Cooper
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Donna Peehl
- Department of Urology, School of Medicine, Stanford University, Stanford, United States
| | - Prahlad T Ram
- Department of Systems Biology, University of Texas, MD Anderson, Houston, United States
| | - Anirban Maitra
- Departments of Pathology and Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Deepak Nagrath
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, United States.,Department of Bioengineering, Rice University, Houston, United States
| |
Collapse
|
130
|
Bell BM, Kirk ID, Hiltbrunner S, Gabrielsson S, Bultema JJ. Designer exosomes as next-generation cancer immunotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:163-9. [DOI: 10.1016/j.nano.2015.09.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 12/21/2022]
|
131
|
Wu Y, Deng W, Klinke DJ. Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 2015; 140:6631-42. [PMID: 26332016 PMCID: PMC4986832 DOI: 10.1039/c5an00688k] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As a type of secreted membrane vesicle, exosomes are an emerging mode of cell-to-cell communication. Yet as exosome samples are commonly contaminated with other extracellular vesicles, the biological roles of exosomes in regulating immunity and promoting oncogenesis remain controversial. Wondering whether existing methods could distort our view of exosome biology, we compared two direct methods for imaging extracellular vesicles and quantified the impact of different production and storage conditions on the quality of exosome samples. Scanning electron microscopy (SEM) was compared to transmission electron microscopy (TEM) as alternatives to examine the morphology of exosomes. Using SEM, we were able to distinguish exosomes from other contaminating extracellular vesicles based on the size distribution. More importantly, freezing of samples prior to SEM imaging made it more difficult to distinguish exosomes from extracellular vesicles secreted during cell death. In addition to morphology, the quality of RNA contained within the exosomes was characterized under different storage conditions, where freezing of samples also degraded RNA. Finally, we developed a new flow cytometry approach to assay transmembrane proteins on exosomes. While high-copy-number proteins could be readily detected, detecting low-copy-number proteins was improved using a lipophilic tracer that clustered exosomes. To illustrate this, we observed that exosomes derived from SKBR3 cells, a cell model for human HER2+ breast cancer, contained both HER1 and HER2 but at different levels of abundance. Collectively, these new methods will help to ensure a consistent framework to identify specific roles that exosomes play in regulating cell-to-cell communication.
Collapse
Affiliation(s)
- Yueting Wu
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26505, USA.
| | | | | |
Collapse
|
132
|
Shih CL, Chong KY, Hsu SC, Chien HJ, Ma CT, Chang JWC, Yu CJ, Chiou CC. Development of a magnetic bead-based method for the collection of circulating extracellular vesicles. N Biotechnol 2015; 33:116-22. [PMID: 26409934 DOI: 10.1016/j.nbt.2015.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/28/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022]
Abstract
Cells release different types of extracellular vesicles (EVs). These EVs contain biomolecules, including proteins and nucleic acids, from their parent cells, which can be useful for diagnostic applications. The aim of this study was to develop a convenient procedure to collect circulating EVs with detectable mRNA or other biomolecules. Magnetic beads coated with annexin A5 (ANX-beads), which bound to phosphatidylserine moieties on the surfaces of most EVs, were tested for their ability to capture induced apoptotic bodies in vitro and other phosphatidylserine-presenting vesicles in body fluids. Our results show that up to 60% of induced apoptotic bodies could be captured by the ANX-beads. The vesicles captured from cultured media or plasma contained amplifiable RNA. Suitable blood samples for EV collection included EDTA-plasma and serum but not heparin-plasma. In addition, EVs in plasma were labile to freeze-and-thaw cycles. In rodents xenografted with human cancer cells, tumor-derived mRNA could be detected in EVs captured from serum samples. Active proteins could be detected in EVs captured from ascites but not from plasma. In conclusion, we have developed a magnetic bead-based procedure for the collection of EVs from body fluids and proved that captured EVs contain biomolecules from their parent cells, and therefore have great potential for disease diagnosis.
