101
|
Cavrois M, Hilton JF, Roan NR, Takeda M, Seidman D, Averbach S, Chang E, Raman N, Greenblatt R, Shacklett BL, Smith-McCune K. Effects of the levonorgestrel-containing intrauterine device, copper intrauterine device, and levonorgestrel-containing oral contraceptive on susceptibility of immune cells from cervix, endometrium and blood to HIV-1 fusion measured ex vivo. PLoS One 2019; 14:e0221181. [PMID: 31437197 PMCID: PMC6705759 DOI: 10.1371/journal.pone.0221181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023] Open
Abstract
Globally, HIV/AIDS is a leading cause of morbidity worldwide among reproductive-aged cisgender women, highlighting the importance of understanding effects of contraceptives on HIV-1 risk. Some observational studies suggest there may be an increased risk of HIV-1 acquisition among women using the long-acting injectable progestin contraceptive, depo-medroxyprogesterone acetate. The potential mechanism of this susceptibility is unclear. There are few data on the role of the upper female reproductive tract in HIV-1 transmission, and the mechanisms of HIV-1 infection are likely to differ in the upper compared to the lower reproductive tract due to differences in tissue composition and variable effects of sex steroids on mucosal immune cell distribution and activity. In this study, we measured the susceptibility of mucosal immune cells from the upper female reproductive tract to HIV-1 entry using the virion-based HIV-1 fusion assay in samples from healthy female volunteers. We studied 37 infectious molecular clones for their ability to fuse to cells from endometrial biopsies in three participants and found that subtype (B or C) and origin of the virus (transmitted founder or chronic control) had little influence on HIV-1 fusion susceptibility. We studied the effect of contraceptives on HIV-1 susceptibility of immune cells from the cervix, endometrium and peripheral blood by comparing fusion susceptibility in four groups: users of the copper intrauterine device (IUD), levonorgestrel-containing oral contraceptive, levonorgestrel-containing IUD and unexposed controls (n = 58 participants). None of the contraceptives was associated with higher rates of HIV-1 entry into female reproductive tract cells compared to control samples from the mid-luteal phase.
Collapse
Affiliation(s)
- Marielle Cavrois
- Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America
| | - Joan F. Hilton
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Nadia R. Roan
- Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America
- Department of Urology, University of California San Francisco, San Francisco, California, United States of America
| | - Margaret Takeda
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Dominika Seidman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Sarah Averbach
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, San Diego, California, United States of America
| | - Eric Chang
- Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America
| | - Nandhini Raman
- Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America
| | - Ruth Greenblatt
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
- Departments of Clinical Pharmacy and Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Karen Smith-McCune
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
102
|
Abdulhaqq SA, Martinez M, Kang G, Rodriguez IV, Nichols SM, Beaumont D, Joseph J, Azzoni L, Yin X, Wise M, Weiner D, Liu Q, Foulkes A, Münch J, Kirchhoff F, Coutifaris C, Tomaras GD, Sariol C, Marx PA, Li Q, Kraiselburd EN, Montaner LJ. Repeated semen exposure decreases cervicovaginal SIVmac251 infection in rhesus macaques. Nat Commun 2019; 10:3753. [PMID: 31434895 PMCID: PMC6704120 DOI: 10.1038/s41467-019-11814-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 08/02/2019] [Indexed: 01/23/2023] Open
Abstract
Semen is the vehicle for virion dissemination in the female reproductive tract (FRT) in male-to-female HIV transmission. Recent data suggests that higher frequency semen exposure is associated with activation of anti-HIV mechanisms in HIV negative sex workers. Here, we use a non-human primate (NHP) model to show that repeated vaginal exposure to semen significantly reduces subsequent infection by repeated low-dose vaginal SIVmac251 challenge. Repeated semen exposures result in lower CCR5 expression in circulating CD4+ T-cells, as well as higher expression of Mx1 (in correlation with IFNε expression) and FoxP3 in the cervicovaginal mucosa, and increased infiltration of CD4+ T-cells. Establishing in vivo evidence of competing effects of semen on transmission impacts our basic understanding of what factors may determine HIV infectivity in humans. Our results clearly indicate that repeated semen exposure can profoundly modulate the FRT microenvironment, paradoxically promoting host resistance against HIV acquisition.
Collapse
Affiliation(s)
| | - Melween Martinez
- Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico (UPR), San Juan, United States
| | - Guobin Kang
- School of Biological Sciences University of Nebraska, Lincoln, NE, USA
| | - Idia V Rodriguez
- Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico (UPR), San Juan, United States
| | - Stephanie M Nichols
- Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico (UPR), San Juan, United States
| | - David Beaumont
- Duke Human Vaccine Institute and Department of Surgery, Immunology and Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | | | | | | | - Megan Wise
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Qin Liu
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Georgia D Tomaras
- Duke Human Vaccine Institute and Department of Surgery, Immunology and Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Carlos Sariol
- Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico (UPR), San Juan, United States
| | - Preston A Marx
- Tulane National Primate Research Center, and Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Qingsheng Li
- School of Biological Sciences University of Nebraska, Lincoln, NE, USA
| | - Edmundo N Kraiselburd
- Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico (UPR), San Juan, United States
| | | |
Collapse
|
103
|
The Potential Role of Seminal Plasma in the Fertilization Outcomes. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5397804. [PMID: 31531356 PMCID: PMC6720062 DOI: 10.1155/2019/5397804] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/21/2019] [Indexed: 01/26/2023]
Abstract
For human infertility both male and female factors may be equally important. Searching for molecular biomarkers of male infertility, neglected for decades, and the attempts to explain regulatory mechanisms of fertilization become thus extremely important. Apart from examination of the structure and function of male gametes, also the possible importance of seminal plasma components should be considered. In this article we discuss data that indicate for the substantial significance of active seminal plasma components for conception and achievement of healthy pregnancy. Seminal plasma impact on the storage and cryopreservation of human and animal sperm and regulatory role of glycodelin on human sperm capacitation as well as hypothesized course of female immune response to allogenic sperm and conceptus has been discussed. The possible involvement of carbohydrates in molecular mechanism of fetoembryonic defense has been also mentioned.
Collapse
|
104
|
Craenmehr MHC, Haasnoot GW, Drabbels JJM, Spruyt-Gerritse MJ, Cao M, van der Keur C, Kapsenberg JM, Uyar-Mercankaya M, van Beelen E, Meuleman T, van der Hoorn MLP, Heidt S, Claas FHJ, Eikmans M. Soluble HLA-G levels in seminal plasma are associated with HLA-G 3'UTR genotypes and haplotypes. HLA 2019; 94:339-346. [PMID: 31321883 PMCID: PMC6772099 DOI: 10.1111/tan.13628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022]
Abstract
Soluble HLA-G (sHLA-G) levels in human seminal plasma (SP) can be diverse and may affect the establishment of maternal-fetal tolerance and thereby the outcome of pregnancy. We investigated whether sHLA-G levels in SP are associated with polymorphisms in the 3'-untranslated region (UTR) and UTR haplotypes of the HLA-G gene. Furthermore, we compared the HLA-G genotype distribution and sHLA-G levels between men, whose partner experienced unexplained recurrent miscarriage (RM), and controls. Soluble HLA-G levels (n = 156) and HLA-G genotyping (n = 176) were determined in SP samples. The concentration of sHLA-G was significantly associated with several single-nucleotide polymorphisms (SNPs): the 14 base pair (bp) insertion/deletion (indel), +3010, +3142, +3187, +3196, and + 3509. High levels of sHLA-G were associated with UTR-1 and low levels with UTR-2, UTR-4, and UTR-7 (P < .0001). HLA-G genotype distribution and sHLA-G levels in SP were not significantly different between the RM group (n = 44) and controls (n = 31). In conclusion, seminal sHLA-G levels are associated with both singular SNPs and 3UTR haplotypes. HLA-G genotype and sHLA-G levels in SP are not different between men whose partner experienced RM and controls, indicating that miscarriages are not solely the result of low sHLA-G levels in SP. Instead, it is more likely that these miscarriages are the result of a multifactorial immunologic mechanism, whereby the HLA-G 3'UTR 14 bp ins/ins genotype plays a role in a proportion of the cases. Future studies should look into the functions of sHLA-G in SP and the consequences of low or high levels on the chance to conceive.
Collapse
Affiliation(s)
- Moniek H C Craenmehr
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Geert W Haasnoot
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos J M Drabbels
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marijke J Spruyt-Gerritse
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Milo Cao
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Carin van der Keur
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna M Kapsenberg
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Merve Uyar-Mercankaya
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Els van Beelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Tess Meuleman
- Department of Obstetrics and Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sebastiaan Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Eikmans
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
105
|
Fuller EA, Younesi S, Xavier S, Sominsky L. Neuroimmune regulation of female reproduction in health and disease. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2019.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
106
|
Chen H, Liu T, Holt WV, Yang P, Zhang L, Zhang L, Han X, Bian X, Chen Q. Advances in understanding mechanisms of long-term sperm storage-the soft-shelled turtle model. Histol Histopathol 2019; 35:1-23. [PMID: 31290136 DOI: 10.14670/hh-18-148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Long-term sperm storage is a special reproductive strategy, which can extend the time window between mating and fertilization in some animal species. Spermatozoa of the soft-shelled turtle, Pelodiscus sinensis, can be stored in the epididymis and oviduct for at least six months and one year, respectively. How spermatozoa can be stored in vivo for such a prolonged period is yet to be explained. We analyze the mechanisms that contribute to long-term sperm storage in P. sinensis, and compare them with other species from three different perspectives: the spermatozoon itself, the storage microenvironment and the interaction between the spermatozoon and microenvironment. Characteristics of soft-shelled turtle spermatozoa itself, such as the huge cytoplasmic droplet with its content of several large lipid droplets (LDs) and onion-like mitochondira, facilitate long-term sperm storage. The microenvironment of reproductive tract, involving in the secretions, structural barriers, exosomes, androgen receptors, Toll-like receptors and survival factor Bcl-2, are important for the maintenance of spermatozoa long-term storage. Sperm heads are always embedded among the oviductal cilia and even intercalate into the apical hollowness of the ciliated cells, indicating that the ciliated cells support the stored spermatozoa. RNA seq is firstly used to detect the molecular mechanism of sperm storage, which shows that autophagy, apoptosis and immune take part in the long-term sperm storage in this species.
Collapse
Affiliation(s)
- Hong Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Tengfei Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - William V Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, United Kingdom
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Linli Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Li Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xiangkun Han
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xunguang Bian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
107
|
Moldenhauer LM, Schjenken JE, Hope CM, Green ES, Zhang B, Eldi P, Hayball JD, Barry SC, Robertson SA. Thymus-Derived Regulatory T Cells Exhibit Foxp3 Epigenetic Modification and Phenotype Attenuation after Mating in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 203:647-657. [DOI: 10.4049/jimmunol.1900084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022]
|
108
|
Schumacher A, Sharkey DJ, Robertson SA, Zenclussen AC. Immune Cells at the Fetomaternal Interface: How the Microenvironment Modulates Immune Cells To Foster Fetal Development. THE JOURNAL OF IMMUNOLOGY 2019; 201:325-334. [PMID: 29987001 DOI: 10.4049/jimmunol.1800058] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/06/2018] [Indexed: 12/23/2022]
Abstract
Immune cells adapt their phenotypic and functional characteristics in response to the tissue microenvironment within which they traffic and reside. The fetomaternal interface, consisting of placental trophoblasts and the maternal decidua, is a highly specialized tissue with a unique and time-limited function: to nourish and support development of the semiallogeneic fetus and protect it from inflammatory or immune-mediated injury. It is therefore important to understand how immune cells within these tissues are educated and adapt to fulfill their biological functions. This review article focuses on the local regulatory mechanisms ensuring that both innate and adaptive immune cells appropriately support the early events of implantation and placental development through direct involvement in promoting immune tolerance of fetal alloantigens, suppressing inflammation, and remodeling of maternal uterine vessels to facilitate optimal placental function and fetal growth.
