101
|
Nejabati HR, Roshangar L, Nouri M. Follicular fluid extracellular vesicle miRNAs and ovarian aging. Clin Chim Acta 2023; 538:29-35. [PMID: 36368351 DOI: 10.1016/j.cca.2022.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
The decrease in the reproductive potential due to aging occurs as a gradual decline in the quantity and quality of the ovarian reserve, a phenomenon associated with risk of miscarriage, pregnancy loss, low ovarian stimulation, and oocyte abnormalities, such as chromosomal aneuploidies. Numerous studies have shown that the fertility potential of older women is decreased by changes to the cellular composition of the follicles. Additionally, a unique method of cellular communication has been identified which involves the release of extracellular vesicles (EVs) in various body fluids including follicular fluid (FF). The changing composition of EVs especially non-coding RNAs, such as miRNAs has been documented across a broad range of cell types during aging. Accordingly, alterations of miRNA cargo within FF-derived EVs due to increased age may serve as a potential predictor of oocyte quality. In this review we examine the relationship between FF EV miRNAs and ovarian aging.
Collapse
Affiliation(s)
- Hamid Reza Nejabati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
102
|
Williams S, Fernandez-Rhodes M, Law A, Peacock B, Lewis MP, Davies OG. Comparison of extracellular vesicle isolation processes for therapeutic applications. J Tissue Eng 2023; 14:20417314231174609. [PMID: 37251735 PMCID: PMC10214056 DOI: 10.1177/20417314231174609] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/23/2023] [Indexed: 05/31/2023] Open
Abstract
While extracellular vesicles (EVs) continue to gain interest for therapeutic applications, their clinical translation is limited by a lack of optimal isolation methods. We sought to determine how universally applied isolation methods impact EV purity and yield. EVs were isolated by ultracentrifugation (UC), polyethylene glycol precipitation, Total Exosome Isolation Reagent, an aqueous two-phase system with and without repeat washes or size exclusion chromatography (SEC). EV-like particles could be detected for all isolation methods but varied in their purity and relative expression of surface markers (Alix, Annexin A2, CD9, CD63 and CD81). Assessments of sample purity were dependent on the specificity of characterisation method applied, with total particle counts and particle to protein (PtP) ratios often not aligning with quantitative measures of tetraspanin surface markers obtained using high-resolution nano-flow cytometry. While SEC resulted in the isolation of fewer particles with a relatively low PtP ratio (1.12 × 107 ± 1.43 × 106 vs highest recorded; ATPS/R 2.01 × 108 ± 1.15 × 109, p ⩽ 0.05), EVs isolated using this method displayed a comparatively high level of tetraspanin positivity (e.g. ExoELISA CD63⁺ particles; 1.36 × 1011 ± 1.18 × 1010 vs ATPS/R 2.58 × 1010 ± 1.92 × 109, p ⩽ 0.001). Results originating from an accompanying survey designed to evaluate pragmatic considerations surrounding method implementation (e.g. scalability and cost) identified that SEC and UC were favoured for overall efficiency. However, reservations were highlighted in the scalability of these methods, which could potentially hinder downstream therapeutic applications. In conclusion, variations in sample purity and yield were evident between isolation methods, while standard non-specific assessments of sample purity did not align with advanced quantitative high-resolution analysis of EV surface markers. Reproducible and specific assessments of EV purity will be critical for informing therapeutic studies.
Collapse
Affiliation(s)
- Soraya Williams
- School of Sport, Exercise and Health
Sciences, Loughborough University, Loughborough, UK
| | - Maria Fernandez-Rhodes
- School of Sport, Exercise and Health
Sciences, Loughborough University, Loughborough, UK
| | - Alice Law
- NanoFCM Co., Ltd, Medicity, Nottingham,
UK
| | | | - Mark P. Lewis
- School of Sport, Exercise and Health
Sciences, Loughborough University, Loughborough, UK
| | - Owen G. Davies
- School of Sport, Exercise and Health
Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
103
|
Lopez K, Lai SWT, Lopez Gonzalez EDJ, Dávila RG, Shuck SC. Extracellular vesicles: A dive into their role in the tumor microenvironment and cancer progression. Front Cell Dev Biol 2023; 11:1154576. [PMID: 37025182 PMCID: PMC10071009 DOI: 10.3389/fcell.2023.1154576] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
Extracellular vesicles (EVs) encompass a diverse set of membrane-derived particles released from cells and are found in numerous biological matrices and the extracellular space. Specific classes of EVs include apoptotic bodies, exosomes, and microvesicles, which vary in their size, origin, membrane protein expression, and interior cargo. EVs provide a mechanism for shuttling cargo between cells, which can influence cell physiology by transporting proteins, DNA, and RNA. EVs are an abundant component of the tumor microenvironment (TME) and are proposed to drive tumor growth and progression by communicating between fibroblasts, macrophages, and tumor cells in the TME. The cargo, source, and type of EV influences the pro- or anti-tumoral role of these molecules. Therefore, robust EV isolation and characterization techniques are required to ensure accurate elucidation of their association with disease. Here, we summarize different EV subclasses, methods for EV isolation and characterization, and a selection of current clinical trials studying EVs. We also review key studies exploring the role and impact of EVs in the TME, including how EVs mediate intercellular communication, drive cancer progression, and remodel the TME.
Collapse
|
104
|
Thakor A, Garcia-Contreras M. Extracellular vesicles in Alzheimer’s disease: from pathology to therapeutic approaches. Neural Regen Res 2023; 18:18-22. [PMID: 35799503 PMCID: PMC9241420 DOI: 10.4103/1673-5374.343882] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease is a progressive and fatal neurodegenerative disorder that starts many years before the onset of cognitive symptoms. Identifying novel biomarkers for Alzheimer’s disease has the potential for patient risk stratification, early diagnosis, and disease monitoring in response to therapy. A novel class of biomarkers is extracellular vesicles given their sensitivity and specificity to specific diseases. In addition, extracellular vesicles can be used as novel biological therapeutics given their ability to efficiently and functionally deliver therapeutic cargo. This is critical given the huge unmet need for novel treatment strategies for Alzheimer’s disease. This review summarizes and discusses the most recent findings in this field.
Collapse
|
105
|
Chang C, Tang X, Li W. A Modified Differential Centrifugation Protocol for Isolation and Quantitation of Extracellular Heat Shock Protein 90 (eHsp90). Methods Mol Biol 2023; 2693:251-261. [PMID: 37540440 DOI: 10.1007/978-1-0716-3342-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Studies of the past 15 years have revealed a critical role for extracellular heat shock protein 90alpha (eHsp90α) in the development of several human disorders, including wound healing, cachexia (muscle wasting), inflammatory diseases, and cancers. The two established functions of highly purified eHsp90α protein are to promote cell survival and to stimulate cell migration. However, the mechanism of secretion and the method of isolation of eHsp90α remained to be standardized. Among the half a dozen reported methodologies, differential centrifugation is considered the "gold standard" largely for its quantitative recovery of eHsp90α from a conditioned medium of cultured cells. Herein, we describe a revised protocol that isolates three fractions of extracellular vesicles with distinct ranges of diameters and the leftover vesicle-free supernatant for biochemical analyses, especially eHsp90α, from tumor cell-conditioned media. Quantitation of the relative amount of eHsp90α can be carried out with known amounts of recombinant Hsp90α protein on the same SDS-PAGE. We believe that this modified methodology will prove to be a useful tool for studying eHsp90α in cultured cells and beyond.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Dermatology the Norris Comprehensive Cancer Centre, University of Southern California Keck Medical Center, Los Angeles, CA, USA.
| | - Xin Tang
- Department of Dermatology the Norris Comprehensive Cancer Centre, University of Southern California Keck Medical Center, Los Angeles, CA, USA
| | - Wei Li
- Department of Dermatology the Norris Comprehensive Cancer Centre, University of Southern California Keck Medical Center, Los Angeles, CA, USA
| |
Collapse
|
106
|
Lian MQ, Chng WH, Liang J, Yeo HQ, Lee CK, Belaid M, Tollemeto M, Wacker MG, Czarny B, Pastorin G. Plant-derived extracellular vesicles: Recent advancements and current challenges on their use for biomedical applications. J Extracell Vesicles 2022; 11:e12283. [PMID: 36519808 PMCID: PMC9753580 DOI: 10.1002/jev2.12283] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs) represent a diverse class of lipid bilayer membrane vesicles released by both animal and plant cells. These ubiquitous vesicles are involved in intercellular communication and transport of various biological cargos, including proteins, lipids, and nucleic acids. In recent years, interest in plant-derived EVs has increased tremendously, as they serve as a scalable and sustainable alternative to EVs derived from mammalian sources. In vitro and in vivo findings have demonstrated that these plant-derived vesicles (PDVs) possess intrinsic therapeutic activities that can potentially treat diseases and improve human health. In addition, PDVs can also act as efficient and biocompatible drug carriers. While preclinical studies have shown promising results, there are still several challenges and knowledge gaps that have to be addressed for the successful translation of PDVs into clinical applications, especially in view of the lack of standardised protocols for material handling and PDV isolation from various plant sources. This review provides the readers with a quick overview of the current understanding and research on PDVs, critically analysing the current challenges and highlighting the immense potential of PDVs as a novel class of therapeutics to treat human diseases. It is expected that this work will guide scientists to address the knowledge gaps currently associated with PDVs and promote new advances in plant-based therapeutic solutions.