Collapse
Affiliation(s)
- Chun-Liang Shih
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kowit-Yu Chong
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Che Hsu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Jung Chien
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Ting Ma
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - John Wen-Cheng Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Chiuan-Chian Chiou
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
133
|
Lamichhane TN, Raiker RS, Jay SM. Exogenous DNA Loading into Extracellular Vesicles via Electroporation is Size-Dependent and Enables Limited Gene Delivery. Mol Pharm 2015; 12:3650-7. [PMID: 26376343 DOI: 10.1021/acs.molpharmaceut.5b00364] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) hold immense promise for utilization as biotherapeutics and drug delivery vehicles due to their nature as biological nanoparticles that facilitate intercellular molecular transport. Specifically, EVs have been identified as natural carriers of nucleic acids, sparking interest in their use for gene therapy and RNA interference applications. So far, small RNAs (siRNA and miRNA) have been successfully loaded into EVs for a variety of delivery applications, but the potential use of EVs for DNA delivery has scarcely been explored. Here, we report that exogenous linear DNA can be associated with EVs via electroporation in quantities sufficient to yield an average of hundreds of DNA molecules per vesicle. We determined that loading efficiency and capacity of DNA in EVs is dependent on DNA size, with linear DNA molecules less than 1000 bp in length being more efficiently associated with EVs compared to larger linear DNAs and plasmid DNAs using this approach. We further showed that EV size is also determinant with regard to DNA loading, as larger microvesicles encapsulated more linear and plasmid DNA than smaller, exosome-like EVs. Additionally, we confirmed the ability of EVs to transfer foreign DNA loaded via electroporation into recipient cells, although functional gene delivery was not observed. These results establish critical parameters that inform the potential use of EVs for gene therapy and, in agreement with other recent results, suggest that substantial barriers must be overcome to establish EVs as broadly applicable DNA delivery vehicles.
Collapse
Affiliation(s)
- Tek N Lamichhane
- Fischell Department of Bioengineering, ‡Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, and §Program in Molecular and Cell Biology, University of Maryland , College Park, Maryland 20742, United States
| | - Rahul S Raiker
- Fischell Department of Bioengineering, ‡Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, and §Program in Molecular and Cell Biology, University of Maryland , College Park, Maryland 20742, United States
| | - Steven M Jay
- Fischell Department of Bioengineering, ‡Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, and §Program in Molecular and Cell Biology, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
134
|
Patton JG, Franklin JL, Weaver AM, Vickers K, Zhang B, Coffey RJ, Ansel KM, Blelloch R, Goga A, Huang B, L'Etoille N, Raffai RL, Lai CP, Krichevsky AM, Mateescu B, Greiner VJ, Hunter C, Voinnet O, McManus MT. Biogenesis, delivery, and function of extracellular RNA. J Extracell Vesicles 2015; 4:27494. [PMID: 26320939 PMCID: PMC4553266 DOI: 10.3402/jev.v4.27494] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/08/2015] [Accepted: 05/03/2015] [Indexed: 01/08/2023] Open
Abstract
The Extracellular RNA (exRNA) Communication Consortium was launched by the National Institutes of Health to focus on the extent to which RNA might function in a non-cell-autonomous manner. With the availability of increasingly sensitive tools, small amounts of RNA can be detected in serum, plasma, and other bodily fluids. The exact mechanism(s) by which RNA can be secreted from cells and the mechanisms for the delivery and uptake by recipient cells remain to be determined. This review will summarize current knowledge about the biogenesis and delivery of exRNA and outline projects seeking to understand the functional impact of exRNA.