Collapse
Affiliation(s)
- Anne Schumacher
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg 39108, Germany; and
| | - David J Sharkey
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, South Australia 5005, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, South Australia 5005, Australia
| | - Ana C Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg 39108, Germany; and
| |
Collapse
|
109
|
Selva KJ, Juno JA, Worley MJ, Chung AW, Tachedjian G, Kent SJ, Parsons MS. Short Communication: Effect of Seminal Plasma on Functions of Monocytes and Granulocytes. AIDS Res Hum Retroviruses 2019; 35:553-556. [PMID: 31037950 DOI: 10.1089/aid.2018.0219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most HIV-1 transmissions occur at mucosae and involve exposure to semen. Semen contains immunomodulatory factors, which inhibit anti-HIV-1 natural killer cell and T cell responses. We demonstrate high concentrations (1:2 dilution) of seminal plasma (SP) inhibit monocyte phagocytosis and anti-HIV-1 Fc-dependent functions of both neutrophils and monocytes. In addition, slightly lower SP concentrations (1:2-1:10 dilutions) inhibit granulocyte phagocytosis and oxidative burst of both monocytes and granulocytes. These observations may have implications for HIV-1 infectivity after mucosal exposure.
Collapse
Affiliation(s)
- Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Matthew J. Worley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Gilda Tachedjian
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, Australia
- Department of Microbiology, Monash University, Clayton, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Monash University Central Clinical School, Melbourne, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Australia
| | - Matthew S. Parsons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
110
|
Modulation of the CCR5 Receptor/Ligand Axis by Seminal Plasma and the Utility of In Vitro versus In Vivo Models. J Virol 2019; 93:JVI.00242-19. [PMID: 30867307 DOI: 10.1128/jvi.00242-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/02/2019] [Indexed: 12/30/2022] Open
Abstract
Sexual HIV-1 transmission occurs primarily in the presence of semen. Although data from macaque studies suggest that CCR5+ CD4+ T cells are initial targets for HIV-1 infection, the impact of semen on T cell CCR5 expression and ligand production remains inconclusive. To determine if semen modulates the lymphocyte CCR5 receptor/ligand axis, primary human T cell CCR5 expression and natural killer (NK) cell anti-HIV-1 antibody-dependent beta chemokine production was assessed following seminal plasma (SP) exposure. Purified T cells produce sufficient quantities of RANTES to result in a significant decline in CCR5bright T cell frequency following 16 h of SP exposure (P = 0.03). Meanwhile, NK cells retain the capacity to produce limited amounts of MIP-1α/MIP-1β in response to anti-HIV-1 antibody-dependent stimulation (median, 9.5% MIP-1α+ and/or MIP-1β+), despite the immunosuppressive nature of SP. Although these in vitro experiments suggest that SP-induced CCR5 ligand production results in the loss of surface CCR5 expression on CD4+ T cells, the in vivo implications are unclear. We therefore vaginally exposed five pigtail macaques to SP and found that such exposure resulted in an increase in CCR5+ HIV-1 target cells in three of the animals. The in vivo data support a growing body of evidence suggesting that semen exposure recruits target cells to the vagina that are highly susceptible to HIV-1 infection, which has important implications for HIV-1 transmission and vaccine design.IMPORTANCE The majority of HIV-1 vaccine studies do not take into consideration the impact that semen exposure might have on the mucosal immune system. In this study, we demonstrate that seminal plasma (SP) exposure can alter CCR5 expression on T cells. Importantly, in vitro studies of T cells in culture cannot replicate the conditions under which immune cells might be recruited to the genital mucosa in vivo, leading to potentially erroneous conclusions about the impact of semen on mucosal HIV-1 susceptibility.
Collapse
|
111
|
Pepe G, Locati M, Della Torre S, Mornata F, Cignarella A, Maggi A, Vegeto E. The estrogen-macrophage interplay in the homeostasis of the female reproductive tract. Hum Reprod Update 2019; 24:652-672. [PMID: 30256960 DOI: 10.1093/humupd/dmy026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 08/10/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Estrogens are known to orchestrate reproductive events and to regulate the immune system during infections and following tissue damage. Recent findings suggest that, in the absence of any danger signal, estrogens trigger the physiological expansion and functional specialization of macrophages, which are immune cells that populate the female reproductive tract (FRT) and are increasingly being recognized to participate in tissue homeostasis beyond their immune activity against infections. Although estrogens are the only female gonadal hormones that directly target macrophages, a comprehensive view of this endocrine-immune communication and its involvement in the FRT is still missing. OBJECTIVE AND RATIONALE Recent accomplishments encourage a revision of the literature on the ability of macrophages to respond to estrogens and induce tissue-specific functions required for reproductive events, with the aim to envision macrophages as key players in FRT homeostasis and mediators of the regenerative and trophic actions of estrogens. SEARCH METHODS We conducted a systematic search using PubMed and Ovid for human, animal (rodents) and cellular studies published until 2018 on estrogen action in macrophages and the activity of these cells in the FRT. OUTCOMES Our search identified the remarkable ability of macrophages to activate biochemical processes in response to estrogens in cell culture experiments. The distribution at specific locations, interaction with selected cells and acquisition of distinct phenotypes of macrophages in the FRT, as well as the cyclic renewal of these properties at each ovarian cycle, demonstrate the involvement of these cells in the homeostasis of reproductive events. Moreover, current evidence suggests an association between estrogen-macrophage signaling and the generation of a tolerant and regenerative environment in the FRT, although a causative link is still missing. WIDER IMPLICATIONS Dysregulation of the functions and estrogen responsiveness of FRT macrophages may be involved in infertility and estrogen- and macrophage-dependent gynecological diseases, such as ovarian cancer and endometriosis. Thus, more research is needed on the physiology and pharmacological control of this endocrine-immune interplay.
Collapse
Affiliation(s)
- Giovanna Pepe
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, via Balzaretti, 9 Milan, Italy
| | - Massimo Locati
- Humanitas Clinical and Research Center, Segrate, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi, Segrate, Italy
| | - Sara Della Torre
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, via Balzaretti, 9 Milan, Italy
| | - Federica Mornata
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, via Balzaretti, 9 Milan, Italy
| | - Andrea Cignarella
- Department of Medicine, University of Padua, Largo Meneghetti 2, Padua, Italy
| | - Adriana Maggi
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, via Balzaretti, 9 Milan, Italy
| | - Elisabetta Vegeto
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, via Balzaretti, 9 Milan, Italy
| |
Collapse
|
112
|
Kieffer TEC, Laskewitz A, Scherjon SA, Faas MM, Prins JR. Memory T Cells in Pregnancy. Front Immunol 2019; 10:625. [PMID: 31001255 PMCID: PMC6455355 DOI: 10.3389/fimmu.2019.00625] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022] Open
Abstract
Adaptations of the maternal immune response are necessary for pregnancy success. Insufficient immune adaption is associated with pregnancy pathologies such as infertility, recurrent miscarriage, fetal growth restriction, spontaneous preterm birth, and preeclampsia. The maternal immune system is continuously exposed to paternal-fetal antigens; through semen exposure from before pregnancy, through fetal cell exposure in pregnancy, and through microchimerism after pregnancy. This results in the generation of paternal-fetal antigen specific memory T cells. Memory T cells have the ability to remember previously encountered antigens to elicit a quicker, more substantial and focused immune response upon antigen reencounter. Such fetal antigen specific memory T cells could be unfavorable in pregnancy as they could potentially drive fetal rejection. However, knowledge on memory T cells in pregnancy has shown that these cells might play a favorable role in fetal-maternal tolerance rather than rejection of the fetus. In recent years, various aspects of immunologic memory in pregnancy have been elucidated and the relevance and working mechanisms of paternal-fetal antigen specific memory T cells in pregnancy have been evaluated. The data indicate that a delicate balance of memory T cells seems necessary for reproductive success and that immunologic memory in reproduction might not be harmful for pregnancy. This review provides an overview of the different memory T cell subtypes and their function in the physiology and in complications of pregnancy. Current findings in the field and possible therapeutic targets are discussed. The findings of our review raise new research questions for further studies regarding the role of memory T cells in immune-associated pregnancy complications. These studies are needed for the identification of possible targets related to memory mechanisms for studies on preventive therapies.
Collapse
Affiliation(s)
- Tom E C Kieffer
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Anne Laskewitz
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sicco A Scherjon
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jelmer R Prins
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
113
|
Paktinat S, Hashemi SM, Ghaffari Novin M, Mohammadi-Yeganeh S, Salehpour S, Karamian A, Nazarian H. Seminal exosomes induce interleukin-6 and interleukin-8 secretion by human endometrial stromal cells. Eur J Obstet Gynecol Reprod Biol 2019; 235:71-76. [DOI: 10.1016/j.ejogrb.2019.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/26/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
|
114
|
Fattahi A, Latifi Z, Darabi M, Salmassi A, Farzadi L, Shaaker M, Mehdizadeh A, Ghasemnejad T, Roshangar L, Nouri M. Mating with seminal vesicle-excised male can affect the uterus phospholipid fatty-acids composition during implantation in an experimental mouse model. Int Braz J Urol 2019; 45:825-833. [PMID: 30901177 PMCID: PMC6837596 DOI: 10.1590/s1677-5538.ibju.2018.0485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/14/2018] [Indexed: 04/20/2023] Open
Abstract
PURPOSE No comprehensive information is available about uterus fatty acid (FA) change during implantation period and possible effects of the seminal vesicle secretion on it. MATERIALS AND METHODS In this study, we evaluated FA composition of uterus phospholipids during the implantation period in intact and seminal vesicle-excised (SVX) mated female mice. Forty NMRI female mice were divided into control (mated with intact male) and seminal vesicle excised (SVX)-mated (mated with SVX-male) groups. The phospholipid fatty acids composition was monitored during the fi rst fi ve days of pregnancy using gas chromatography and also implantation rate was evaluated on fi fth day of pregnancy. RESULTS We found that levels of linoleic acid (LNA) and arachidonic acid (ARA) showed a decreasing trend from the fi rst to the third day of pregnancy and then started to increase on the fourth day and peaked on the fi fth day. In contrast, the level of saturated FA (SFA) increased on the second and third day of pregnancy compared to the fi rst (p<0.05) and then decreased on the fourth and fi fth. We also found that the seminal vesicle secretion could affect the levels of LNA, ARA, SFA, and PUFA in uterine phospholipids especially on second and third day. Moreover, there was a positive correlation between ARA level and implantation rate in control but not SVX-mated groups. CONCLUSIONS It can be concluded that several uterus FA that have important roles in early pregnancy could be affected by seminal vesicle secretion.
