101
|
Impaired maintenance of naturally acquired T-cell memory to the meningococcus in patients with B-cell immunodeficiency. Blood 2009; 113:4206-12. [DOI: 10.1182/blood-2008-08-171587] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AbstractThe importance of T cells in the generation of antigen-specific B-cell immunity has been extensively described, but the role B cells play in shaping T-cell memory is uncertain. In healthy controls, exposure to Neisseria meningitidis in the upper respiratory tract is associated with the generation of memory T cells in the mucosal and systemic compartments. However, we demonstrate that in B cell–deficient subjects with X-linked agammaglobulinemia (XLA), naturally acquired T-cell memory responses to meningococcal antigens are reduced compared with healthy control patients. This difference is not found in T-cell memory to an obligate respiratory pathogen, influenza virus. Accordingly, we show that meningococcal antigens up-regulate major histocompatibility complex (MHC) class II, CD40, CD86/80 expression on mucosal and systemic associated B cells and that antigen presentation stimulates T-cell proliferation. A similar reduction in N meningitidis but not influenza antigen–specific T-cell memory was observed in subjects with X-linked hyper IgM syndrome (X-HIM), implicating the interaction of CD40-CD40L in this process. Together, these data implicate B cells in the induction and maintenance of T-cell memory to mucosal colonizing bacteria such as N meningitidis and highlight the importance of B cells beyond antibody production but as a target for immune reconstitution.
Collapse
|
102
|
Jennings P, Yuan D. NK cell enhancement of antigen presentation by B lymphocytes. THE JOURNAL OF IMMUNOLOGY 2009; 182:2879-87. [PMID: 19234183 DOI: 10.4049/jimmunol.0803220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ag presentation to CD4 T cells can be mediated by a number of cell types depending on the anatomical site in which Ag is first encountered. For blood borne Ags, cells localized in situ in the spleen should be major players. There is now much evidence that B cell Ag presentation may be particularly important in the priming of memory T cells. The majority of NK cells are also localized the spleen. Inasmuch as we have previously shown that NK cells can modulate various aspects of B cell differentiation, we entertained the possibility that NK cells can also influence Ag presentation by B cells. By specific depletion of NK cells before immunization, we show herein that NK cells play an important role in modulating the ability of B cells to process and present Ag to T cells. These effects are particularly important in the generation of memory T cells. The findings are further substantiated by in vitro experiments showing that the enhancement does not require IFN-gamma but is mediated by direct cell-cell interaction. These results show, for the first time, that the rapid activation of a component of the innate response can even exert effects on the Ag-specific memory response.
Collapse
Affiliation(s)
- Paula Jennings
- Graduate Program in Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
103
|
Wojciechowski W, Harris DP, Sprague F, Mousseau B, Makris M, Kusser K, Honjo T, Mohrs K, Mohrs M, Randall T, Lund FE. Cytokine-producing effector B cells regulate type 2 immunity to H. polygyrus. Immunity 2009; 30:421-33. [PMID: 19249230 PMCID: PMC2745290 DOI: 10.1016/j.immuni.2009.01.006] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 10/28/2008] [Accepted: 01/05/2009] [Indexed: 12/01/2022]
Abstract
Immunity to the intestinal parasite Heligomosomoides polygyrus is dependent on the successful generation of T helper 2 (Th2) memory cells. We showed that B cells contribute to immunity against H. polygyrus by producing antibody (Ab) and by promoting expansion and differentiation of primary and memory Th2 cells. We also demonstrated that cytokine-producing effector B cells were essential for effective immunity to H. polygyrus. Tumor necrosis factor alpha production by B cells was necessary for sustained Ab production, whereas interleukin 2 production by B cells was necessary for Th2 cell expansion and differentiation. These results show that B cells mediate protection from pathogens not only by presenting antigen and secreting antibody but also by producing cytokines that regulate the quality and magnitude of humoral and cellular immune responses.
Collapse
|
104
|
Whitmire JK, Asano MS, Kaech SM, Sarkar S, Hannum LG, Shlomchik MJ, Ahmed R. Requirement of B cells for generating CD4+ T cell memory. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:1868-76. [PMID: 19201839 PMCID: PMC2658628 DOI: 10.4049/jimmunol.0802501] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cells can influence T cell responses by directly presenting Ag or by secreting Ab that binds to Ag to form immunogenic complexes. Conflicting evidence suggests that persisting Ag-Ab complexes propagate long-term T cell memory; yet, other data indicate that memory cells can survive without specific Ag or MHC. In this study, the roles of B cells and Ag-Ab complexes in T cell responses to lymphocytic choriomeningitis virus (LCMV) infection were investigated using B cell-deficient or B cell-competent mice. Despite normal lymphocyte expansion after acute infection, B cell-deficient mice rapidly lost CD4(+) T cell memory, but not CD8(+) T cell memory, during the contraction phase. To determine whether Ag-Ab complexes sustain CD4(+) T cell memory, T cell responses were followed in B cell-transgenic (mIg-Tg) mice that have B cells but neither LCMV-specific Ab nor LCMV-immune complex deposition. In contrast to B cell-deficient mice, mIg-Tg mice retained functional Th cell memory, indicating that B cells selectively preserve CD4(+) T cell memory independently of immune complex formation. An in vivo consequence of losing CD4(+) T cell memory was that B cell-deficient mice were unable to resolve chronic virus infection. These data implicate a B cell function other than Ab production that induces long-term protective immunity.
Collapse
Affiliation(s)
- Jason K Whitmire
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
105
|
Fulop T, Franceschi C, Hirokawa K, Pawelec G. B-Cells and Antibodies in Old Humans. HANDBOOK ON IMMUNOSENESCENCE 2009. [PMCID: PMC7121755 DOI: 10.1007/978-1-4020-9063-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Department of Medicine, Immunology Graduate Programme, Faculty of Medicine, University of Sherbrooke, 1036 Rue Belvedere, J1H 4C4 Sherbrooke, Quebec Canada
| | - Claudio Franceschi
- Department of Experimental Pathalogy, CIG Interdepartmental Center “L. Galvani” University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Katsuiku Hirokawa
- Institute for Health and Life Sciences, 4-6-22 Kohinato, Bunkyo-ku, Tokyo, 112-0006 Japan
| | - Graham Pawelec
- ZMF - Zentrum Med. Forschung Abt. Transplant./ Immunologie, University of Tübingen, Waldhörnlestr. 22, 72072 Tübingen, Germany
| |
Collapse
|
106
|
Jennings P, Chan A, Schwartzberg P, Wakeland EK, Yuan D. Antigen-specific responses and ANA production in B6.Sle1b mice: a role for SAP. J Autoimmun 2008; 31:345-53. [PMID: 18845419 PMCID: PMC2877280 DOI: 10.1016/j.jaut.2008.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 08/04/2008] [Accepted: 08/04/2008] [Indexed: 01/20/2023]
Abstract
B6.Sle1b mice, which contain the Sle1b gene interval derived from lupus prone NZM2410 mice on a C57BL/6 background, present with gender-biased, highly penetrant anti-nuclear antibody (ANA) production. To obtain some insight into the possible induction mechanism of autoantibodies in these mice we compared antigen-specific T dependent (TD) and T independent (TI-II) responses between B6.Sle1b and B6 mice before the development of high ANA titers. Our results show that B6.Sle1b mice mount enhanced responses to a TI-II antigen. Additionally, the memory T cell response generated by a TD antigen also increased. This enhancement correlates with the greater ability of B cells from B6.Sle1b mice to present antigen to T cells. The SLAM Associated Protein (SAP) is critical for signaling of many of the molecules encoded by the SLAM/CD2 gene cluster, candidates for mediating the Sle1b phenotype; therefore, we also investigated the effect of sap deletion in these strains on the TD and TI-II responses as well as on ANA production. The results of these studies of responses to non-self-antigens provide further insight into the mechanism by which responses to self-antigens might be initiated in the context of specific genetic alterations.