Collapse
Affiliation(s)
| | - Wei Heng Chng
- Department of PharmacyNational University of SingaporeSingaporeSingapore
- Integrative Sciences and Engineering Programme, NUS Graduate SchoolNational University of SingaporeSingaporeSingapore
| | - Jeremy Liang
- Department of ChemistryNational University of SingaporeSingaporeSingapore
| | - Hui Qing Yeo
- Department of PharmacyNational University of SingaporeSingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Choon Keong Lee
- Department of PharmacyNational University of SingaporeSingaporeSingapore
| | - Mona Belaid
- Institute of Pharmaceutical ScienceKing's College LondonLondonUnited Kingdom
| | - Matteo Tollemeto
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
| | | | - Bertrand Czarny
- School of Materials Science & EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Giorgia Pastorin
- Department of PharmacyNational University of SingaporeSingaporeSingapore
| |
Collapse
|
107
|
Mecocci S, Trabalza-Marinucci M, Cappelli K. Extracellular Vesicles from Animal Milk: Great Potentialities and Critical Issues. Animals (Basel) 2022; 12:ani12233231. [PMID: 36496752 PMCID: PMC9740508 DOI: 10.3390/ani12233231] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Other than representing the main source of nutrition for newborn mammals, milk delivers a sophisticated signaling system from mother to child that promotes postnatal health. The bioactive components transferred through the milk intake are important for the development of the newborn immune system and include oligosaccharides, lactoferrin, lysozyme, α-La, and immunoglobulins. In the last 15 years, a pivotal role in this mother-to-child exchange has been attributed to extracellular vesicles (EVs). EVs are micro- and nanosized structures enclosed in a phospholipidic double-layer membrane that are produced by all cell types and released in the extracellular environment, reaching both close and distant cells. EVs mediate the intercellular cross-talk from the producing to the receiving cell through the transfer of molecules contained within them such as proteins, antigens, lipids, metabolites, RNAs, and DNA fragments. The complex cargo can induce a wide range of functional modulations in the recipient cell (i.e., anti-inflammatory, immunomodulating, angiogenetic, and pro-regenerative modulations) depending on the type of producing cells and the stimuli that these cells receive. EVs can be recovered from every biological fluid, including blood, urine, bronchoalveolar lavage fluid, saliva, bile, and milk, which is one of the most promising scalable vesicle sources. This review aimed to present the state-of-the-art of animal-milk-derived EV (mEV) studies due to the exponential growth of this field. A focus on the beneficial potentialities for human health and the issues of studying vesicles from milk, particularly for the analytical methodologies applied, is reported.
Collapse
|
108
|
Medium Extracellular Vesicles—A Qualitative and Quantitative Biomarker of Prostate Cancer. Biomedicines 2022; 10:biomedicines10112856. [DOI: 10.3390/biomedicines10112856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
For years, the diagnosis of prostate cancer has been understated. Despite the relatively low mortality rate, prostate cancer is still one of the most common neoplasms in men, which proves the need for continuous improvements in the diagnostics of this disease. New biomarkers may address these challenges in the form of extracellular vesicles (EV) secreted by prostate cancer cells. The available literature in the PubMed, SCOPUS, and ResearchGate databases from the last ten years was analyzed using search phrases such as extracellular vesicles, microparticles, microvesicles, cancer biomarkers, and prostate cancer. Then, the research was selected in terms of the size of the tested EVs (the EV medium of 100–1000 nm diameter, was taken into account), the latest versions of the literature were selected and compiled, and their results were compared. The group of extracellular vesicles contain a substantial amount of genetic information that can be used in research on the specificity of prostate cancer and other cancers. So far, it has been shown that EVs produced by PCa cells express proteins specific for these cells, which, thanks to their specificity, can make EV useful biomarkers of prostate cancer. Moreover, the importance of the quantitative release of EV from PCa cells has been demonstrated, which may be necessary to diagnose prostate cancer malignancy. Each method positively correlates with Gleason’s results and is even characterized by greater diagnostic sensitivity. Medium extracellular vesicles are a promising research material, and their specificity and sensitivity may allow them to be used in future prostate cancer diagnostics as biomarkers.
Collapse
|
109
|
Alvarez FA, Kaddour H, Lyu Y, Preece C, Cohen J, Baer L, Stopeck AT, Thompson P, Okeoma CM. Blood plasma derived extracellular vesicles (BEVs): particle purification liquid chromatography (PPLC) and proteomic analysis reveals BEVs as a potential minimally invasive tool for predicting response to breast cancer treatment. Breast Cancer Res Treat 2022; 196:423-437. [PMID: 36114323 PMCID: PMC10560447 DOI: 10.1007/s10549-022-06733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/28/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Circulating blood plasma derived extracellular vesicles (BEVs) containing proteins hold promise for their use as minimally invasive biomarkers for predicting response to cancer therapy. The main goal of this study was to establish the efficiency and utility of the particle purification liquid chromatography (PPLC) BEV isolation method and evaluate the role of BEVs in predicting breast cancer (BC) patient response to neoadjuvant chemotherapy (NAC). METHODS PPLC isolation was used to separate BEVs from non-EV contaminants and characterize BEVs from 17 BC patients scheduled to receive NAC. Using LC-MS/MS, we compared the proteome of PPLC-isolated BEVs from patients (n = 7) that achieved a pathological complete response (pCR) after NAC (responders [R]) to patients (n = 10) who did not achieve pCR (non-responders [NR]). Luminal MCF7 and basaloid MDA-MB-231 BC cells were treated with isolated BEVs and evaluated for metabolic activity by MTT assay. RESULTS NR had elevated BEV concentrations and negative zeta potential (ζ-potential) prior to receipt of NAC. Eight proteins were enriched in BEVs of NR. GP1BA (CD42b), PECAM-1 (CD31), CAPN1, HSPB1 (HSP27), and ANXA5 were validated using western blot. MTT assay revealed BEVs from R and NR patients increased metabolic activity of MCF7 and MDA-MB-231 BC cells and the magnitude was highest in MCF7s treated with NR BEVs. CONCLUSION PPLC-based EV isolation provides a preanalytical separation process for BEVs devoid of most contaminants. Our findings suggest that PPLC-isolated BEVs and the five associated proteins may be established as predictors of chemoresistance, and thus serve to identify NR to spare them the toxic effects of NAC.
Collapse
Affiliation(s)
- Folnetti A Alvarez
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
| | - Hussein Kaddour
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Yuan Lyu
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Christina Preece
- Department of Pathology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jules Cohen
- Department of Medicine, Division of Hematology and Medical Oncology, Stony Brook University, Stony Brook, NY, 11794-8651, USA
- Stony Brook University Cancer Center, Stony Brook, NY, 11794-8651, USA
| | - Lea Baer
- Department of Medicine, Division of Hematology and Medical Oncology, Stony Brook University, Stony Brook, NY, 11794-8651, USA
- Stony Brook University Cancer Center, Stony Brook, NY, 11794-8651, USA
| | - Alison T Stopeck
- Department of Medicine, Division of Hematology and Medical Oncology, Stony Brook University, Stony Brook, NY, 11794-8651, USA
- Stony Brook University Cancer Center, Stony Brook, NY, 11794-8651, USA
| | - Patricia Thompson
- Department of Pathology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
- Stony Brook University Cancer Center, Stony Brook, NY, 11794-8651, USA
| | - Chioma M Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA.
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, 10595-1524, USA.
| |
Collapse
|
110
|
Tsering T, Li M, Chen Y, Nadeau A, Laskaris A, Abdouh M, Bustamante P, Burnier JV. EV-ADD, a database for EV-associated DNA in human liquid biopsy samples. J Extracell Vesicles 2022; 11:e12270. [PMID: 36271888 PMCID: PMC9587709 DOI: 10.1002/jev2.12270] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/20/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022] Open
Abstract
Extracellular vesicles (EVs) play a key role in cellular communication both in physiological conditions and in pathologies such as cancer. Emerging evidence has shown that EVs are active carriers of molecular cargo (e.g. protein and nucleic acids) and a powerful source of biomarkers and targets. While recent studies on EV‐associated DNA (EV‐DNA) in human biofluids have generated a large amount of data, there is currently no database that catalogues information on EV‐DNA. To fill this gap, we have manually curated a database of EV‐DNA data derived from human biofluids (liquid biopsy) and in‐vitro studies, called the Extracellular Vesicle‐Associated DNA Database (EV‐ADD). This database contains validated experimental details and data extracted from peer‐reviewed published literature. It can be easily queried to search for EV isolation methods and characterization, EV‐DNA isolation techniques, quality validation, DNA fragment size, volume of starting material, gene names and disease context. Currently, our database contains samples representing 23 diseases, with 13 different types of EV isolation techniques applied on eight different human biofluids (e.g. blood, saliva). In addition, EV‐ADD encompasses EV‐DNA data both representing the whole genome and specifically including oncogenes, such as KRAS, EGFR, BRAF, MYC, and mitochondrial DNA (mtDNA). An EV‐ADD data metric system was also integrated to assign a compliancy score to the MISEV guidelines based on experimental parameters reported in each study. While currently available databases document the presence of proteins, lipids, RNA and metabolites in EVs (e.g. Vesiclepedia, ExoCarta, ExoBCD, EVpedia, and EV‐TRACK), to the best of our knowledge, EV‐ADD is the first of its kind to compile all available EV‐DNA datasets derived from human biofluid samples. We believe that this database provides an important reference resource on EV‐DNA‐based liquid biopsy research, serving as a learning tool and to showcase the latest developments in the EV‐DNA field. EV‐ADD will be updated yearly as newly published EV‐DNA data becomes available and it is freely available at www.evdnadatabase.com.
Collapse
Affiliation(s)
- Thupten Tsering
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Mingyang Li
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Yunxi Chen
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Amélie Nadeau
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Alexander Laskaris
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Mohamed Abdouh
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Prisca Bustamante
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Julia V. Burnier
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealQuebecCanada
- Experimental Pathology UnitDepartment of PathologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
111
|
Nazli A, He DL, Liao D, Khan MZI, Huang C, He Y. Strategies and progresses for enhancing targeted antibiotic delivery. Adv Drug Deliv Rev 2022; 189:114502. [PMID: 35998828 DOI: 10.1016/j.addr.2022.114502] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 01/24/2023]
Abstract
Antibiotic resistance is a global health issue and a potential risk for society. Antibiotics administered through conventional formulations are devoid of targeting effect and often spread to various undesired body sites, leading to sub-lethal concentrations at the site of action and thus resulting in emergence of resistance, as well as side effects. Moreover, we have a very slim antibiotic pipeline. Drug-delivery systems have been designed to control the rate, time, and site of drug release, and innovative approaches for antibiotic delivery provide a glint of hope for addressing these issues. This review elaborates different delivery strategies and approaches employed to overcome the limitations of conventional antibiotic therapy. These include antibiotic conjugates, prodrugs, and nanocarriers for local and targeted antibiotic release. In addition, a wide range of stimuli-responsive nanocarriers and biological carriers for targeted antibiotic delivery are discussed. The potential advantages and limitations of targeted antibiotic delivery strategies are described along with possible solutions to avoid these limitations. A number of antibiotics successfully delivered through these approaches with attained outcomes and potentials are reviewed.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - David L He
- College of Chemistry, University of California, Berkeley, CA 94720, United States
| | - Dandan Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | | | - Chao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
112
|
Tong L, Zhang S, Huang R, Yi H, Wang JW. Extracellular vesicles as a novel photosensitive drug delivery system for enhanced photodynamic therapy. Front Bioeng Biotechnol 2022; 10:1032318. [PMID: 36237218 PMCID: PMC9550933 DOI: 10.3389/fbioe.2022.1032318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive therapeutic approach that utilizes photosensitizers (PSs) to generate highly reactive oxygen species (ROS), including singlet oxygen, for removal of targeted cells. PDT has been proven efficacious for the treatment of several diseases, including cancer, cardiovascular disease, inflammatory bowel disease, and diabetic ocular disease. However, the therapeutic efficacy of PDT is limited and often accompanied by side effects, largely due to non-specific delivery of PSs beyond the desired lesion site. Over the past decade, despite various nanoparticular drug delivery systems developed have markedly improved the treatment efficacy while reducing the off-target effects of PSs, concerns over the safety and toxicity of synthetic nanomaterials following intravenous administration are raised. Extracellular vesicles (EVs), a type of nanoparticle released from cells, are emerging as a natural drug delivery system for PSs in light of EV's potentially low immunogenicity and biocompatibility compared with other nanoparticles. This review aims to provide an overview of the research progress in PS delivery systems and propose EVs as an alternative PS delivery system for PDT. Moreover, the challenges and future perspectives of EVs for PS delivery are discussed.