Collapse
Affiliation(s)
- James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA;
| | - Jeffrey L Franklin
- VA Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.,Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Alissa M Weaver
- VA Medical Center, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Kasey Vickers
- Department of Cardiology, Vanderbilt University, Nashville, TN, USA
| | - Bing Zhang
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Robert J Coffey
- VA Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.,Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - K Mark Ansel
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA.,Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Robert Blelloch
- Department of Urology, University of California San Francisco, San Francisco, CA, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Andrei Goga
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Noelle L'Etoille
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Robert L Raffai
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,VA Medical Center, San Francisco, CA, USA
| | - Charles P Lai
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Anna M Krichevsky
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Bogdan Mateescu
- Swiss Federal Institute of Technology Zürich (ETH Zürich), Zürich, Switzerland
| | - Vanille J Greiner
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA.,Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | | | - Olivier Voinnet
- Swiss Federal Institute of Technology Zürich (ETH Zürich), Zürich, Switzerland
| | - Michael T McManus
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA.,Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
135
|
Cha DJ, Franklin JL, Dou Y, Liu Q, Higginbotham JN, Demory Beckler M, Weaver AM, Vickers K, Prasad N, Levy S, Zhang B, Coffey RJ, Patton JG. KRAS-dependent sorting of miRNA to exosomes. eLife 2015; 4:e07197. [PMID: 26132860 PMCID: PMC4510696 DOI: 10.7554/elife.07197] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/29/2015] [Indexed: 12/13/2022] Open
Abstract
Mutant KRAS colorectal cancer (CRC) cells release protein-laden exosomes that can alter the tumor microenvironment. To test whether exosomal RNAs also contribute to changes in gene expression in recipient cells, and whether mutant KRAS might regulate the composition of secreted microRNAs (miRNAs), we compared small RNAs of cells and matched exosomes from isogenic CRC cell lines differing only in KRAS status. We show that exosomal profiles are distinct from cellular profiles, and mutant exosomes cluster separately from wild-type KRAS exosomes. miR-10b was selectively increased in wild-type exosomes, while miR-100 was increased in mutant exosomes. Neutral sphingomyelinase inhibition caused accumulation of miR-100 only in mutant cells, suggesting KRAS-dependent miRNA export. In Transwell co-culture experiments, mutant donor cells conferred miR-100-mediated target repression in wild-type-recipient cells. These findings suggest that extracellular miRNAs can function in target cells and uncover a potential new mode of action for mutant KRAS in CRC.
Collapse
Affiliation(s)
- Diana J Cha
- Department of Biological Sciences, Vanderbilt University Medical Center, Nashville, United States
- Vanderbilt University, Nashville, United States
| | - Jeffrey L Franklin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
- Affairs Medical Center, Nashville, United States
| | - Yongchao Dou
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
| | - Qi Liu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
| | - James N Higginbotham
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | | | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, United States
| | - Kasey Vickers
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, United States
| | - Nirpesh Prasad
- HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | - Shawn Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | - Bing Zhang
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
| | - Robert J Coffey
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
- Affairs Medical Center, Nashville, United States
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University Medical Center, Nashville, United States
- Vanderbilt University, Nashville, United States
| |
Collapse
|
136
|
Cha DJ, Franklin JL, Dou Y, Liu Q, Higginbotham JN, Demory Beckler M, Weaver AM, Vickers K, Prasad N, Levy S, Zhang B, Coffey RJ, Patton JG. KRAS-dependent sorting of miRNA to exosomes. eLife 2015. [PMID: 26132860 DOI: 10.7554/elife07197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutant KRAS colorectal cancer (CRC) cells release protein-laden exosomes that can alter the tumor microenvironment. To test whether exosomal RNAs also contribute to changes in gene expression in recipient cells, and whether mutant KRAS might regulate the composition of secreted microRNAs (miRNAs), we compared small RNAs of cells and matched exosomes from isogenic CRC cell lines differing only in KRAS status. We show that exosomal profiles are distinct from cellular profiles, and mutant exosomes cluster separately from wild-type KRAS exosomes. miR-10b was selectively increased in wild-type exosomes, while miR-100 was increased in mutant exosomes. Neutral sphingomyelinase inhibition caused accumulation of miR-100 only in mutant cells, suggesting KRAS-dependent miRNA export. In Transwell co-culture experiments, mutant donor cells conferred miR-100-mediated target repression in wild-type-recipient cells. These findings suggest that extracellular miRNAs can function in target cells and uncover a potential new mode of action for mutant KRAS in CRC.
