101
|
Liu Y, Du M, Lin HY. Histone deacetylase 9 deficiency exaggerates uterine M2 macrophage polarization. J Cell Mol Med 2021; 25:7690-7708. [PMID: 34145738 PMCID: PMC8358884 DOI: 10.1111/jcmm.16616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022] Open
Abstract
The maternal‐foetal interface is an immune‐privileged site where the semi‐allogeneic embryo is protected from attacks by the maternal immune system. Uterine macrophages are key players in establishing and maintaining pregnancy, and the dysregulation of the M1‐M2 subpopulation balance causes abortion. We separated two distinct mouse uterine macrophage subpopulations during early pregnancy, CD45+F4/80+CD206− M1‐like (M1) and CD45+F4/80+CD206+ M2‐like (M2) cells. The M1 preponderance was significantly exaggerated at 6 hours after lipopolysaccharide (LPS) treatment, and adoptive transfer of M2 macrophages partially rescued LPS‐induced abortion. RNA sequencing analysis of mouse uterine M2 versus M1 revealed 1837 differentially expressed genes (DEGs), among which 629 was up‐regulated and 1208 was down‐regulated. Histone deacetylase 9 (Hdac9) was one of the DEGs and validated to be significantly up‐regulated in uterine M2 as compared with M1. Remarkably, this differential expression profile between M1 and M2 was also evident in primary splenic macrophages and in vitro polarized murine peritoneal, bone marrow–derived and RAW 264.7 macrophages. In Hdac9/HDAC9 knockout RAW 264.7 and human THP‐1–derived macrophages, the expression of M1 differentiation markers was unchanged or decreased whereas M2 markers were increased compared with the wild‐type cells, and these effects were unrelated to compromised proliferation. Furthermore, Hdac9/HDAC9 ablation significantly enhanced the phagocytosis of fluorescent microspheres in M2 Raw 264.7 cells yet decreased the capacity of THP‐1‐derived M1 macrophages. The above results demonstrate that Hdac9/HDAC9 deficiency exaggerates M2 macrophage polarization in mouse and human macrophages, which may provide clues for our understanding of the epigenetic regulation on macrophage M1/M2 polarization in maternal‐foetal tolerance.
Collapse
Affiliation(s)
- Yanqin Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Meirong Du
- Gynecology and Obstetrics Hospital, Fudan University, Shanghai, China
| | - Hai-Yan Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
102
|
de Souza G, Silva RJ, Milián ICB, Rosini AM, de Araújo TE, Teixeira SC, Oliveira MC, Franco PS, da Silva CV, Mineo JR, Silva NM, Ferro EAV, Barbosa BF. Cyclooxygenase (COX)-2 modulates Toxoplasma gondii infection, immune response and lipid droplets formation in human trophoblast cells and villous explants. Sci Rep 2021; 11:12709. [PMID: 34135407 PMCID: PMC8209052 DOI: 10.1038/s41598-021-92120-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/04/2021] [Indexed: 01/01/2023] Open
Abstract
Congenital toxoplasmosis is represented by the transplacental passage of Toxoplasma gondii from the mother to the fetus. Our studies demonstrated that T. gondii developed mechanisms to evade of the host immune response, such as cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) induction, and these mediators can be produced/stored in lipid droplets (LDs). The aim of this study was to evaluate the role of COX-2 and LDs during T. gondii infection in human trophoblast cells and villous explants. Our data demonstrated that COX-2 inhibitors decreased T. gondii replication in trophoblast cells and villous. In BeWo cells, the COX-2 inhibitors induced an increase of pro-inflammatory cytokines (IL-6 and MIF), and a decrease in anti-inflammatory cytokines (IL-4 and IL-10). In HTR-8/SVneo cells, the COX-2 inhibitors induced an increase of IL-6 and nitrite and decreased IL-4 and TGF-β1. In villous explants, the COX-2 inhibitors increased MIF and decreased TNF-α and IL-10. Furthermore, T. gondii induced an increase in LDs in BeWo and HTR-8/SVneo, but COX-2 inhibitors reduced LDs in both cells type. We highlighted that COX-2 is a key factor to T. gondii proliferation in human trophoblast cells, since its inhibition induced a pro-inflammatory response capable of controlling parasitism and leading to a decrease in the availability of LDs, which are essentials for parasite growth.
Collapse
Affiliation(s)
- Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Rafaela José Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Iliana Claudia Balga Milián
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Thádia Evelyn de Araújo
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Mário Cézar Oliveira
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Priscila Silva Franco
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Claudio Vieira da Silva
- Laboratory of Trypanosomatids, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - José Roberto Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil.
| |
Collapse
|
103
|
Jaini R, Wolf MR, Yu Q, King AT, Frazier TW, Eng C. Maternal genetics influences fetal neurodevelopment and postnatal autism spectrum disorder-like phenotype by modulating in-utero immunosuppression. Transl Psychiatry 2021; 11:348. [PMID: 34091589 PMCID: PMC8179926 DOI: 10.1038/s41398-021-01472-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic studies in ASD have mostly focused on the proband, with no clear understanding of parental genetic contributions to fetal neurodevelopment. Among parental etiological factors, perinatal maternal inflammation secondary to autoimmunity, infections, and toxins is associated with ASD. However, the inherent impact of maternal genetics on in-utero inflammation and fetal neurodevelopment in the absence of strong external inflammatory exposures is not known. We used the PtenWT/m3m4 mouse model for ASD to demonstrate the impact of maternal genetics on the penetrance of ASD-like phenotypes in the offspring. PtenWT/m3m4 (Momm3m4) or PtenWT/WT (MomWT) females, their offspring, and placental interface were analyzed for inflammatory markers, gene expression, and cellular phenotypes at E17.5. Postnatal behavior was tested by comparing pups from Momm3m4 vs. MomWT. Mothers of the PtenWT/m3m4 genotype (Momm3m4) showed inadequate induction of IL-10 mediated immunosuppression during pregnancy. Low IL-10 in the mother was directly correlated with decreased complement expression in the fetal liver. Fetuses from Momm3m4 had increased breakdown of the blood-brain-barrier, neuronal loss, and lack of glial cell maturation during in-utero stages. This impact of maternal genotype translated to a postnatal increase in the risk of newborn mortality, visible macrocephaly and ASD-like repetitive and social behaviors. Depending on maternal genotype, non-predisposed (wildtype) offspring showed ASD-like phenotypes, and phenotypic penetrance was decreased in predisposed pups from MomWT. Our study introduces the concept that maternal genetics alone, without any added external inflammatory insults, can modulate fetal neurodevelopment and ASD-related phenotypes in the offspring via alteration of IL-10 mediated materno-fetal immunosuppression.
Collapse
Affiliation(s)
- Ritika Jaini
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Matthew R Wolf
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Qi Yu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Alexander T King
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Thomas W Frazier
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Psychology, John Carroll University, University Heights, Cleveland, OH, 44118, USA
- Autism Speaks, Cleveland, OH, 44131, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
104
|
Rezalotfi A, Vrynas AV, Dehghanian M, Rezaei N. Lessons from the Embryo: an Unrejected Transplant and a Benign Tumor. Stem Cell Rev Rep 2021; 17:850-861. [PMID: 33225425 DOI: 10.1007/s12015-020-10088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2020] [Indexed: 10/22/2022]
Abstract
Embryogenesis is regarded the 'miracle of life', yet numerous aspects of this process are not fully understood. As the embryo grows in the mother's womb, immune components, stem cells and microenvironmental cues cooperate among others to promote embryonic development. Evidently, these key players are frequently associated with transplantation failure and tumor growth. While the fields of transplantation and cancer biology do not overlap, both can be viewed from the perspective of an embryo. As an 'unrejected transplant' and a 'benign tumor', lessons from embryonic development may reveal features of transplants and tumors that have been overlooked. Therefore, eavesdropping at these natural complex events during pregnancy may inspire more durable approaches to arrest transplant rejection or cancer progression.
Collapse
Affiliation(s)
- Alaleh Rezalotfi
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Maryam Dehghanian
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
| |
Collapse
|
105
|
Decidual stromal cells support tolerance at the human foetal-maternal interface by inducing regulatory M2 macrophages and regulatory T-cells. J Reprod Immunol 2021; 146:103330. [PMID: 34049032 DOI: 10.1016/j.jri.2021.103330] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/24/2021] [Accepted: 05/02/2021] [Indexed: 01/25/2023]
Abstract
During pregnancy, the semi-allogeneic nature of the foetus requires maternal immune adaption and acquisition of tolerance at the foetal-maternal interface. Macrophages with regulatory properties and regulatory T (Treg) cells are central in promoting foetal tolerance and are enriched in the decidua (the uterine endometrium during pregnancy). Although tissue-resident decidual stromal cells (DSC) have been implicated in regulatory functions, it is not known if they are able to induce the regulatory phenotype of macrophages and T-cells. In this study we report that maternally derived DSC are able to induce homeostatic M2 macrophages and Treg cells. CD14+ monocytes and CD4+ T-cells from healthy non-pregnant women were cultured in the presence or absence of conditioned medium (CM) from DSC isolated from 1st trimester and term placentas. DSC-CM alone was able to promote the survival of macrophages and to induce a regulatory CD14brightCD163+CD209+CD86dim phenotype, typical for decidual macrophages and similar to that induced by M-CSF. Interestingly, DSC-CM was also able to overrule the pro-inflammatory effects of GM-CSF by upregulating CD14, CD163 and CD209. Protein-profiling showed that M-CSF was secreted by DSC, and blocking of M-CSF partially reversed the M2 phenotype and reduced viability. DSC-CM also expanded CD25brightFoxp3+ Treg cells, an expansion that was abolished by a SMAD3-inhibitor, indicating the contribution of TGF-β signaling. In conclusion, our findings collectively emphasize the role of tissue-resident stromal cells in shaping the tolerogenic environment at the foetal-maternal interface.
Collapse
|
106
|
Bai K, Li X, Zhong J, Ng EHY, Yeung WSB, Lee CL, Chiu PCN. Placenta-Derived Exosomes as a Modulator in Maternal Immune Tolerance During Pregnancy. Front Immunol 2021; 12:671093. [PMID: 34046039 PMCID: PMC8144714 DOI: 10.3389/fimmu.2021.671093] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a subset of extracellular vesicles with an average diameter of ~100nm. Exosomes are released by all cells through an endosome-dependent pathway and carry nucleic acids, proteins, lipids, cytokines and metabolites, mirroring the state of the originating cells. The function of exosomes has been implicated in various reproduction processes, such as embryo development, implantation, decidualization and placentation. Placenta-derived exosomes (pEXO) can be detected in the maternal blood as early as 6 weeks after conception and their levels increase with gestational age. Importantly, alternations in the molecular signatures of pEXO are observed in pregnancy-related complications. Thus, these differentially expressed molecules could be the potential biomarkers for diagnosis of the pregnancy-associated diseases. Recent studies have demonstrated that pEXO play a key role in the establishment of maternal immune tolerance, which is critical for a successful pregnancy. To gain a better understanding of the underlying mechanism, we highlighted the advanced studies of pEXO on immune cells in pregnancy.