Collapse
Affiliation(s)
- Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Sitong Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rong Huang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
113
|
Zhou Y, Xiao Z, Zhu W. The roles of small extracellular vesicles as prognostic biomarkers and treatment approaches in triple-negative breast cancer. Front Oncol 2022; 12:998964. [PMID: 36212432 PMCID: PMC9537600 DOI: 10.3389/fonc.2022.998964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a particularly aggressive and invasive breast cancer subtype and is associated with poor clinical outcomes. Treatment approaches for TNBC remain limited partly due to the lack of expression of well-known molecular targets. Small extracellular vesicles (sEVs) carrying a variety of bioactive contents play an important role in intercellular communications. The biomolecules including nucleic acids, proteins, and metabolites can be transferred locally or systematically to recipient cells and regulate their biological states and are involved in physiological and pathological processes. Recently, despite the extensive attraction to the physiological functions of sEVs, few studies focus on the roles of sEVs in TNBC. In this review, we will summarize the involvement of sEVs in the tumor microenvironment of TNBC. Moreover, we will discuss the potential roles of sEVs as diagnostic markers and treatment therapy in this heterogeneous breast cancer subtype. We finally summarize the clinical application of sEVs in TNBC.
Collapse
Affiliation(s)
- Yueyuan Zhou
- Department of Clinical Medical Engineering, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- *Correspondence: Yueyuan Zhou,
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
114
|
Visan KS, Lobb RJ, Ham S, Lima LG, Palma C, Edna CPZ, Wu L, Gowda H, Datta KK, Hartel G, Salomon C, Möller A. Comparative analysis of tangential flow filtration and ultracentrifugation, both combined with subsequent size exclusion chromatography, for the isolation of small extracellular vesicles. J Extracell Vesicles 2022; 11:e12266. [PMID: 36124834 PMCID: PMC9486818 DOI: 10.1002/jev2.12266] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/15/2022] [Accepted: 09/05/2022] [Indexed: 11/07/2022] Open
Abstract
Small extracellular vesicles (sEVs) provide major promise for advances in cancer diagnostics, prognostics, and therapeutics, ascribed to their distinctive cargo reflective of pathophysiological status, active involvement in intercellular communication, as well as their ubiquity and stability in bodily fluids. As a result, the field of sEV research has expanded exponentially. Nevertheless, there is a lack of standardisation in methods for sEV isolation from cells grown in serum-containing media. The majority of researchers use serum-containing media for sEV harvest and employ ultracentrifugation as the primary isolation method. Ultracentrifugation is inefficient as it is devoid of the capacity to isolate high sEV yields without contamination of non-sEV materials or disruption of sEV integrity. We comprehensively evaluated a protocol using tangential flow filtration and size exclusion chromatography to isolate sEVs from a variety of human and murine cancer cell lines, including HeLa, MDA-MB-231, EO771 and B16F10. We directly compared the performance of traditional ultracentrifugation and tangential flow filtration methods, that had undergone further purification by size exclusion chromatography, in their capacity to separate sEVs, and rigorously characterised sEV properties using multiple quantification devices, protein analyses and both image and nano-flow cytometry. Ultracentrifugation and tangential flow filtration both enrich consistent sEV populations, with similar size distributions of particles ranging up to 200 nm. However, tangential flow filtration exceeds ultracentrifugation in isolating significantly higher yields of sEVs, making it more suitable for large-scale research applications. Our results demonstrate that tangential flow filtration is a reliable and robust sEV isolation approach that surpasses ultracentrifugation in yield, reproducibility, time, costs and scalability. These advantages allow for implementation in comprehensive research applications and downstream investigations.
Collapse
Affiliation(s)
- Kekoolani S. Visan
- Tumour Microenvironment LaboratoryQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| | - Richard J. Lobb
- Tumour Microenvironment LaboratoryQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
- Centre for Personalized NanomedicineAustralian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLDAustralia
| | - Sunyoung Ham
- Tumour Microenvironment LaboratoryQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| | - Luize G. Lima
- Tumour Microenvironment LaboratoryQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| | - Carlos Palma
- Exosome Biology LaboratoryFaculty of Medicine and Biomedical SciencesCentre for Clinical DiagnosticsUniversity of Queensland Centre for Clinical ResearchRoyal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQLDAustralia
| | - Chai Pei Zhi Edna
- Tumour Microenvironment LaboratoryQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| | - Li‐Ying Wu
- Tumour Microenvironment LaboratoryQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
- School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQLD4059Australia
| | - Harsha Gowda
- Cancer Precision Medicine LaboratoryQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| | - Keshava K. Datta
- Cancer Precision Medicine LaboratoryQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
- Proteomics and Metabolomics PlatformLa Trobe UniversityBundooraVICAustralia
| | - Gunter Hartel
- Statistics UnitQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| | - Carlos Salomon
- Exosome Biology LaboratoryFaculty of Medicine and Biomedical SciencesCentre for Clinical DiagnosticsUniversity of Queensland Centre for Clinical ResearchRoyal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQLDAustralia
- Departamento de InvestigaciónPostgrado y Educación Continua (DIPEC)Facultad de Ciencias de la SaludUniversidad del AlbaSantiagoChile
| | - Andreas Möller
- Tumour Microenvironment LaboratoryQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| |
Collapse
|
115
|
Mizenko RR, Brostoff T, Jackson K, Pesavento PA, Carney RP. Extracellular Vesicles (EVs) Are Copurified with Feline Calicivirus, yet EV-Enriched Fractions Remain Infectious. Microbiol Spectr 2022; 10:e0121122. [PMID: 35876590 PMCID: PMC9430557 DOI: 10.1128/spectrum.01211-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Feline calicivirus (FCV) is a major cause of upper respiratory disease in cats and is often used as a model for human norovirus, making it of great veterinary and human medical importance. However, questions remain regarding the route of entry of FCV in vivo. Increasing work has shown that extracellular vesicles (EVs) can be active in viral infectivity, yet there is no work examining the role of EVs in FCV infection. Here, we begin to address this knowledge gap by characterizing EVs produced by a feline mammary epithelial cell line (FMEC). We have confirmed that EVs are produced by infected and mock-infected FMECs and that both virions and EVs are coisolated with standard methods of virus purification. We also show that they can be enriched differentially by continuous iodixanol density gradient. EVs were enriched at a density of 1.10 g/mL confirmed by tetraspanin expression, size profile, and transmission electron microscopy (TEM). Maximum enrichment of FCV at a density of 1.18 g/mL was confirmed by titration, quantitative reverse transcriptase PCR (q-RT PCR), and TEM. However, infectious virus was recovered from nearly all samples. When used to infect in vitro epithelium, both EV-rich and virus-rich fractions had the same levels of infectiousness as determined by percentage of wells infected or titer achieved postinfection. These findings highlight the importance of coisolates during viral purification, showing that EVs may represent a parallel route of entry that has previously been overlooked. Additional experiments are necessary to explore the role of EVs in FCV infection. IMPORTANCE Feline calicivirus (FCV) is a common cause of upper respiratory infection in cats. Both healthy and infected cells produce small particles called extracellular vesicles (EVs), which are nanoparticles that act as messengers between cells and can be hijacked during viral infection. Historically, the role of EVs in viral infection has been overlooked, and subsequently no group has studied the role of EVs in FCV infection. We hypothesized that EVs may play a role in FCV infection. Here, we show that EVs are copurified with FCV when collecting virus. To study their individual effects, we successfully enrich for viral particles and EVs separately by taking advantage of their different densities. Our initial studies show that EV-enriched versus virus-enriched fractions are equally able to infect cells in culture. These findings highlight the need to both consider the purity of virus after purification and to further study EVs' role in natural FCV infection.
Collapse
Affiliation(s)
- Rachel R. Mizenko
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Terza Brostoff
- Department of Pathology, University of California, San Diego, California, USA
| | - Kenneth Jackson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Patricia A. Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Randy P. Carney
- Department of Biomedical Engineering, University of California, Davis, California, USA
| |
Collapse
|
116
|
Słomka A, Wang B, Mocan T, Horhat A, Willms AG, Schmidt-Wolf IGH, Strassburg CP, Gonzalez-Carmona MA, Lukacs-Kornek V, Kornek MT. Extracellular Vesicles and Circulating Tumour Cells - complementary liquid biopsies or standalone concepts? Theranostics 2022; 12:5836-5855. [PMID: 35966579 PMCID: PMC9373826 DOI: 10.7150/thno.73400] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsies do promise a lot, but are they keeping it? In the past decade, additional novel biomarkers qualified to be called like that, of which, some took necessary hurdles resulting in FDA approval and clinical use. Some others are since a while around, well known and were once regarded to be a game changer in cancer diagnosis or cancer screening. But, during their clinical use limitations were observed from statistical significance and questions raised regarding their robustness, that eventually led to be dropped from associated clinical guidelines for certain applications including cancer diagnosis. The purpose of this review isn't to give a broad overview of all current liquid biopsy as biomarkers, weight them and promise a brighter future in cancer prevention, but rather to take a deeper look on two of those who do qualify to be called liquid biopsies now or then. These two are probably of greatest interest conceptually and methodically, and likely have the highest chances to be in clinical use soon, with a portfolio extension over their original conceptual usage. We aim to dig deeper beyond cancer diagnosis or cancer screening. Actually, we aim to review in depth extracellular vesicles (EVs) and compare with circulating tumour cells (CTCs). The latter methodology is partially FDA approved and in clinical use. We will lay out similarities as taking advantage of surface antigens on EVs and CTCs in case of characterization and quantification. But drawing readers' attention to downstream application based on capture/isolation methodology and simply on their overall nature, here apparently being living material eventually recoverable as CTCs are vs. dead material with transient effects on recipient cell as in case of EVs. All this we try to bring in perspective, compare and conclude towards which future direction we are aiming for, or should aim for. Do we announce a winner between CTCs vs EVs? No, but we provide good reasons to intensify research on them.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-067 Bydgoszcz, Poland
| | - Bingduo Wang
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany.,Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Tudor Mocan
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Adelina Horhat
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Arnulf G Willms
- Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany.,Department of General, Visceral and Vascular Surgery, German Armed Forces Hospital Hamburg, 22049 Hamburg, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Christian P Strassburg
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Maria A Gonzalez-Carmona
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Miroslaw T Kornek
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| |
Collapse
|
117
|
Jiawei S, Zhi C, Kewei T, Xiaoping L. Magnetic bead-based adsorption strategy for exosome isolation. Front Bioeng Biotechnol 2022; 10:942077. [PMID: 36051582 PMCID: PMC9424818 DOI: 10.3389/fbioe.2022.942077] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
Exosomes, one type of extracellular vesicle (EV) secreted by cells, participate in intercellular communication and other biological processes as carriers of lipids, functional proteins, mRNAs, miRNAs, lncRNAs, and DNA fragments. Their presence in biofluids makes them attractive candidates as innovative clinical diagnostic tools. However, the conventional isolation and analysis of high-purity exosomes in clinical application is challenging, with traditional methods facing a number of shortcomings, including low yield or purity, long periods of processing, high cost, and difficulties in standardization. In this study, we provide an overview of commonly used exosome isolation approaches with a focus on magnetic bead-based capture, an ideal methodology with high purity and integrality of exosomes. The current challenges on exosome isolation methods are also described to highlight areas for future research and development.