Collapse
Affiliation(s)
- Amir Fattahi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Salmassi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laya Farzadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsood Shaaker
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Liver and Gastrointestinal Diseases Research Centers, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Ghasemnejad
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
115
|
Robertson SA, Green ES, Care AS, Moldenhauer LM, Prins JR, Hull ML, Barry SC, Dekker G. Therapeutic Potential of Regulatory T Cells in Preeclampsia-Opportunities and Challenges. Front Immunol 2019; 10:478. [PMID: 30984163 PMCID: PMC6448013 DOI: 10.3389/fimmu.2019.00478] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/21/2019] [Indexed: 12/26/2022] Open
Abstract
Inflammation is a central feature and is implicated as a causal factor in preeclampsia and other hypertensive disorders of pregnancy. Inflammatory mediators and leukocytes, which are elevated in peripheral blood and gestational tissues, contribute to the uterine vascular anomalies and compromised placental function that characterize particularly the severe, early onset form of disease. Regulatory T (Treg) cells are central mediators of pregnancy tolerance and direct other immune cells to counteract inflammation and promote robust placentation. Treg cells are commonly perturbed in preeclampsia, and there is evidence Treg cell insufficiency predates onset of symptoms. A causal role is implied by mouse studies showing sufficient numbers of functionally competent Treg cells must be present in the uterus from conception, to support maternal vascular adaptation and prevent later placental inflammatory pathology. Treg cells may therefore provide a tractable target for both preventative strategies and treatment interventions in preeclampsia. Steps to boost Treg cell activity require investigation and could be incorporated into pregnancy planning and preconception care. Pharmacological interventions developed to target Treg cells in autoimmune conditions warrant consideration for evaluation, utilizing rigorous clinical trial methodology, and ensuring safety is paramount. Emerging cell therapy tools involving in vitro Treg cell generation and/or expansion may in time become relevant. The success of preventative and therapeutic approaches will depend on resolving several challenges including developing informative diagnostic tests for Treg cell activity applicable before conception or during early pregnancy, selection of relevant patient subgroups, and identification of appropriate windows of gestation for intervention.
Collapse
Affiliation(s)
- Sarah A. Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Ella S. Green
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Alison S. Care
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Lachlan M. Moldenhauer
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | | | - M. Louise Hull
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Women's and Children's Hospital, Adelaide, SA, Australia
| | - Simon C. Barry
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Gustaaf Dekker
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
116
|
Marlin R, Nugeyre MT, Tchitchek N, Parenti M, Lefebvre C, Hocini H, Benjelloun F, Cannou C, Nozza S, Dereuddre-Bosquet N, Levy Y, Barré-Sinoussi F, Scarlatti G, Le Grand R, Menu E. Seminal Plasma Exposures Strengthen Vaccine Responses in the Female Reproductive Tract Mucosae. Front Immunol 2019; 10:430. [PMID: 30915079 PMCID: PMC6423065 DOI: 10.3389/fimmu.2019.00430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/18/2019] [Indexed: 01/01/2023] Open
Abstract
HIV-1 sexual transmission occurs mainly via mucosal semen exposures. In the female reproductive tract (FRT), seminal plasma (SP) induces physiological modifications, including inflammation. An effective HIV-1 vaccine should elicit mucosal immunity, however, modifications of vaccine responses by the local environment remain to be characterized. Using a modified vaccinia virus Ankara (MVA) as a vaccine model, we characterized the impact of HIV-1+ SP intravaginal exposure on the local immune responses of non-human primates. Multiple HIV-1+ SP exposures did not impact the anti-MVA antibody responses. However, SP exposures revealed an anti-MVA responses mediated by CD4+ T cells, which was not observed in the control group. Furthermore, the frequency and the quality of specific anti-MVA CD8+ T cell responses increased in the FRT exposed to SP. Multi-parameter approaches clearly identified the cervix as the most impacted compartment in the FRT. SP exposures induced a local cell recruitment of antigen presenting cells, especially CD11c+ cells, and CD8+ T cell recruitment in the FRT draining lymph nodes. CD11c+ cell recruitment was associated with upregulation of inflammation-related gene expression after SP exposures in the cervix. We thus highlight the fact that physiological conditions, such as SP exposures, should be taken into consideration to test and to improve vaccine efficacy against HIV-1 and other sexually transmitted infections.
Collapse
Affiliation(s)
- Romain Marlin
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,MISTIC Group, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France
| | - Marie-Thérèse Nugeyre
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,MISTIC Group, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France
| | - Nicolas Tchitchek
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France
| | - Matteo Parenti
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France
| | - Cécile Lefebvre
- Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France.,Équipe 16 Physiopathologie et Immunothérapies dans l'Infection VIH, Institut Mondor de Recherche Biomédicale - INSERM U955, Créteil, France
| | - Hakim Hocini
- Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France.,Équipe 16 Physiopathologie et Immunothérapies dans l'Infection VIH, Institut Mondor de Recherche Biomédicale - INSERM U955, Créteil, France
| | - Fahd Benjelloun
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,MISTIC Group, Department of Virology, Institut Pasteur, Paris, France
| | - Claude Cannou
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,MISTIC Group, Department of Virology, Institut Pasteur, Paris, France
| | - Silvia Nozza
- Infectious Diseases Department, San Raffaele Scientific Institute, Milan, Italy
| | - Nathalie Dereuddre-Bosquet
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France
| | - Yves Levy
- Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France.,Équipe 16 Physiopathologie et Immunothérapies dans l'Infection VIH, Institut Mondor de Recherche Biomédicale - INSERM U955, Créteil, France.,Groupe Henri-Mondor Albert-Chenevier, Service d'Immunologie Clinique, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Françoise Barré-Sinoussi
- Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France.,International Division, Institut Pasteur, Paris, France
| | - Gabriella Scarlatti
- Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France.,Viral Evolution and Transmission Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Roger Le Grand
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France
| | - Elisabeth Menu
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,MISTIC Group, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France
| |
Collapse
|
117
|
Månberg A, Bradley F, Qundos U, Guthrie BL, Birse K, Noël-Romas L, Lindskog C, Bosire R, Kiarie J, Farquhar C, Burgener AD, Nilsson P, Broliden K. A High-throughput Bead-based Affinity Assay Enables Analysis of Genital Protein Signatures in Women At Risk of HIV Infection. Mol Cell Proteomics 2019; 18:461-476. [PMID: 30504243 PMCID: PMC6398207 DOI: 10.1074/mcp.ra118.000757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/29/2018] [Indexed: 01/28/2023] Open
Abstract
Women at high risk of HIV infection, including sex workers and those with active genital inflammation, have molecular signatures of immune activation and epithelial barrier remodeling in samples of their genital mucosa. These alterations in the local immunological milieu are likely to impact HIV susceptibility. We here analyze host genital protein signatures in HIV uninfected women, with high frequency of condom use, living in HIV-serodiscordant relationships. Cervicovaginal secretions from women living in HIV-serodiscordant relationships (n = 62) were collected at three time points over 12 months. Women living in HIV-negative seroconcordant relationships (controls, n = 25) were sampled at one time point. All study subjects were examined for demographic parameters associated with susceptibility to HIV infection. The cervicovaginal samples were analyzed using a high-throughput bead-based affinity assay. Proteins involved in epithelial barrier function and inflammation were increased in HIV-serodiscordant women. By combining several methods of analysis, a total of five proteins (CAPG, KLK10, SPRR3, elafin/PI3, CSTB) were consistently associated with this study group. Proteins analyzed using the affinity set-up were further validated by label-free tandem mass spectrometry in a partially overlapping cohort with concordant results. Women living in HIV-serodiscordant relationships thus had elevated levels of proteins involved in epithelial barrier function and inflammation despite low prevalence of sexually transmitted infections and a high frequency of safe sex practices. The identified proteins are important markers to follow during assessment of mucosal HIV susceptibility factors and a high-throughput bead-based affinity set-up could be a suitable method for such evaluation.
Collapse
Affiliation(s)
- Anna Månberg
- From the ‡Affinity Proteomics, SciLifeLab, Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Frideborg Bradley
- §Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden;
| | - Ulrika Qundos
- From the ‡Affinity Proteomics, SciLifeLab, Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Brandon L Guthrie
- ¶Department of Global Health and Department of Epidemiology Health, University of Washington, Seattle, Washington
| | - Kenzie Birse
- ‖Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- **National HIV and Retrovirology Labs, JC Wilt Infectious Disease Centre, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Laura Noël-Romas
- ‖Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- **National HIV and Retrovirology Labs, JC Wilt Infectious Disease Centre, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Cecilia Lindskog
- ‡‡SciLifeLab, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rose Bosire
- §§Kenya Medical Research Institute, Nairobi, Kenya
| | - James Kiarie
- ¶¶Department of Obstetrics and Gynecology, University of Nairobi, Nairobi, Kenya
| | - Carey Farquhar
- ‖‖Department of Medicine, Global Health, and Epidemiology, University of Washington, Seattle, Washington
| | - Adam D Burgener
- §Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- ‖Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- **National HIV and Retrovirology Labs, JC Wilt Infectious Disease Centre, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Peter Nilsson
- From the ‡Affinity Proteomics, SciLifeLab, Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Kristina Broliden
- §Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
118
|
Salinas-Muñoz L, Campos-Fernández R, Olivera-Valle I, Mercader E, Fernandez-Pacheco C, Lasarte S, Pérez-Martín L, Navarro-González MT, Sánchez-Mateos P, Samaniego R, Relloso M. Estradiol impairs epithelial CXCL1 gradient in the cervix to delay neutrophil transepithelial migration during insemination. J Reprod Immunol 2019; 132:9-15. [PMID: 30807979 DOI: 10.1016/j.jri.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/24/2019] [Accepted: 02/17/2019] [Indexed: 12/20/2022]
Abstract
Female reproductive mucosa must allow allogenic sperm survival whereas at the same time, avoid pathogen infection. To preserve sperm from neutrophil attack, neutrophils disappear from the vagina during the ovulatory phase (high estradiol); although the mechanisms that regulate neutrophil influx to the vagina during insemination remain controversial. We investigated the sex hormone regulation of the neutrophil migration through the cervix during insemination and revealed that ovulatory estradiol dose fades the CXCL1 epithelial expression in the ectocervix and fornix; hence, retarding neutrophil migration and retaining them in the epithelium. These mechanisms spare sperm from neutrophil attack to preserve reproduction, but might compromise immunity. However, luteal progesterone dose promotes the CXCL1 gradient expression to restore neutrophil migration, to eliminate sperm and prevent sperm associated pathogen dissemination. Surprisingly, these mechanisms are hormone dependent and independent of the insemination. Thus, sex hormones orchestrate tolerance and immunity in the vaginal lumen by regulating neutrophil transepithelial migration in the fornix and ectocervix.
Collapse
Affiliation(s)
- L Salinas-Muñoz
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - R Campos-Fernández
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - I Olivera-Valle
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - E Mercader
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Servicio de Cirugía General, Sección Cirugía Endocrino-Metabólica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - C Fernandez-Pacheco
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Animalario, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - S Lasarte
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - L Pérez-Martín
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Servicio de Ginecología, Hospital General Universitario Gregorio Marañón, Spain
| | - M T Navarro-González
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Servicio de Ginecología, Hospital General Universitario Gregorio Marañón, Spain
| | - P Sánchez-Mateos
- Laboratorio de Inmuno-oncología, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - R Samaniego
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - M Relloso
- Laboratorio de InmunoFisiología, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
119
|
Morgan CP, Chan JC, Bale TL. Driving the Next Generation: Paternal Lifetime Experiences Transmitted via Extracellular Vesicles and Their Small RNA Cargo. Biol Psychiatry 2019; 85:164-171. [PMID: 30580777 PMCID: PMC6309802 DOI: 10.1016/j.biopsych.2018.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/29/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
Epidemiological studies provide strong evidence for the impact of diverse paternal life experiences on offspring neurodevelopmental disease risk. While these associations are well established, the molecular mechanisms underlying these intergenerational transmissions remain elusive, though recent studies focusing on the influence of paternal experience before conception have implicated germ cell epigenetic programming. Any model accounting for the germline transfer of nongenetic information from sire to offspring must include certain components, such as 1) a vector to carry any signal from the paternal compartment to the maternal reproductive tract and future embryo; 2) a molecular signal, encoded by a paternal experience, to carry this memory and enact downstream responses; and 3) a target cell or tissue to receive the signal and convert it into an effect on embryonic development. We explore the current understanding of the potential processes and candidate factors that may serve as these components. We specifically discuss the growing appreciation for the importance of extracellular vesicles in these processes, beginning with their known role in delivering potential signals, including small RNAs, to sperm, the prototypical vector, during their posttesticular maturation. Finally, we explore the possibility that paternal extracellular vesicles could themselves serve as vectors, delivering signals not only to gametes or the zygote but also to tissues of the maternal reproductive tract to influence fetal development.