Collapse
Affiliation(s)
- Diana J Cha
- Department of Biological Sciences, Vanderbilt University Medical Center, Nashville, United States
| | - Jeffrey L Franklin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
| | - Yongchao Dou
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
| | - Qi Liu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
| | - James N Higginbotham
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
| | | | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
| | - Kasey Vickers
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, United States
| | - Nirpesh Prasad
- HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | - Shawn Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | - Bing Zhang
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
| | - Robert J Coffey
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University Medical Center, Nashville, United States
| |
Collapse
|
137
|
Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun 2015; 6:7029. [PMID: 25967391 PMCID: PMC4435621 DOI: 10.1038/ncomms8029] [Citation(s) in RCA: 422] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/24/2015] [Indexed: 12/13/2022] Open
Abstract
Accurate spatiotemporal assessment of extracellular vesicle (EV) delivery and cargo RNA translation requires specific and robust live-cell imaging technologies. Here we engineer optical reporters to label multiple EV populations for visualization and tracking of tumour EV release, uptake and exchange between cell populations both in culture and in vivo. Enhanced green fluorescence protein (EGFP) and tandem dimer Tomato (tdTomato) were fused at NH2-termini with a palmitoylation signal (PalmGFP, PalmtdTomato) for EV membrane labelling. To monitor EV-RNA cargo, transcripts encoding PalmtdTomato were tagged with MS2 RNA binding sequences and detected by co-expression of bacteriophage MS2 coat protein fused with EGFP. By multiplexing fluorescent and bioluminescent EV membrane reporters, we reveal the rapid dynamics of both EV uptake and translation of EV-delivered cargo mRNAs in cancer cells that occurred within 1-hour post-horizontal transfer between cells. These studies confirm that EV-mediated communication is dynamic and multidirectional between cells with delivery of functional mRNA. Extracellular vesicles (EVs) act as a conduit for intercellular communication through the exchange of cellular materials without direct cell-to-cell contacts. Here the authors develop a multiplexed reporter system that allows monitoring of EV exchange, cargo delivery and protein translation between different cell populations.
Collapse
|
138
|
Benito-Martin A, Di Giannatale A, Ceder S, Peinado H. The new deal: a potential role for secreted vesicles in innate immunity and tumor progression. Front Immunol 2015; 6:66. [PMID: 25759690 PMCID: PMC4338782 DOI: 10.3389/fimmu.2015.00066] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/02/2015] [Indexed: 12/30/2022] Open
Abstract
Tumors must evade the immune system to survive and metastasize, although the mechanisms that lead to tumor immunoediting and their evasion of immune surveillance are far from clear. The first line of defense against metastatic invasion is the innate immune system that provides immediate defense through humoral immunity and cell-mediated components, mast cells, neutrophils, macrophages, and other myeloid-derived cells that protect the organism against foreign invaders. Therefore, tumors must employ different strategies to evade such immune responses or to modulate their environment, and they must do so prior metastasizing. Exosomes and other secreted vesicles can be used for cell–cell communication during tumor progression by promoting the horizontal transfer of information. In this review, we will analyze the role of such extracellular vesicles during tumor progression, summarizing the role of secreted vesicles in the crosstalk between the tumor and the innate immune system.