Collapse
Affiliation(s)
- Sun Jiawei
- Shulan International Medical College, Zhejiang Shuren College, Hangzhou, China
| | - Chen Zhi
- Zhejiang University School of Medicine, Hangzhou, China
| | - Tian Kewei
- Shulan International Medical College, Zhejiang Shuren College, Hangzhou, China
| | - Li Xiaoping
- Shulan International Medical College, Zhejiang Shuren College, Hangzhou, China,*Correspondence: Li Xiaoping,
| |
Collapse
|
118
|
Bie N, Yong T, Wei Z, Gan L, Yang X. Extracellular vesicles for improved tumor accumulation and penetration. Adv Drug Deliv Rev 2022; 188:114450. [PMID: 35841955 DOI: 10.1016/j.addr.2022.114450] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/26/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs), including microparticles and exosomes, have emerged as potential tools for tumor targeting delivery during the past years. Recently, mass of strategies are applied to assist EVs to accumulate and penetrate into deep tumor sites. In this review, EVs from different cells with unique innate characters and engineered approaches (e.g. chemical engineering, genetical engineering and biomimetic engineering) as drug delivery systems to enhance tumor accumulation and penetration are summarized. Meanwhile, efficient biological function modulation (e.g. extracellular matrix degradation, mechanical property regulation and transcytosis) is introduced to facilitate tumor accumulation and penetration of EVs. Finally, the prospects and challenges on further clinical applications of EVs are discussed.
Collapse
Affiliation(s)
- Nana Bie
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaohan Wei
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
119
|
Bhadra A, Scruggs AK, Leavesley SJ, Annamdevula N, George AH, Britain AL, Francis CM, Knighten JM, Rich TC, Bauer NN. Extracellular vesicle-induced cyclic AMP signaling. Cell Signal 2022; 95:110348. [PMID: 35504529 PMCID: PMC10676271 DOI: 10.1016/j.cellsig.2022.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022]
Abstract
Second messenger signaling is required for cellular processes. We previously reported that extracellular vesicles (EVs) from stimulated cultured endothelial cells contain the biochemical second messenger, cAMP. In the current study, we sought to determine whether cAMP-enriched EVs induce second messenger signaling pathways in naïve recipient cells. Our results indicate that cAMP-enriched EVs increase cAMP content sufficient to stimulate PKA activity. The implications of our work are that EVs represent a novel intercellular mechanism for second messenger, specifically cAMP, signaling.
Collapse
Affiliation(s)
- Aritra Bhadra
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - April K Scruggs
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Silas J Leavesley
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Department of Chemical and Biomolecular Engineering, College of Engineering, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Naga Annamdevula
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - April H George
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Andrea L Britain
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Christopher M Francis
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Jennifer M Knighten
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States of America; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Thomas C Rich
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States of America
| | - Natalie N Bauer
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States of America; Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States of America.
| |
Collapse
|
120
|
Extracellular Vesicles and Cancer Therapy: Insights into the Role of Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11061194. [PMID: 35740091 PMCID: PMC9228181 DOI: 10.3390/antiox11061194] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress plays a significant role in cancer development and cancer therapy, and is a major contributor to normal tissue injury. The unique characteristics of extracellular vesicles (EVs) have made them potentially useful as a diagnostic tool in that their molecular content indicates their cell of origin and their lipid membrane protects the content from enzymatic degradation. In addition to their possible use as a diagnostic tool, their role in how normal and diseased cells communicate is of high research interest. The most exciting area is the association of EVs, oxidative stress, and pathogenesis of numerous diseases. However, the relationship between oxidative stress and oxidative modifications of EVs is still unclear, which limits full understanding of the clinical potential of EVs. Here, we discuss how EVs, oxidative stress, and cancer therapy relate to one another; how oxidative stress can contribute to the generation of EVs; and how EVs’ contents reveal the presence of oxidative stress. We also point out the potential promise and limitations of using oxidatively modified EVs as biomarkers of cancer and tissue injury with a focus on pediatric oncology patients.
Collapse
|
121
|
Li X, Su L, Zhang X, Chen Q, Wang Y, Shen Z, Zhong T, Wang L, Xiao Y, Feng X, Yu X. Recent Advances on the Function and Purification of Milk Exosomes: A Review. Front Nutr 2022; 9:871346. [PMID: 35757254 PMCID: PMC9219579 DOI: 10.3389/fnut.2022.871346] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Exosomes are nano-scale extracellular vesicles, which can be used as drug carriers, tumor treatment, intestinal development and immune regulator. That is why it has great potential in pharmacy, functional foods, nutritional supplements, especially those for infants, postoperative patients, chemotherapy patients and the elderly. In addition, abnormal exosome level is also related to diseases such as cardiovascular diseases, tumor, diabetes, neurodegenerative and autoimmune diseases, as well as infectious diseases. Despite its high biological significance, pharmaceutical and nutritional value, the low abundancy of exosomes in milk is one of the bottlenecks restricting its in-depth research and real-life application. At present, there is no unified standard for the extraction of breast milk exosomes. Therefore, choosing the proper extraction method is very critical for its subsequent research and development. Based on this, this paper reviewed the purification techniques, the function and the possible applications of milk exosomes based on 47 latest references. Humble advices on future directions, prospects on new ideas and methods which are useful for the study of exosomes are proposed at the end of the paper as well.
Collapse
Affiliation(s)
- Xiaoping Li
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Lan Su
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xinling Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Qi Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ying Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhenwei Shen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| |
Collapse
|
122
|
Abstract
Extracellular vesicles (EVs) are membranous nanoparticles secreted by nearly all cell types and play a critical role in cell-to-cell crosstalk. EVs can be categorized based on their size, surface markers, or the cell type from which they originate. EVs carry "cargo," including but not limited to, RNA, DNA, proteins, and small signaling molecules. To date, many methods have been developed to isolate EVs from biological fluids, such as blood plasma, urine, bronchoalveolar lavage fluid, and urine. Once isolated, EVs can be characterized by dynamic light scattering, nanotracking analysis, nanoscale flow cytometry, and transmission electron microscopy. Given the ability of EVs to transport cargo between cells, research has recently focused on understanding their role in various human diseases. As understanding of their significance to disease processes grows, insight into the mechanisms behind the physiological role of their cargo in target cells can facilitate the development of a new type of biomarker and therapeutic target for diseases in future. In addition, their ability to deliver their cargo selectively to target cells within the human body means that they could serve as therapeutic agents or methods of drug delivery. In this review, we will first introduce EVs and the cargo they carry, outline current methods for EV isolation and characterization, and discuss their potential use as biomarkers and therapeutic agents in the near future.
Collapse
Affiliation(s)
- Jonathan M Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, United States
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea.
| |
Collapse
|
123
|
Burtenshaw D, Regan B, Owen K, Collins D, McEneaney D, Megson IL, Redmond EM, Cahill PA. Exosomal Composition, Biogenesis and Profiling Using Point-of-Care Diagnostics—Implications for Cardiovascular Disease. Front Cell Dev Biol 2022; 10:853451. [PMID: 35721503 PMCID: PMC9198276 DOI: 10.3389/fcell.2022.853451] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
Arteriosclerosis is an important age-dependent disease that encompasses atherosclerosis, in-stent restenosis (ISR), pulmonary hypertension, autologous bypass grafting and transplant arteriosclerosis. Endothelial dysfunction and the proliferation of vascular smooth muscle cell (vSMC)-like cells is a critical event in the pathology of arteriosclerotic disease leading to intimal-medial thickening (IMT), lipid retention and vessel remodelling. An important aspect in guiding clinical decision-making is the detection of biomarkers of subclinical arteriosclerosis and early cardiovascular risk. Crucially, relevant biomarkers need to be good indicators of injury which change in their circulating concentrations or structure, signalling functional disturbances. Extracellular vesicles (EVs) are nanosized membraneous vesicles secreted by cells that contain numerous bioactive molecules and act as a means of intercellular communication between different cell populations to maintain tissue homeostasis, gene regulation in recipient cells and the adaptive response to stress. This review will focus on the emerging field of EV research in cardiovascular disease (CVD) and discuss how key EV signatures in liquid biopsies may act as early pathological indicators of adaptive lesion formation and arteriosclerotic disease progression. EV profiling has the potential to provide important clinical information to complement current cardiovascular diagnostic platforms that indicate or predict myocardial injury. Finally, the development of fitting devices to enable rapid and/or high-throughput exosomal analysis that require adapted processing procedures will be evaluated.