Collapse
Affiliation(s)
- Christopher P Morgan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jennifer C Chan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tracy L Bale
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
120
|
Rametse CL, Adefuye AO, Olivier AJ, Curry L, Gamieldien H, Burgers WA, Lewis DA, Williamson AL, Katz AA, Passmore JAS. Inflammatory Cytokine Profiles of Semen Influence Cytokine Responses of Cervicovaginal Epithelial Cells. Front Immunol 2018; 9:2721. [PMID: 30568652 PMCID: PMC6290331 DOI: 10.3389/fimmu.2018.02721] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/05/2018] [Indexed: 01/22/2023] Open
Abstract
Genital inflammatory cytokine responses increase HIV risk. Since male partner semen is a complex mixture of immune-modulatory prostaglandins and cytokines, we hypothesized that exposure to semen may influence genital inflammation in women. Here, we investigated cytokine response kinetics of cervical cells following stimulation with seminal plasma from HIV-negative and HIV-positive men characterized as having low or high concentrations of inflammatory cytokines. Irrespective of the HIV status or semen cytokine profile, in vitro stimulation of cervical cells with seminal plasma resulted in significantly elevated concentrations of secreted IL-6, IL-8, TNF-β, MCP-1, GM-CSF, and VEGF within 8 h of stimulation, which tended to decline by 24 h, although this was only significant for TNF-β. Consistent with this, cervical cells responded to seminal plasma with increases in IL-8 and IL-1β mRNA expression of 10-fold. These findings suggest that the impact of semen on local female genital cytokines is likely transient. Although these findings suggest that the impact of semen on local female genital cytokines may not be sustained long-term, this heightened genital inflammation may have implications for HIV risk in women.
Collapse
Affiliation(s)
- Cosnet L Rametse
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Anthonio O Adefuye
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,University of the Free State, Bloemfontein, South Africa
| | - Abraham J Olivier
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lyle Curry
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Hoyam Gamieldien
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,NRF-DST CAPRISA Centre of Excellence in HIV Prevention, Cape Town, South Africa
| | - Wendy A Burgers
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - David A Lewis
- Western Sydney Sexual Health Centre, Western Sydney Local Health District, Parramatta, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School-Westmead, University of Sydney, Sydney, NSW, Australia.,National Health Laboratory Services, Johannesburg, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,SAMRC-UCT Gynaecological Cancer Research Centre, University of Cape Town, Cape Town, South Africa
| | - Arieh A Katz
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,SAMRC-UCT Gynaecological Cancer Research Centre, University of Cape Town, Cape Town, South Africa
| | - Jo-Ann S Passmore
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Services, Johannesburg, South Africa.,SAMRC-UCT Gynaecological Cancer Research Centre, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
121
|
Nikolaeva M, Babayan A, Stepanova E, Arefieva A, Dontsova T, Smolnikova V, Kalinina E, Krechetova L, Pavlovich S, Sukhikh G. The Link Between Seminal Cytokine Interleukin 18, Female Circulating Regulatory T Cells, and IVF/ICSI Success. Reprod Sci 2018; 26:1034-1044. [DOI: 10.1177/1933719118804404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Seminal plasma (SP) is thought to be a crucial factor which affects the expansion of regulatory T cells (Tregs) in female reproductive tract during embryo implantation. We propose that seminal transforming growth factor (TGF) β1 is responsible for local accumulation of circulating Tregs, which manifests as changes in Treg frequency in peripheral blood, whereas seminal interleukin (IL) 18 interferes with TGF-β1-dependent cellular reactions. The purpose of the present study is to determine whether the frequency of circulating Tregs is associated with the levels of seminal cytokines and pregnancy establishment in women exposed to partner’s SP during in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycle. Twenty-nine women were exposed to SP via timed intercourse before the day of ovum pickup (day-OPU) and also subjected to intravaginal SP application just after OPU. Measurements of seminal TGF-β1 and IL-18 were made by FlowCytomix technology. The percentage of CD4+CD25+CD127low+/ – Tregs among total circulating CD4+ T cells was determined by flow cytometry and the difference between Treg values on the day of embryo transfer and day-OPU was calculated. The percentage of Tregs on the day-OPU, identified as a predictive factor of clinical pregnancy after IVF/ICSI, showed a positive correlation with IL-18 concentration and content of this cytokine per ejaculate ( P < .001 and P < .004, respectively) and negative correlation with the TGF-β1/IL-18 ratio ( P < .014).These findings indicate that the adverse effect of seminal IL-18 excess on implantation may be realized by the prevention of postcoital TGF-β1-related migration of circulating Tregs, which clearly manifests as elevated level of Treg frequency in peripheral blood.
Collapse
Affiliation(s)
- Marina Nikolaeva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Alina Babayan
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Elena Stepanova
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Alla Arefieva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Tatiana Dontsova
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Veronika Smolnikova
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Elena Kalinina
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Lubov Krechetova
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Stanislav Pavlovich
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Gennady Sukhikh
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
122
|
Watkins AJ, Dias I, Tsuro H, Allen D, Emes RD, Moreton J, Wilson R, Ingram RJM, Sinclair KD. Paternal diet programs offspring health through sperm- and seminal plasma-specific pathways in mice. Proc Natl Acad Sci U S A 2018; 115:10064-10069. [PMID: 30150380 PMCID: PMC6176621 DOI: 10.1073/pnas.1806333115] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The association between poor paternal diet, perturbed embryonic development, and adult offspring ill health represents a new focus for the Developmental Origins of Health and Disease hypothesis. However, our understanding of the underlying mechanisms remains ill-defined. We have developed a mouse paternal low-protein diet (LPD) model to determine its impact on semen quality, maternal uterine physiology, and adult offspring health. We observed that sperm from LPD-fed male mice displayed global hypomethylation associated with reduced testicular expression of DNA methylation and folate-cycle regulators compared with normal protein diet (NPD) fed males. Furthermore, females mated with LPD males display blunted preimplantation uterine immunological, cell signaling, and vascular remodeling responses compared to controls. These data indicate paternal diet impacts on offspring health through both sperm genomic (epigenetic) and seminal plasma (maternal uterine environment) mechanisms. Extending our model, we defined sperm- and seminal plasma-specific effects on offspring health by combining artificial insemination with vasectomized male mating of dietary-manipulated males. All offspring derived from LPD sperm and/or seminal plasma became heavier with increased adiposity, glucose intolerance, perturbed hepatic gene expression symptomatic of nonalcoholic fatty liver disease, and altered gut bacterial profiles. These data provide insight into programming mechanisms linking poor paternal diet with semen quality and offspring health.
Collapse
Affiliation(s)
- Adam J Watkins
- Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, B4 7ET Birmingham, United Kingdom;
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, NG7 2UH Nottingham, United Kingdom
| | - Irundika Dias
- Aston Research Institute, Aston Medical School, Aston University, B4 7ET Birmingham, United Kingdom
| | - Heather Tsuro
- School of Life and Health Sciences, Aston University, B4 7ET Birmingham, United Kingdom
| | - Danielle Allen
- School of Life and Health Sciences, Aston University, B4 7ET Birmingham, United Kingdom
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, LE12 5RD Loughborough, United Kingdom
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| | - Joanna Moreton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, LE12 5RD Loughborough, United Kingdom
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| | - Ray Wilson
- Deep Seq, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, NG7 2UH Nottingham, United Kingdom
| | - Richard J M Ingram
- Nottingham Digestive Diseases Centre, Queens Medical Centre, Nottingham University Hospitals National Health Service Trust, NG7 2UH Nottingham, United Kingdom
- Centre for Biomedical Sciences, University of Nottingham, NG7 2RD Nottingham, United Kingdom
| | - Kevin D Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD Loughborough, United Kingdom
| |
Collapse
|
123
|
Robertson SA, Care AS, Moldenhauer LM. Regulatory T cells in embryo implantation and the immune response to pregnancy. J Clin Invest 2018; 128:4224-4235. [PMID: 30272581 DOI: 10.1172/jci122182] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
At implantation, the embryo expresses paternally derived alloantigens and evokes inflammation that can threaten reproductive success. To ensure a robust placenta and sustainable pregnancy, an active state of maternal immune tolerance mediated by CD4+ regulatory T cells (Tregs) is essential. Tregs operate to inhibit effector immunity, contain inflammation, and support maternal vascular adaptations, thereby facilitating trophoblast invasion and placental access to the maternal blood supply. Insufficient Treg numbers or inadequate functional competence are implicated in idiopathic infertility and recurrent miscarriage as well as later-onset pregnancy complications stemming from placental insufficiency, including preeclampsia and fetal growth restriction. In this Review, we summarize the mechanisms acting in the conception environment to drive the Treg response and discuss prospects for targeting the T cell compartment to alleviate immune-based reproductive disorders.
Collapse
|
124
|
Zalenskaya IA, Chandra N, Yousefieh N, Fang X, Adedipe OE, Jackson SS, Anderson SM, Mauck CK, Schwartz JL, Thurman AR, Doncel GF. Use of contraceptive depot medroxyprogesterone acetate is associated with impaired cervicovaginal mucosal integrity. J Clin Invest 2018; 128:4622-4638. [PMID: 30222141 DOI: 10.1172/jci120583] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Injectable depot medroxyprogesterone acetate (DMPA) is one of the most popular contraception methods in areas of high HIV seroprevalence. Evidence is accumulating that use of DMPA might be associated with an increased risk of HIV-1 acquisition by women; however, mechanisms of this association are not completely understood. The goal of this study was to gain insight into mechanisms underlying the possible link between use of DMPA and risk of HIV-1 acquisition, exploring transcription profiling of ectocervical tissues. METHODS Healthy women received either DMPA (n = 31) or combined oral contraceptive (COC), which has not been linked to an increased risk of HIV acquisition (n = 32). We conducted a comparative microarray-based whole-genome transcriptome profiling of human ectocervical tissues before and after 6 weeks of hormonal contraception use. RESULTS The analysis identified that expression of 235 and 76 genes was significantly altered after DMPA and COC use, respectively. The most striking effect of DMPA, but not COC, was significantly altered expression (mostly downregulation) of many genes strategically involved in the maintenance of mucosal barrier function; the alterations, as indicated by Ingenuity Pathway Analysis (IPA), were most likely due to the DMPA-induced estrogen deficiency. Furthermore, IPA predicted that transcriptome alterations related to ectocervical immune responses were in general compatible with an immunosuppressive effect of DMPA, but, in some women, also with an inflammatory-like response. CONCLUSION Our results suggest that impairment of cervicovaginal mucosal integrity in response to DMPA administration is an important mechanism contributing to the potential increased risk of HIV-1 acquisition in DMPA users. TRIAL REGISTRATION ClinicalTrials.gov NCT01421368. FUNDING This study was supported by the United States Agency for International Development (USAID) under Cooperative Agreement GPO-A-00-08-00005-00.