Collapse
Affiliation(s)
- Kunfeng Bai
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xintong Li
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jiangming Zhong
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
107
|
Tai C, Wang L, Xie Y, Gao T, Huang F, Wang B. Analysis of Key Distinct Biological Characteristics of Human Placenta-Derived Mesenchymal Stromal Cells and Individual Heterogeneity Attributing to Donors. Cells Tissues Organs 2021; 210:45-57. [PMID: 33780947 DOI: 10.1159/000513038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/13/2020] [Indexed: 11/19/2022] Open
Abstract
For potential clinical applications in the future, we investigated the distinct biological features of mesenchymal stromal cells (MSCs) derived from different origin areas of human placenta and individual heterogeneity among different donors. Chorionic plate MSCs (CP-MSCs), amniotic membrane MSCs (AM-MSCs), and decidual plate MSCs (DP-MSCs) were isolated from 5 human placentae and were analyzed in terms of main features of MSCs including surface marker profile, growth, differentiation potential, immune regulation capability, and tubulin acetylation (Ac-tubulin). The expression profile of surface markers in the 3 types of MSCs derived from the 5 donors was relatively stable. Heterogeneity was found in growth, differentiation potential, and immune regulation among MSCs according to the different areas of isolation and different donors. CP-MSCs and AM-MSCs derived from the placentae of donors 1-3 had a higher osteogenic differentiation potential than the corresponding DP-MSCs, but those derived from the placentae of donors 4 and 5 had a markedly lower osteogenic differentiation potential than DP-MSCs. All CP-MSCs derived from donors 1-3 had the highest adipogenic differentiation potential, but CP-MSCs derived from donors 4 and 5 did not show strong capability of adipogenic differentiation. CP-MSCs markedly inhibited the proliferation of peripheral blood mononuclear cells (PBMCs) induced by phytohemagglutinin, whereas AM- and DP-MSCs did not. All MSCs decreased the proportion of CD3+/CD8-/IFN-γ+ Th1 and CD3+/CD8-/IL17+ Th17 cells, but increased the proportion of Treg cells in PBMCs, with individual differences among the 5 donors. DP-MSCs from donors 1 and 2 had higher levels of Ac-tubulin compared with CP- and AM-MSCs. However, the levels of Ac-tubulin in AM-MSCs from donors 3 and 5 were higher than those of the other 2 types of MSCs. Our results revealed that there was tissue-specific heterogeneity among the 3 types of MSCs from different origin tissues of placenta and individual heterogeneity among donors. In future, the pre-selected placenta-derived MSCs with specific biological advantages may improve the curative effect of cell therapy in different situations.
Collapse
Affiliation(s)
- Chenxu Tai
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Liudi Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Tianyun Gao
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Feifei Huang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
108
|
Parasar P, Guru N, Nayak NR. Contribution of macrophages to fetomaternal immunological tolerance. Hum Immunol 2021; 82:325-331. [PMID: 33715911 DOI: 10.1016/j.humimm.2021.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
The semi-allogeneic fetus develops in a uniquely immune tolerant environment within the uterus. For successful pregnancy, both the innate and adaptive immune systems must favor acceptance of the fetal allograft. Macrophages are the second most abundant immune cells after natural killer (NK) cells in the decidua. In coordination with decidual NK cells and dendritic cells, macrophages aid in implantation, vascular remodeling, placental development, immune tolerance to placental cells, and maintenance of tissue homeostasis at the maternal-fetal interface. Decidual macrophages show the classical activated (M1) and alternatively activated (M2) phenotypes under the influence of the local milieu of growth factors and cytokines, and appropriate temporal regulation of the M1/M2 switch is vital for successful pregnancy. Disturbances in the mechanisms that control the M1/M2 balance and associated functions during pregnancy can trigger a spectrum of pregnancy complications ranging from preeclampsia and fetal growth restriction to preterm delivery. This review addresses various mechanisms of tolerance, focusing on the basic biology of macrophages, their plasticity and polarization, and their protective roles at the immune-privileged maternal-fetal interface, including direct and indirect roles in promoting fetomaternal immune tolerance.
Collapse
Affiliation(s)
- P Parasar
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Henry Ford Hospital, Detroit, MI 48202, United States.
| | - N Guru
- Department of Infectious Diseases, School of Medicine, Wayne State University, Detroit, MI 48202, United States
| | - N R Nayak
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Department of Obstetrics and Gynecology, University of Missouri, Kansas City, MO 64108, United States
| |
Collapse
|
109
|
Campanile G, Baruselli PS, Limone A, D'Occhio MJ. Local action of cytokines and immune cells in communication between the conceptus and uterus during the critical period of early embryo development, attachment and implantation - Implications for embryo survival in cattle: A review. Theriogenology 2021; 167:1-12. [PMID: 33743503 DOI: 10.1016/j.theriogenology.2021.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
Early embryo development, implantation and pregnancy involve a complex dialogue between the embryo and mother. In cattle this dialogue starts as early as days 3-4 when the embryo is still in the oviduct, and it continues to implantation. Immunological processes involving cytokines, mast cells and macrophages form an important part of this dialogue. Amongst the cytokines, interleukin-6 (Il-6) and leukemia inhibitory factor (LIF) are secreted by both the embryo and uterine endometrium and form part of an ongoing and reciprocating dialogue. Mast cells and macrophages populate the uterine endometrium during embryo development and are involved in achieving the correct balance between inflammatory and anti-inflammatory reactions at the uterus that are associated with embryo attachment and implantation. Embryo loss is the major cause of reproductive wastage in cattle, and livestock generally. A deeper understanding of immunological processes during early embryo development will help to achieve the next step change in the efficiency of natural and assisted breeding.
Collapse
Affiliation(s)
- Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| | - Antonio Limone
- Instituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, Naples, Italy
| | - Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
110
|
Chu A, Kok SY, Tsui J, Lin MC, Aguirre B, Wadehra M. Epithelial membrane protein 2 (Emp2) modulates innate immune cell population recruitment at the maternal-fetal interface. J Reprod Immunol 2021; 145:103309. [PMID: 33774530 DOI: 10.1016/j.jri.2021.103309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Epithelial membrane protein 2 (EMP2) is a tetraspan membrane protein that has been revealed in cancer and placental models to mediate a number of vascular responses. Recently, Emp2 modulation has been shown to have an immunologic effect on uterine NK cell recruitment in the mouse placenta. Given the importance of immune cell populations on both placental vascularization and maternal immune tolerance of the developing fetus, we wanted to better characterize the immunologic effects of Emp2 at the placental-fetal interface. We performed flow cytometry of WT and Emp2 KO C57Bl/6 mouse uterine horns at GD12.5 to characterize immune cell populations localized to the various components of the maternal-fetal interface. We found that Emp2 KO decidua and placenta showed an elevated overall percentage of CD45+ cells compared to WT. Characterization of CD45+ cells in the decidua of Emp2 KO dams revealed an increase in NK cells, whereas in the placenta, Emp2 KO dams showed an increased percentage of M1 macrophages (with an increased ratio of M1/M2 macrophages). Given the differences detected in uNK cell populations in the decidua, we further characterized the interaction between Emp2 genetic KO and NK cell deletion via anti-asialo GM1 antibody injections. While the double knock-out of Emp2 and NK cells did not alter individual pup birthweight, it significantly reduced total litter weight and size by ∼50 %. In conclusion, Emp2 appears to regulate uNK and macrophage cell populations in pregnancy.
Collapse
Affiliation(s)
- Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, MDCC B2-411, Los Angeles, CA, 90095, USA.
| | - Su-Yin Kok
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA.
| | - Jessica Tsui
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA.
| | - Meng-Chin Lin
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, MDCC B2-411, Los Angeles, CA, 90095, USA.
| | - Brian Aguirre
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA.
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA.
| |
Collapse
|
111
|
Xu L, Li Y, Sang Y, Li DJ, Du M. Crosstalk Between Trophoblasts and Decidual Immune Cells: The Cornerstone of Maternal-Fetal Immunotolerance. Front Immunol 2021; 12:642392. [PMID: 33717198 PMCID: PMC7947923 DOI: 10.3389/fimmu.2021.642392] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The success of pregnancy relies on the fine adjustment of the maternal immune system to tolerate the allogeneic fetus. Trophoblasts carrying paternal antigens are the only fetal-derived cells that come into direct contact with the maternal immune cells at the maternal–fetal interface. The crosstalk between trophoblasts and decidual immune cells (DICs) via cell–cell direct interaction and soluble factors such as chemokines and cytokines is a core event contributing to the unique immunotolerant microenvironment. Abnormal trophoblasts–DICs crosstalk can lead to dysregulated immune situations, which is well known to be a potential cause of a series of pregnancy complications including recurrent spontaneous abortion (RSA), which is the most common one. Immunotherapy has been applied to RSA. However, its development has been far less rapid or mature than that of cancer immunotherapy. Elucidating the mechanism of maternal–fetal immune tolerance, the theoretical basis for RSA immunotherapy, not only helps to understand the establishment and maintenance of normal pregnancy but also provides new therapeutic strategies and promotes the progress of immunotherapy against pregnancy-related diseases caused by disrupted immunotolerance. In this review, we focus on recent progress in the maternal–fetal immune tolerance mediated by trophoblasts–DICs crosstalk and clinical application of immunotherapy in RSA. Advancement in this area will further accelerate the basic research and clinical transformation of reproductive immunity and tumor immunity.
Collapse
Affiliation(s)
- Ling Xu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yanhong Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yifei Sang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
112
|
Mishra A, Ashary N, Sharma R, Modi D. Extracellular vesicles in embryo implantation and disorders of the endometrium. Am J Reprod Immunol 2021; 85:e13360. [PMID: 33064348 DOI: 10.1111/aji.13360] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Implantation of the embryo is a rate-limiting step for a successful pregnancy, and it requires an intricate crosstalk between the embryo and the endometrium. Extracellular vesicles (EVs) are membrane-enclosed, nano-sized structures produced by cells to mediate cell to cell communication and modulate a diverse set of biological processes. Herein, we review the involvement of EVs in the process of embryo implantation and endometrial diseases. EVs have been isolated from uterine fluid, cultured endometrial epithelial/stromal cells and trophectodermal cells. The endometrial epithelial and stromal/decidual cell-derived EVs and its cargo are internalized bythe trophoblast cells, and they regulate a diverse set of genes involved in adhesion, invasion and migration. Conversely, the embryo-derived EVs and its cargo are internalized by epithelial and immune cells of the endometrium for biosensing and immunomodulation required for successful implantation. EVs have also been shown to play a role in infertility, recurrent implantation failure, endometriosis, endometritis and endometrial cancer. Further research should set a stage for EVs as non-invasive "liquid biopsy" tools for assessment of endometrial health.