Collapse
Affiliation(s)
- Alberto Benito-Martin
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, Weill Cornell Medical College , New York, NY , USA
| | - Angela Di Giannatale
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, Weill Cornell Medical College , New York, NY , USA
| | - Sophia Ceder
- Department of Oncology and Pathology, Karolinska Institutet , Stockholm , Sweden
| | - Héctor Peinado
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, Weill Cornell Medical College , New York, NY , USA ; Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| |
Collapse
|
139
|
Fernández-Messina L, Gutiérrez-Vázquez C, Rivas-García E, Sánchez-Madrid F, de la Fuente H. Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol Cell 2015; 107:61-77. [PMID: 25564937 DOI: 10.1111/boc.201400081] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/30/2014] [Indexed: 12/15/2022]
Abstract
The immune system is composed of different cell types localised throughout the organism to sense and respond to pathological situations while maintaining homeostasis under physiological conditions. Intercellular communication between immune cells is essential to coordinate an effective immune response and involves both cell contact dependent and independent processes that ensure the transfer of information between bystander and distant cells. There is a rapidly growing body of evidence on the pivotal role of extracellular vesicles (EVs) in cell communication and these structures are emerging as important mediators for immune modulation upon delivery of their molecular cargo. In the last decade, EVs have been shown to be efficient carriers of genetic information, including microRNAs (miRNAs), that can be transferred between cells and regulate gene expression and function on the recipient cell. Here, we review the current knowledge of intercellular functional transfer of EV-delivered miRNAs and their putative role in immune regulation.
Collapse
Affiliation(s)
- Lola Fernández-Messina
- Immunology Service, Hospital de la Princesa, Madrid, Spain; Department of Vascular Biology and Inflammation, National Centre for Cardiovascular Research (CNIC), Madrid, Spain
| | | | | | | | | |
Collapse
|
140
|
Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S. Exosome and exosomal microRNA: trafficking, sorting, and function. GENOMICS, PROTEOMICS & BIOINFORMATICS 2015; 13:17-24. [PMID: 25724326 PMCID: PMC4411500 DOI: 10.1016/j.gpb.2015.02.001] [Citation(s) in RCA: 1527] [Impact Index Per Article: 152.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/13/2022]
Abstract
Exosomes are 40-100 nm nano-sized vesicles that are released from many cell types into the extracellular space. Such vesicles are widely distributed in various body fluids. Recently, mRNAs and microRNAs (miRNAs) have been identified in exosomes, which can be taken up by neighboring or distant cells and subsequently modulate recipient cells. This suggests an active sorting mechanism of exosomal miRNAs, since the miRNA profiles of exosomes may differ from those of the parent cells. Exosomal miRNAs play an important role in disease progression, and can stimulate angiogenesis and facilitate metastasis in cancers. In this review, we will introduce the origin and the trafficking of exosomes between cells, display current research on the sorting mechanism of exosomal miRNAs, and briefly describe how exosomes and their miRNAs function in recipient cells. Finally, we will discuss the potential applications of these miRNA-containing vesicles in clinical settings.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sha Li
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Li
- Department of Obstetrics and Gynecology, Jinan Central Hospital, Shandong University, Shandong 250013, China
| | - Meng Li
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chongye Guo
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Yao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuangli Mi
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
141
|
Challagundla KB, Fanini F, Vannini I, Wise P, Murtadha M, Malinconico L, Cimmino A, Fabbri M. microRNAs in the tumor microenvironment: solving the riddle for a better diagnostics. Expert Rev Mol Diagn 2015; 14:565-74. [PMID: 24844135 DOI: 10.1586/14737159.2014.922879] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
miRNAs are small noncoding RNAs with gene regulatory functions, frequently dysregulated in human cancers. Specific signatures of differentially expressed miRNAs can be used in the diagnosis of cancer and in some cases harbor prognostic implications. The biology of cancer is dictated not only by cancer cells but also by the surrounding tumor microenvironment. In particular, the role of miRNAs within the tumor microenvironment is emerging as of paramount importance. This review will focus on the current knowledge of the role of miRNAs and both cellular and stromal components of the tumor microenvironment. We will also discuss more recent findings, showing that miRNAs can be found inside of exosomes and mediate the cross-talk between cancer cells and surrounding cells, leading to the discovery of new fascinating molecular mechanisms leading to a better understanding of the cancer 'niche' and how these noncoding RNAs can become very promising diagnostic molecules.