Collapse
Affiliation(s)
| | - Neelima Chandra
- CONRAD, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | | | - Xi Fang
- CONRAD, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | | | | | | | | | - Jill L Schwartz
- CONRAD, Eastern Virginia Medical School, Arlington, Virginia, USA
| | | | - Gustavo F Doncel
- CONRAD, Eastern Virginia Medical School, Norfolk, Virginia, USA.,CONRAD, Eastern Virginia Medical School, Arlington, Virginia, USA
| |
Collapse
|
125
|
Deshmukh H, Way SS. Immunological Basis for Recurrent Fetal Loss and Pregnancy Complications. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:185-210. [PMID: 30183507 DOI: 10.1146/annurev-pathmechdis-012418-012743] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pregnancy stimulates an elaborate assortment of dynamic changes, allowing intimate approximation of genetically discordant maternal and fetal tissues. Although the cellular and molecular details about how this works remain largely undefined, important clues arise from evaluating how a prior pregnancy influences the outcome of a future pregnancy. The risk of complications is consistently increased when complications occurred in a prior pregnancy. Reciprocally, a prior successful pregnancy protects against complications in a future pregnancy. Here, we summarize immunological perturbations associated with fetal loss, with particular focus on how both harmful and protective adaptations may persist in mothers. Immunological aberrancy as a root cause of pregnancy complications is also considered, given their shared overlapping risk factors and the sustained requirement for averting maternal-fetal conflict throughout pregnancy. Understanding pregnancy-induced immunological changes may expose not only new therapeutic strategies for improving pregnancy outcomes but also new facets of how immune tolerance works that may be applicable to other physiological and pathological contexts.
Collapse
Affiliation(s)
- Hitesh Deshmukh
- Division of Pulmonary Biology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Sing Sing Way
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA.,Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA;
| |
Collapse
|
126
|
Sublethal sperm freezing damage: Manifestations and solutions. Theriogenology 2018; 118:172-181. [DOI: 10.1016/j.theriogenology.2018.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/28/2018] [Accepted: 06/10/2018] [Indexed: 01/30/2023]
|
127
|
Fox M, Berzuini C, Knapp LA, Glynn LM. Women's Pregnancy Life History and Alzheimer's Risk: Can Immunoregulation Explain the Link? Am J Alzheimers Dis Other Demen 2018; 33:516-526. [PMID: 30060670 DOI: 10.1177/1533317518786447] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Pregnancy is associated with improvement in immunoregulation that persists into the geriatric phase. Impaired immunoregulation is implicated in Alzheimer's disease (AD) pathogenesis. Hence, we investigate the relationship between pregnancy and AD. METHODS Cross-sectional cohort of British women (N = 95). Cox proportional hazards modeling assessed the putative effects of cumulative months pregnant on AD risk and the mutually adjusted effects of counts of first and third trimesters on AD risk. RESULTS Cumulative number of months pregnant, was associated with lower AD risk (β = -1.90, exp(β) = 0.15, P = .02). Cumulative number of first trimesters was associated with lower AD risk after adjusting for third trimesters (β = -3.83, exp(β) = 0.02, P < .01), while the latter predictor had no significant effect after adjusting for the former. CONCLUSIONS Our observation that first trimesters (but not third trimesters) conferred protection against AD is more consistent with immunologic effects, which are driven by early gestation, than estrogenic exposures, which are greatest in late gestation. Results may justify future studies with immune biomarkers.
Collapse
Affiliation(s)
- Molly Fox
- 1 Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, USA.,2 Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Carlo Berzuini
- 3 Centre for Biostatistics, University of Manchester, Manchester, United Kingdom
| | - Leslie A Knapp
- 4 Department of Anthropology, University of Utah, Salt Lake City, UT, USA
| | - Laura M Glynn
- 5 Department of Psychology, Chapman University, Orange, CA, USA
| |
Collapse
|
128
|
Röcker A, Roan NR, Yadav JK, Fändrich M, Münch J. Structure, function and antagonism of semen amyloids. Chem Commun (Camb) 2018; 54:7557-7569. [PMID: 29873340 DOI: 10.1039/c8cc01491d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Amyloid fibrils are linear polypeptide aggregates with a cross-β structure. These fibrils are best known for their association with neurodegenerative diseases, such as Alzheimer's or Parkinson's, but they may also be used by living organisms as functional units, e.g. in the synthesis of melanin or in the formation of bacterial biofilms. About a decade ago, in a search for semen factors that modulate infection by HIV-1 (a sexually transmitted virus and the causative agent of the acquired immune deficiency syndrome (AIDS)), it was demonstrated that semen harbors amyloid fibrils capable of markedly increasing HIV infection rates. This discovery not only created novel opportunities to prevent sexual HIV-1 transmission but also stimulated research to unravel the natural role of these factors. We discuss here the identification of these intriguing structures, their molecular properties, and their effects on both sexually transmitted diseases and reproductive health. Moreover, we review strategies to antagonize semen amyloid to prevent sexual transmission of viruses.
Collapse
Affiliation(s)
- Annika Röcker
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany.
| | | | | | | | | |
Collapse
|
129
|
Remes Lenicov F, Paletta AL, Gonzalez Prinz M, Varese A, Pavillet CE, Lopez Malizia Á, Sabatté J, Geffner JR, Ceballos A. Prostaglandin E2 Antagonizes TGF-β Actions During the Differentiation of Monocytes Into Dendritic Cells. Front Immunol 2018; 9:1441. [PMID: 29988364 PMCID: PMC6023975 DOI: 10.3389/fimmu.2018.01441] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022] Open
Abstract
Inflammatory dendritic cells (DCs) are a distinct subset of DCs that derive from circulating monocytes infiltrating injured tissues. Monocytes can differentiate into DCs with different functional signatures, depending on the presence of environment stimuli. Among these stimuli, transforming growth factor-beta (TGF-β) and prostaglandin E2 (PGE2) have been shown to modulate the differentiation of monocytes into DCs with different phenotypes and functional profiles. In fact, both mediators lead to contrasting outcomes regarding the production of inflammatory and anti-inflammatory cytokines. Previously, we have shown that human semen, which contains high concentrations of PGE2, promoted the differentiation of DCs into a tolerogenic profile through a mechanism dependent on signaling by E-prostanoid receptors 2 and 4. Notably, this effect was induced despite the huge concentration of TGF-β present in semen, suggesting that PGE2 overrides the influence exerted by TGF-β. No previous studies have analyzed the joint actions induced by PGE2 and TGF-β on the function of monocytes or DCs. Here, we analyzed the phenotype and functional profile of monocyte-derived DCs differentiated in the presence of TGF-β and PGE2. DC differentiation guided by TGF-β alone enhanced the expression of CD1a and abrogated LPS-induced expression of IL-10, while differentiation in the presence of PGE2 impaired CD1a expression, preserved CD14 expression, abrogated IL-12 and IL-23 production, stimulated IL-10 production, and promoted the expansion of FoxP3+ regulatory T cells in a mixed lymphocyte reaction. Interestingly, DCs differentiated in the presence of TGF-β and PGE2 showed a phenotype and functional profile closely resembling those induced by PGE2 alone. Finally, we found that PGE2 inhibited TGF-β signaling through an action exerted by EP2 and EP4 receptors coupled to cyclic AMP increase and protein kinase A activity. These results indicate that PGE2 suppresses the influence exerted by TGF-β during DC differentiation, imprinting a tolerogenic signature. High concentrations of TGF-β and PGE2 are usually found in infectious, autoimmune, and neoplastic diseases. Our observations suggest that in these scenarios PGE2 might play a mandatory role in the acquisition of a regulatory profile by DCs.
Collapse
Affiliation(s)
- Federico Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Luz Paletta
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melina Gonzalez Prinz
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Augusto Varese
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Clara E Pavillet
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Álvaro Lopez Malizia
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Sabatté
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Raul Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Ceballos
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
130
|
|
131
|
Kordy K, Elliott J, Tanner K, Johnson EJ, McGowan IM, Anton PA. Human Semen or Seminal Plasma Does Not Enhance HIV-1 BaL Ex Vivo Infection of Human Colonic Explants. AIDS Res Hum Retroviruses 2018; 34:459-466. [PMID: 29343073 PMCID: PMC5934974 DOI: 10.1089/aid.2017.0118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To determine whether human whole semen (WS) and seminal plasma (SP) either previously frozen or freshly acquired altered ex vivo infectibility of human colonic explants or was associated with histology or toxicity changes, which may influence mucosal HIV-1 transmission in vivo. Pooled human semen samples were freshly obtained from study volunteers (never frozen) and from commercial sources (frozen/thawed). Endoscopically acquired rectal biopsies were evaluated for toxicity following titered ex vivo WS/SP exposure by histological grading and by MTT assay. The ex vivo HIV-1 biopsy challenge model was used to evaluate effects of exposure to either previously frozen or freshly acquired WS/SP on HIVBaL infectibility at a range of viral inocula (104-100 TCID50). To evaluate the effects at lower viral inocula of HIV-1 (10-2-102), experiments in the presence or absence of WS/SP were also performed utilizing TZM-bl cells. MTT assays and histological scoring demonstrated no tissue degradation of biopsies when exposed for 2 h to concentrations of 10% or 100% of either fresh or previously frozen WS/SP. Ex vivo biopsy HIV-1 challenge experiments showed no differences in the presence of freshly acquired or previously frozen/thawed WS/SP compared with control; no differences were seen with lower infectious titers on TZM-bl cells. Within the limits of assay sensitivity and variability, these data show no toxicity or significant enhancement of HIV-1 infectibility of human rectal mucosa using the colorectal explant model with either pooled fresh or frozen/thawed nonautologous human semen.
Collapse
Affiliation(s)
| | - Julie Elliott
- Department of Medicine, Center for HIV Prevention Research, UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Karen Tanner
- Department of Medicine, Center for HIV Prevention Research, UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Ian M. McGowan
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter A. Anton
- Department of Medicine, Center for HIV Prevention Research, UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
132
|
Samanta L, Parida R, Dias TR, Agarwal A. The enigmatic seminal plasma: a proteomics insight from ejaculation to fertilization. Reprod Biol Endocrinol 2018; 16:41. [PMID: 29704899 PMCID: PMC5923003 DOI: 10.1186/s12958-018-0358-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/20/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The 'omics' approach for a noninvasive diagnosis of male reproductive system disorders has gained momentum during the last decade, particularly from a screening and prognosis point of view. Due to the rapid development in assisted reproductive technologies (ART) over the years, the major focus of proteomic studies has been around the ejaculated spermatozoa. Although seminal plasma is not a requirement for ART, the question arose whether the role of seminal plasma is merely to transport spermatozoa. MAIN BODY Seminal plasma (SP) contains a large diversity of proteins that are essential not only for sperm transport, but also for sperm protection and maturation. Most of the proteins bind to sperm surface through exosomes (epididymosomes and prostasomes), modulating sperm function, interaction with the female reproductive tract and finally fertilization. This review focuses on the state-of-art discoveries regarding SP proteome and its role in fertilization. CONCLUSION Tissue-specific proteins in the SP have emerged as fundamental contributors for protein biomarker discovery. This is important for a noninvasive diagnosis of male infertility and development of new therapeutic approaches. Moreover, ART success rates may be improved by taking into account the critical role of seminal proteome in fertilization.