Collapse
MESH Headings
- Animals
- Antibodies, Antinuclear/biosynthesis
- Antibodies, Antinuclear/immunology
- Antigen Presentation/immunology
- Antigens, T-Independent/immunology
- Antigens, T-Independent/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Signal Transduction
- Signaling Lymphocytic Activation Molecule Associated Protein
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Paula Jennings
- Department of Molecular Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Alice Chan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Pamela Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Md 20892
| | - Edward K. Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Dorothy Yuan
- Department of Molecular Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
107
|
Nozaki T, Rosenblum JM, Ishii D, Tanabe K, Fairchild RL. CD4 T cell-mediated rejection of cardiac allografts in B cell-deficient mice. THE JOURNAL OF IMMUNOLOGY 2008; 181:5257-63. [PMID: 18832680 DOI: 10.4049/jimmunol.181.8.5257] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CD4 T cell-dependent mechanisms promoting allograft rejection include expression of inflammatory functions within the graft and the provision of help for donor-reactive CD8 T cell and Ab responses. These studies tested CD4 T cell-mediated rejection of MHC-mismatched cardiac allografts in the absence of both CD8 T and B lymphocytes. Whereas wild-type C57BL/6 recipients depleted of CD8 T cells rejected A/J cardiac grafts within 10 days, allografts were not rejected in B cell-deficient B6.muMT(-/-) recipients depleted of CD8 T cells. Isolated wild-type C57BL/6 and B6.muMT(-/-) CD4 T cells had nearly equivalent in vivo alloreactive proliferative responses. CD4 T cell numbers in B6.muMT(-/-) spleens were 10% of that in wild-type mice but were only slightly decreased in peripheral lymph nodes. CD8 T cell depletion did not abrogate B6.muMT(-/-) mice rejection of A/J skin allografts and this rejection rendered these recipients able to reject A/J cardiac allografts. Redirection of the alloimmune response to the lymph nodes by splenectomy conferred the ability of B6.muMT(-/-) CD4 T cells to reject cardiac allografts. These results indicate that the low number of splenic CD4 T cells in B6.muMT(-/-) mice underlies the inability to reject cardiac allografts and this inability is overcome by diverting the CD4 T cell response to the peripheral lymph nodes.
Collapse
Affiliation(s)
- Taiji Nozaki
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
108
|
Cardoso CR, Provinciatto PR, Godoi DF, Vieira TS, Ferreira BR, Teixeira G, Rossi MA, Cunha FQ, Silva JS. B cells are involved in the modulation of pathogenic gut immune response in food-allergic enteropathy. Clin Exp Immunol 2008; 154:153-61. [PMID: 18778361 DOI: 10.1111/j.1365-2249.2008.03748.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Food enteropathies involve uncontrolled or hypersensitivity reactions to ingested nutrients and may result in IgE and T-helper type 2 (Th2) responses as in food allergy. However, the precise role of B cells in the development of food enteropathies remains uncertain. In this work, we used B cell-deficient mice (B KO) and a model of peanut sensitization to examine the involvement of B lymphocytes in the pathogenesis of food allergy. Results showed that priming of wild-type (WT) mice with peanut proteins induced specific IgG1 and IgE responses in serum, with edema, tissue destruction, epithelial exulceration and inflammatory infiltrate in the gut of sensitized and challenged (S + Peanut) WT animals. In contrast, there was no sera immunoglobulin detection and absence of tissue destruction in the gut of B KO mice, which presented moderate inflammatory infiltrate and villous enlargement after peanut challenge. These animals presented marked decrease in IL-4 and TNF-alpha and high levels of IL-10, TGF-beta, IL-12p40 and IFN-gamma mRNA in the gut. Moreover, the expression of CCL5, CCL11 and CXCL1 was reduced in the gut of B KO mice, in contrast to elevated messages of CCL2 or similar detection of Th1-related chemokines in S + Peanut WT mice. Finally, we provided evidence that B cells are necessary to the development of food-related enteropathies and induction of gut inflammation during allergic reactions to food.
Collapse
Affiliation(s)
- C R Cardoso
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeiráo Preto, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Dalai SK, Mirshahidi S, Morrot A, Zavala F, Sadegh-Nasseri S. Anergy in memory CD4+ T cells is induced by B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:3221-31. [PMID: 18713993 PMCID: PMC3075114 DOI: 10.4049/jimmunol.181.5.3221] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Induction of tolerance in memory T cells has profound implications in the treatment of autoimmune diseases and transplant rejection. Previously, we reported that the presentation of low densities of agonist peptide/MHC class II complexes induced anergy in memory CD4(+) T cells. In the present study, we address the specific interaction of different types of APCs with memory CD4(+) T cells. A novel ex vivo anergy assay first suggested that B cells induce anergy in memory T cells, and an in vivo cell transfer assay further confirmed those observations. We demonstrated that B cells pulsed with defined doses of Ag anergize memory CD4 cells in vivo. We established that CD11c(+) dendritic cells do not contribute to anergy induction to CD4 memory T cells, because diphtheria toxin receptor-transgenic mice that were conditionally depleted of dendritic cells optimally induced anergy in memory CD4(+) T cells. Moreover, B cell-deficient muMT mice did not induce anergy in memory T cells. We showed that B2 follicular B cells are the specific subpopulation of B cells that render memory T cells anergic. Furthermore, we present data showing that anergy in this system is mediated by CTLA-4 up-regulation on T cells. This is the first study to demonstrate formally that B cells are the APCs that induce anergy in memory CD4(+) T cells.