Collapse
Affiliation(s)
- Anuradha Mishra
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Nancy Ashary
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Richa Sharma
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| |
Collapse
|
113
|
Single-cell Immune Landscape of Human Recurrent Miscarriage. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:208-222. [PMID: 33482359 PMCID: PMC8602400 DOI: 10.1016/j.gpb.2020.11.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 01/07/2023]
Abstract
Successful pregnancy in placental mammals substantially depends on the establishment of maternal immune tolerance to the semi-allogenic fetus. Disorders in this process are tightly associated with adverse pregnancy outcomes including recurrent miscarriage (RM). However, an in-depth understanding of the systematic and decidual immune environment in RM remains largely lacking. In this study, we utilized single-cell RNA-sequencing (scRNA-seq) to comparably analyze the cellular and molecular signatures of decidual and peripheral leukocytes in normal and unexplained RM pregnancies at the early stage of gestation. Integrative analysis identifies 22 distinct cell clusters in total, and a dramatic difference in leukocyte subsets and molecular properties in RM cases is revealed. Specifically, the cytotoxic properties of CD8+ effector T cells, nature killer (NK), and mucosal-associated invariant T (MAIT) cells in peripheral blood indicates apparently enhanced pro-inflammatory status, and the population proportions and ligand–receptor interactions of the decidual leukocyte subsets demonstrate preferential immune activation in RM patients. The molecular features, spatial distribution, and the developmental trajectories of five decidual NK (dNK) subsets have been elaborately illustrated. In RM patients, a dNK subset that supports embryonic growth is diminished in proportion, while the ratio of another dNK subset with cytotoxic and immune-active signature is significantly increased. Notably, a unique pro-inflammatory CD56+CD16+ dNK subset substantially accumulates in RM decidua. These findings reveal a comprehensive cellular and molecular atlas of decidual and peripheral leukocytes in human early pregnancy and provide an in-depth insight into the immune pathogenesis for early pregnancy loss.
Collapse
|
114
|
Ding J, Yang C, Zhang Y, Wang J, Zhang S, Guo D, Yin T, Yang J. M2 macrophage-derived G-CSF promotes trophoblasts EMT, invasion and migration via activating PI3K/Akt/Erk1/2 pathway to mediate normal pregnancy. J Cell Mol Med 2021; 25:2136-2147. [PMID: 33393205 PMCID: PMC7882967 DOI: 10.1111/jcmm.16191] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Trophoblasts are important parts of the placenta and exert vital roles in the maternal-foetal crosstalk, and sufficient trophoblasts migration and invasion is critical for embryo implantation and normal pregnancy. Macrophages, as the major components of decidual microenvironment at maternal-foetal interface, can interact with trophoblasts to participate in the regulation of normal pregnancy. Previously, our group have demonstrated that trophoblasts could induce macrophages polarization to M2 subtype by secreting interleukin-6 (IL-6); however, the understanding of macrophages regulating the migration and invasion of trophoblasts is limited. In the present study, we used the co-cultured model to further investigate the effects of macrophages on trophoblasts migration and invasion. Our results showed that co-culture with macrophages promoted epithelial-to-mesenchymal transition (EMT) of trophoblasts, thereby enhancing their migrative and invasive abilities. Further experiments revealed that M2 macrophage-derived G-CSF was a key factor, which promoted the EMT, migration and invasion of trophoblasts via activating PI3K/Akt/Erk1/2 signalling pathway. Clinically, G-CSF was highly expressed in placental villous tissues of normal pregnancy patients compared to patients with recurrent spontaneous abortion, and its expression level was significantly correlation with EMT markers. Taken together, these findings indicate the important role of M2 macrophages in regulating trophoblasts EMT, migration and invasion, contributing to a new insight in concerning the crosstalk between macrophages and trophoblasts in the establishment and maintenance of normal pregnancy.
Collapse
Affiliation(s)
- Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jiayu Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Sainan Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Duanying Guo
- Department of Gynecology, Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
115
|
PlGF Immunological Impact during Pregnancy. Int J Mol Sci 2020; 21:ijms21228714. [PMID: 33218096 PMCID: PMC7698813 DOI: 10.3390/ijms21228714] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, the mother’s immune system has to tolerate the persistence of paternal alloantigens without affecting the anti-infectious immune response. Consequently, several mechanisms aimed at preventing allograft rejection, occur during a pregnancy. In fact, the early stages of pregnancy are characterized by the correct balance between inflammation and immune tolerance, in which proinflammatory cytokines contribute to both the remodeling of tissues and to neo-angiogenesis, thus, favoring the correct embryo implantation. In addition to the creation of a microenvironment able to support both immunological privilege and angiogenesis, the trophoblast invades normal tissues by sharing the same behavior of invasive tumors. Next, the activation of an immunosuppressive phase, characterized by an increase in the number of regulatory T (Treg) cells prevents excessive inflammation and avoids fetal immuno-mediated rejection. When these changes do not occur or occur incompletely, early pregnancy failure follows. All these events are characterized by an increase in different growth factors and cytokines, among which one of the most important is the angiogenic growth factor, namely placental growth factor (PlGF). PlGF is initially isolated from the human placenta. It is upregulated during both pregnancy and inflammation. In this review, we summarize current knowledge on the immunomodulatory effects of PlGF during pregnancy, warranting that both innate and adaptive immune cells properly support the early events of implantation and placental development. Furthermore, we highlight how an alteration of the immune response, associated with PlGF imbalance, can induce a hypertensive state and lead to the pre-eclampsia (PE).
Collapse
|
116
|
Eastman AJ, Vrana EN, Grimaldo MT, Jones AD, Rogers LM, Alcendor DJ, Aronoff DM. Cytotrophoblasts suppress macrophage-mediated inflammation through a contact-dependent mechanism. Am J Reprod Immunol 2020; 85:e13352. [PMID: 32969101 DOI: 10.1111/aji.13352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
PROBLEM Gestational membrane (GM) infection provokes inflammation and can result in preterm prelabor rupture of membranes (PPROM). The choriodecidual layer of the GM includes decidual stromal cells (DSC), cytotrophoblasts (CTB), and macrophages (Mφ). Our laboratory has previously shown that DSCs suppress Mφ TNF-α production through secreted prostaglandin E2 . We hypothesized that CTBs would also inhibit Mφ cytokine expression through secreted mediators. METHOD OF STUDY THP.1 Mφ-like cells with an NF-κB reporter construct or human blood monocyte-derived Mφ were co-cultured with the Jeg3 CTB cell line or primary human CTBs and challenged with group B streptococcus (GBS) or Toll-like receptor (TLR) agonists. Conditioned medium generated from CTB cultures was applied to Mφ cultures before infection or treatment. Alternatively, CTBs were co-incubated with, but physically separated from, Mφ and GBS or TLR-stimulated. NF-κB was assessed via alkaline phosphatase assay, and proinflammatory mediators were assessed by qRT-PCR and ELISA. RESULTS CTBs suppressed GBS- or TLR-stimulated Mφ NF-κB activity, and TNF-α and MMP9 production. Direct physical contact between CTBs and Mφ was required for full immunosuppression. Immunosuppression could be overcome by increasing the ratio of Mφ to CTB. CONCLUSIONS CTBs limit Mφ NF-κB activation and production of TNF-α and MMP9 through an as-yet unknown, cell-to-cell contact-mediated mechanism. This suppression is distinct from the PGE2 -mediated Mφ TNF-α suppression by DSC, suggesting that DSCs and CTBs regulate Mφ inflammation through distinct mechanisms. How Mφ integrates these signals in an intact GM will be paramount to determining causes and prevention of PPROM.
Collapse
Affiliation(s)
- Alison J Eastman
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erin N Vrana
- Vanderbilt University Medical School, Vanderbilt University, Nashville, TN, USA
| | - Maria T Grimaldo
- Texas A&M University, College of Agriculture and Life Sciences, College Station, TX, USA
| | - Amanda D Jones
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa M Rogers
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - David M Aronoff
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
117
|
Zhao Y, Zhang X, Du N, Sun H, Chen L, Bao H, Zhao Q, Qu Q, Ma D, Kwak-Kim J, Wang WJ. Immune checkpoint molecules on T cell subsets of pregnancies with preeclampsia and gestational diabetes mellitus. J Reprod Immunol 2020; 142:103208. [PMID: 33002799 DOI: 10.1016/j.jri.2020.103208] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Immune checkpoint molecules may play a crucial role in safeguarding pregnancy by regulating immune responses at the maternal-fetal interface. In this study, we aim to investigate the expression of PD-1, GITR, HLA-G, and CTLA-4 on T cell subsets in peripheral blood (PB), retroplacental blood (RPB), and cord blood (CB) in normal pregnancy (NP), preeclampsia (PE) and gestational diabetes mellitus (GDM). PB, RPB, and CB were collected immediately after delivery, and the expression of PD-1, GITR, HLA-G, and CTLA-4 on T cell subsets were measured by flow cytometric analysis. The proportions of Tregs in PB, RPB, and CB from NP were significantly higher than those of PE and GDM (P < 0.01, respectively). PD-1+ and GITR+ T cell subsets (CD3+, CD4+, and CD8+ T cells, and Tregs) in PB, as well as PD-1+ T cell subsets in RPB from NP, were significantly higher than those of PE and GDM (P < 0.01, respectively). In NP, PE, and GDM, the proportion of PD-1+ Tregs was significantly decreased in CB as compared to those of PB and RPB (P < 0.05, respectively) and the proportion of GITR+ Tregs was significantly higher in PB as compared to those of CB and RPB (P < 0.01, respectively). The proportion of HLA-G+ Tregs in PB was significantly lower than those of CB and RPB (P < 0.01, respectively). In conclusion, decreased PD-1+ and GITR+ T cell subsets and decreased proportion of Tregs in PB and RPB may play a role in chronic inflammatory immune activation of effector T cells in PE and GDM.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Reproduction Medical Center, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, PR China; Qilu Medical University, 2018 Jiang Meng Road, Zibo, 255300, PR China
| | - Xiaolu Zhang
- Department of Clinical Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, PR China
| | - Ning Du
- Department of Clinical Pharmacy, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, PR China
| | - Hong Sun
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, PR China
| | - Lei Chen
- Department of Clinical Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, PR China
| | - Hongchu Bao
- Reproduction Medical Center, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, PR China
| | - Quan Zhao
- Department of Clinical Pharmacy, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, PR China
| | - Qinglan Qu
- Reproduction Medical Center, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, PR China
| | - Ding Ma
- Reproduction Medical Center, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, PR China
| | - Joanne Kwak-Kim
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, PR China; Microbiology and Immunology, Department of Foundational Science and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Wen-Juan Wang
- Reproduction Medical Center, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, PR China; Reproductive Medicine and Immunology, Obstetrics and Gynecology, Department of Clinical Sciences, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, 60061, USA.