Collapse
Affiliation(s)
- Luna Samanta
- American Center for Reproductive Medicine, Cleveland Clinic, 10681 Carnegie Avenue, Desk X11, Cleveland, OH, 44195, USA
- Redox Biology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Odisha, 753003, India
| | - Rajeshwari Parida
- Redox Biology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Odisha, 753003, India
| | - Tania R Dias
- American Center for Reproductive Medicine, Cleveland Clinic, 10681 Carnegie Avenue, Desk X11, Cleveland, OH, 44195, USA
- Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, 4050-313, Porto, Portugal
- LAQV/REQUIMTE - Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, 10681 Carnegie Avenue, Desk X11, Cleveland, OH, 44195, USA.
| |
Collapse
|
133
|
Latifi Z, Fattahi A, Hamdi K, Ghasemzadeh A, Karimi P, Nejabati HR, Novin MG, Roshangar L, Nouri M. Wnt Signaling Pathway in Uterus of Normal and Seminal Vesicle Excised Mated Mice during Pre-implantation Window. Geburtshilfe Frauenheilkd 2018; 78:412-422. [PMID: 29720747 PMCID: PMC5925692 DOI: 10.1055/a-0589-1513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 12/14/2022] Open
Abstract
Introduction
The importance of seminal vesicle secretion and uterine Wnt signaling for uterus preparation and embryo implantation has been described.
Materials and Methods
In this study, we evaluated the gene expression of Wnt ligands (Wnt4 and Wnt5a) and their corresponding receptors (Fzd2 and Fzd6) using qRT-PCR and active β-catenin protein levels using western blotting in the uterine tissue of female mice mated with intact and seminal vesicle-excised (SVX) males during the pre-implantation window. We evaluated the association between these factors and implantation rates and embryo spacing.
Results
mRNA expression of Wnt4 and Wnt5a and active β-catenin protein levels decreased from Day 1 to Day 4, but reached a peak on the fifth day of pregnancy. Fzd2 also reached its highest level on Day 5. Fzd6 expression showed a decreasing trend towards the day of implantation. Lack of seminal vesicle secretion decreased Wnt4 and Wnt5a expression on Days 1 and 5 and β-catenin levels on Day 5. There were almost no significant differences in expression levels of the Fzd2 and Fzd6 receptors between groups. There were positive and negative correlations, respectively, between implantation rates and embryo spacing and Wnt4, Wnt5a and active β-catenin in the control group, but such correlations were not observed in the SVX-mated mice.
Conclusions
Significant changes occurred in the expression of several Wnt signaling members and there was a significant association between Wnt signaling and embryo implantation. Seminal vesicle secretion affects Wnt signaling in mice and consequently also affects murine embryo implantation.
Collapse
Affiliation(s)
- Zeinab Latifi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Hamdi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliye Ghasemzadeh
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
134
|
Duggal NK, McDonald EM, Ritter JM, Brault AC. Sexual transmission of Zika virus enhances in utero transmission in a mouse model. Sci Rep 2018; 8:4510. [PMID: 29540804 PMCID: PMC5852059 DOI: 10.1038/s41598-018-22840-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne virus that can cause ZIKV congenital syndrome when a pregnant woman is infected. Sexual transmission has also been described for ZIKV, though the relationship between sexual transmission and vertical transmission has not been investigated. Here, viral dissemination to the female reproductive tract and fetuses was assessed in immunodeficient (AG129) female mice that were exposed to ZIKV by subcutaneous (s.c.) inoculation, intravaginal (ivag.) inoculation, or sexual transmission from infected male AG129 mice. Pregnant females had significantly increased ZIKV dissemination to the female reproductive tract compared to non-pregnant females when exposed by s.c. or ivag. inoculation. Sexual transmission resulted in significantly greater morbidity and mortality in females and higher ZIKV titers in the female reproductive tract than s.c. or ivag. inoculation. Ovaries from females infected sexually contained ZIKV RNA within the ovarian follicles. Furthermore, ZIKV titers were significantly higher in fetuses from dams exposed sexually compared to fetuses from dams exposed by s.c. or ivag. inoculation. These results demonstrate that sexual transmission enhances dissemination of ZIKV to the female reproductive tract and developing fetuses in a mouse model.
Collapse
Affiliation(s)
- Nisha K Duggal
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Erin M McDonald
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Jana M Ritter
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Aaron C Brault
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA.
| |
Collapse
|
135
|
Hebeda CB, Machado ID, Reif-Silva I, Moreli JB, Oliani SM, Nadkarni S, Perretti M, Bevilacqua E, Farsky SHP. Endogenous annexin A1 (AnxA1) modulates early-phase gestation and offspring sex-ratio skewing. J Cell Physiol 2018; 233:6591-6603. [PMID: 29115663 DOI: 10.1002/jcp.26258] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022]
Abstract
Annexin A1 (AnxA1) is a glucocorticoid-regulated anti-inflammatory protein secreted by phagocytes and other specialised cells. In the endocrine system, AnxA1 controls secretion of steroid hormones and it is abundantly expressed in the testis, ovaries, placenta and seminal fluid, yet its potential modulation of fertility has not been described. Here, we observed that AnxA1 knockout (KO) mice delivered a higher number of pups, with a higher percentage of female offsprings. This profile was not dependent on the male features, as sperm from KO male mice did not present functional alterations, and had an equal proportion of Y and X chromosomes, comparable to wild type (WT) male mice. Furthermore, mismatched matings of male WT mice with female KO yielded a higher percentage of female pups per litter, a phenomenon which was not observed when male KO mice mated with female WT animals. Indeed, AnxA1 KO female mice displayed several differences in parameters related to gestation including (i) an arrested estrous cycle at proestrus phase; (ii) increased sites of implantation; (iii) reduced pre- and post-implantation losses; (iv) exacerbated features of the inflammatory reaction in the uterine fluid during implantation phase; and (v) enhanced plasma progesterone in the beginning of pregnancy. In summary, herein we highlight that AnxA1 pathway as a novel determinant of fundamental non-redundant regulatory functions during early pregnancy.
Collapse
Affiliation(s)
- Cristina B Hebeda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Isabel D Machado
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Isadora Reif-Silva
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Jusciele B Moreli
- Federal University of São Paulo (UNIFESP), Botucatu, São Paulo, Brazil
| | - Sonia M Oliani
- Federal University of São Paulo (UNIFESP), Botucatu, São Paulo, Brazil.,Department of Biology, IBILCE, University of São Paulo State (UNESP), São Paulo, Brazil
| | - Suchita Nadkarni
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Mauro Perretti
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Estela Bevilacqua
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
136
|
Varese A, Remes Lenicov F, Gonzalez Prinz M, Paletta A, Ernst G, Maeto C, Merlotti A, Sabatte J, Símula S, Holgado MP, Dantas E, Geffner J, Ceballos A. Seminal vesicle fluid increases the efficacy of intravaginal HSV-2 vaccination. Mucosal Immunol 2018; 11:536-548. [PMID: 28745327 DOI: 10.1038/mi.2017.57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 05/16/2017] [Indexed: 02/04/2023]
Abstract
Once considered merely as a vehicle for spermatozoa, it is now clear that seminal plasma (SP) induces a variety of biological actions on the female reproductive tissues able to modulate the immune response against paternal antigens. To our knowledge, the influence of SP on the immune response against sexually transmitted pathogens has not been yet evaluated. We here analyzed whether the seminal vesicle fluid (SVF), which contributes almost 60% of the SP volume in mice, could modulate the immune response against herpes simplex virus type 2 (HSV-2). We found that SVF does not modify the course of primary infection, but markedly improved protection conferred by vaginal vaccination with inactivated HSV-2 against a lethal challenge. This protective effect was shown to be associated to a robust memory immune response mediated by CD4+ and CD8+ T cells in both the lymph nodes draining the vagina and the vaginal mucosa, the site of viral replication. In contrast with the widespread notion that SP acts as an immunosuppressive agent, our results suggest that SVF might improve the female immune response against sexually transmitted pathogens.
Collapse
Affiliation(s)
- A Varese
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - F Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M Gonzalez Prinz
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - A Paletta
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - G Ernst
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - C Maeto
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - A Merlotti
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - J Sabatte
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - S Símula
- Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | - M P Holgado
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - E Dantas
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - J Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - A Ceballos
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
137
|
Maymon E, Romero R, Bhatti G, Chaemsaithong P, Gomez-Lopez N, Panaitescu B, Chaiyasit N, Pacora P, Dong Z, Hassan SS, Erez O. Chronic inflammatory lesions of the placenta are associated with an up-regulation of amniotic fluid CXCR3: A marker of allograft rejection. J Perinat Med 2018; 46:123-137. [PMID: 28829757 PMCID: PMC5797487 DOI: 10.1515/jpm-2017-0042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The objective of this study is to determine whether the amniotic fluid (AF) concentration of soluble CXCR3 and its ligands CXCL9 and CXCL10 changes in patients whose placentas show evidence of chronic chorioamnionitis or other placental lesions consistent with maternal anti-fetal rejection. METHODS This retrospective case-control study included 425 women with (1) preterm delivery (n=92); (2) term in labor (n=68); and (3) term not in labor (n=265). Amniotic fluid CXCR3, CXCL9 and CXCL10 concentrations were determined by ELISA. RESULTS (1) Amniotic fluid concentrations of CXCR3 and its ligands CXCL9 and CXCL10 are higher in patients with preterm labor and maternal anti-fetal rejection lesions than in those without these lesions [CXCR3: preterm labor and delivery with maternal anti-fetal rejection placental lesions (median, 17.24 ng/mL; IQR, 6.79-26.68) vs. preterm labor and delivery without these placental lesions (median 8.79 ng/mL; IQR, 4.98-14.7; P=0.028)]; (2) patients with preterm labor and chronic chorioamnionitis had higher AF concentrations of CXCL9 and CXCL10, but not CXCR3, than those without this lesion [CXCR3: preterm labor with chronic chorioamnionitis (median, 17.02 ng/mL; IQR, 5.57-26.68) vs. preterm labor without chronic chorioamnionitis (median, 10.37 ng/mL; IQR 5.01-17.81; P=0.283)]; (3) patients with preterm labor had a significantly higher AF concentration of CXCR3 than those in labor at term regardless of the presence or absence of placental lesions. CONCLUSION Our findings support a role for maternal anti-fetal rejection in a subset of patients with preterm labor.
Collapse
Affiliation(s)
- Eli Maymon
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Block E East Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Noppadol Chaiyasit
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
138
|
Review: The potential of seminal fluid mediated paternal-maternal communication to optimise pregnancy success. Animal 2018; 12:s104-s109. [PMID: 29455706 DOI: 10.1017/s1751731118000083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Artificial insemination has been a landmark procedure in improving animal agriculture over the past 150 years. The utility of artificial insemination has facilitated a rapid improvement in animal genetics across agricultural species, leading to improvements of growth, health and productivity in poultry, swine, equine and cattle species. The utility of artificial insemination, as with all assisted reproductive technologies side-steps thousands of years of evolution that has led to the development of physiological systems to ensure the transmission of genetics from generation to generation. The perceived manipulation of these physiological systems as a consequence of assisted reproduction are points of interest in which research could potentially improve the success of these technologies. Indeed, seminal fluid is either removed or substantially diluted when semen is prepared for artificial insemination in domestic species. Although seminal fluid is not a requirement for pregnancy, could the removal of seminal fluid from the ejaculate have negative consequences on reproductive outcomes that could be improved to further the economic benefit of artificial insemination? One such potential influence of seminal fluid on reproduction stems from the question; how does the allogeneic foetus survive gestation in the face of the maternal immune system? Observation of the maternal immune system during pregnancy has noted maternal immune tolerance to paternal-specific antigens; a mechanism by which the maternal immune system tolerates specific paternal antigens expressed on the foetus. In species like human or rodent, implantation occurs days after fertilisation and as such the mechanisms to establish antigen-specific tolerance must be initiated very early during pregnancy. We and others propose that these mechanisms are initiated at the time of insemination when paternal antigens are first introduced to the maternal immune system. It is unclear whether such mechanisms would also be involved in domestic species, such as cattle, where implantation occurs weeks later in gestation. A new paradigm detailing the importance of paternal-maternal communication at the time of insemination is becoming evident as it relates to maternal tolerance to foetal antigen and ultimately pregnancy success.