Collapse
Affiliation(s)
- Kishore B Challagundla
- Departments of Pediatrics and Molecular Microbiology & Immunology, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Saban Research Institute, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
142
|
|
143
|
Lindner K, Haier J, Wang Z, Watson DI, Hussey DJ, Hummel R. Circulating microRNAs: emerging biomarkers for diagnosis and prognosis in patients with gastrointestinal cancers. Clin Sci (Lond) 2015; 128:1-15. [PMID: 25168167 DOI: 10.1042/cs20140089] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To identify novel non-invasive biomarkers for improved detection, risk assessment and prognostic evaluation of cancer, expression profiles of circulating microRNAs are currently under evaluation. Circulating microRNAs are highly promising candidates in this context, as they present some key characteristics for cancer biomarkers: they are tissue-specific with reproducible expression and consistency among individuals from the same species, they are potentially derived directly from the tumour and therefore might correlate with tumour progression and recurrence, and they are bound to proteins or contained in subcellular particles, such as microvesicles or exosomes, making them highly stable and resistant to degradation. The present review highlights the origin of circulating microRNAs, their stability in blood samples, and techniques to isolate exosomal microRNAs, and then addresses the current evidence supporting potential clinical applications of circulating miRNAs for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Kirsten Lindner
- *Department of General and Visceral Surgery, Muenster University Hospital, Muenster, Germany
| | - Joerg Haier
- †Comprehensive Cancer Centre, University of Muenster, 48149 Muenster, Germany
| | - Zhe Wang
- ‡Flinders University Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - David I Watson
- ‡Flinders University Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Damian J Hussey
- ‡Flinders University Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Richard Hummel
- *Department of General and Visceral Surgery, Muenster University Hospital, Muenster, Germany
| |
Collapse
|
144
|
Sadovska L, Santos CB, Kalniņa Z, Linē A. Biodistribution, Uptake and Effects Caused by Cancer-Derived Extracellular Vesicles. J Circ Biomark 2015; 4:2. [PMID: 28936238 PMCID: PMC5572990 DOI: 10.5772/60522] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/12/2015] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have recently emerged as important mediators of intercellular communication. They are released in the extracellular space by a variety of normal and cancerous cell types and have been found in all human body fluids. Cancer-derived EVs have been shown to carry lipids, proteins, mRNAs, non-coding and structural RNAs and even extra-chromosomal DNA, which can be taken up by recipient cells and trigger diverse physiological and pathological responses. An increasing body of evidence suggests that cancer-derived EVs mediate paracrine signalling between cancer cells. This leads to the increased invasiveness, proliferation rate and chemoresistance, as well as the acquisition of the cancer stem cell phenotype. This stimulates angiogenesis and the reprogramming of normal stromal cells into cancer-promoting cell types. Furthermore, cancer-derived EVs contribute to the formation of the pre-metastatic niche and modulation of anti-tumour immune response. However, as most of these data are obtained by in vitro studies, it is not entirely clear which of these effects are recapitulated in vivo. In the current review, we summarize studies that assess the tissue distribution, trafficking, clearance and uptake of cancer-derived EVs in vivo and discuss the impact they have, both locally and systemically.