| |
Collapse
|
118
|
Eikmans M, van der Zwan A, Claas FHJ, van der Hoorn ML, Heidt S. Got your mother in a whirl: The role of maternal T cells and myeloid cells in pregnancy. HLA 2020; 96:561-579. [PMID: 32841539 DOI: 10.1111/tan.14055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022]
Abstract
Appropriate development of the placenta is required for healthy pregnancy to occur. After implantation of the fertilized blastocyst, fetal trophoblasts invade the endometrium and myometrium of the mother's uterus to establish placentation. In this process, fetal trophoblasts encounter maternal immune cells. In this review, we focus on the role of maternal T cells and myeloid cells (macrophages, dendritic cells) in pregnancy and their interaction with trophoblasts. To retain immunologic tolerization, trophoblasts evade immune recognition by T cells and produce factors that modulate their phenotype and function. On top of that, the local environment at the maternal-fetal interface favors expansion of regulatory T cells. Macrophages and dendritic cells are essential in maintaining a healthy pregnancy. They produce soluble factors and act as antigen-presenting cells, thereby interacting with T cells. Herein, M2 macrophages, immature dendritic cells, CD4+ Th2 cells, and regulatory T cells represent an axis that maintains a local immune tolerant environment. We consider outstanding issues concerning these cell types and their pathways, which need to be addressed in future investigations. Data from recent single-cell sequencing experiments of the placental bed, to study heterogeneity of maternal immune cells and to predict cell-cell interactions, are discussed. Novel ways for long-term culturing of primary trophoblasts allow for cell-cell interaction studies in a functional way. Future directions should include study of the functionality of currently known and newly identified decidual immune cell subsets in healthy and complicated pregnancies, and their interaction with and modulation by trophoblast cells.
Collapse
Affiliation(s)
- Michael Eikmans
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anita van der Zwan
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans H J Claas
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
119
|
Green ES, Arck PC. Pathogenesis of preterm birth: bidirectional inflammation in mother and fetus. Semin Immunopathol 2020; 42:413-429. [PMID: 32894326 PMCID: PMC7508962 DOI: 10.1007/s00281-020-00807-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Preterm birth (PTB) complicates 5–18% of pregnancies globally and is a leading cause of maternal and fetal morbidity and mortality. Most PTB is spontaneous and idiopathic, with largely undefined causes. To increase understanding of PTB, much research in recent years has focused on using animal models to recapitulate the pathophysiology of PTB. Dysfunctions of maternal immune adaptations have been implicated in a range of pregnancy pathologies, including PTB. A wealth of evidence arising from mouse models as well as human studies is now available to support that PTB results from a breakdown in fetal-maternal tolerance, along with excessive, premature inflammation. In this review, we examine the current knowledge of the bidirectional communication between fetal and maternal systems and its role in the immunopathogenesis of PTB. These recent insights significantly advance our understanding of the pathogenesis of PTB, which is essential to ultimately designing more effective strategies for early prediction and subsequent prevention of PTB.
Collapse
Affiliation(s)
- Ella Shana Green
- Department of Obstetrics and Fetal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
| | - Petra Clara Arck
- Department of Obstetrics and Fetal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany.
| |
Collapse
|
120
|
Bruno V, Lindau R, Jenmalm MC, Ticconi C, Piccione E, Pietropolli A, Ernerudh J. First-trimester trophoblasts obtained by chorionic villus sampling maintain tolerogenic and proteomic features in successful pregnancies despite a history of unexplained recurrent pregnancy loss. Am J Reprod Immunol 2020; 84:e13314. [PMID: 32734710 DOI: 10.1111/aji.13314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 01/06/2023] Open
Abstract
PROBLEM While there are several known causes for recurrent pregnancy loss (RPL), about 50% are unexplained (uRPL), and in these cases, an aberrant immune regulation seems to be involved. Although fetally derived trophoblast cells have a key role in immune regulation, it is difficult to study their immune function during pregnancy, and it is not known whether trophoblast function may be an inherent aberration in uRPL or whether it is associated with the outcome of the current pregnancy. METHOD OF STUDY Chorionic villus sampling (CVS) was performed for clinical indications at 12 weeks of gestation. Superfluous materials, divided in small explants, were cultured for 20-24 hours, and supernatants (conditioned medium) were collected from 36 women with singleton normal pregnancies, of whom 9 women had a history of RPL. The secreted immune protein profile was measured by proximity extension assay, and the conditioned medium was further used in functional ex vivo models to assess ability to polarize blood monocytes and CD4+ T cells into immune regulatory phenotypes, as detected by flow cytometry. RESULTS Conditioned medium from chorionic villi, human fetally derived placental tissue, was able to induce a decidual-type of M2-like macrophages, as well as an expansion of Treg cells ex vivo, both in women with uRPL and in control women. The preserved immunological properties were confirmed by a maintained immune protein profile in RPL compared with controls. CONCLUSION Trophoblasts in an ex vivo model maintain tolerogenic and proteomic profile features in successful pregnancies, despite a previous history of RPL.
Collapse
Affiliation(s)
- Valentina Bruno
- Section of Gynecology, Academic Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Academic Department of Surgical Sciences, Section of Gynecology, Tor Vergata University, Rome, Italy
| | - Robert Lindau
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria C Jenmalm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Carlo Ticconi
- Academic Department of Surgical Sciences, Section of Gynecology, Tor Vergata University, Rome, Italy
| | - Emilio Piccione
- Academic Department of Surgical Sciences, Section of Gynecology, Tor Vergata University, Rome, Italy
| | - Adalgisa Pietropolli
- Academic Department of Surgical Sciences, Section of Gynecology, Tor Vergata University, Rome, Italy
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
121
|
Kaipe H, Raffetseder J, Ernerudh J, Solders M, Tiblad E. MAIT Cells at the Fetal-Maternal Interface During Pregnancy. Front Immunol 2020; 11:1788. [PMID: 32973750 PMCID: PMC7466580 DOI: 10.3389/fimmu.2020.01788] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
One of the main functions of the human placenta is to provide a barrier between the fetal and maternal blood circulations, where gas exchange and transfer of nutrients to the developing fetus take place. Despite being a barrier, there is a multitude of crosstalk between maternal immune cells and fetally derived semi-allogeneic trophoblast cells. Therefore, the maternal immune system has a difficult task to both tolerate the fetus but at the same time also defend the mother and the fetus from infections. Mucosal-associated invariant T (MAIT) cells are an increasingly recognized subset of T cells with anti-microbial functions that get activated in the context of non-polymorphic MR1 molecules, but also in response to inflammation. MAIT cells accumulate at term pregnancy in the maternal blood that flows into the intervillous space inside the placenta. Chemotactic factors produced by the placenta may be involved in recruiting and retaining particular immune cell subsets, including MAIT cells. In this Mini-Review, we describe what is known about MAIT cells during pregnancy and discuss the potential biological functions of MAIT cells at the fetal-maternal interface. Since MAIT cells have anti-microbial and tissue-repairing functions, but lack alloantigen reactivity, they could play an important role in protecting the fetus from bacterial infections and maintaining tissue homeostasis without risks of mediating harmful responses toward semi-allogenic fetal tissues.
Collapse
Affiliation(s)
- Helen Kaipe
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Raffetseder
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Martin Solders
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Eleonor Tiblad
- Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden.,Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
122
|
Parris KM, Amabebe E, Cohen MC, Anumba DO. Placental microbial-metabolite profiles and inflammatory mechanisms associated with preterm birth. J Clin Pathol 2020; 74:10-18. [PMID: 32796048 DOI: 10.1136/jclinpath-2020-206536] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
Abstract
There is growing emphasis on the potential significance of the placental microbiome and microbiome-metabolite interactions in immune responses and subsequent pregnancy outcome, especially in relation to preterm birth (PTB). This review discusses in detail the pathomechanisms of placental inflammatory responses and the resultant maternal-fetal allograft rejection in both microbial-induced and sterile conditions. It also highlights some potential placental-associated predictive markers of PTB for future investigation. The existence of a placental microbiome remains debatable. Therefore, an overview of our current understanding of the state and role of the placental microbiome (if it exists) and metabolome in human pregnancy is also provided. We critical evaluate the evidence for a placental microbiome, discuss its functional capacity through the elaborated metabolic products and also describe the consequent and more established fetomaternal inflammatory responses that stimulate the pathway to preterm premature rupture of membranes, preterm labour and spontaneous PTB.
Collapse
Affiliation(s)
- Kerry M Parris
- Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | | | - Marta C Cohen
- Oncology and Metabolism, University of Sheffield, Sheffield, UK.,Histopathology, Sheffield Childrens Hospital NHS Foundation Trust, Sheffield, UK
| | - Dilly O Anumba
- Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
123
|
Menon R, Behnia F, Polettini J, Richardson LS. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes. Semin Immunopathol 2020; 42:431-450. [PMID: 32785751 DOI: 10.1007/s00281-020-00808-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Spontaneous preterm birth (PTB) and preterm pre-labor rupture of the membranes (pPROM) are major pregnancy complications. Although PTB and pPROM have common etiologies, they arise from distinct pathophysiologic pathways. Inflammation is a common underlying mechanism in both conditions. Balanced inflammation is required for fetoplacental growth; however, overwhelming inflammation (physiologic at term and pathologic at preterm) can lead to term and preterm parturition. A lack of effective strategies to control inflammation and reduce the risk of PTB and pPROM suggests that there are several modes of the generation of inflammation which may be dependent on the type of uterine tissue. The avascular fetal membrane (amniochorion), which provides structure, support, and protection to the intrauterine cavity, is one of the key contributors of inflammation. Localized membrane inflammation helps tissue remodeling during pregnancy. Two unique mechanisms that generate balanced inflammation are the progressive development of senescence (aging) and cyclic cellular transitions: epithelial to mesenchymal (EMT) and mesenchymal to epithelial (MET). The intrauterine build-up of oxidative stress at term or in response to risk factors (preterm) can accelerate senescence and promote a terminal state of EMT, resulting in the accumulation of inflammation. Inflammation degrades the matrix and destabilizes membrane function. Inflammatory mediators from damaged membranes are propagated via extracellular vesicles (EV) to maternal uterine tissues and transition quiescent maternal uterine tissues into an active state of labor. Membrane inflammation and its propagation are fetal signals that may promote parturition. This review summarizes the mechanisms of fetal membrane cellular senescence, transitions, and the generation of inflammation that contributes to term and preterm parturitions.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, MRB 11.138, 301 301 University Blvd, Galveston, TX, 77555-1062, USA.