Collapse
Affiliation(s)
- Sarat K. Dalai
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore MD 21205
| | - Saied Mirshahidi
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore MD 21205
| | - Alexandre Morrot
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore MD 21205
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore MD 21205
| | | |
Collapse
|
110
|
Harp CT, Lovett-Racke AE, Racke MK, Frohman EM, Monson NL. Impact of myelin-specific antigen presenting B cells on T cell activation in multiple sclerosis. Clin Immunol 2008; 128:382-91. [DOI: 10.1016/j.clim.2008.05.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/24/2008] [Accepted: 05/02/2008] [Indexed: 11/24/2022]
|
111
|
Abstract
Organ transplants between genetically different individuals elicit powerful immune responses that invariably cause rejection in the absence of immune suppression. Among the immune responses elicited by organ allografts, B-cell responses causing antibody-mediated rejection are one of the most vexing. However, recent advances in the field indicate that B cells and antibodies' contribution to immunity extends well beyond the traditional functions ascribed to antibodies. Here we review "non-humoral" functions of B cells and the implications of these functions to transplantation.
Collapse
Affiliation(s)
- Samuel J. Balin
- Transplantation Biology Program, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Jeffrey L. Platt
- Transplantation Biology Program, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Pediatrics, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Marilia Cascalho
- Transplantation Biology Program, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Pediatrics, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
112
|
King C, Tangye SG, Mackay CR. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu Rev Immunol 2008; 26:741-66. [PMID: 18173374 DOI: 10.1146/annurev.immunol.26.021607.090344] [Citation(s) in RCA: 497] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T cell help for antibody production is a fundamental aspect of immune responses. Only recently has a better understanding of the cellular and molecular mechanisms for T cell help emerged. A subset of T cells, termed T follicular helper cells (T(FH) cells), provides a helper function to B cells and represents one of the most numerous and important subsets of effector T cells in lymphoid tissues. T(FH) cells are distinguishable from Th1 and Th2 cells by several criteria, including chemokine receptor expression (CXCR5), location/migration (B cell follicles), and function (B cell help). Central to the function of CD4(+) T cells is IL-21, a "helper" cytokine produced by T(FH) cells that potently stimulates the differentiation of B cells into Ab-forming cells through IL-21R. Consequently, dysregulation of T(FH) cell function, and over- or under-expression of T(FH) cell-associated molecules such as ICOS or IL-21, most likely contributes to the pathogenesis of certain autoimmune diseases or immunodeficiencies.
Collapse
Affiliation(s)
- Cecile King
- Immunology and Inflammation Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| | | | | |
Collapse
|
113
|
Abstract
Therapeutic vaccines for B-cell non-Hodgkin lymphoma (NHL) using the clonal tumour immunoglobulin idiotype (Id) have been under development for more than three decades. A major obstacle for rapid progress in the field has been that the Id vaccine is patient-specific and required the generation of a custom-made product. The manufacturing issues were recently overcome by advances in hybridoma and recombinant DNA technology which facilitated the completion of several phase I and II clinical trials. The strong immunogenicity and apparent clinical benefit observed on the early phase studies led to the initiation of three randomized phase III clinical trials that are also nearing completion. This review will focus on the development of Id vaccines before and after the introduction of rituximab for the treatment of B-cell NHL and also discuss potential strategies to enhance the efficacy of active immunotherapy in the future.
Collapse
Affiliation(s)
- Hyun Jun Park
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Sattva S. Neelapu
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
114
|
Marshall FA, Watson KA, Garside P, Harnett MM, Harnett W. Effect of activated antigen-specific B cells on ES-62-mediated modulation of effector function of heterologous antigen-specific T cells in vivo. Immunology 2008; 123:411-25. [PMID: 17961164 PMCID: PMC2433340 DOI: 10.1111/j.1365-2567.2007.02706.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/06/2007] [Accepted: 07/25/2007] [Indexed: 01/17/2023] Open
Abstract
There is currently great interest in the idea of using helminth-derived molecules for therapeutic purposes and indeed we have shown that ES-62, a filarial nematode-derived phosphorylcholine-containing glycoprotein, significantly reduces the severity of arthritis in a murine model. Clearly, knowledge of mechanism of action is important when considering molecules for use in treating disease and although much is known regarding how ES-62 interacts with the immune system, gaps in our understanding remain. A feature of filarial nematode infection is a defective, T helper 2 (Th2)-polarized antigen-specific T-cell response and in relation to this we have recently shown that ES-62 inhibits clonal expansion and modulates effector function towards a Th2 phenotype, of antigen-specific T cells in vivo. ES-62 is also known to directly modulate B-cell behaviour and hence to determine whether it was mediating these effects on T cells by disrupting B-T-cell co-operation, we have investigated antigen-specific responses using an adoptive transfer system in which traceable numbers of tg ovalbumin (OVA)-specific T cells and hen egg lysozyme (HEL)-specific B cells respond to a chemically coupled form of OVA-HEL that contains linked epitopes that promote cognate T- and B-cell interactions. Surprisingly, these studies indicate that activated B cells restore T-cell expansion and prevent Th2-like polarization. However, ES-62-treated double cell transfer mice demonstrate a more generalized immunosuppression with reduced levels of Th1 and -2 type cytokines and antibody subclasses. Collectively, these results suggest that whilst ES-62 can target B-T-cell co-operation, this does not promote polarizing of T-cell responses towards a Th2-type phenotype.
Collapse
Affiliation(s)
- Fraser A Marshall
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow, UK
| | | | | | | | | |
Collapse
|
115
|
Targeted biologic approaches to the treatment of systemic vasculitis. Clin Rev Allergy Immunol 2008; 35:79-87. [PMID: 18181033 DOI: 10.1007/s12016-007-8072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The introduction of biological agents in the treatment of systemic vasculitis offers the promise of targeted therapy with greater efficacy and fewer side effects than conventional treatments. In this paper, we review the rationale for biological strategies in vasculitis and discuss the results of clinical studies to date. The biotherapies discussed include immune-cell-depleting agents, both B- and T-cell targeted; costimulatory blockade; and cytokine blockade. Although most of these agents remain unproven until ongoing randomized clinical trials are complete, their introduction heralds a new era of vasculitis treatment and has provided novel insights into disease pathogenesis.
Collapse
|
116
|
Therapeutic B cell depletion impairs adaptive and autoreactive CD4+ T cell activation in mice. Proc Natl Acad Sci U S A 2007; 104:20878-83. [PMID: 18093919 DOI: 10.1073/pnas.0709205105] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
CD20 antibody depletion of B lymphocytes effectively ameliorates multiple T cell-mediated autoimmune diseases through mechanisms that remain unclear. To address this, a mouse CD20 antibody that depletes >95% of mature B cells in mice with otherwise intact immune systems was used to assess the role of B cells in CD4(+) and CD8(+) T cell activation and expansion in vivo. B cell depletion had no direct effect on T cell subsets or the activation status of CD4(+) and CD8(+) T cells in naive mice. However, B cell depletion impaired CD4(+) T cell activation and clonal expansion in response to protein antigens and pathogen challenge, whereas CD8(+) T cell activation was not affected. In vivo dendritic cell ablation, along with CD20 immunotherapy, revealed that optimal antigen-specific CD4(+) T cell priming required both B cells and dendritic cells. Most importantly, B cell depletion inhibited antigen-specific CD4(+) T cell expansion in both collagen-induced arthritis and autoimmune diabetes mouse models. These results provide direct evidence that B cells contribute to T cell activation and expansion in vivo and offer insights into the mechanism of action for B cell depletion therapy in the treatment of autoimmunity.