Collapse
Affiliation(s)
- Lilite Sadovska
- Latvian Biomedical Research and Study Centre, Riga, Latvia
- Faculty of Biology, University of Latvia, Riga, Latvia
| | - Cristina Bajo Santos
- Latvian Biomedical Research and Study Centre, Riga, Latvia
- Faculty of Biology, University of Latvia, Riga, Latvia
| | - Zane Kalniņa
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Aija Linē
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
145
|
Moon TC, Befus AD, Kulka M. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol 2014; 5:569. [PMID: 25452755 PMCID: PMC4231949 DOI: 10.3389/fimmu.2014.00569] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/23/2014] [Indexed: 12/14/2022] Open
Abstract
Mast cells (MC) are widely distributed throughout the body and are common at mucosal surfaces, a major host-environment interface. MC are functionally and phenotypically heterogeneous depending on the microenvironment in which they mature. Although MC have been classically viewed as effector cells of IgE-mediated allergic diseases, they are also recognized as important in host defense, innate and acquired immunity, homeostatic responses, and immunoregulation. MC activation can induce release of pre-formed mediators such as histamine from their granules, as well as release of de novo synthesized lipid mediators, cytokines, and chemokines that play diverse roles, not only in allergic reactions but also in numerous physiological and pathophysiological responses. Indeed, MC release their mediators in a discriminating and chronological manner, depending upon the stimuli involved and their signaling cascades (e.g., IgE-mediated or Toll-like receptor-mediated). However, the precise mechanisms underlying differential mediator release in response to these stimuli are poorly known. This review summarizes our knowledge of MC mediators and will focus on what is known about the discriminatory release of these mediators dependent upon diverse stimuli, MC phenotypes, and species of origin, as well as on the intracellular synthesis, storage, and secretory processes involved.
Collapse
Affiliation(s)
- Tae Chul Moon
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - A. Dean Befus
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Marianna Kulka
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, Canada
| |
Collapse
|
146
|
van der Grein SG, Nolte-'t Hoen ENM. "Small Talk" in the Innate Immune System via RNA-Containing Extracellular Vesicles. Front Immunol 2014; 5:542. [PMID: 25400635 PMCID: PMC4212677 DOI: 10.3389/fimmu.2014.00542] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/13/2014] [Indexed: 01/08/2023] Open
Abstract
A newly uncovered means of communication between cells involves intercellular transfer of nano-sized extracellular vesicles (EV), composed of lipids, proteins, and genetic material. EV released by cells of the immune system can play a regulatory role in the induction and suppression of immune responses. These functions may be mediated not only by the bioactive lipids and proteins present in EV but also by EV-associated RNAs. The RNA in EV mainly consists of microRNAs and a large range of other small non-coding RNA species. Since many of these small RNAs have the potential to regulate gene expression, intercellular transfer of these RNAs via EV may cause long-term changes in the function of EV-targeted cells. Several types of innate immune cells release EV that affect innate immune responses and other (patho)physiological processes. Additionally, the innate immune system is influenced by EV released by non-immune cells and EV found in body fluids. In this review, we focus on how EV-associated RNAs contribute to these immune regulatory processes.
Collapse
Affiliation(s)
- Susanne G van der Grein
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University , Utrecht , Netherlands
| | - Esther N M Nolte-'t Hoen
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University , Utrecht , Netherlands
| |
Collapse
|
147
|
Xiao H, Lässer C, Shelke GV, Wang J, Rådinger M, Lunavat TR, Malmhäll C, Lin LH, Li J, Li L, Lötvall J. Mast cell exosomes promote lung adenocarcinoma cell proliferation - role of KIT-stem cell factor signaling. Cell Commun Signal 2014; 12:64. [PMID: 25311367 PMCID: PMC4206705 DOI: 10.1186/s12964-014-0064-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/30/2014] [Indexed: 12/21/2022] Open
Abstract
Background Human cells release nano-sized vesicles called exosomes, containing mRNA, miRNA and specific proteins. Exosomes from one cell can be taken up by another cell, which is a recently discovered cell-to-cell communication mechanism. Also, exosomes can be taken up by different types of cancer cells, but the potential functional effects of mast cell exosomes on tumor cells remain unknown. Methods and results Exosomes were isolated from the human mast cell line, HMC-1, and uptake of PKH67-labelled exosomes by the lung epithelial cell line, A549, was examined using flow cytometry and fluorescence microscopy. The RNA cargo of the exosomes was analyzed with a Bioanalyzer and absence or presence of the c-KIT mRNA was determined by RT-PCR. The cell proliferation was determined in a BrdU incorporation assay, and proteins in the KIT-SCF signaling pathway were detected by Western blot. Our result demonstrates that exosomes from mast cells can be taken up by lung cancer cells. Furthermore, HMC-1 exosomes contain and transfer KIT protein, but not the c-KIT mRNA to A549 cells and subsequently activate KIT-SCF signal transduction, which increase cyclin D1 expression and accelerate the proliferation in the human lung adenocarcinoma cells. Conclusions Our results indicate that exosomes can transfer KIT as a protein to tumor cells, which can affect recipient cell signaling events through receptor-ligand interactions.