| | - Faranak Behnia
- Department of Obstetrics, Gynecology, and Reproductive Sciences, McGovern Medical School at the University of Texas Health Science Center at Houston, UT Health, Houston, Texas, USA
| | - Jossimara Polettini
- Universidade Federal da Fronteira Sul, Campus Passo Fundo, Rua Capitão Araujo, 20, Centro, Passo Fundo, Rio Grande do Sul, Brazil
| | - Lauren S Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, MRB 11.138, 301 301 University Blvd, Galveston, TX, 77555-1062, USA
| |
Collapse
|
124
|
Peterson LS, Stelzer IA, Tsai AS, Ghaemi MS, Han X, Ando K, Winn VD, Martinez NR, Contrepois K, Moufarrej MN, Quake S, Relman DA, Snyder MP, Shaw GM, Stevenson DK, Wong RJ, Arck P, Angst MS, Aghaeepour N, Gaudilliere B. Multiomic immune clockworks of pregnancy. Semin Immunopathol 2020; 42:397-412. [PMID: 32020337 PMCID: PMC7508753 DOI: 10.1007/s00281-019-00772-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022]
Abstract
Preterm birth is the leading cause of mortality in children under the age of five worldwide. Despite major efforts, we still lack the ability to accurately predict and effectively prevent preterm birth. While multiple factors contribute to preterm labor, dysregulations of immunological adaptations required for the maintenance of a healthy pregnancy is at its pathophysiological core. Consequently, a precise understanding of these chronologically paced immune adaptations and of the biological pacemakers that synchronize the pregnancy "immune clock" is a critical first step towards identifying deviations that are hallmarks of peterm birth. Here, we will review key elements of the fetal, placental, and maternal pacemakers that program the immune clock of pregnancy. We will then emphasize multiomic studies that enable a more integrated view of pregnancy-related immune adaptations. Such multiomic assessments can strengthen the biological plausibility of immunological findings and increase the power of biological signatures predictive of preterm birth.
Collapse
Affiliation(s)
- Laura S Peterson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ina A Stelzer
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy S Tsai
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mohammad S Ghaemi
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaoyuan Han
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kazuo Ando
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nadine R Martinez
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin Contrepois
- Stanford Metabolic Health Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mira N Moufarrej
- Department of Bioengineering, Stanford University School of Engineering, Stanford, CA, USA
| | - Stephen Quake
- Department of Bioengineering, Stanford University School of Engineering, Stanford, CA, USA
| | - David A Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Michael P Snyder
- Stanford Center for Genomics and Personalized Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary M Shaw
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David K Stevenson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald J Wong
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Petra Arck
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin S Angst
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Brice Gaudilliere
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
125
|
Three Types of Functional Regulatory T Cells Control T Cell Responses at the Human Maternal-Fetal Interface. Cell Rep 2020; 27:2537-2547.e5. [PMID: 31141680 DOI: 10.1016/j.celrep.2019.04.109] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/14/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
During pregnancy, maternal regulatory T cells (Tregs) are important in establishing immune tolerance to invading fetal extravillous trophoblasts (EVTs). CD25HIFOXP3+ Tregs are found at high levels in decidual tissues and have been shown to suppress fetus-specific and nonspecific responses. However, limited data are available on additional decidual Treg types and the mechanisms by which they are induced. This study investigated three distinct decidual CD4+ Treg types in healthy pregnancies with a regulatory phenotype and the ability to suppress T cell responses: CD25HIFOXP3+, PD1HIIL-10+, and TIGIT+FOXP3dim. Moreover, co-culture of HLA-G+ EVTs or decidual macrophages with blood CD4+ T cells directly increased the proportions of CD25HIFOXP3+ Tregs compared to T cells cultured alone. EVTs also increased PD1HI Tregs that could be inhibited by HLA-C and CD3 antibodies, suggesting an antigen-specific induction. The presence of distinct Treg types may allow for the modulation of a variety of inflammatory responses in the placenta.
Collapse
|
126
|
Gomez-Lopez N, Arenas-Hernandez M, Romero R, Miller D, Garcia-Flores V, Leng Y, Xu Y, Galaz J, Hassan SS, Hsu CD, Tse H, Sanchez-Torres C, Done B, Tarca AL. Regulatory T Cells Play a Role in a Subset of Idiopathic Preterm Labor/Birth and Adverse Neonatal Outcomes. Cell Rep 2020; 32:107874. [PMID: 32640239 PMCID: PMC7396155 DOI: 10.1016/j.celrep.2020.107874] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/13/2020] [Accepted: 06/15/2020] [Indexed: 12/29/2022] Open
Abstract
Regulatory T cells (Tregs) have been exhaustively investigated during early pregnancy; however, their role later in gestation is poorly understood. Herein, we report that functional Tregs are reduced at the maternal-fetal interface in a subset of women with idiopathic preterm labor/birth, which is accompanied by a concomitant increase in Tc17 cells. In mice, depletion of functional Tregs during late gestation induces preterm birth and adverse neonatal outcomes, which are rescued by the adoptive transfer of such cells. Treg depletion does not alter obstetrical parameters in the mother, yet it increases susceptibility to endotoxin-induced preterm birth. The mechanisms whereby depletion of Tregs induces adverse perinatal outcomes involve tissue-specific immune responses and mild systemic maternal inflammation, together with dysregulation of developmental and cellular processes in the placenta, in the absence of intra-amniotic inflammation. These findings provide mechanistic evidence supporting a role for Tregs in the pathophysiology of idiopathic preterm labor/birth and adverse neonatal outcomes.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Departamento de Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico City 07360, Mexico
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; Detroit Medical Center, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Harley Tse
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Carmen Sanchez-Torres
- Departamento de Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico City 07360, Mexico
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48201, USA
| |
Collapse
|
127
|
Role of Human Leukocyte Antigens at the Feto-Maternal Interface in Normal and Pathological Pregnancy: An Update. Int J Mol Sci 2020; 21:ijms21134756. [PMID: 32635423 PMCID: PMC7370064 DOI: 10.3390/ijms21134756] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
The successful maternal tolerance of the semi-allogeneic fetus provides an apparent immunologic paradox. Indeed, deep invasion of placental trophoblast cells into maternal uterine tissue and the following growth of the fetus have to be tolerated by a pregnant woman’s immune system. Among the various possible protective mechanisms that may be involved in human pregnancy, the expression of a non-classical pattern of human leukocyte antigen (HLA) class I molecules and the complete lack of expression of HLA class II molecules in placental tissues seem to be the most relevant mechanisms of fetal escape from maternal immune recognition. The importance of HLA molecules in fetal toleration by the maternal immune system is highlighted by pregnancy complications occurring in cases of abnormal HLA molecule expression at the maternal–fetal interface. In this review, we summarize evidences about the role of placental HLA molecules in normal and pathological pregnancies.
Collapse
|
128
|
Vazquez-Pagan A, Honce R, Schultz-Cherry S. Impact of influenza virus during pregnancy: from disease severity to vaccine efficacy. Future Virol 2020. [DOI: 10.2217/fvl-2020-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pregnant women are among the individuals at the highest risk for severe influenza virus infection. Infection of the mother during pregnancy increases the probability of adverse fetal outcomes such as small for gestational age, preterm birth and fetal death. Animal models of syngeneic and allogeneic mating can recapitulate the increased disease severity observed in pregnant women and are used to define the mechanism(s) of that increased severity. This review focuses on influenza A virus pathogenesis, the unique immunological landscape during pregnancy, the impact of maternal influenza virus infection on the fetus and the immune responses at the maternal–fetal interface. Finally, we summarize the importance of immunization and antiviral treatment in this population and highlight issues that warrant further investigation.
Collapse
Affiliation(s)
- Ana Vazquez-Pagan
- Graduate School of Biomedical Sciences, St Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rebekah Honce
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, USA
- Integrated Program in Biomedical Sciences, Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
129
|
Three types of HLA-G+ extravillous trophoblasts that have distinct immune regulatory properties. Proc Natl Acad Sci U S A 2020; 117:15772-15777. [PMID: 32581122 DOI: 10.1073/pnas.2000484117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, invading HLA-G+ extravillous trophoblasts (EVT) play a key role in placental development, uterine spiral artery remodeling, and prevention of detrimental maternal immune responses to placental and fetal antigens. Failures of these processes are suggested to play a role in the development of pregnancy complications, but very little is known about the underlying mechanisms. Here we present validated methods to purify and culture primary HLA-G+ EVT from the placental disk and chorionic membrane from healthy term pregnancy. Characterization of HLA-G+ EVT from term pregnancy compared to first trimester revealed their unique phenotypes, gene expression profiles, and differing capacities to increase regulatory T cells (Treg) during coculture assays, features that cannot be captured by using surrogate cell lines or animal models. Furthermore, clinical variables including gestational age and fetal sex significantly influenced EVT biology and function. These methods and approaches form a solid basis for further investigation of the role of HLA-G+ EVT in the development of detrimental placental inflammatory responses associated with pregnancy complications, including spontaneous preterm delivery and preeclampsia.
Collapse
|
130
|
Maternal and fetal T cells in term pregnancy and preterm labor. Cell Mol Immunol 2020; 17:693-704. [PMID: 32467619 DOI: 10.1038/s41423-020-0471-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Pregnancy is a state of immunological balance during which the mother and the developing fetus must tolerate each other while maintaining sufficient immunocompetence to ward off potential threats. The site of closest contact between the mother and fetus is the decidua, which represents the maternal-fetal interface. Many of the immune cell subsets present at the maternal-fetal interface have been well described; however, the importance of the maternal T cells in this compartment during late gestation and its complications, such as preterm labor and birth, has only recently been established. Moreover, pioneer and recent studies have indicated that fetal T cells are activated in different subsets of preterm labor and may elicit distinct inflammatory responses in the amniotic cavity, leading to preterm birth. In this review, we describe the established and proposed roles for maternal T cells at the maternal-fetal interface in normal term parturition, as well as the demonstrated contributions of such cells to the pathological process of preterm labor and birth. We also summarize the current knowledge of and proposed roles for fetal T cells in the pathophysiology of the preterm labor syndrome. It is our hope that this review provides a solid conceptual framework highlighting the importance of maternal and fetal T cells in late gestation and catalyzes new research questions that can further scientific understanding of these cells and their role in preterm labor and birth, the leading cause of neonatal mortality and morbidity worldwide.