Collapse
|
117
|
Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, Das PP, Miska EA, Rodriguez A, Bradley A, Smith KGC, Rada C, Enright AJ, Toellner KM, MacLennan IC, Turner M. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 2007; 27:847-59. [PMID: 18055230 PMCID: PMC4135426 DOI: 10.1016/j.immuni.2007.10.009] [Citation(s) in RCA: 635] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 09/14/2007] [Accepted: 10/29/2007] [Indexed: 01/28/2023]
Abstract
microRNA-155 (miR-155) is expressed by cells of the immune system after activation and has been shown to be required for antibody production after vaccination with attenuated Salmonella. Here we show the intrinsic requirement for miR-155 in B cell responses to thymus-dependent and -independent antigens. B cells lacking miR-155 generated reduced extrafollicular and germinal center responses and failed to produce high-affinity IgG1 antibodies. Gene-expression profiling of activated B cells indicated that miR-155 regulates an array of genes with diverse function, many of which are predicted targets of miR-155. The transcription factor Pu.1 is validated as a direct target of miR155-mediated inhibition. When Pu.1 is overexpressed in wild-type B cells, fewer IgG1 cells are produced, indicating that loss of Pu.1 regulation is a contributing factor to the miR-155-deficient phenotype. Our results implicate post-transcriptional regulation of gene expression for establishing the terminal differentiation program of B cells.
Collapse
Affiliation(s)
- Elena Vigorito
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Kerry L Perks
- MRC Center for Immune Regulation, University of Birmingham, Birmingham, B15 2TT, UK
| | - Cei Abreu-Goodger
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sam Bunting
- Laboratory of Chromatin and Gene expression, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Zou Xiang
- Cambridge Institute for Medical Research and the Department of Medicine, University of Cambridge School of Clinical Medicine, Box 139, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Susan Kohlhaas
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Partha P. Das
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Eric A. Miska
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Antony Rodriguez
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kenneth G. C. Smith
- Cambridge Institute for Medical Research and the Department of Medicine, University of Cambridge School of Clinical Medicine, Box 139, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Cristina Rada
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | - Anton J. Enright
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kai-Michael Toellner
- MRC Center for Immune Regulation, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ian C.M. MacLennan
- MRC Center for Immune Regulation, University of Birmingham, Birmingham, B15 2TT, UK
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK
| |
Collapse
|
118
|
Shi X, Xie C, Chang S, Zhou XJ, Tedder T, Mohan C. CD19 hyperexpression augments Sle1-induced humoral autoimmunity but not clinical nephritis. ACTA ACUST UNITED AC 2007; 56:3057-69. [PMID: 17763445 DOI: 10.1002/art.22825] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE B cell hyperactivity is a common denominator in murine and human systemic lupus erythematosus. Some susceptibility genes in lupus are associated with B cell hyperactivity, but others are clearly not. While the Sle1 lupus susceptibility locus of NZM2410/NZW origin leads to chromatin-focused autoimmunity, genetically engineered overexpression of CD19 leads to "generalized" B cell hyperactivity. We undertook this study to determine the degree to which generalized B cell hyperactivity can amplify lupus pathogenesis. METHODS To elucidate the impact of generalized B cell hyperactivity on Sle1-triggered autoimmunity, B6 mice bearing the human CD19 transgene were rendered congenic for the Sle1(z) genetic locus and phenotyped for serologic, cellular, and pathologic evidence of lupus. RESULTS As expected, B6.Sle1.hCD19(Tg/Tg) mice, homozygous at Sle1 and bearing the hCD19 transgene, exhibited high levels of IgM and IgG anti-DNA/antiglomerular autoantibodies, skewed B cell subsets, and profoundly activated B and T cells. Despite exhibiting glomerular IgM, IgG, and complement deposits, these mice did not exhibit accelerated mortality or any clinical evidence of renal dysfunction. CONCLUSION Generalized B cell hyperactivity may augment humoral autoimmunity, but this may not suffice to engender end-organ disease in lupus. These findings allude to the presence of an additional distal checkpoint that dissociates pathogenic autoantibody formation and renal immunoglobulin deposition from the progression to clinical nephritis in lupus.
Collapse
Affiliation(s)
- Xiaoyan Shi
- University of Texas Southwestern Medical School, Dallas, TX 75390-8884, USA
| | | | | | | | | | | |
Collapse
|
119
|
Anolik JH, Barnard J, Owen T, Zheng B, Kemshetti S, Looney RJ, Sanz I. Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. ACTA ACUST UNITED AC 2007; 56:3044-56. [PMID: 17763423 DOI: 10.1002/art.22810] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Recent data suggest that the reconstituting peripheral B cell compartment after B cell depletion therapy may be functionally immature, with a preponderance of transitional B cells and a paucity of memory B cells. This study was undertaken to determine the magnitude, duration, and cause of these defects in rituximab-treated systemic lupus erythematosus (SLE) patients. METHODS Fifteen patients with SLE previously treated with rituximab as part of a phase I/II dose-escalation study were evaluated during a long-term followup (mean followup period 41 months). B cells from peripheral blood and tonsils were assessed using multicolor flow cytometry, and their developmental pathway was classified based on the expression of defined surface markers. RESULTS Reconstitution of peripheral blood CD27+ memory B cells was delayed for several years after B cell depletion therapy in a subset of patients with prolonged clinical responses and autoantibody normalization. This delay correlated with the degree of expansion of B cells of a transitional phenotype during the B cell reconstitution phase (P = 0.005) and the absence of baseline autoantibodies directed against extractable nuclear antigens (RNP, Sm, Ro antigen, La antigen). Despite the paucity of peripheral blood memory cells and the prolonged expansion of functionally immature transitional B cells, tonsil biopsy tissues revealed active germinal center (GC) reactions, but with decreased Fc receptor homolog 4-positive memory B cells. CONCLUSION These results suggest heterogeneity in the B cell depletion and reconstitution process that impacts clinical and immunologic outcomes in SLE. The presence of GC reactions, but with altered memory B cell subpopulations in tonsils, suggests that peripheral blood memory cell reconstitution lags behind a slow secondary lymphoid tissue recovery, with important implications for immunologic competence and tolerance.