Collapse
Affiliation(s)
- Denise Burtenshaw
- Vascular Biology and Therapeutics, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Brian Regan
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Kathryn Owen
- Southern Health and Social Care Trust, Craigavon Area Hospital, Craigavon, United Kingdom
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Belfast, United Kingdom
| | - David Collins
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - David McEneaney
- Southern Health and Social Care Trust, Craigavon Area Hospital, Craigavon, United Kingdom
| | - Ian L. Megson
- Division of Biomedical Sciences, Centre for Health Science, UHI Institute of Health Research and Innovation, Inverness, United Kingdom
| | - Eileen M. Redmond
- Department of Surgery, University of Rochester, Rochester, NY, United States
| | - Paul Aidan Cahill
- Vascular Biology and Therapeutics, School of Biotechnology, Dublin City University, Dublin, Ireland
- *Correspondence: Paul Aidan Cahill,
| |
Collapse
|
124
|
Mehaffy C, Ryan JM, Kruh-Garcia NA, Dobos KM. Extracellular Vesicles in Mycobacteria and Tuberculosis. Front Cell Infect Microbiol 2022; 12:912831. [PMID: 35719351 PMCID: PMC9204639 DOI: 10.3389/fcimb.2022.912831] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) remains a public health issue causing millions of infections every year. Of these, about 15% ultimately result in death. Efforts to control TB include development of new and more effective vaccines, novel and more effective drug treatments, and new diagnostics that test for both latent TB Infection and TB disease. All of these areas of research benefit from a good understanding of the physiology of Mycobacterium tuberculosis (Mtb), the primary causative agent of TB. Mtb secreted protein antigens have been the focus of vaccine and diagnosis research for the past century. Recently, the discovery of extracellular vesicles (EVs) as an important source of secreted antigens in Mtb has gained attention. Similarly, the discovery that host EVs can carry Mtb products during in vitro and in vivo infection has spiked interest because of its potential use in blood-based diagnostics. Despite advances in understanding the content of Mtb and Mtb-infected host extracellular vesicles, our understanding on the biogenesis and role of Mtb and host extracellular vesicles during Mtb infection is still nascent. Here, we explore the current literature on extracellular vesicles regarding Mtb, discuss the host and Mtb extracellular vesicles as distinct entities, and discuss current gaps in the field.
Collapse
|
125
|
Soukup R, Gerner I, Gültekin S, Baik H, Oesterreicher J, Grillari J, Jenner F. Characterisation of Extracellular Vesicles from Equine Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:5858. [PMID: 35628667 PMCID: PMC9145091 DOI: 10.3390/ijms23105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized lipid bilayer-encapsulated particles secreted by virtually all cell types. EVs play an essential role in cellular crosstalk in health and disease. The cellular origin of EVs determines their composition and potential therapeutic effect. Mesenchymal stem/stromal cell (MSC)-derived EVs have shown a comparable therapeutic potential to their donor cells, making them a promising tool for regenerative medicine. The therapeutic application of EVs circumvents some safety concerns associated with the transplantation of viable, replicating cells and facilitates the quality-controlled production as a ready-to-go, off-the-shelf biological therapy. Recently, the International Society for Extracellular Vesicles (ISEV) suggested a set of minimal biochemical, biophysical and functional standards to define extracellular vesicles and their functions to improve standardisation in EV research. However, nonstandardised EV isolation methods and the limited availability of cross-reacting markers for most animal species restrict the application of these standards in the veterinary field and, therefore, the species comparability and standardisation of animal experiments. In this study, EVs were isolated from equine bone-marrow-derived MSCs using two different isolation methods, stepwise ultracentrifugation and size exclusion chromatography, and minimal experimental requirements for equine EVs were established and validated. Equine EVs were characterised using a nanotracking analysis, fluorescence-triggered flow cytometry, Western blot and transelectron microscopy. Based on the ISEV standards, minimal criteria for defining equine EVs are suggested as a baseline to allow the comparison of EV preparations obtained by different laboratories.
Collapse
Affiliation(s)
- Robert Soukup
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria; (R.S.); (I.G.); (S.G.); (H.B.)
| | - Iris Gerner
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria; (R.S.); (I.G.); (S.G.); (H.B.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Sinan Gültekin
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria; (R.S.); (I.G.); (S.G.); (H.B.)
| | - Hayeon Baik
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria; (R.S.); (I.G.); (S.G.); (H.B.)
| | - Johannes Oesterreicher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria;
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1090 Vienna, Austria
| | - Florien Jenner
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria; (R.S.); (I.G.); (S.G.); (H.B.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
126
|
Janouskova O, Herma R, Semeradtova A, Poustka D, Liegertova M, Malinska HA, Maly J. Conventional and Nonconventional Sources of Exosomes-Isolation Methods and Influence on Their Downstream Biomedical Application. Front Mol Biosci 2022; 9:846650. [PMID: 35586196 PMCID: PMC9110031 DOI: 10.3389/fmolb.2022.846650] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Despite extensive study of extracellular vesicles (EVs), specifically exosomes (EXs) as biomarkers, important modulators of physiological or pathological processes, or therapeutic agents, relatively little is known about nonconventional sources of EXs, such as invertebrate or plant EXs, and their uses. Likewise, there is no clear information on the overview of storage conditions and currently used isolation methods, including new ones, such as microfluidics, which fundamentally affect the characterization of EXs and their other biomedical applications. The purpose of this review is to briefly summarize conventional and nonconventional sources of EXs, storage conditions and typical isolation methods, widely used kits and new "smart" technologies with emphasis on the influence of isolation techniques on EX content, protein detection, RNA, mRNA and others. At the same time, attention is paid to a brief overview of the direction of biomedical application of EXs, especially in diagnostics, therapy, senescence and aging and, with regard to the current situation, in issues related to Covid-19.
Collapse
Affiliation(s)
- Olga Janouskova
- Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista University in Ústí Nad Labem, Ústí Nad Labem, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
127
|
Ferguson S, Yang KS, Weissleder R. Single extracellular vesicle analysis for early cancer detection. Trends Mol Med 2022; 28:681-692. [DOI: 10.1016/j.molmed.2022.05.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022]
|
128
|
Saraee F, Shekari F, Moini A, Sadeghi M, Ghaznavi P, Nazari A, Ghaheri A, Totonchi M, Eftekhari-Yazdi P. Isolation and characterization of human uterine fluid lavage-derived extracellular vesicles by different methods: A comparative study for minimally invasive endometrial receptivity assessment. Reprod Biomed Online 2022; 45:457-472. [DOI: 10.1016/j.rbmo.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/17/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
|
129
|
Ben-Nissan G, Katzir N, Füzesi-Levi MG, Sharon M. Biology of the Extracellular Proteasome. Biomolecules 2022; 12:619. [PMID: 35625547 PMCID: PMC9139032 DOI: 10.3390/biom12050619] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Proteasomes are traditionally considered intracellular complexes that play a critical role in maintaining proteostasis by degrading short-lived regulatory proteins and removing damaged proteins. Remarkably, in addition to these well-studied intracellular roles, accumulating data indicate that proteasomes are also present in extracellular body fluids. Not much is known about the origin, biological role, mode(s) of regulation or mechanisms of extracellular transport of these complexes. Nevertheless, emerging evidence indicates that the presence of proteasomes in the extracellular milieu is not a random phenomenon, but rather a regulated, coordinated physiological process. In this review, we provide an overview of the current understanding of extracellular proteasomes. To this end, we examine 143 proteomic datasets, leading us to the realization that 20S proteasome subunits are present in at least 25 different body fluids. Our analysis also indicates that while 19S subunits exist in some of those fluids, the dominant proteasome activator in these compartments is the PA28α/β complex. We also elaborate on the positive correlations that have been identified in plasma and extracellular vesicles, between 20S proteasome and activity levels to disease severity and treatment efficacy, suggesting the involvement of this understudied complex in pathophysiology. In addition, we address the considerations and practical experimental methods that should be taken when investigating extracellular proteasomes. Overall, we hope this review will stimulate new opportunities for investigation and thoughtful discussions on this exciting topic that will contribute to the maturation of the field.
Collapse
Affiliation(s)
| | | | | | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (G.B.-N.); (N.K.); (M.G.F.-L.)
| |
Collapse
|
130
|
Optimized Protocol for the Isolation of Extracellular Vesicles from the Parasitic Worm Schistosoma mansoni with Improved Purity, Concentration, and Yield. J Immunol Res 2022; 2022:5473763. [PMID: 35434142 PMCID: PMC9012646 DOI: 10.1155/2022/5473763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to their role in pathogen-host communication. However, the availability of EVs from these parasitic worms is often limited due to the restricted occurrence and culturing possibilities of these organisms. Schistosoma mansoni is one of several helminths that have been shown to release EVs affecting the immune response of their host. Further investigation of mechanisms underlying these EV-induced effects warrants separation of EVs from other components of the helminth excretory/secretory products. However, isolation of high-purity EVs often come to the expense of reduced EV yield. We therefore aimed to develop an optimized protocol for isolation of EVs from S. mansoni schistosomula and adult worms with respect to purity, concentration, and yield. We tested the use of small (1.7 ml) iodixanol density gradients and demonstrated that this enabled western blot-based analysis of the EV marker protein tetraspanin-2 (TSP-2) in gradient fractions without additional concentration steps. Moreover, the concentration and yield of EVs obtained with small iodixanol gradients were higher compared to medium-sized (4.3 ml) or conventional large-sized (12 ml) gradients. Additionally, we provide evidence that iodixanol is preferred over sucrose as medium for the small density gradients, because EVs in iodixanol gradients reached equilibrium much faster (2 hours) and iodixanol but not sucrose was suitable for purification of schistosomula EVs. Finally, we demonstrate that the small iodixanol gradients were able to separate adult worm EVs from non-EV contaminants such as the blood digestion product hemozoin. Our optimized small iodixanol density gradient allows to simultaneously separate and concentrate EVs while reducing handling time and EV loss and can be applied for EVs from helminths and other limited EV sources.
Collapse
|
131
|
Mesenchymal Stem Cells and their Derived Exosomes Promote Malignant Phenotype of Polyploid Non-Small-Cell Lung Cancer Cells through AMPK Signaling Pathway. Anal Cell Pathol 2022; 2022:8708202. [PMID: 35419253 PMCID: PMC9001126 DOI: 10.1155/2022/8708202] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy is an important method for the treatment of non-small-cell lung cancer (NSCLC), but it can lead to side effects and polyploid cancer cells. The polyploid cancer cells can live and generate daughter cancer cells via budding. Mesenchymal stem cells (MSCs) are pluripotent stem cells with repair and regeneration functions and can resist tissue damage caused by tumor therapy. This study is aimed at investigating the effects of MSCs and their derived exosomes on the biological characteristics of polyploid NSCLC cells and the potential mechanisms. We found that MSC conditioned medium (CM), MSCs, and MSC-exosomes had no effect on cell proliferation of the polyploid A549 and H1299 cells. Compared with the control group, MSCs and MSC-exosomes significantly promoted epithelial mesenchymal transformation, cell migration, antiapoptosis, and autophagy in the polyploid A549 and H1299 by activating AMPK signaling pathway, but no significant changes were observed in MSC-CM treatment. These results revealed that MSCs and MSC-exosomes promoted malignant phenotype of polyploid NSCLC cells through the AMPK signaling pathway.