Collapse
|
131
|
St-Germain LE, Castellana B, Baltayeva J, Beristain AG. Maternal Obesity and the Uterine Immune Cell Landscape: The Shaping Role of Inflammation. Int J Mol Sci 2020; 21:E3776. [PMID: 32471078 PMCID: PMC7312391 DOI: 10.3390/ijms21113776] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is often equated to the physiological response to injury or infection. Inflammatory responses defined by cytokine storms control cellular mechanisms that can either resolve quickly (i.e., acute inflammation) or remain prolonged and unabated (i.e., chronic inflammation). Perhaps less well-appreciated is the importance of inflammatory processes central to healthy pregnancy, including implantation, early stages of placentation, and parturition. Pregnancy juxtaposed with disease can lead to the perpetuation of aberrant inflammation that likely contributes to or potentiates maternal morbidity and poor fetal outcome. Maternal obesity, a prevalent condition within women of reproductive age, associates with increased risk of developing multiple pregnancy disorders. Importantly, chronic low-grade inflammation is thought to underlie the development of obesity-related obstetric and perinatal complications. While diverse subsets of uterine immune cells play central roles in initiating and maintaining healthy pregnancy, uterine leukocyte dysfunction as a result of maternal obesity may underpin the development of pregnancy disorders. In this review we discuss the current knowledge related to the impact of maternal obesity and obesity-associated inflammation on uterine immune cell function, utero-placental establishment, and pregnancy health.
Collapse
Affiliation(s)
- Lauren E. St-Germain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Barbara Castellana
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Jennet Baltayeva
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Alexander G. Beristain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| |
Collapse
|
132
|
Zhang YH, Aldo P, You Y, Ding J, Kaislasuo J, Petersen JF, Lokkegaard E, Peng G, Paidas MJ, Simpson S, Pal L, Guller S, Liu H, Liao AH, Mor G. Trophoblast-secreted soluble-PD-L1 modulates macrophage polarization and function. J Leukoc Biol 2020; 108:983-998. [PMID: 32386458 DOI: 10.1002/jlb.1a0420-012rr] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Decidual macrophages are in close contact with trophoblast cells during placenta development, and an appropriate crosstalk between these cellular compartments is crucial for the establishment and maintenance of a healthy pregnancy. During different phases of gestation, macrophages undergo dynamic changes to adjust to the different stages of fetal development. Trophoblast-secreted factors are considered the main modulators responsible for macrophage differentiation and function. However, the phenotype of these macrophages induced by trophoblast-secreted factors and the factors responsible for their polarization has not been elucidated. In this study, we characterized the phenotype and function of human trophoblast-induced macrophages. Using in vitro models, we found that human trophoblast-educated macrophages were CD14+ CD206+ CD86- and presented an unusual transcriptional profile in response to TLR4/LPS activation characterized by the expression of type I IFN-β expression. IFN-β further enhances the constitutive production of soluble programmed cell death ligand 1 (PD-L1) from trophoblast cells. PD-1 blockage inhibited trophoblast-induced macrophage differentiation. Soluble PD-L1 (sPD-L1) was detected in the blood of pregnant women and increased throughout the gestation. Collectively, our data suggest the existence of a regulatory circuit at the maternal fetal interface wherein IFN-β promotes sPD-L1 expression/secretion by trophoblast cells, which can then initiate a PD-L1/PD-1-mediated macrophage polarization toward an M2 phenotype, consequently decreasing inflammation. Macrophages then maintain the expression of sPD-L1 by the trophoblasts through IFN-β production induced through TLR4 ligation.
Collapse
Affiliation(s)
- Yong-Hong Zhang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.,Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Paulomi Aldo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Jiahui Ding
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Janina Kaislasuo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Obstetrics and Gynecology, University of Helsinki and the Helsinki University Hospital, Helsinki, Finland
| | - Jesper F Petersen
- Department of Obstetrics and Gynecology, North Zealand Hospital, Hilleroed, Denmark
| | - Ellen Lokkegaard
- Department of Obstetrics and Gynecology, North Zealand Hospital, Hilleroed, Denmark
| | - Gang Peng
- Department of Biostatistics, School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Samantha Simpson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lubna Pal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Seth Guller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ai Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Gil Mor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.,C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
133
|
Liu N, Chen J, He Y, Jia H, Jiang D, Li S, Yang Y, Dai Z, Wu Z, Wu G. Effects of maternal L-proline supplementation on inflammatory cytokines at the placenta and fetus interface of mice. Amino Acids 2020; 52:587-596. [PMID: 32170468 DOI: 10.1007/s00726-020-02837-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Abstract
Dietary L-proline (proline) supplementation during gestation enhances fetal survival and placental development in mice. The objective of the present study was to test the hypothesis that this beneficial effect of proline was associated with alterations in inflammatory response at the placenta and fetus interface. Populations of immune cells present in peripheral blood mononuclear cells (PBMC) were determined by flow cytometry analysis. The concentrations of immunoglobulins in plasma, and the concentrations of cytokines in plasma, uterus, placenta, and amniotic fluid were measured using a bead-based immunoassay. The data showed that proline supplementation led to higher (P < 0.05) populations of B lymphocytes (CD3-CD19+), natural killer (NK) cells (CD3-NK1.1+), and dendritic cells (DCs, CD11c+MHCII+) in peripheral blood, as compared with the controls. Conversely, mice fed a proline-supplemented diet had a lower population of neutrophils (CD11b+F4/80-). Further study showed that proline supplementation decreased (P < 0.05) the concentrations of (1) interleukin (IL)-23, IL-1α, and IL-6 in plasma; (2) IL-6 in the uterus; and (3) tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein (MCP)-1, and IL-17 in the placenta; and (4) interferon (IFN)-γ in amniotic fluid, compared with controls. Conversely, proline supplementation resulted in higher (P < 0.05) concentrations of (1) IL-10, IL-17 and granulocyte-macrophage colony-stimulating factor (GM-CSF) in plasma; (2) IL-10 and IL-1α in the uterus; and (3) IL-1α, IL-1β, IL-10, IL-27, and IFN-β in amniotic fluid, compared with controls. Moreover, concentrations of immunoglobulin (Ig) G2b and IgM were enhanced (P < 0.05) by proline administration. Taken together, our results reveal a regulatory effect of proline in the immunological response at the maternal-fetal interface, which is critical for embryonic development and fetal survival.
Collapse
Affiliation(s)
- Ning Liu
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jingqing Chen
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yu He
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Hai Jia
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Da Jiang
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Shuai Li
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Zhaolai Dai
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.
| | - Guoyao Wu
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
134
|
Bruno V, Corrado G, Baci D, Chiofalo B, Carosi MA, Ronchetti L, Piccione E, Albini A, Noonan DM, Piaggio G, Vizza E. Endometrial Cancer Immune Escape Mechanisms: Let Us Learn From the Fetal-Maternal Interface. Front Oncol 2020; 10:156. [PMID: 32226771 PMCID: PMC7080858 DOI: 10.3389/fonc.2020.00156] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
The immune escape mechanisms at the base of tumor progression in endometrial cancer mimic immune tolerance mechanisms occurring at the maternal-fetal interface. The biological and immunological processes behind the maternal-fetal interface are finely tuned in time and space during embryo implantation and subsequent pregnancy stages; conversely, those behind cancer progression are often aberrant. The environment composition at the maternal-fetal interface parallels the pro-tumor microenvironment identified in many cancers, pointing to the possibility for the use of the maternal-fetal interface as a model to depict immune therapeutic targets in cancer. The framework of cancer environment signatures involved in immune adaptations, precisely timed in cancer progression, could reveal a specific "immune clock" in endometrial cancer, which might guide clinicians in patient risk class assessment, diagnostic workup, management, surgical and therapeutic approach, and surveillance strategies. Here, we review studies approaching this hypothesis, focusing on what is known so far about oncofetal similarities in immunity with the idea to individualize personalized immunotherapy targets, through the downregulation of the immune escape stage or the reactivation of the pro-inflammatory processes suppressed by the tumor.
Collapse
Affiliation(s)
- Valentina Bruno
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Giacomo Corrado
- Gynecologic Oncology Unit, Department of Women and Children Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Denisa Baci
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Benito Chiofalo
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Antonia Carosi
- Anatomy Pathology Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Livia Ronchetti
- Anatomy Pathology Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Emilio Piccione
- Section of Gynecology, Academic Department of Surgical Sciences, Tor Vergata University Hospital, University of Rome "Tor Vergata", Rome, Italy
| | - Adriana Albini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Douglas M Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Giulia Piaggio
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Enrico Vizza
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
135
|
Abstract
Brazilian-born British biologist Dr. Peter Medawar played an integral role in developing the concepts of immunologic rejection and tolerance, which led to him receiving the Nobel Prize "for the discovery of acquired immunologic tolerance" and eventually made organ transplantation a reality. However, at the time of his early work in tolerance, a paradox to his theories was brought to his attention; how was pregnancy possible? Pregnancy resembles organ transplantation in that the fetus, possessing paternal antigens, is a semi-allogeneic graft that can survive without immunosuppression for 9 months. To answer this question, Medawar proposed three hypotheses of how a mother supports her fetus in utero, now known as "Medawar's Paradox." The mechanisms that govern fetomaternal tolerance are still incompletely understood but may provide critical insight into how to achieve immune tolerance in organ transplantation. Here, we review current understanding of the immune factors responsible for fetomaternal tolerance during pregnancy and discuss the potential implications for advances in transplantation science.