Collapse
|
148
|
Shelke GV, Lässer C, Gho YS, Lötvall J. Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles 2014; 3:24783. [PMID: 25317276 PMCID: PMC4185091 DOI: 10.3402/jev.v3.24783] [Citation(s) in RCA: 331] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/14/2014] [Accepted: 08/26/2014] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs), including the nano-sized exosomes, have the capacity to transfer multiple functional molecules between cells. In cell culture experiments, fetal bovine serum (FBS) is often used to supplement cell culture medium as a nutrient, but it is important to know that the FBS also contain significant quantities of EVs. The aim of the current study was to determine whether the FBS EVs can influence cultured cell phenotype, and secondly to determine the efficiency of FBS-EV elimination protocols. Firstly, FBS that had not been depleted of EVs induced a migratory phenotype in a lung cancer epithelial cell line (A549 cells), an effect that could be mimicked by isolated FBS EVs alone. FBS-derived EVs also contained RNA, which was protected from consecutive proteinase K and RNase A treatment. Comparison of common isolation protocols suggested that an 18-hour centrifugation period eliminates approximately 95% of RNA-containing FBS EVs, whereas a 1.5-hour protocol is insufficient. In conclusion, this study shows that FBS EVs substantially influence cultured cell behaviour, but also that they can be virtually removed by an 18-hour ultracentrifugation protocol.
Collapse
Affiliation(s)
- Ganesh Vilas Shelke
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
149
|
Diagnostic and Prognostic Potential of Extracellular Vesicles in Peripheral Blood. Clin Ther 2014; 36:830-46. [DOI: 10.1016/j.clinthera.2014.05.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 12/21/2022]
|
150
|
Cvjetkovic A, Lötvall J, Lässer C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles 2014; 3:23111. [PMID: 24678386 PMCID: PMC3967015 DOI: 10.3402/jev.v3.23111] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EV), the collective term for vesicles released from cells, consist of vesicle species ranging in size from 30 nm to 5 µm in diameter. These vesicles are most commonly isolated by differential centrifugations, which pellets particles based on their differential movement through the liquid medium in which they are immersed. Multiple parameters, including the utilization of different rotor types, can influence the yield and purity of isolated vesicles; however, the understanding of how these factors affect is limited. MATERIALS AND METHODS Here, we compare the influence of multiple centrifugation parameters, including the use of swinging bucket and fixed angle rotors, as well as different centrifugation times, for the isolation of the smallest EVs, "exosomes." In particular, we determine the yields of exosomal RNA and protein, as well as the nature of the isolated vesicles and possible protein contamination with methods such as electron microscopy, western blot and flow cytometry. RESULTS Our results show that application of a specific g-force or rotation speed by itself does not predict the ability of pelleting exosomes, and that prolonged centrifugation times can achieve greater yields of exosomal RNA and protein, whereas very long centrifugation times result in excessive protein concentrations in the exosome pellet. CONCLUSION In conclusion, rotor type, g-force and centrifugation times significantly influence exosome yield during centrifugation-based isolation procedures, and current commonly recommended isolation protocols may not be fully optimized for yield and purity of exosomes.
Collapse
Affiliation(s)
- Aleksander Cvjetkovic
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|