Collapse
|
120
|
Neelapu SS, Lee ST, Qin H, Cha SC, Woo AF, Kwak LW. Therapeutic lymphoma vaccines: importance of T-cell immunity. Expert Rev Vaccines 2007; 5:381-94. [PMID: 16827622 DOI: 10.1586/14760584.5.3.381] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The unique antigenic determinants, termed idiotype, of the immunoglobulin expressed on a given B-cell malignancy can serve as a tumor-specific antigen for active immunotherapy. Administration of autologous tumor-derived idiotype protein conjugated to a carrier protein, keyhole limpet hemocyanin, together with granulocyte-macrophage colony-stimulating factor to follicular lymphoma patients in complete clinical remission was associated with induction of tumor-specific cellular and humoral immunity, molecular remissions, and prolonged disease-free survival. Idiotype vaccination in patients with mantle cell lymphoma following rituximab-containing chemotherapy induced tumor-specific T-cell immunity in the absence of B cells, suggesting that vaccines may be used in combination with rituximab. Three double-blind, randomized, Phase III idiotype vaccine trials are currently ongoing to definitively determine the clinical benefit of idiotype-keyhole limpet hemocyanin plus granulocyte-macrophage colony-stimulating factor vaccination in patients with lymphoma. Results from early clinical trials with idiotype vaccines suggested that both humoral and cellular immune responses may be independently associated with tumor regression and improved progression-free survival. With the increased use of rituximab for the treatment of follicular lymphoma and other B-cell non-Hodgkin's lymphomas, further improvement in the potency of the vaccines would require strategies to enhance T-cell responses, as rituximab depletes normal B cells and impairs the generation of antibody responses.
Collapse
Affiliation(s)
- Sattva S Neelapu
- UT MD Anderson Cancer Center, Department of Lymphoma/Myeloma, Unit 903, 7455 Fannin, Houston, TX 77054, USA.
| | | | | | | | | | | |
Collapse
|
121
|
Liu Y, Li L, Kumar KR, Xie C, Lightfoot S, Zhou XJ, Kearney JF, Weigert M, Mohan C. Lupus susceptibility genes may breach tolerance to DNA by impairing receptor editing of nuclear antigen-reactive B cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:1340-52. [PMID: 17617627 DOI: 10.4049/jimmunol.179.2.1340] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An NZM2410-derived lupus susceptibility locus on murine chromosome 4, Sle2(z), has previously been noted to engender generalized B cell hyperactivity. To study how Sle2(z) impacts B cell tolerance, two Ig H chain site-directed transgenes, 3H9 and 56R, with specificity for DNA were backcrossed onto the C57BL/6 background with or without Sle2(z). Interestingly, the presence of the NZM2410 "z" allele of Sle2 on the C57BL/6 background profoundly breached B cell tolerance to DNA, apparently by thwarting receptor editing. Whereas mAbs isolated from the spleens of B6.56R control mice demonstrated significant usage of the endogenous (i.e., nontargeted) H chain locus and evidence of vigorous L chain editing; Abs isolated from B6.Sle2(z).56R spleens were largely composed of the transgenic H chain paired with a spectrum of L chains, predominantly recombined to J(k)1 or J(k)2. In addition, Sle2(z)-bearing B cells adopted divergent phenotypes depending on their Ag specificity. Whereas Sle2(z)-bearing anti-DNA transgenic B cells were skewed toward marginal zone B cells and preplasmablasts, B cells from the same mice that did not express the transgene were skewed toward the B1a phenotype. This work illustrates that genetic loci that confer lupus susceptibility may influence B cell differentiation depending on their Ag specificity and potentially contribute to antinuclear autoantibody formation by infringing upon B cell receptor editing. Taken together with a recent report on Sle1(z), these studies suggest that dysregulated receptor-editing of nuclear Ag-reactive B cells may be a major mechanism through which antinuclear Abs arise in lupus.
Collapse
Affiliation(s)
- Yang Liu
- Department of Internal Medicine and Center for Immunology, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Liu Q, Liu Z, Rozo CT, Hamed HA, Alem F, Urban JF, Gause WC. The role of B cells in the development of CD4 effector T cells during a polarized Th2 immune response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:3821-30. [PMID: 17785819 PMCID: PMC2258088 DOI: 10.4049/jimmunol.179.6.3821] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous studies have suggested that B cells promote Th2 cell development by inhibiting Th1 cell differentiation. To examine whether B cells are directly required for the development of IL-4-producing T cells in the lymph node during a highly polarized Th2 response, B cell-deficient and wild-type mice were inoculated with the nematode parasite, Nippostrongylus brasiliensis. On day 7, in the absence of increased IFN-gamma, IL-4 protein and gene expression from CD4 T cells in the draining lymph nodes were markedly reduced in B cell-deficient mice and could not be restored by multiple immunizations. Using a DO11.10 T cell adoptive transfer system, OVA-specific T cell IL-4 production and cell cycle progression, but not cell surface expression of early activation markers, were impaired in B cell-deficient recipient mice following immunization with N. brasiliensis plus OVA. Laser capture microdissection and immunofluorescent staining showed that pronounced IL-4 mRNA and protein secretion by donor DO11.10 T cells first occurred in the T cell:B cell zone of the lymph node shortly after inoculation of IL-4-/- recipients, suggesting that this microenvironment is critical for initial Th2 cell development. Reconstitution of B cell-deficient mice with wild-type naive B cells, or IL-4-/- B cells, substantially restored Ag-specific T cell IL-4 production. However, reconstitution with B7-1/B7-2-deficient B cells failed to rescue the IL-4-producing DO11.10 T cells. These results suggest that B cells, expressing B7 costimulatory molecules, are required in the absence of an underlying IFN-gamma-mediated response for the development of a polarized primary Ag-specific Th2 response in vivo.