Collapse
|
139
|
Embryotoxic cytokines—Potential roles in embryo loss and fetal programming. J Reprod Immunol 2018; 125:80-88. [DOI: 10.1016/j.jri.2017.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022]
|
140
|
Dezzutti CS, Park SY, Marks KM, Lawlor SE, Russo JR, Macio I, Chappell CA, Bunge KE. Heterogeneity of HIV-1 Replication in Ectocervical and Vaginal Tissue Ex Vivo. AIDS Res Hum Retroviruses 2018; 34:185-192. [PMID: 28982249 DOI: 10.1089/aid.2017.0107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In clinical trials evaluating HIV-1 prevention products, ex vivo exposure of mucosal tissue to HIV-1 is performed to inform drug levels needed to suppress viral infection. Understanding assay and participant variables that influence HIV-1 replication will help with assay implementation. Demographic and behavioral data were obtained from 61 healthy women aged 21-45. Paired cervical tissue (CT) and vaginal tissue (VT) biopsies were collected and treated with HIV-1BaL or HIV-1JR-CSF, washed, and cultured. On days 3, 7, and/or 11, culture supernatant was collected, and viral replication was monitored by p24 ELISA. Tissue was extracted at study end, and HIV-1 relative RNA copies were determined by polymerase chain reaction. Cumulative p24 and RNA were log-transformed and analyzed using a linear mixed model, t-test, and an intraclass correlation coefficient (ICC). HIV replication was similar between CT and VT for each virus, but HIV-1BaL had 1.5 log10 and 0.9 log10 higher levels of p24 than HIV-1JR-CSF in CT and VT, respectively (p < .001), which correlated with HIV-1 relative RNA copies. Cumulative p24 and RNA copies in both tissues demonstrated low intraperson correlation for both viruses (ICC ≤0.513 HIV-1BaL; ICC ≤0.419 HIV-1JR-CSF). Enrollment into previous clinical studies in which genital biopsies were collected modestly decreased the HIV-1BaL cumulative p24 for CT, but not for VT. To improve the ex vivo challenge assay, viruses should be evaluated for replication in mucosal tissue before study implementation, baseline mucosal tissue is not needed if a placebo/no treatment group is included within the clinical trial, and previous biopsy sites should be avoided.
Collapse
Affiliation(s)
- Charlene S. Dezzutti
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Seo Young Park
- Department of Medicine Bio Statisics, and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Julie R. Russo
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Ingrid Macio
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Catherine A. Chappell
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Katherine E. Bunge
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
141
|
Stewart JL, Mercadante VR, Dias NW, Canisso IF, Yau P, Imai B, Lima FS. Nerve Growth Factor-Beta, purified from bull seminal plasma, enhances corpus luteum formation and conceptus development in Bos taurus cows. Theriogenology 2018; 106:30-38. [DOI: 10.1016/j.theriogenology.2017.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/25/2017] [Accepted: 10/04/2017] [Indexed: 01/09/2023]
|
142
|
Pini T, Leahy T, Paul de Graaf S. Seminal plasma and cryopreservation alter ram sperm surface carbohydrates and interactions with neutrophils. Reprod Fertil Dev 2018; 30:689-702. [DOI: 10.1071/rd17251] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/18/2017] [Indexed: 02/05/2023] Open
Abstract
Spermatozoa deposited vaginally must navigate the physical, chemical and immune barriers of the cervix to reach the site of fertilisation. Characteristics that favour successful cervical transit remain largely unknown beyond the obvious factors of motility and viability. Epididymal and cryopreserved ram spermatozoa demonstrate poor cervical transit, for unknown reasons. We hypothesised that seminal plasma exposure and cryopreservation alter the surface sugars of these sperm populations and, consequently, their interaction with immune cells, both potential factors for successful cervical transit. The carbohydrate profiles of epididymal, ejaculated and frozen–thawed ram spermatozoa were assessed by flow cytometry and western blotting using lectins for galactose, sialic acid, N-acetylglucosamine and mannose. Seminal plasma exposure and cryopreservation caused significant changes to the relative amounts of surface sugars detected by flow cytometry and lectin blotting. Immune cell interaction was characterised using a neutrophil-binding assay. Seminal plasma acted as a robust protective mechanism, limiting binding of spermatozoa, whereas the media used for cryopreservation caused a significant disruption to opsonin-mediated binding. We were unable to demonstrate a link between changes to surface sugars and neutrophil susceptibility. Seminal plasma and cryopreservation clearly alter the sperm glycocalyx, as well as the interaction of spermatozoa with immune cells.
Collapse
|
143
|
Bai R, Latifi Z, Kusama K, Nakamura K, Shimada M, Imakawa K. Induction of immune-related gene expression by seminal exosomes in the porcine endometrium. Biochem Biophys Res Commun 2017; 495:1094-1101. [PMID: 29155178 DOI: 10.1016/j.bbrc.2017.11.100] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/15/2017] [Indexed: 11/27/2022]
Abstract
Seminal plasma (SP) is considered as a vehicle to carry sperm into female reproductive tract, of which functions have not been completely understood. This study aimed to identify the function of seminal exosomes on porcine endometrium. Exosomes were isolated from the sperm-rich fraction of boar semen and were confirmed by the expression of exosome marker HSP70 and size distribution using nano-sight tracking analysis. Porcine endometrial epithelial cells (EECs) were then treated with seminal exosomes, and RNA extracted were subjected to global expression analysis. Transcripts related to "immune response", "inflammatory response" and their associated signaling pathways were up-regulated in EECs treated with seminal exosome, whereas those associated with "steroid biosynthesis", "metabolic pathways" and "T cell differentiation" were down-regulated. The decrease in PMVK, SC5D, INSIG1, HSD17B7, NSDHL, HMGCR, SQLE and FDFT1, and increase in CCL20, TNFSF15, AMCFII, CXCL2 and CXCL8 were also found in the endometrium from the naturally mated pigs. Moreover, changes in exosome-induced CYP24A1, EBP, CCL20, AMCFII and IL1A expression were not regulated by the exosome removed SP. These observations indicated that exosomes present in SP are involved in the immune-related gene regulation in the uterus, which could pave the passage for sperm and possibly fertilized eggs.
Collapse
Affiliation(s)
- Rulan Bai
- Animal Resource Science Center, Graduate School of Agricultural and Life Science, The University of Tokyo, Kasama, Ibaraki 319-2606, Japan
| | - Zeinab Latifi
- Animal Resource Science Center, Graduate School of Agricultural and Life Science, The University of Tokyo, Kasama, Ibaraki 319-2606, Japan
| | - Kazuya Kusama
- Animal Resource Science Center, Graduate School of Agricultural and Life Science, The University of Tokyo, Kasama, Ibaraki 319-2606, Japan
| | - Keigo Nakamura
- Animal Resource Science Center, Graduate School of Agricultural and Life Science, The University of Tokyo, Kasama, Ibaraki 319-2606, Japan
| | - Masayuki Shimada
- Department of Applied Animal Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Kazuhiko Imakawa
- Animal Resource Science Center, Graduate School of Agricultural and Life Science, The University of Tokyo, Kasama, Ibaraki 319-2606, Japan.
| |
Collapse
|
144
|
A longitudinal analysis of the vaginal microbiota and vaginal immune mediators in women from sub-Saharan Africa. Sci Rep 2017; 7:11974. [PMID: 28931859 PMCID: PMC5607244 DOI: 10.1038/s41598-017-12198-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
In cross-sectional studies increased vaginal bacterial diversity has been associated with vaginal inflammation which can be detrimental for health. We describe longitudinal changes at 5 visits over 8 weeks in vaginal microbiota and immune mediators in African women. Women (N = 40) with a normal Nugent score at all visits had a stable lactobacilli dominated microbiota with prevailing Lactobacillus iners. Presence of prostate-specific antigen (proxy for recent sex) and being amenorrhoeic (due to progestin-injectable use), but not recent vaginal cleansing, were significantly associated with microbiota diversity and inflammation (controlled for menstrual cycle and other confounders). Women (N = 40) with incident bacterial vaginosis (Nugent 7-10) had significantly lower concentrations of lactobacilli and higher concentrations of Gardnerella vaginalis, Atopobium vaginae, and Prevotella bivia, at the incident visit and when concentrations of proinflammatory cytokines (IL-1β, IL-12p70) were increased and IP-10 and elafin were decreased. A higher 'composite-qPCR vaginal-health-score' was directly associated with decreased concentrations of proinflammatory cytokines (IL-1α, IL-8, IL-12(p70)) and increased IP-10. This longitudinal study confirms the inflammatory nature of vaginal dysbiosis and its association with recent vaginal sex and progestin-injectable use. A potential role for proinflammatory mediators and IP-10 in combination with the vaginal-health-score as predictive biomarkers for vaginal dysbiosis merits further investigation.
Collapse
|
145
|
Nederlof I, Meuleman T, van der Hoorn M, Claas F, Eikmans M. The seed to success: The role of seminal plasma in pregnancy. J Reprod Immunol 2017; 123:24-28. [DOI: 10.1016/j.jri.2017.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/30/2017] [Accepted: 08/18/2017] [Indexed: 01/04/2023]
|
146
|
Shahnazi M, Nouri M, Mohaddes G, Latifi Z, Fattahi A, Mohammadi M. Prostaglandin E Pathway in Uterine Tissue During Window of Preimplantation in Female Mice Mated With Intact and Seminal Vesicle-Excised Male. Reprod Sci 2017; 25:550-558. [PMID: 28693372 DOI: 10.1177/1933719117718272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostaglandin E2 (PGE2) has been introduced as an important factor for embryo implantation. So the present study was carried out to evaluate the effect of seminal fluid (SF) on PGE2 pathway in uterus tissues of mice during window of preimplantation. The messenger RNA (mRNA) expressions of microsomal PGE synthase (mPGES) and cytosolic PGE synthase (cPGES) as well as protein expression of PGE receptor 2 and 4 (EP2 and EP4) were determined in uterine tissue of control and seminal vesicle-excised (SVX)-mated female mice during days 1 to 5 of pregnancy using real-time polymerase chain reaction (qRT-PCR) and Western blotting, respectively. We found that mRNA expression of mPGES at day 1 and 2 of pregnancy was significantly higher in the control group than the SVX-mated group ( P < .05), but such result was not obtained for cPGES expression. The protein levels of EP2 at day 1 to 4 of pregnancy were significantly higher in the control group compared with the SVX-mated group ( P < .05), also the EP4 levels were significantly different between the control and SVX-mated groups at the first day of pregnancy ( P < .05). Implantation rate was higher in the control group and also there were positive correlations between mPGES and EP2 expressions in the fifth day of pregnancy with implantation rate. Our results demonstrated significant effect of SF on uterine expressions of the evaluated factors, especially mPGES and EP2. Regarding the correlations between levels of these factors and implantation rate, we suggest that possibly one of the important mechanisms of SF in affecting female pregnancy is through mPGES and EP2.