Collapse
Affiliation(s)
- Victoria Rendell
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Natalie M Bath
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Todd V Brennan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
136
|
Fuhler GM. The immune system and microbiome in pregnancy. Best Pract Res Clin Gastroenterol 2020; 44-45:101671. [PMID: 32359685 DOI: 10.1016/j.bpg.2020.101671] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/19/2020] [Accepted: 03/05/2020] [Indexed: 01/31/2023]
Abstract
Hormonal changes during pregnancy instigate numerous physiological changes aimed at the growth and delivery of a healthy baby. A careful balance between immunological tolerance against fetal antigens and immunity against infectious agents needs to be maintained. A three-way interaction between pregnancy hormones, the immune system and our microbiota is now emerging. Recent evidence suggests that microbial alterations seen during pregnancy may help maintain homeostasis and aid the required physiological changes occurring in pregnancy. However, these same immunological and microbial alterations may also make women more vulnerable during pregnancy and the post-partum period, especially regarding immunological and infectious diseases. Thus, a further understanding of the host-microbial interactions taking place during pregnancy may improve identification of populations at risk for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- G M Fuhler
- Erasmus MC University Medical Center Rotterdam, Department of Gastroenterology and Hepatology, Erasmus Medical Center, Gravendijkwal 230, 3015CE, Rotterdam, the Netherlands.
| |
Collapse
|
137
|
Smolag KI, Mueni CM, Leandersson K, Jirström K, Hagerling C, Mörgelin M, Barlow PN, Martin M, Blom AM. Complement inhibitor factor H expressed by breast cancer cells differentiates CD14 + human monocytes into immunosuppressive macrophages. Oncoimmunology 2020; 9:1731135. [PMID: 32923173 PMCID: PMC7453999 DOI: 10.1080/2162402x.2020.1731135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 01/08/2023] Open
Abstract
Macrophages are a major immune cell type in the tumor microenvironment, where they display a tumor-supporting phenotype. Factor H (FH) is a complement inhibitor that also plays a role in several cellular functions. To date, the phenotype of monocytes stimulated with FH has been unexplored. We discovered that FH is a survival factor for CD14+ primary human monocytes, promoting their differentiation into macrophages in serum-free medium. This activity was localized to the C-terminal domains of FH and it was inhibited in plasma, indicating that the phenomenon may be most relevant in tissues. FH-induced macrophages display characteristics of immunosuppressive cells including expression of CD163 and CD206, release of the anti-inflammatory cytokine IL-10 and changes in metabolism. Furthermore, FH-induced macrophages express low levels of HLA-DR but high levels of co-inhibitory molecule programmed death-ligand 1 (PD-L1), and accordingly, a reduced capacity for T-cell activation. Finally, we show that FH is expressed by human breast cancer cells and that this correlates with the presence of immunosuppressive macrophages, breast cancer recurrence and severity of the disease. We propose that the expression of FH by tumor cells and the promotion of an immunosuppressive cancer microenvironment by this protein should be taken into account when considering the effectiveness of immunotherapies against breast cancer.
Collapse
Affiliation(s)
- Karolina I Smolag
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Christine M Mueni
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karin Leandersson
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karin Jirström
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | | - Paul N Barlow
- Edinburgh Biological NMR Unit, University of Edinburgh, Edinburgh, UK
| | - Myriam Martin
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
138
|
Meyer N, Zenclussen AC. Immune Cells in the Uterine Remodeling: Are They the Target of Endocrine Disrupting Chemicals? Front Immunol 2020; 11:246. [PMID: 32140155 PMCID: PMC7043066 DOI: 10.3389/fimmu.2020.00246] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Sufficient uterine remodeling is essential for fetal survival and development. Pathologies related to poor remodeling have a negative impact on maternal and fetal health even years after birth. Research of the last decades yielded excellent studies demonstrating the key role of immune cells in the remodeling processes. This review summarizes the current knowledge about the relevance of immune cells for uterine remodeling during pregnancy and further discusses immunomodulatory effects of man-made endocrine disrupting chemicals on immune cells.
Collapse
Affiliation(s)
- Nicole Meyer
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Ana Claudia Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
139
|
Sang Y, Li Y, Xu L, Li D, Du M. Regulatory mechanisms of endometrial decidualization and pregnancy-related diseases. Acta Biochim Biophys Sin (Shanghai) 2020; 52:105-115. [PMID: 31854442 DOI: 10.1093/abbs/gmz146] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/13/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Endometrial decidualization is one of the earliest changes by which the uterus adapts to pregnancy. During this period, the endometrium undergoes complex changes in its biochemistry, physiology, and function at various levels, providing a suitable microenvironment for embryo implantation and development. Favorable decidualization lays an essential foundation for subsequent gestation, without which pregnancy failure or pregnancy complications may occur. The interaction between pregnancy-related hormones and cytokines produced by embryonic and uterine cells is known to be essential for decidualization, in which some transcription factors also play pivotal roles. Increasing evidence has revealed the importance of metabolism in regulating decidualization. Here, we summarize and discuss these crucial elements in decidualization and the relationship between decidualization and pregnancy complications. A better comprehension of these issues should help to improve the prediction of pregnancy outcomes and the use of appropriate intervention.
Collapse
Affiliation(s)
- Yifei Sang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yanhong Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Ling Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Dajin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Meirong Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
140
|
Chang RQ, Zhou WJ, Li DJ, Li MQ. Innate Lymphoid Cells at the Maternal-Fetal Interface in Human Pregnancy. Int J Biol Sci 2020; 16:957-969. [PMID: 32140065 PMCID: PMC7053337 DOI: 10.7150/ijbs.38264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnancy constitutes a major challenge to the maternal immune system, which must tolerate fetal alloantigen encoded by paternal genes. In addition to their role in inducing maternal-fetal immune tolerance, accumulating evidence indicates that decidual immune cells are involved in several processes required for a successful pregnancy, including trophoblast invasion as well as tissue and spiral artery remodeling. Innate lymphoid cells (ILCs), an important branch of the innate immune system, which has expanded rapidly in recent years, are strong actors in mucosal immunity, tissue homeostasis and metabolism regulation. With the recent identification of ILCs in the human decidua, the role of ILCs at the maternal-fetal interface raises concern. Herein, we review the presence and characterization of ILCs in the human decidua, as well as their function in normal pregnancy and pathological pregnancy, including reproductive failure, preeclampsia and others.
Collapse
Affiliation(s)
- Rui-Qi Chang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200082, People's Republic of China
| | - Wen-Jie Zhou
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200082, People's Republic of China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200082, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200082, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China
| |
Collapse
|
141
|
Schliefsteiner C, Ibesich S, Wadsack C. Placental Hofbauer Cell Polarization Resists Inflammatory Cues In Vitro. Int J Mol Sci 2020; 21:ijms21030736. [PMID: 31979196 PMCID: PMC7038058 DOI: 10.3390/ijms21030736] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 11/23/2022] Open
Abstract
Feto-placental Hofbauer cells (HBCs) are macrophages residing in placental stroma. They are generally described as anti-inflammatory M2 polarized cells, promoting tolerance and tissue remodeling. In certain pathologies, however, a possible phenotypical switch towards pro-inflammatory M1 macrophages has been proposed. The study aimed to determine if HBCs can acquire an M1 phenotype under pro-inflammatory conditions in vitro. HBCs were isolated from healthy human term placentas. Cells were cultivated upon addition of LPS and INF-γ or IL-4 and IL-13 to induce the M1 and M2 phenotype, respectively. Specific cell polarization markers and cytokines, associated with respective phenotypes, were investigated by flow cytometry and ELISA. THP-1 macrophages served as positive control. Pro-inflammatory stimuli reduced M2 markers CD163 and DC-SIGN, but did not induce M1 markers. TNF-α release was increased, but at the same time TGF-β and IL-10 release was upregulated, resembling in part the M2b sub-phenotype. Anti-inflammatory stimuli had no effect on HBC polarization. HBCs maintain their M2 phenotype in vitro despite inflammatory stimuli, which might represent a state of adaption and tolerance to avoid rejection of the semiallogeneic feto-placental unit.
Collapse
|
142
|
The phenotype of decidual CD56+ lymphocytes is influenced by secreted factors from decidual stromal cells but not macrophages in the first trimester of pregnancy. J Reprod Immunol 2020; 138:103082. [PMID: 31982613 DOI: 10.1016/j.jri.2020.103082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 11/23/2022]
Abstract
During the first trimester of pregnancy the decidua is comprised of decidual stromal cells (DSC), invading fetal trophoblast cells and maternal leukocytes, including decidual natural killer (dNK) cells and macrophages. dNK cells are distinct from peripheral blood NK cells and have a role in regulating trophoblast invasion and spiral artery remodelling. The unique phenotype of dNK cells results from the decidual environment in which they reside, however the interaction and influence of other cells in the decidua on dNK phenotype is unknown. We isolated first trimester DSC and decidual macrophages and investigated the effect that DSC and decidual macrophage secreted factors have on CD56+ decidual lymphocyte receptor expression and cytokine secretion (including dNK cells). We report that DSC secreted factors induce the secretion of the cytokines IL-8 and IL-6 from first trimester CD56+ cells. However, neither DSC nor decidual macrophage secreted factors changed CD56+ cell receptor expression. These results suggest that secreted factors from DSC influence CD56+ decidual lymphocytes during the first trimester of pregnancy and therefore may play a role in regulating the unique phenotype and function of dNK cells during placentation.
Collapse
|
143
|
Alternatively Activated Macrophages Are the Primary Retinoic Acid-Producing Cells in Human Decidua. Reprod Sci 2020; 27:334-341. [PMID: 32046391 DOI: 10.1007/s43032-019-00030-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022]
Abstract
In situ production and metabolism of all-trans retinoic acid (RA) in decidual tissue are critically important for endometrial stromal differentiation, embryo implantation, and healthy placentation. However, the cellular source(s) of RA in this tissue has yet to be determined. To identify the primary RA-producing cells in human term decidua, we isolated cells from decidua basalis of delivered placenta and quantified cellular retinal dehydrogenase (RALDH) activity, a major biosynthetic enzyme whose activity determines the synthesis of RA from retinol, using an Aldefluor assay and flow cytometry. RA production in decidual tissue and sorted cell subpopulations was evaluated by liquid chromatography-tandem mass spectrometry. CD14+ cells (macrophages/monocytes) showed > 4-fold higher RALDH activity than stromal cells (CD10+), T cells (CD3+), or non-T lymphocytes (CD3-negative). CD11c+ cells that did not co-express CD14 showed about one-third the RALDH activity of their CD14 co-expressing counterparts. The highest RALDH activity was found in "alternatively activated" M2 macrophages delineated by the simultaneous expression of CD14 and CD163. The greater RA synthesizing capacity of M2 versus CD14+CD163-ve (M1) cells was confirmed by direct quantitation of RA biosynthesis from retinol. RA levels in whole decidua were correlated with M2 cell density but not with stromal cell (CD10+) number, the major cell type comprising the decidua. These results identified M2 monocyte/macrophages as the primary source of RA in human term decidua. This finding may have implications for certain pregnancy complications that are known to be associated with reduced numbers of decidual M2 cells.