Collapse
Affiliation(s)
- Qian Liu
- Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103 and
| | - Zhugong Liu
- Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103 and
| | - Cristina T. Rozo
- Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103 and
| | - Hossein A. Hamed
- Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103 and
| | - Farhang Alem
- Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103 and
| | - Joseph F. Urban
- Nutrient Requirements and Functions Laboratory, Beltsville Human Nutrition Research Center, U.S. Department of Agriculture, Beltsville, MD 20705-2350
| | - William C. Gause
- Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103 and
| |
Collapse
|
123
|
Luther SA, Serre K, Cunningham AF, Khan M, Acha-Orbea H, MacLennan ICM, Toellner KM. Recirculating CD4 memory T cells mount rapid secondary responses without major contributions from follicular CD4 effectors and B cells. Eur J Immunol 2007; 37:1476-84. [PMID: 17506034 DOI: 10.1002/eji.200636573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
For weeks after primary immunization with thymus-dependent antigens the responding lymph nodes contain effector CD4 T cells in T zones and germinal centers as well as recirculating memory T cells. Conversely, remote nodes, not exposed to antigen, only receive recirculating memory cells. We assessed whether lymph nodes with follicular effector CD4 T cells in addition to recirculating memory CD4 T cells mount a more rapid secondary response than nodes that only contain recirculating memory cells. Also, the extent to which T cell frequency governs accelerated CD4 T cell recall responses was tested. For this, secondary antibody responses to a superantigen, where the frequency of responding T cells is not increased at the time of challenge, were compared with those to conventional protein antigens. With both types of antigens similar accelerated responses were elicited in the node draining the site of primary immunization and in the contralateral node, not previously exposed to antigen. Thus recirculating memory cells are fully capable of mounting accelerated secondary responses, without the assistance of CD4 effector T cells, and accelerated memory responses are not solely dependent on higher T cell frequencies. Accelerated memory CD4 T cell responses were also seen in B cell-deficient mice.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- B-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/chemistry
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Count
- Cytochromes c/metabolism
- Gene Expression
- Immunization, Secondary
- Immunoglobulin Heavy Chains/genetics
- Immunologic Memory/immunology
- Interleukin-4/genetics
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Mammary Tumor Virus, Mouse/immunology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Nitrophenols/immunology
- Phenylacetates
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, CCR7
- Receptors, Chemokine/metabolism
- Vaccination
Collapse
Affiliation(s)
- Sanjiv A Luther
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | |
Collapse
|
124
|
Taneja V, Krco CJ, Behrens MD, Luthra HS, Griffiths MM, David CS. B cells are important as antigen presenting cells for induction of MHC-restricted arthritis in transgenic mice. Mol Immunol 2007; 44:2988-96. [PMID: 17303243 PMCID: PMC1995074 DOI: 10.1016/j.molimm.2006.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
Rheumatoid arthritis and its animal model, collagen-induced arthritis, are known as a T and B cell dependent disease. To analyze the role of B cells in arthritis, we generated B cell deficient (microMT) mice carrying HLA-DQ8 as transgene, Abetao.DQ8.micromt mice. HLA-DQ8 transgenic mice (Abetao.DQ8) are susceptible to collagen induced arthritis, an animal model for inflammatory arthritis. Deletion of IgM gene led to the absence of B cells while T cells were comparable to Abetao.DQ8 mice. Arthritis and autoantibodies was completely abrogated in B cell deficient DQ8 mice. T cell response and proinflammatory cytokine production in response to type II collagen and its derived peptides in vitro was significantly decreased despite an increased number of Mac-1 positive cells in DQ8.micromt mice compared to DQ8 mice suggesting B cells could be important for antigen presentation as well. In vitro substitution of B cells from wild type mice restored the response in DQ8.micromt mice. B cells could also present CII-derived peptides to antigen-specific DQ8-restricted hybridomas reinforcing the role of B cells in presentation of antigens to T cells. The data suggest that B cells can be involved in pathogenesis of arthritis by producing autoantibodies and antigen presentation.
Collapse
Affiliation(s)
- Veena Taneja
- Department of Immunology, Mayo Clinic, 200 Ist Street SW, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
125
|
Wikstrom ME, Stumbles PA. Mouse respiratory tract dendritic cell subsets and the immunological fate of inhaled antigens. Immunol Cell Biol 2007; 85:182-8. [PMID: 17262055 DOI: 10.1038/sj.icb.7100039] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It is widely accepted that tissue dendritic cells (DC) function as immune sentinels by alerting T cells to foreign antigen after delivering and presenting it in the draining lymph nodes. Over the last two decades, studies in animal models, particularly rodents, have demonstrated that respiratory tract DC are crucial for the adaptive immune response to inhaled antigen. Indeed, the fate of inhaled antigen is inextricably linked to the function of respiratory tract DC. In this review, we will discuss the characteristics of respiratory tract DC from mice and recent data that may help to explain their role in the fate of inhaled antigen.
Collapse
Affiliation(s)
- Matthew E Wikstrom
- Telethon Institute for Child Health Research, Centre for Child Health Research, School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia.
| | | |
Collapse
|
126
|
Li M, O'Sullivan KM, Jones LK, Semple T, Kumanogoh A, Kikutani H, Holdsworth SR, Kitching AR. CD100 enhances dendritic cell and CD4+ cell activation leading to pathogenetic humoral responses and immune complex glomerulonephritis. THE JOURNAL OF IMMUNOLOGY 2006; 177:3406-12. [PMID: 16920982 DOI: 10.4049/jimmunol.177.5.3406] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD100, a member of the semaphorin family, is a costimulatory molecule in adaptive immune responses by switching off CD72's negative signals. However, CD100's potential pathogenetic effects in damaging immune responses remain largely unexplored. We tested the hypothesis that CD100 plays a pathogenetic role in experimental immune complex glomerulonephritis. Daily injection of horse apoferritin for 14 days induced immune complex formation, mesangial proliferative glomerulonephritis and proteinuria in CD100-intact (CD100+/+) BALB/c mice. CD100-deficient (CD100-/-) mice were protected from histological and functional glomerular injury. They exhibited reduced deposition of Igs and C3 in glomeruli, reduced MCP-1 and MIP-2 intrarenal mRNA expression, and diminished glomerular macrophage accumulation. Attenuated glomerular injury was associated with decreased Ag-specific Ig production, reduced CD4+ cell activation and cytokine production. Following Ag injection, CD4+ cell CD100 expression was enhanced and dendritic cell CD86 expression was up-regulated. However, in CD100-/- mice, dendritic cell CD86 (but not CD80) up-regulation was significantly attenuated. Following i.p. immunization, CD86, but not CD80, promotes early Ag-specific TCR-transgenic DO11.10 CD4+ cell proliferation and IFN-gamma production, suggesting that CD100 expression enables full expression of CD86 and consequent CD4+ cell activation. Transfer of CD100+/+ DO11.10 cells into CD100-/- mice resulted in decreased proliferation demonstrating that CD100 from other sources in addition to CD100 from Ag-specific CD4+ cells plays a role in initial T cell proliferation. Although T cell-B cell interactions also may be relevant, these studies demonstrate that CD100 enhances pathogenetic humoral immune responses and promotes the activation of APCs by up-regulating CD86 expression.
Collapse
Affiliation(s)
- Ming Li
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Lund FE, Hollifield M, Schuer K, Lines JL, Randall TD, Garvy BA. B cells are required for generation of protective effector and memory CD4 cells in response to Pneumocystis lung infection. THE JOURNAL OF IMMUNOLOGY 2006; 176:6147-54. [PMID: 16670323 DOI: 10.4049/jimmunol.176.10.6147] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cell-deficient mice are susceptible to infection by Pneumocystis carinii f. sp. muris (PC). To determine whether this susceptibility is due to a requirement for B cells to prime T cells, we compared CD4 T cell responses to PC in bone marrow chimeric mice that express MHC class II (MHCII) on all APCs (wild-type (WT) chimeras) and in bone marrow chimeric mice that express MHCII on all APCs except B cells (MHCII(-/-) chimeras). Although PC was rapidly cleared by WT chimeric mice, PC levels remained high in chimeric mice that lacked MHCII on B cells. In addition, although T cells were primed in the draining lymph nodes of MHCII(-/-) chimeric mice, the number of activated CD4 T cells infiltrating the lungs of these mice was reduced relative to the number in the lungs of WT chimeras. We also adoptively transferred purified CD4 T cells from the draining lymph nodes of PC-infected normal or B cell-deficient mice into SCID mice. Mice that received CD4 cells from normal mice were able to mount a response to infection in the lungs and clear PC. However, mice that received CD4 cells from B cell-deficient mice had a delayed T cell response in the lungs and failed to control the infection. These data indicate that B cells play a vital role in generation of CD4(+) memory T cells in response to PC infection in the lungs.