Collapse
|
132
|
Nguyen DB, Tran HT, Kaestner L, Bernhardt I. The Relation Between Extracellular Vesicles Released From Red Blood Cells, Their Cargo, and the Clearance by Macrophages. Front Physiol 2022; 13:783260. [PMID: 35432007 PMCID: PMC9008836 DOI: 10.3389/fphys.2022.783260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane particles that include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies, and other EV subsets. EVs are involved in intercellular communication and the transport of macromolecules between cells. Here, we propose and test the ability of red blood cell (RBC)-derived EVs (RBC-EVs) as putative drug carriers. EVs were produced by treating RBCs with Phorbol-12-myristate-13-acetate (PMA) and separating from the cells by differential centrifugation steps. RBC-EVs were characterized by size determination, flow cytometry, and scanning electron microscopy (SEM). EVs were loaded with DNA plasmids coding for the green fluorescent protein (GFP) by electroporation. The DNA-loaded EVs (DNA-EVs) were used to transfect THP-1-derived macrophages and analyzed by fluorescence microscopy and flow cytometry. The results showed that RBC-EVs had an almost spherical shape and a polydispersity in their size with an average of 197 ± 44 nm and with a zeta potential of −36 ± 8 mV. RBC-EVs were successfully loaded with DNA but associated with an increase of the polydispersity index (PdI) and showed a positive signal with Picogreen. DNA-EVs were almost completely taken up by macrophages within 24 h, however, resulting in the expression of the GFP in a subpopulation of macrophages. As the way, we designed that RBC-EVs could be potential nucleic acid carriers when the immune system was addressed. This study may contribute to the understanding of the role of EVs in the development of microvesicle-based vehicles.
Collapse
Affiliation(s)
- Duc Bach Nguyen
- Department of Molecular Biology, Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
- *Correspondence: Duc Bach Nguyen,
| | - Hanh Triet Tran
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbruecken, Germany
| | - Ingolf Bernhardt
- Laboratory of Biophysics, Faculty of Natural and Technical Sciences, Saarland University, Saarbruecken, Germany
- Ingolf Bernhardt,
| |
Collapse
|
133
|
Beck S, Hochreiter B, Schmid JA. Extracellular Vesicles Linking Inflammation, Cancer and Thrombotic Risks. Front Cell Dev Biol 2022; 10:859863. [PMID: 35372327 PMCID: PMC8970602 DOI: 10.3389/fcell.2022.859863] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) being defined as lipid-bilayer encircled particles are released by almost all known mammalian cell types and represent a heterogenous set of cell fragments that are found in the blood circulation and all other known body fluids. The current nomenclature distinguishes mainly three forms: microvesicles, which are formed by budding from the plasma membrane; exosomes, which are released, when endosomes with intraluminal vesicles fuse with the plasma membrane; and apoptotic bodies representing fragments of apoptotic cells. Their importance for a great variety of biological processes became increasingly evident in the last decade when it was discovered that they contribute to intercellular communication by transferring nucleotides and proteins to recipient cells. In this review, we delineate several aspects of their isolation, purification, and analysis; and discuss some pitfalls that have to be considered therein. Further on, we describe various cellular sources of EVs and explain with different examples, how they link cancer and inflammatory conditions with thrombotic processes. In particular, we elaborate on the roles of EVs in cancer-associated thrombosis and COVID-19, representing two important paradigms, where local pathological processes have systemic effects in the whole organism at least in part via EVs. Finally, we also discuss possible developments of the field in the future and how EVs might be used as biomarkers for diagnosis, and as vehicles for therapeutics.
Collapse
Affiliation(s)
- Sarah Beck
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| | - Bernhard Hochreiter
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Johannes A. Schmid
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| |
Collapse
|
134
|
Morales-Sanfrutos J, Munoz J. UNRAVELLING THE COMPLEXITY OF THE EXTRACELLULAR VESICLE LANDSCAPE WITH ADVANCED PROTEOMICS. Expert Rev Proteomics 2022; 19:89-101. [PMID: 35290757 DOI: 10.1080/14789450.2022.2052849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The field of extracellular vesicles (EVs) is rapidly advancing. This progress is fuelled by the potential applications of these agents as biomarkers and also as an attractive source to encapsulate therapeutics and other agents to target specific cells. AREAS COVERED Different types of EVs, including exosomes, and other nanoparticles have been identified in the last years with key regulatory functions in cell-cell communication. However, the techniques used for their purification possess inherent limitations, resulting in heterogeneous preparations contaminated by other EVs subtypes and nano-size structures. It is therefore urgent to deconvolute the molecular constituents present in each type of EVs in order to accurately ascribe their specific functions. In this context, proteomics can profile, not only the lumen proteins and surface markers, but also their post-translational modifications, which will inform on the mechanisms of cargo selection and sorting. EXPERT OPINION Mass spectrometry-based proteomics is now a mature technique and has started to deliver new insights in the EV field. Here, we review recent developments in sample preparation, mass spectrometry (MS) and computational analysis and discuss how these technological advances, in conjunction with improved purification protocols, could impact the proteomic characterization of the complex landscape of EVs and other secreted nanoparticles.
Collapse
Affiliation(s)
| | - Javier Munoz
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Cell Signaling and Clinical Proteomics Group. Biocruces Bizkaia Health Research Institute. 48903 Barkaldo, Spain.,Ikerbasque, Basque foundation for science, Bilbao, Spain
| |
Collapse
|
135
|
Small but Mighty-Exosomes, Novel Intercellular Messengers in Neurodegeneration. BIOLOGY 2022; 11:biology11030413. [PMID: 35336787 PMCID: PMC8945199 DOI: 10.3390/biology11030413] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Exosomes are biological nanoparticles recently recognized as intercellular messengers. They contain a cargo of lipids, proteins, and RNA. They can transfer their content to not only cells in the vicinity but also to cells at a distance. This unique ability empowers them to modulate the physiology of recipient cells. In brain, exosomes play a role in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease and amyotrophic lateral sclerosis. Abstract Exosomes of endosomal origin are one class of extracellular vesicles that are important in intercellular communication. Exosomes are released by all cells in our body and their cargo consisting of lipids, proteins and nucleic acids has a footprint reflective of their parental origin. The exosomal cargo has the power to modulate the physiology of recipient cells in the vicinity of the releasing cells or cells at a distance. Harnessing the potential of exosomes relies upon the purity of exosome preparation. Hence, many methods for isolation have been developed and we provide a succinct summary of several methods. In spite of the seclusion imposed by the blood–brain barrier, cells in the CNS are not immune from exosomal intrusive influences. Both neurons and glia release exosomes, often in an activity-dependent manner. A brief description of exosomes released by different cells in the brain and their role in maintaining CNS homeostasis is provided. The hallmark of several neurodegenerative diseases is the accumulation of protein aggregates. Recent studies implicate exosomes’ intercellular communicator role in the spread of misfolded proteins aiding the propagation of pathology. In this review, we discuss the potential contributions made by exosomes in progression of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Understanding contributions made by exosomes in pathogenesis of neurodegeneration opens the field for employing exosomes as therapeutic agents for drug delivery to brain since exosomes do cross the blood–brain barrier.
Collapse
|
136
|
Wang J, Yue BL, Huang YZ, Lan XY, Liu WJ, Chen H. Exosomal RNAs: Novel Potential Biomarkers for Diseases-A Review. Int J Mol Sci 2022; 23:2461. [PMID: 35269604 PMCID: PMC8910301 DOI: 10.3390/ijms23052461] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
Exosomes are a subset of nano-sized extracellular vesicles originating from endosomes. Exosomes mediate cell-to-cell communication with their cargos, which includes mRNAs, miRNAs, lncRNAs, and circRNAs. Exosomal RNAs have cell specificity and reflect the conditions of their donor cells. Notably, their detection in biofluids can be used as a diagnostic marker for various diseases. Exosomal RNAs are ideal biomarkers because their surrounding membranes confer stability and they are detectable in almost all biofluids, which helps to reduce trauma and avoid invasive examinations. However, knowledge of exosomal biomarkers remains scarce. The present review summarizes the biogenesis, secretion, and uptake of exosomes, the current researches exploring exosomal mRNAs, miRNAs, lncRNAs, and circRNAs as potential biomarkers for the diagnosis of human diseases, as well as recent techniques of exosome isolation.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.-Z.H.); (X.-Y.L.)
| | - Bing-Lin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China;
| | - Yong-Zhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.-Z.H.); (X.-Y.L.)
| | - Xian-Yong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.-Z.H.); (X.-Y.L.)
| | - Wu-Jun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.-Z.H.); (X.-Y.L.)
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
137
|
Zhang F, Guo J, Zhang Z, Duan M, Wang G, Qian Y, Zhao H, Yang Z, Jiang X. Application of engineered extracellular vesicles for targeted tumor therapy. J Biomed Sci 2022; 29:14. [PMID: 35189894 PMCID: PMC8862579 DOI: 10.1186/s12929-022-00798-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
All cells, including prokaryotes and eukaryotes, could release extracellular vesicles (EVs). EVs contain many cellular components, including RNA, and surface proteins, and are essential for maintaining normal intercellular communication and homeostasis of the internal environment. EVs released from different tissues and cells exhibit excellent properties and functions (e.g., targeting specificity, regulatory ability, physical durability, and immunogenicity), rendering them a potential new option for drug delivery and precision therapy. EVs have been demonstrated to transport antitumor drugs for tumor therapy; additionally, EVs' contents and surface substance can be altered to improve their therapeutic efficacy in the clinic by boosting targeting potential and drug delivery effectiveness. EVs can regulate immune system function by affecting the tumor microenvironment, thereby inhibiting tumor progression. Co-delivery systems for EVs can be utilized to further improve the drug delivery efficiency of EVs, including hydrogels and liposomes. In this review, we discuss the isolation technologies of EVs, as well as engineering approaches to their modification. Moreover, we evaluate the therapeutic potential of EVs in tumors, including engineered extracellular vesicles and EVs' co-delivery systems. Technologies such as microfluidics can improve EVs isolation efficiency. Engineering technologies can improve EVs drug loading efficiency and tumor targeting. EVs-based drug co-delivery systems are being developed, such as those with liposomes and hydrogels.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinshuai Guo
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenghou Zhang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Meiqi Duan
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Guang Wang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiping Qian
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi Yang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xiaofeng Jiang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
138
|
Singh PK, Patel A, Kaffenes A, Hord C, Kesterson D, Prakash S. Microfluidic Approaches and Methods Enabling Extracellular Vesicle Isolation for Cancer Diagnostics. MICROMACHINES 2022; 13:139. [PMID: 35056304 PMCID: PMC8778688 DOI: 10.3390/mi13010139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022]
Abstract
Advances in cancer research over the past half-century have clearly determined the molecular origins of the disease. Central to the use of molecular signatures for continued progress, including rapid, reliable, and early diagnosis is the use of biomarkers. Specifically, extracellular vesicles as biomarker cargo holders have generated significant interest. However, the isolation, purification, and subsequent analysis of these extracellular vesicles remain a challenge. Technological advances driven by microfluidics-enabled devices have made the challenges for isolation of extracellular vesicles an emerging area of research with significant possibilities for use in clinical settings enabling point-of-care diagnostics for cancer. In this article, we present a tutorial review of the existing microfluidic technologies for cancer diagnostics with a focus on extracellular vesicle isolation methods.