Collapse
|
144
|
Röszer T. Signal Mechanisms of M2 Macrophage Activation. PROGRESS IN INFLAMMATION RESEARCH 2020:73-97. [DOI: 10.1007/978-3-030-50480-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
145
|
Fadiloglu E, Unal C, Tanacan A, Cagan M, Beksac MS. Effect of hypocomplementemia on perinatal outcomes of pregnancies with autoimmune disorders. Hum Antibodies 2020; 28:179-184. [PMID: 32116241 DOI: 10.3233/hab-200401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To demonstrate the effect of preconceptional complement levels on perinatal outcomes of pregnancies with autoimmune disorders. METHODS Pregnant women with autoimmune disorders (autoimmune disease and/or autoimmune antibody positivity) who were screened for complement levels (C3 and C4) prior to their pregnancies were enrolled in a special antenatal care program. These patients were administered low-dose low-molecular-weight heparin (enoxaparine, 1 × 2000 Anti-XA IU/0.2 mL/day), low-dose salysilic acid (100 mg/day) and low-dose corticosteroid (methylprednisolone, 1 × 4 mg/day orally) as soon as their pregnancies were confirmed according to the institutional protocol. We have compared hypo- and normocomplement pregnancies with autoimmune disorders in terms of their obstetric and perinatal outcomes. We have also used Beksac Obstetric Index (BOI) which is "[living child + (π/10)]/gravidity" for the comparison of their previous obstetric histories. RESULTS Obstetric and neonatal outcomes showed no significant difference between hypocomplement patients (n= 38) and control group (n= 157) (p> 0.05). "Composite obstetric and perinatal adverse outcome" rates were 26.2% and 27.3% in study and control groups, respectively (p> 0.05). BOI was significantly lower in hypocomplement patients (p: 0.002). Then, we have classified hypocomplement patients into 3 subgroups according to the type of complement (C3, C4 or both). Comparison inbetween these groups revealed no statistical significance in any of the analyzed parameters (p> 0.05). CONCLUSION Low complement levels in pregnant women with autoimmune disorders may be associated with gestational problems and poor obstetric history. Immunomodulatory treatment modalities such as ours may be beneficial for improving the obstetric and neonatal outcomes.
Collapse
|
146
|
Turkeltaub PC, Lockey RF, Holmes K, Friedmann E. Asthma and/or hay fever as predictors of fertility/impaired fecundity in U.S. women: National Survey of Family Growth. Sci Rep 2019; 9:18711. [PMID: 31822754 PMCID: PMC6904488 DOI: 10.1038/s41598-019-55259-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/26/2019] [Indexed: 01/25/2023] Open
Abstract
This study addresses whether asthma and/or hay fever predict fertility and impaired fecundity. The lifetime number of pregnancies (fertility) and spontaneous pregnancy losses (impaired fecundity) in 10,847 women representative of the U.S. population 15 to 44 years of age with histories of diagnosed asthma and/or hay fever are analyzed in the 1995 National Survey of Family Growth using multivariable Poisson regression with multiple covariates and adjustments for complex sampling. Smokers have significantly increased fertility compared to nonsmokers. Smokers with asthma only have significantly increased fertility compared to other smokers. Higher fertility is associated with impaired fecundity (ectopic pregnancy, miscarriage, stillbirth). Women with asthma (with and without hay fever) have significantly higher pregnancy losses than women without asthma. With increasing number of pregnancies, smokers have increased pregnancy losses compared to nonsmokers. Smokers, especially those with asthma only, have increased fertility and require special attention as to their family planning needs, reproductive health, and smoking cessation. Women with asthma, regardless of number of pregnancies, and smokers with higher numbers of pregnancies have high risk pregnancies that require optimal asthma/medical management prenatally and throughout pregnancy. Whether a proinflammatory asthma endotype underlies both the increased fertility and impaired fecundity associated with age and smoking is discussed.
Collapse
Affiliation(s)
| | - Richard F Lockey
- Division of Allergy & Immunology, University of South Florida College of Medicine, 13000 Bruce B. Downs Blvd, Tampa, Florida, 33613, USA
| | - Katie Holmes
- Organizational Systems and Adult Health, University of Maryland School of Nursing, 655 W. Lombard St., Baltimore, Maryland, 21201, USA
- The Hilltop Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland, 21250, USA
| | - Erika Friedmann
- Organizational Systems and Adult Health, University of Maryland School of Nursing, 655 W. Lombard St., Baltimore, Maryland, 21201, USA
| |
Collapse
|
147
|
Papúchová H, Meissner TB, Li Q, Strominger JL, Tilburgs T. The Dual Role of HLA-C in Tolerance and Immunity at the Maternal-Fetal Interface. Front Immunol 2019; 10:2730. [PMID: 31921098 PMCID: PMC6913657 DOI: 10.3389/fimmu.2019.02730] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
To establish a healthy pregnancy, maternal immune cells must tolerate fetal allo-antigens and remain competent to respond to infections both systemically and in placental tissues. Extravillous trophoblasts (EVT) are the most invasive cells of extra-embryonic origin to invade uterine tissues and express polymorphic Human Leucocyte Antigen-C (HLA-C) of both maternal and paternal origin. Thus, HLA-C is a key molecule that can elicit allogeneic immune responses by maternal T and NK cells and for which maternal-fetal immune tolerance needs to be established. HLA-C is also the only classical MHC molecule expressed by EVT that can present a wide variety of peptides to maternal memory T cells and establish protective immunity. The expression of paternal HLA-C by EVT provides a target for maternal NK and T cells, whereas HLA-C expression levels may influence how this response is shaped. This dual function of HLA-C requires tight transcriptional regulation of its expression to balance induction of tolerance and immunity. Here, we critically review new insights into: (i) the mechanisms controlling expression of HLA-C by EVT, (ii) the mechanisms by which decidual NK cells, effector T cells and regulatory T cells recognize HLA-C allo-antigens, and (iii) immune recognition of pathogen derived antigens in context of HLA-C.
Collapse
Affiliation(s)
- Henrieta Papúchová
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Torsten B Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States.,Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Qin Li
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States.,Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
148
|
The development of preeclampsia in oocyte donation pregnancies is related to the number of fetal-maternal HLA class II mismatches. J Reprod Immunol 2019; 137:103074. [PMID: 31864034 DOI: 10.1016/j.jri.2019.103074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/03/2019] [Indexed: 11/24/2022]
Abstract
In oocyte donation (OD) pregnancy, a fetus can be completely allogeneic to the recipient. Consequently, the maternal immune system has to cope with greater immunogenetic dissimilarity compared to naturally conceived pregnancy. Previously, we showed an association between successful OD pregnancy and lower immunogenetic dissimilarity, reflected by the number of fetal-maternal Human Leukocyte Antigen (HLA) mismatches, than expected by chance. In this study we aimed to determine whether the development of preeclampsia in OD pregnancies is related to the number of fetal-maternal HLA mismatches. A retrospective, nested case-control study was performed within a cohort of 76 singleton OD pregnancies. Maternal and fetal umbilical cord blood was typed for HLA-A, -B, -C, -DR and -DQ, and the number of fetal-maternal HLA mismatches was calculated. In addition, the incidence of child-specific HLA antibodies was determined. 13 pregnancies were complicated by preeclampsia. To demonstrate an influence of HLA mismatches on the development of preeclampsia, a univariate logistic regression analysis was performed adjusted for maternal age and socio-economic status. A significant association between the number of fetal-maternal HLA class II mismatches and the development of preeclampsia was observed (OR = 3.8, 95 % CI: 1.6-9.0; p = 0.003). This association was not linked to the development of HLA class II antibodies. According to our findings, an increased number of HLA class II mismatches is a risk factor for the development of preeclampsia in OD pregnancies. The effect of HLA class II mismatches might be explained by the induction of a cellular rather than a humoral immune response.
Collapse
|
149
|
Tagoma A, Haller‐Kikkatalo K, Roos K, Oras A, Kirss A, Ilonen J, Uibo R. Interleukin‐7, T helper 1, and regulatory T‐cell activity‐related cytokines are increased during the second trimester of healthy pregnancy compared to non‐pregnant women. Am J Reprod Immunol 2019; 82:e13188. [DOI: 10.1111/aji.13188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/02/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Aili Tagoma
- Department of Immunology Faculty of Medicine Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Kadri Haller‐Kikkatalo
- Department of Immunology Faculty of Medicine Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Kristine Roos
- Department of Immunology Faculty of Medicine Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Astrid Oras
- Department of Immunology Faculty of Medicine Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Anne Kirss
- Women's Clinic Tartu University Hospital Tartu Estonia
| | - Jorma Ilonen
- Immunogenetics Laboratory Institute of Biomedicine University of Turku Turku Finland
- Clinical Microbiology Turku University Hospital Turku Finland
| | - Raivo Uibo
- Department of Immunology Faculty of Medicine Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| |
Collapse
|
150
|
Rasmark Roepke E, Bruno V, Nedstrand E, Boij R, Strid CP, Piccione E, Berg G, Svensson-Arvelund J, Jenmalm MC, Rubér M, Ernerudh J. Low-molecular-weight-heparin increases Th1- and Th17-associated chemokine levels during pregnancy in women with unexplained recurrent pregnancy loss: a randomised controlled trial. Sci Rep 2019; 9:12314. [PMID: 31444404 PMCID: PMC6707182 DOI: 10.1038/s41598-019-48799-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/13/2019] [Indexed: 11/29/2022] Open
Abstract
Low-molecular-weight heparin (LMWH) is widely used to treat recurrent pregnancy loss (RPL) because of its anti-coagulant effects. Although in vitro studies have suggested additional immunological effects, these are debated. We therefore investigated whether LMWH could modulate immune responses in vivo during pregnancy of women with unexplained RPL. A Swedish open multi-centre randomised controlled trial included 45 women treated with tinzaparin and 42 untreated women. Longitudinally collected plasma samples were obtained at gestational weeks (gw) 6, 18, 28 and 34 and analysed by multiplex bead technology for levels of 11 cytokines and chemokines, chosen to represent inflammation and T-helper subset-associated immunity. Mixed linear models test on LMWH-treated and untreated women showed differences during pregnancy of the Th1-associated chemokines CXCL10 (p = 0.01), CXCL11 (p < 0.001) and the Th17-associated chemokine CCL20 (p = 0.04), while CCL2, CCL17, CCL22, CXCL1, CXCL8, CXCL12, CXCL13 and IL-6 did not differ. Subsequent Student's t-test showed significantly higher plasma levels of CXCL10 and CXCL11 in treated than untreated women at gw 28 and 34. The consistent increase in the two Th1-associated chemokines suggests a potential proinflammatory and unfavourable effect of LMWH treatment during later stages of pregnancy, when Th1 immunity is known to disrupt immunological tolerance.
Collapse
Affiliation(s)
- E Rasmark Roepke
- Department of Obstetrics and Gynecology, Skåne University Hospital, Malmö and Lund University, Lund, Sweden.
| | - V Bruno
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Section of Gynecology and Obstetrics, Academic Department of Biomedicine and Prevention, and Clinical Department of Surgery, Tor Vergata University Hospital, Rome, Italy
| | - E Nedstrand
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - R Boij
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - C Petersson Strid
- Departmen of Obstetrics and Gynecology, Kalmar Hospital, Kalmar, Sweden
| | - E Piccione
- Section of Gynecology and Obstetrics, Academic Department of Biomedicine and Prevention, and Clinical Department of Surgery, Tor Vergata University Hospital, Rome, Italy
| | - G Berg
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - J Svensson-Arvelund
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - M C Jenmalm
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - M Rubér
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - J Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|