Collapse
|
128
|
Looney RJ, Anolik J, Sanz I. New therapies for systemic lupus erythematosus: cellular targets. Rheum Dis Clin North Am 2006; 32:201-15, xi. [PMID: 16504831 DOI: 10.1016/j.rdc.2005.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Antilymphocyte antibodies have been widely used in oncology and transplantation and are now being tested in autoimmune diseases. For systemic lupus erythematosus, anti-B-cell antibodies are furthest along in development. This article discusses the B-cell abnormalities found in systemic lupus erythematosus and the clinical and immunologic effects of anti-B-cell therapies.
Collapse
Affiliation(s)
- R John Looney
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY14420, USA.
| | | | | |
Collapse
|
129
|
Crawford A, Macleod M, Schumacher T, Corlett L, Gray D. Primary T cell expansion and differentiation in vivo requires antigen presentation by B cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:3498-506. [PMID: 16517718 DOI: 10.4049/jimmunol.176.6.3498] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
B cells are well documented as APC; however, their role in supporting and programming the T cell response in vivo is still unclear. Studies using B cell-deficient mice have given rise to contradictory results. We have used mixed BM chimeric mice to define the contribution that B cells make as APC. When the B cell compartment is deficient in MHC class II, while other APC are largely normal, T cell clonal expansion is significantly reduced and the differentiation of T cells into cytokine-secreting effector cells is impaired (in particular, Th2 cells). The development of the memory T cell populations is also decreased. Although MHC class II-mediated presentation by B cells was crucial for an optimal T cell response, neither a B cell-specific lack of CD40 (influencing costimulation) nor lymphotoxin alpha (influencing lymphoid tissue architecture) had any effect on the T cell response. We conclude that in vivo B cells provide extra and essential Ag presentation capacity over and above that provided by dendritic cells, optimizing expansion and allowing the generation of memory and effector T cells.
Collapse
Affiliation(s)
- Alison Crawford
- Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Road, Edinburgh EH9 3JT, United Kingdom
| | | | | | | | | |
Collapse
|
130
|
Feola DJ, Garvy BA. Combination exposure to zidovudine plus sulfamethoxazole-trimethoprim diminishes B-lymphocyte immune responses to Pneumocystis murina infection in healthy mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:193-201. [PMID: 16467325 PMCID: PMC1391936 DOI: 10.1128/cvi.13.2.193-201.2006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that zidovudine plus sulfamethoxazole-trimethoprim exposure decreases immune cell populations in the bone marrow of healthy mice by inducing apoptosis. The hypothesis of the current work was that this toxicity would have an adverse impact on the immune response. To determine this, BALB/c mice were treated with zidovudine, sulfamethoxazole-trimethoprim, the combination of both drugs, or vehicle only (control) via oral gavage for 21 days. On day 4 after dosing completion, the mice were infected intratracheally with 1x10(7) Pneumocystis murina organisms. Immune cell populations (in lung digest, bronchoalveolar lavage fluid, tracheobronchial lymph node, and bone marrow samples), the lung Pneumocystis burden, and serum Pneumocystis-specific antibody titers were determined at days 6, 10, and 20 postinfection. While total bone marrow cellularity was recovered by day 6 postinfection in the combination exposure group, B-cell numbers did not recover until 10 days postinfection, primarily due to the persistent depletion of the late pre-B-cell phenotype. The numbers of CD4+ and CD8+ T cells, as well as the numbers of total B cells and activated B cells in tracheobronchial lymph nodes, were decreased at days 10 and 20 as a result of zidovudine plus sulfamethoxazole-trimethoprim exposure compared to the numbers in the control group. No significant differences in lung lavage or lung digest cell populations were observed. There was a trend of a delay in Pneumocystis clearance in the combination treatment group, and Pneumocystis-specific serum immunoglobulin G titers were reduced at day 20 postinfection. Together, these data indicate that the combination of zidovudine and sulfamethoxazole-trimethoprim adversely affects the humoral immune response to Pneumocystis.
Collapse
Affiliation(s)
- David J Feola
- Department of Pharmacy Practice and Science, University of Kentucky Chandler Medical Center, and Veterans Administration Medical Center, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
131
|
MacLeod M, Kwakkenbos MJ, Crawford A, Brown S, Stockinger B, Schepers K, Schumacher T, Gray D. CD4 memory T cells survive and proliferate but fail to differentiate in the absence of CD40. ACTA ACUST UNITED AC 2006; 203:897-906. [PMID: 16549596 PMCID: PMC2118277 DOI: 10.1084/jem.20050711] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Secondary T cell responses are enhanced because of an expansion in numbers of antigen-specific (memory) cells. Using major histocompatibility complex class II tetramers we have tracked peptide-specific endogenous (non–T cell receptor transgenic) CD4 memory T cells in normal and in costimulation-deficient mice. CD4 memory T cells were detectable after immunization for more than 200 days, although decay was apparent. Memory cells generated in CD40 knockout mice by immunization with peptide-pulsed wild-type dendritic cells survived in the absence of CD40 and proliferated when boosted with peptide (plus adjuvant) in a CD40-independent fashion. However, differentiation of the memory cells into cytokine-producing effector cells did not occur in the absence of CD40. The data indicate that memory cells can be generated without passing through the effector cell stage.
Collapse
Affiliation(s)
- Megan MacLeod
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
B cells play a key role in regulating the immune system by producing antibodies, acting as antigen-presenting cells, providing support to other mononuclear cells, and contributing directly to Inflammatory pathways. Accumulating evidence points to disruption of these tightly regulated processes in the pathogenesis of autoimmune disorders. Although the exact mechanisms involved remain to be elucidated, a fundamental feature of many autoimmune disorders is a loss of B-cell tolerance and the inappropriate production of autoantibodies. Dysfunctional immune responses resulting from genetic mutations that cause intrinsic B-cell abnormalities and induction of autoimmunity in the T-cell compartment by B cells that have broken tolerance may also contribute to these disorders. These findings provide the rationale for B-cell depletion as a potential therapeutic strategy in autoimmune disorders and other disease states characterized by inappropriate immune responses. Preliminary results with the CD20-targeted monoclonal antibody rituximab indicate that rituximab can improve symptoms in a number of autoimmune and neurologic disorders (including rheumatoid arthritis, systemic lupus erythematosus, and paraneoplastic neurologic syndromes). Additional studies are warranted to further characterize the role of B cells in autoimmune diseases and the therapeutic utility of B-cell depletion.