Collapse
Affiliation(s)
- Premanshu Kumar Singh
- Department of Mechanical and Aerospace Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Aarti Patel
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Anastasia Kaffenes
- Department of Neuroscience, College of Arts and Sciences and College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Catherine Hord
- Center for Life Sciences Education, The Ohio State University, Columbus, OH 43210, USA; (C.H.); (D.K.)
| | - Delaney Kesterson
- Center for Life Sciences Education, The Ohio State University, Columbus, OH 43210, USA; (C.H.); (D.K.)
| | - Shaurya Prakash
- Department of Mechanical and Aerospace Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA;
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
139
|
Aleksejeva E, Zarovni N, Dissanayake K, Godakumara K, Vigano P, Fazeli A, Jaakma Ü, Salumets A. Extracellular vesicle research in reproductive science- Paving the way for clinical achievements. Biol Reprod 2022; 106:408-424. [PMID: 34982163 DOI: 10.1093/biolre/ioab245] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/13/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian conception involves a multitude of reciprocal interactions via a molecular dialogue between mother and conceptus. Extracellular vesicles (EVs) are secreted membrane-encapsulated particles that mediate cell-to-cell communication in various contexts. EVs, which are present in seminal, follicular, oviductal, and endometrial fluids, as well as in embryo secretions, carry molecular constituents that impact gamete maturation, fertilization, early embryo development, and embryo-maternal communication. The distribution, concentration, and molecular cargo of EVs are regulated by steroid hormones and the health status of the tissue of origin, and thus are influenced by menstrual phase, stage of conception, and the presence of infertility-associated diseases. EVs have been recognized as a novel source of biomarkers and potential reproductive medicine therapeutics, particularly for assisted reproductive technology (ART). There are still many technological and scientific hindrances to be overcome before EVs can be used in clinical diagnostic and therapeutic ART applications. Issues to be resolved include the lack of standardized measurement protocols and an absence of absolute EV quantification technologies. Additionally, clinically suitable and robust EV isolation methods have yet to be developed. In this review, we provide an overview of EV-mediated interactions during the early stages of reproduction from gamete maturation to embryo implantation and then outline the technological progress that must be made for EV applications to be translated to clinical settings.
Collapse
Affiliation(s)
- Elina Aleksejeva
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Competence Centre on Health Technologies, 50411 Tartu, Estonia
| | | | - Keerthie Dissanayake
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Department of Anatomy, Faculty of Medicine, University of Peradeniya, 20400 Peradeniya, Sri Lanka.,Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Paola Vigano
- Reproductive Sciences Laboratory, Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Department of Anatomy, Faculty of Medicine, University of Peradeniya, 20400 Peradeniya, Sri Lanka.,Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, Medical School, University of Sheffield, S10 2TN Sheffield, UK
| | - Ülle Jaakma
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
| | - Andres Salumets
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Competence Centre on Health Technologies, 50411 Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia.,Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14186 Stockholm, Sweden
| |
Collapse
|
140
|
Chen F, Wang Y, Wang J, Hu L, Huang S, Cao Y, Yu Y. Exosome biomarkers in cardiovascular diseases and their prospective forensic application in the identification of sudden cardiac death. JOURNAL OF FORENSIC SCIENCE AND MEDICINE 2022. [DOI: 10.4103/jfsm.jfsm_118_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
141
|
Zeng L, Wang H, Shi W, Chen L, Chen T, Chen G, Wang W, Lan J, Huang Z, Zhang J, Chen J. Aloe derived nanovesicle as a functional carrier for indocyanine green encapsulation and phototherapy. J Nanobiotechnology 2021; 19:439. [PMID: 34930289 PMCID: PMC8686546 DOI: 10.1186/s12951-021-01195-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022] Open
Abstract
Background Cancer is one of the devastating diseases in the world. The development of nanocarrier provides a promising perspective for improving cancer therapeutic efficacy. However, the issues with potential toxicity, quantity production, and excessive costs limit their further applications in clinical practice. Results Herein, we proposed a nanocarrier obtained from aloe with stability and leak-proofness. We isolated nanovesicles from the gel and rind of aloe (gADNVs and rADNVs) with higher quality and yield by controlling the final centrifugation time within 20 min, and modulating the viscosity at 2.98 mPa S and 1.57 mPa S respectively. The gADNVs showed great structure and storage stability, antioxidant and antidetergent capacity. They could be efficiently taken up by melanoma cells, and with no toxicity in vitro or in vivo. Indocyanine green (ICG) loaded in gADNVs (ICG/gADNVs) showed great stability in both heating system and in serum, and its retention rate exceeded 90% after 30 days stored in gADNVs. ICG/gADNVs stored 30 days could still effectively damage melanoma cells and inhibit melanoma growth, outperforming free ICG and ICG liposomes. Interestingly, gADNVs showed prominent penetrability to mice skin which might be beneficial to noninvasive transdermal administration. Conclusions Our research was designed to simplify the preparation of drug carrier, and reduce production cost, which provided an alternative for the development of economic and safe drug delivery system. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01195-7.
Collapse
Affiliation(s)
- Lupeng Zeng
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Huaying Wang
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Wanhua Shi
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Lingfan Chen
- Fujian Province New Drug Safety Evaluation Centre, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Tingting Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Guanyu Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Wenshen Wang
- Department of Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Jianming Lan
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Zhihong Huang
- Public Technology Service Center, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Jing Zhang
- Department of Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.
| | - Jinghua Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China. .,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.
| |
Collapse
|
142
|
Chen J, Zhou D, Nie Z, Lu L, Lin Z, Zhou D, Zhang Y, Long X, Fan S, Xu T. A scalable coaxial bioprinting technology for mesenchymal stem cell microfiber fabrication and high extracellular vesicle yield. Biofabrication 2021; 14:015012. [PMID: 34798619 DOI: 10.1088/1758-5090/ac3b90] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are promising candidates for regenerative medicine; however, the lack of scalable methods for high quantity EV production limits their application. In addition, signature EV-derived proteins shared in 3D environments and 2D surfaces, remain mostly unknown. Herein, we present a platform combining MSC microfiber culture with ultracentrifugation purification for high EV yield. Within this platform, a high quantity MSC solution (∼3 × 108total cells) is encapsulated in a meter-long hollow hydrogel-microfiber via coaxial bioprinting technology. In this 3D core-shell microfiber environment, MSCs express higher levels of stemness markers (Oct4, Nanog, Sox2) than in 2D culture, and maintain their differentiation capacity. Moreover, this platform enriches particles by ∼1009-fold compared to conventional 2D culture, while preserving their pro-angiogenic properties. Liquid chromatography-mass spectrometry characterization results demonstrate that EVs derived from our platform and conventional 2D culturing have unique protein profiles with 3D-EVs having a greater variety of proteins (1023 vs 605), however, they also share certain proteins (536) and signature MSC-EV proteins (10). This platform, therefore, provides a new tool for EV production using microfibers in one culture dish, thereby reducing space, labor, time, and cost.
Collapse
Affiliation(s)
- Jianwei Chen
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Duchao Zhou
- East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Zhenguo Nie
- Department of Orthopedics, Fourth Medical Center of PLA general hospital, 100048 Beijing, People's Republic of China
| | - Liang Lu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, People's Republic of China
| | - Zhidong Lin
- The Second Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People's Republic of China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yi Zhang
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Xiaoyan Long
- East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Siyang Fan
- Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Tao Xu
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
143
|
Zhu Q, Huang Y, Yang Q, Liu F. Recent technical advances to study metabolomics of extracellular vesicles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
144
|
Abstract
Exosomes are nano-sized extracellular vesicles (30–160 nm diameter) with lipid bilayer membrane secrete by various cells that mediate the communication between cells and tissue, which contain a variety of non-coding RNAs, mRNAs, proteins, lipids and other functional substances. Adipose tissue is important energy storage and endocrine organ in the organism. Recent studies have revealed that adipose tissue-derived exosomes (AT-Exosomes) play a critical role in many physiologically and pathologically functions. Physiologically, AT-Exosomes could regulate the metabolic homoeostasis of various organs or cells including liver and skeletal muscle. Pathologically, they could be used in the treatment of disease and or that they may be involved in the progression of the disease. In this review, we describe the basic principles and methods of exosomes isolation and identification, as well as further summary the specific methods. Moreover, we categorize the relevant studies of AT-Exosomes and summarize the different components and biological functions of mammalian exosomes. Most importantly, we elaborate AT-Exosomes crosstalk within adipose tissue and their functions on other tissues or organs from the physiological and pathological perspective. Based on the above analysis, we discuss what remains to be discovered problems in AT-Exosomes studies and prospect their directions needed to be further explored in the future.
Collapse
Affiliation(s)
- Rui Zhao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Tiantian Zhao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Zhaozhao He
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Rui Cai
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| |
Collapse
|
145
|
Single Extracellular Vesicle Analysis Performed by Imaging Flow Cytometry and Nanoparticle Tracking Analysis Evaluate the Accuracy of Urinary Extracellular Vesicle Preparation Techniques Differently. Int J Mol Sci 2021; 22:ijms222212436. [PMID: 34830318 PMCID: PMC8620260 DOI: 10.3390/ijms222212436] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Small extracellular vesicles isolated from urine (uEVs) are increasingly recognized as potential biomarkers. Meanwhile, different uEV preparation strategies exist. Conventionally, the performance of EV preparation methods is evaluated by single particle quantification, Western blot, and electron microscopy. Recently, we introduced imaging flow cytometry (IFCM) as a next-generation single EV analysis technology. Here, we analyzed uEV samples obtained with different preparation procedures using nanoparticle tracking analysis (NTA), semiquantitative Western blot, and IFCM. IFCM analyses demonstrated that urine contains a predominant CD9+ sEV population, which exceeds CD63+ and CD81+ sEV populations. Furthermore, we demonstrated that the storage temperature of urine samples negatively affects the recovery of CD9+ sEVs. Although overall reduced, the highest CD9+ sEV recovery was obtained from urine samples stored at −80 °C and the lowest from those stored at −20 °C. Upon comparing the yield of the different uEV preparations, incongruencies between NTA and IFCM data became apparent. Results obtained by both NTA and IFCM were consistent with Western blot analyses for EV marker proteins; however, NTA results correlated with the amount of the impurity marker uromodulin. Despite demonstrating that the combination of ultrafiltration and size exclusion chromatography appears as a reliable uEV preparation technique, our data challenge the soundness of traditional NTA for the evaluation of different EV preparation methods.