Collapse
Affiliation(s)
- Mahnaz Shahnazi
- 1 Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,2 Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- 1 Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,3 Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- 4 Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- 1 Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- 3 Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mustafa Mohammadi
- 1 Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,2 Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
147
|
Kelley CF, Kraft CS, de Man TJ, Duphare C, Lee HW, Yang J, Easley KA, Tharp GK, Mulligan MJ, Sullivan PS, Bosinger SE, Amara RR. The rectal mucosa and condomless receptive anal intercourse in HIV-negative MSM: implications for HIV transmission and prevention. Mucosal Immunol 2017; 10:996-1007. [PMID: 27848950 PMCID: PMC5433931 DOI: 10.1038/mi.2016.97] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/23/2016] [Indexed: 02/04/2023]
Abstract
Most HIV transmissions among men who have sex with men (MSM), the group that accounted for 67% of new US infections in 2014, occur via exposure to the rectal mucosa. However, it is unclear how the act of condomless receptive anal intercourse (CRAI) may alter the mucosal immune environment in HIV-negative MSM. Here, we performed a comprehensive characterization of the rectal mucosal immune environment for the phenotype and production of pro-inflammatory cytokines by CD4 and CD8 T cells, global transcriptomic analyses, and the composition of microbiota in HIV-negative MSM. Our results show that compared with men who had never engaged in anal intercourse, the rectal mucosa of MSM engaging in CRAI has a distinct phenotype characterized by higher levels of Th17 cells, greater CD8+ T cell proliferation and production of pro-inflammatory cytokines, molecular signatures associated with mucosal injury and repair likely mediated by innate immune cells, and a microbiota enriched for the Prevotellaceae family. These data provide a high-resolution model of the immunological, molecular, and microbiological perturbations induced by CRAI, will have direct utility in understanding rectal HIV transmission among MSM, and will enhance the design of future biomedical prevention interventions, including candidate HIV vaccines.
Collapse
Affiliation(s)
- Colleen F. Kelley
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine,Department of Epidemiology, Rollins School of Public Health, Emory University,Corresponding author;
| | - Colleen S. Kraft
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine,Department of Pathology, Emory University School of Medicine
| | - Tom J.B. de Man
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention
| | - Chandni Duphare
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University
| | - Hyun-Woo Lee
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University
| | - Jing Yang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University
| | - Kirk A. Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University
| | - Gregory K. Tharp
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University
| | - Mark J. Mulligan
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine
| | - Patrick S. Sullivan
- Department of Epidemiology, Rollins School of Public Health, Emory University
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University
| | - Rama R. Amara
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University,Department of Microbiology and Immunology, Emory University School of Medicine
| |
Collapse
|
148
|
Roan NR, Sandi-Monroy N, Kohgadai N, Usmani SM, Hamil KG, Neidleman J, Montano M, Ständker L, Röcker A, Cavrois M, Rosen J, Marson K, Smith JF, Pilcher CD, Gagsteiger F, Sakk O, O'Rand M, Lishko PV, Kirchhoff F, Münch J, Greene WC. Semen amyloids participate in spermatozoa selection and clearance. eLife 2017; 6. [PMID: 28653619 PMCID: PMC5487211 DOI: 10.7554/elife.24888] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022] Open
Abstract
Unlike other human biological fluids, semen contains multiple types of amyloid fibrils in the absence of disease. These fibrils enhance HIV infection by promoting viral fusion to cellular targets, but their natural function remained unknown. The similarities shared between HIV fusion to host cell and sperm fusion to oocyte led us to examine whether these fibrils promote fertilization. Surprisingly, the fibrils inhibited fertilization by immobilizing sperm. Interestingly, however, this immobilization facilitated uptake and clearance of sperm by macrophages, which are known to infiltrate the female reproductive tract (FRT) following semen exposure. In the presence of semen fibrils, damaged and apoptotic sperm were more rapidly phagocytosed than healthy ones, suggesting that deposition of semen fibrils in the lower FRT facilitates clearance of poor-quality sperm. Our findings suggest that amyloid fibrils in semen may play a role in reproduction by participating in sperm selection and facilitating the rapid removal of sperm antigens. DOI:http://dx.doi.org/10.7554/eLife.24888.001 Seminal plasma, the fluid portion of semen, helps to transport sperm cells to the egg during sexual reproduction. Seminal plasma contains numerous proteins that help the sperm to survive and, in recent years, researchers discovered that it also harbours protein deposits known as amyloid fibrils. Such protein deposits are generally associated with neurodegenerative diseases such as Alzheimer's and Parkinson’s disease, where a build-up of fibrils can damage the nervous system. Semen amyloids, however, are present in the absence of disease, but can boost infection by HIV and other sexually transmitted viruses, by shuttling virus particles to their target cells. Despite these damaging effects, some researchers had suggested that amyloids in semen could be beneficial for humans, though it was unclear what these benefits might be. Roan et al. now set out to assess how semen amyloids affect human sperm activity. The results show that semen amyloids bind to damaged sperm cells and immobilize them, which are then quickly cleared away by immune cells. This could ensure that only the fittest sperm cells reach the egg. These findings suggest that amyloids can potentially serve beneficial roles for reproduction. A next step will be to investigate how semen amyloids trap unwanted sperm and how immune cells know when to remove it. More research is needed to investigate if problems in these processes could lead to infertility in men. DOI:http://dx.doi.org/10.7554/eLife.24888.002
Collapse
Affiliation(s)
- Nadia R Roan
- Department or Urology, University of California San Francisco, San Francisco, United States.,Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, United States
| | - Nathallie Sandi-Monroy
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.,Kinderwunsch-Zentrum, Ulm, Germany
| | - Nargis Kohgadai
- Department or Urology, University of California San Francisco, San Francisco, United States.,Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, United States
| | - Shariq M Usmani
- The Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Katherine G Hamil
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, United States
| | - Jason Neidleman
- Department or Urology, University of California San Francisco, San Francisco, United States.,Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, United States
| | - Mauricio Montano
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, United States
| | - Ludger Ständker
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.,Core Facility Functional Peptidomics, Ulm University, Ulm, Germany
| | - Annika Röcker
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Marielle Cavrois
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, United States.,Department of Medicine, University of California San Francisco, San Francisco, United States
| | - Jared Rosen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States
| | - Kara Marson
- HIV / AIDS Division, San Francisco General Hospital, University of California San Francisco, San Francisco, United States
| | - James F Smith
- Department or Urology, University of California San Francisco, San Francisco, United States
| | - Christopher D Pilcher
- HIV / AIDS Division, San Francisco General Hospital, University of California San Francisco, San Francisco, United States
| | | | - Olena Sakk
- Core Facility Transgenic Mice, Medical Faculty, Ulm University, Ulm, Germany
| | - Michael O'Rand
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, United States
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Warner C Greene
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, United States.,Department of Medicine, University of California San Francisco, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| |
Collapse
|
149
|
Sterck EHM, Bontrop RE, de Groot N, de Vos-Rouweler AJM, Doxiadis GGM. No postcopulatory selection against MHC-homozygous offspring: Evidence from a pedigreed captive rhesus macaque colony. Mol Ecol 2017; 26:3785-3793. [PMID: 28437562 DOI: 10.1111/mec.14153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
The heterozygosity status of polymorphic elements of the immune system, such as the major histocompatibility complex (MHC), is known to increase the potential to cope with a wider variety of pathogens. Pre- and postcopulatory processes may regulate MHC heterozygosity. In a population where mating occurs among individuals that share identical MHC haplotypes, postcopulatory selection may disfavour homozygous offspring or ones with two MHC haplotypes identical to its mother. We tested these ideas by determining the incidence of MHC-heterozygous and MHC-homozygous individuals in a pedigreed, partially consanguineous captive rhesus monkey colony. Bayesian statistics showed that when parents share MHC haplotypes, the distribution of MHC-heterozygous and MHC-homozygous individuals significantly fitted the expected Mendelian distribution, both for the complete MHC haplotypes, and for MHC class I or II genes separately. Altogether, we found in this captive colony no evidence for postcopulatory selection against MHC-homozygous individuals. However, the distribution of paternally and maternally inherited MHC haplotypes tended to differ significantly from expected. Individuals with two MHC haplotypes identical to their mother were underrepresented and offspring with MHC haplotypes identical to their father tended to be overrepresented. This suggests that postcopulatory processes affect MHC haplotype combination in offspring, but do not prevent low MHC heterozygosity.
Collapse
Affiliation(s)
- E H M Sterck
- Department of Animal Ecology, Utrecht University, Utrecht, The Netherlands.,Department of Animal Science, Ethology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - R E Bontrop
- Department of Comparative Genetics & Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands.,Department of Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - N de Groot
- Department of Comparative Genetics & Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - A J M de Vos-Rouweler
- Department of Comparative Genetics & Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - G G M Doxiadis
- Department of Comparative Genetics & Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|
150
|
Glynn DJ, Heng K, Russell DL, Sharkey DJ, Robertson SA, Anand-Ivell R, Ivell R. Male Seminal Relaxin Contributes to Induction of the Post-mating Cytokine Response in the Female Mouse Uterus. Front Physiol 2017; 8:422. [PMID: 28674503 PMCID: PMC5474474 DOI: 10.3389/fphys.2017.00422] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/31/2017] [Indexed: 11/17/2022] Open
Abstract
The hormone relaxin is important in female reproduction for embryo implantation, cardiovascular function, and during labor and lactation. Relaxin is also synthesized in males by organs of the male tract. We hypothesized that relaxin might be one component of seminal plasma responsible for eliciting the female cytokine response induced in the uterus at mating. When recombinant relaxin was injected into the uterus of wild-type (Rln+/+) mice at estrus, it evoked the production of Cxcl1 mRNA and its secreted protein product CXCL1 in four of eight animals. Mating experiments were then conducted using mice with a null mutation in the relaxin gene (Rln−/− mice). qRT-PCR analysis of mRNA expression in wild-type females showed diminished uterine expression of several cytokine and chemokine genes in the absence of male relaxin. Similar differences were also noted comparing Rln−/− and Rln+/+ females mated to wild-type males. Quantification of uterine luminal fluid cytokine content confirmed that male relaxin provokes the production of CXCL10 and CSF3 in Rln+/+ females. Differences were also seen comparing Rln−/− and Rln+/+ females mated with Rln−/− males for CXCL1, CSF3, and CCL5, implying that endogenous relaxin in females might prime the uterus to respond appropriately to seminal fluid at coitus. Finally, pan-leukocyte CD45 mRNA was increased in wild-type matings compared to other combinations, implying that male and female relaxin may trigger leukocyte expansion in the uterus. We conclude that male and/or female relaxin may be important in activating the uterine cytokine/chemokine network required to initiate maternal immune adaptation to pregnancy.
Collapse
Affiliation(s)
- Danielle J Glynn
- Robinson Research Institute and School of Biological Sciences, University of AdelaideAdelaide, SA, Australia.,Robinson Research Institute and Adelaide Medical School, University of AdelaideAdelaide, SA, Australia
| | - Kee Heng
- Robinson Research Institute and School of Biological Sciences, University of AdelaideAdelaide, SA, Australia
| | - Darryl L Russell
- Robinson Research Institute and Adelaide Medical School, University of AdelaideAdelaide, SA, Australia
| | - David J Sharkey
- Robinson Research Institute and Adelaide Medical School, University of AdelaideAdelaide, SA, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of AdelaideAdelaide, SA, Australia
| | - Ravinder Anand-Ivell
- School of Pharmacy and Medical Sciences, University of South AustraliaAdelaide, SA, Australia.,School of Biosciences, University of NottinghamUnited Kingdom
| | - Richard Ivell
- Robinson Research Institute and School of Biological Sciences, University of AdelaideAdelaide, SA, Australia.,School of Biosciences, University of NottinghamUnited Kingdom
| |
Collapse
|