Collapse
|
146
|
Elucidating the Role of Extracellular Vesicles in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13225669. [PMID: 34830825 PMCID: PMC8616095 DOI: 10.3390/cancers13225669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Pancreatic cancer is one of the deadliest cancers worldwide. The chance of surviving more than 5 years after initial diagnosis is less than 10%. This is due to a lack of early diagnostics, where often at the time of initial detection the tumour has already spread to different parts of the body and has developed a propensity to develop drug resistance. Therefore, to tackle this devastating disease, it is necessary to identify the key players responsible for driving pancreatic cancer. Numerous studies have found that small bubble-like packages shed by cancer cells, called extracellular vesicles, play an important role in the progression of the disease. Our knowledge on how extracellular vesicles aid in the progression, spread and chemoresistance of pancreatic cancer is the focus of this review. Of note, these extracellular vesicles may serve as biomarkers for earlier detection of pancreatic cancer and could represent drug targets or drug delivery agents for the treatment of pancreatic cancer. Abstract Pancreatic cancer is one of the deadliest cancers worldwide, with a 5-year survival rate of less than 10%. This dismal survival rate can be attributed to several factors including insufficient diagnostics, rapid metastasis and chemoresistance. To identify new treatment options for improved patient outcomes, it is crucial to investigate the underlying mechanisms that contribute to pancreatic cancer progression. Accumulating evidence suggests that extracellular vesicles, including exosomes and microvesicles, are critical players in pancreatic cancer progression and chemoresistance. In addition, extracellular vesicles also have the potential to serve as promising biomarkers, therapeutic targets and drug delivery tools for the treatment of pancreatic cancer. In this review, we aim to summarise the current knowledge on the role of extracellular vesicles in pancreatic cancer progression, metastasis, immunity, metabolic dysfunction and chemoresistance, and discuss their potential roles as biomarkers for early diagnosis and drug delivery vehicles for treatment of pancreatic cancer.
Collapse
|
147
|
Azevedo CAB, da Cunha RS, Junho CVC, da Silva JV, Moreno-Amaral AN, de Moraes TP, Carneiro-Ramos MS, Stinghen AEM. Extracellular Vesicles and Their Relationship with the Heart-Kidney Axis, Uremia and Peritoneal Dialysis. Toxins (Basel) 2021; 13:toxins13110778. [PMID: 34822562 PMCID: PMC8618757 DOI: 10.3390/toxins13110778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiorenal syndrome (CRS) is described as primary dysfunction in the heart culminating in renal injury or vice versa. CRS can be classified into five groups, and uremic toxin (UT) accumulation is observed in all types of CRS. Protein-bound uremic toxin (PBUT) accumulation is responsible for permanent damage to the renal tissue, and mainly occurs in CRS types 3 and 4, thus compromising renal function directly leading to a reduction in the glomerular filtration rate (GFR) and/or subsequent proteinuria. With this decrease in GFR, patients may need renal replacement therapy (RRT), such as peritoneal dialysis (PD). PD is a high-quality and home-based dialysis therapy for patients with end-stage renal disease (ESRD) and is based on the semi-permeable characteristics of the peritoneum. These patients are exposed to factors which may cause several modifications on the peritoneal membrane. The presence of UT may harm the peritoneum membrane, which in turn can lead to the formation of extracellular vesicles (EVs). EVs are released by almost all cell types and contain lipids, nucleic acids, metabolites, membrane proteins, and cytosolic components from their cell origin. Our research group previously demonstrated that the EVs can be related to endothelial dysfunction and are formed when UTs are in contact with the endothelial monolayer. In this scenario, this review explores the mechanisms of EV formation in CRS, uremia, the peritoneum, and as potential biomarkers in peritoneal dialysis.
Collapse
Affiliation(s)
- Carolina Amaral Bueno Azevedo
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (C.A.B.A.); (R.S.d.C.)
| | - Regiane Stafim da Cunha
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (C.A.B.A.); (R.S.d.C.)
| | - Carolina Victoria Cruz Junho
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (C.V.C.J.); (J.V.d.S.); (M.S.C.-R.)
| | - Jessica Verônica da Silva
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (C.V.C.J.); (J.V.d.S.); (M.S.C.-R.)
| | - Andréa N. Moreno-Amaral
- Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil; (A.N.M.-A.); (T.P.d.M.)
| | - Thyago Proença de Moraes
- Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil; (A.N.M.-A.); (T.P.d.M.)
| | - Marcela Sorelli Carneiro-Ramos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (C.V.C.J.); (J.V.d.S.); (M.S.C.-R.)
| | - Andréa Emilia Marques Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (C.A.B.A.); (R.S.d.C.)
- Correspondence:
| |
Collapse
|
148
|
Useckaite Z, Rodrigues AD, Hopkins AM, Newman LA, Johnson J, Sorich MJ, Rowland A. Role of Extracellular Vesicle-Derived Biomarkers in Drug Metabolism and Disposition. Drug Metab Dispos 2021; 49:961-971. [PMID: 34353847 DOI: 10.1124/dmd.121.000411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles (EVs) are small, nonreplicating, lipid-encapsulated particles that contain a myriad of protein and nucleic acid cargo derived from their tissue of origin. The potential role of EV-derived biomarkers to the study of drug metabolism and disposition (DMD) has gained attention in recent years. The key trait that makes EVs an attractive biomarker source is their capacity to provide comparable insights to solid organ biopsy through an appreciably less invasive collection procedure. Blood-derived EVs exist as a heterogenous milieu of biologically distinct particles originating from different sources through different biogenesis pathways. Furthermore, blood (plasma and serum) contains an array of vesicular and nonvesicular contaminants, such as apoptotic bodies, plasma proteins, and lipoproteins that are routinely coisolated with EVs, albeit to a different extent depending on the isolation technique. The following minireview summarizes current studies reporting DMD biomarkers and addresses elements of EV isolation and quantification relevant to the application of EV-derived DMD biomarkers. Evidence based-best practice guidance aligned to Minimum Information for the Study of Extracellular Vesicles and EV-TRACK reporting standards are summarized in the context of DMD studies. SIGNIFICANCE STATEMENT: Extracellular vesicle (EV)-derived protein and nucleic acid cargo represent a potentially game-changing source of novel DMD biomarkers with the capacity to define within- and between-individual variability in drug exposure irrespective of etiology. However, robust translation of EV-derived biomarkers requires the generation of transparent reproducible evidence. This review outlines the critical elements of data generation and reporting relevant to achieving this evidence in a drug metabolism and disposition context.
Collapse
Affiliation(s)
- Zivile Useckaite
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| | - A David Rodrigues
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| | - Lauren A Newman
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| | - Jillian Johnson
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| |
Collapse
|
149
|
Engineering Cardiac Small Extracellular Vesicle-Derived Vehicles with Thin-Film Hydration for Customized microRNA Loading. J Cardiovasc Dev Dis 2021; 8:jcdd8110135. [PMID: 34821688 PMCID: PMC8626043 DOI: 10.3390/jcdd8110135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Cell therapies for myocardial infarction, including cardiac ckit+ progenitor cell (CPC) therapies, have been promising, with clinical trials underway. Recently, paracrine signaling, specifically through small extracellular vesicle (sEV) release, was implicated in cell-based cardiac repair. sEVs carry cardioprotective cargo, including microRNA (miRNA), within a complex membrane and improve cardiac outcomes similar to that of their parent cells. However, miRNA loading efficiency is low, and sEV yield and cargo composition vary with parent cell conditions, minimizing sEV potency. Synthetic mimics allow for cargo-loading control but consist of much simpler membranes, often suffering from high immunogenicity and poor stability. Here, we aim to combine the benefits of sEVs and synthetic mimics to develop sEV-like vesicles (ELVs) with customized cargo loading. We developed a modified thin-film hydration (TFH) mechanism to engineer ELVs from CPC-derived sEVs with pro-angiogenic miR-126 encapsulated. Characterization shows miR-126+ ELVs are similar in size and structure to sEVs. Upon administration to cardiac endothelial cells (CECs), ELV uptake is similar to sEVs too. Further, when functionally validated with a CEC tube formation assay, ELVs significantly improve tube formation parameters compared to sEVs. This study shows TFH-ELVs synthesized from sEVs allow for select miRNA loading and can improve in vitro cardiac outcomes.
Collapse
|
150
|
Scaled preparation of extracellular vesicles from conditioned media. Adv Drug Deliv Rev 2021; 177:113940. [PMID: 34419502 DOI: 10.1016/j.addr.2021.113940] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) especially of mesenchymal stem/stomal cells (MSCs) are increasingly considered as biotherapeutic agents for a variety of different diseases. For translating them effectively into the clinics, scalable production processes fulfilling good manufacturing practice (GMP) are needed. Like for other biotherapeutic agents, the manufacturing of EV products can be subdivided in the upstream and downstream processing and the subsequent quality control, each of them containing several unit operations. During upstream processing (USP), cells are isolated, stored (cell banking) and expanded; furthermore, EV-containing conditioned media are produced. During downstream processing (DSP), conditioned media (CM) are processed to obtain concentrated and purified EV products. CM are either stored until DSP or are directly processed. As first unit operation in DSP, clarification removes remaining cells, debris and other larger impurities. The key operations of each EV DSP is volume-reduction combined with purification of the concentrated EVs. Most of the EV preparation methods used in conventional research labs including differential centrifugation procedures are limited in their scalability. Consequently, it is a major challenge in the therapeutic EV field to identify appropriate EV concentration and purification methods allowing scale up. As EVs share several features with enveloped viruses, that are used for more than two decades in the clinics now, several principles can be adopted to EV manufacturing. Here, we introduce and discuss volume reducing and purification methods frequently used for viruses and analyze their value for the manufacturing of EV-based therapeutics.
Collapse
|