Collapse
Affiliation(s)
- Robert H Carter
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, 409 LHRB, Birmingham, AL 35294-0007, USA.
| |
Collapse
|
133
|
Marsden VS, Kappler JW, Marrack PC. Homeostasis of the memory T cell pool. Int Arch Allergy Immunol 2006; 139:63-74. [PMID: 16319493 DOI: 10.1159/000090000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Indexed: 11/19/2022] Open
Abstract
Memory T cells are critical for the establishment of long-term immunity. The number of memory T cells formed at the conclusion of the primary response is strongly influenced by the number of effector T cells generated in the response, but some factors can additionally enhance the efficiency and quality of memory cell recruitment. Homeostasis of the memory T cell pool depends on cytokine-mediated regulation of cell survival and proliferation. This review discusses factors that influence both the development and the maintenance of the memory T cell pool.
Collapse
Affiliation(s)
- Vanessa S Marsden
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO, USA
| | | | | |
Collapse
|
134
|
Harris DP, Goodrich S, Mohrs K, Mohrs M, Lund FE. Cutting edge: the development of IL-4-producing B cells (B effector 2 cells) is controlled by IL-4, IL-4 receptor alpha, and Th2 cells. THE JOURNAL OF IMMUNOLOGY 2006; 175:7103-7. [PMID: 16301612 DOI: 10.4049/jimmunol.175.11.7103] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although IL-4-producing B cells (B effector 2 cells) are found following infection and immunization, the signals regulating IL-4 production by Be2 cells are unknown. We show that culturing naive B cells with Th2 cells induces up-regulation of IL-4 in the B cells with a concomitant down-regulation of T-bet, IL-12Rbeta2, and IFN-gamma. Up-regulation of IL-4 in the Be2 cells is dependent on both T cells and IL-4 as IL-4Ralpha-deficient B cells primed with Th2 cells did not transcribe IL-4, and B cells primed in the presence of IL-4-deficient Th2 cells produced IFN-gamma instead of IL-4. Likewise, the in vivo development of IL-4-expressing B cells in a nematode infection model was dependent on both T cells and IL-4Ralpha-mediated signals. Thus, the differentiation of naive B cells into IL-4-expressing Be2 cells is regulated by a combination of T cell-dependent signals and the cytokine environment and this process is critically dependent upon the IL-4/IL-4R signaling pathway.
Collapse
|
135
|
Cascalho M, Platt JL. B cells and B cell products-helping to restore cellular immunity? Transfus Med Hemother 2006; 33:45-49. [PMID: 16755301 PMCID: PMC1473962 DOI: 10.1159/000090196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
T cells that provide vital protection against tumors, viruses and intracellular bacteria are thought to develop independently of B cells. However, recent discoveries suggest that development of T cells depends on B cells. One way B cells promote T cell development is by providing diverse peptides that may promote positive selection of thymocytes. Diverse peptides and B cells help in diversification of the T cell receptor repertoire and may decrease cross-reactivity in the mature T cell compartment. These new insights may provide the basis for the design of novel therapeutics.
Collapse
Affiliation(s)
- Marilia Cascalho
- Transplantation Biology Program and the Departments Surgery, Immunology and Pediatrics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | |
Collapse
|
136
|
Abstract
Systemic lupus erythematosus (SLE) is a complex disease characterised by numerous autoantibodies and clinical involvement in multiple organ systems. The immunological events triggering the onset of clinical manifestations have not yet been fully defined, but a central role for B cells in the pathogenesis of this disease has more recently gained prominence as a result of research in both mice and humans. Both antibody-dependent and -independent mechanisms of B cells are important in SLE. Autoantibodies contribute to autoimmunity by multiple mechanisms, including immune complex-mediated type III hypersensitivity reactions, type II antibody-dependent cytotoxicity, and by instructing innate immune cells to produce pathogenic cytokines such as interferon-alpha, tumour necrosis factor and interleukin-1. Suggested autoantibody-independent B-cell functions include antigen presentation, T-cell activation and polarisation, and dendritic-cell modulation. Several of these functions are mediated by the ability of B cells to produce immunoregulatory cytokines, chemokines and lymphangiogenic growth factors, and by their critical contribution to lymphoid tissue development and organisation, including the development of ectopic tertiary lymphoid tissue. Given the large body of evidence implicating abnormalities in the B-cell compartment in SLE, a recent therapeutic focus has been to develop interventions that target the B-cell compartment by multiple mechanisms.Rituximab, a mouse-human chimeric monoclonal antibody against CD20 that specifically depletes B cells, has been studied the most extensively. Although promising open-label data await confirmation in ongoing multicentre placebo-controlled trials, a number of preliminary conclusions can be drawn. The adequacy of peripheral B-cell depletion depends on achieving high and sustained serum rituximab concentrations, pharmacokinetics that can be varied with treatment dose and factors that may affect drug clearance, such as human anti-chimeric antibodies. In SLE patients with effective B-cell depletion, the clinical response can be significant, with favourable responses observed in a diverse array of disease manifestations. Moreover, rituximab appears to have the potential to induce clinical remission in severe, refractory disease. B-cell depletion has the potential to induce disease amelioration by inhibiting autoantibody production and/or by interfering with other B-cell pathogenic functions. The fact that clinical improvement correlates with B-cell depletion and precedes by several months any decline in serum levels of relevant autoantibodies suggests a predominant effect of autoantibody-independent functions of B cells, although the subset of patients with disease remission ultimately also experience autoantibody normalisation. Significant questions remain about rituximab therapy in SLE, including the immunological determinants of treatment response and remission, the role of combination therapy, and the safety of repeated courses of rituximab. In addition, the efficacy and role of other B-cell-depleting approaches, such as humanised anti-CD20 antibodies and anti-CD22, remain to be defined. Another B-cell-targeted therapeutic approach is to block costimulatory interactions between T and B cells. Blockade of the CD40-CD40 ligand pathway has met with variable clinical benefit and unfortunate thromboembolic complications, although inhibition of the B7 pathway with cytotoxic T-lymphocyte antigen-4Ig is currently under early investigation in SLE clinical trials. Preliminary data on the treatment of SLE with belimumab, a fully human monoclonal antibody that specifically binds to and neutralises the B-lymphocyte stimulator (BLyS or B-cell-activating factor [BAFF]), are now available. In a phase II double-blind, placebo-controlled trial of the safety and efficacy of three different doses administered in addition to standard therapy, belimumab was well tolerated but reportedly did not meet primary efficacy endpoints. Blockade of BAFF is still viewed as a promising therapeutic approach and additional agents that interfere with the BAFF pathway are under study.Overall, therapies targeting B cells appear to be promising in the treatment of SLE, provide additional evidence for the importance of B cells to disease pathogenesis, and will continue to elucidate the diverse roles of B cells in this disease.
Collapse
Affiliation(s)
- Ramin Sabahi
- University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | |
Collapse
|
137
|
Anolik JH, Aringer M. New treatments for SLE: cell-depleting and anti-cytokine therapies. Best Pract Res Clin Rheumatol 2005; 19:859-78. [PMID: 16150407 DOI: 10.1016/j.berh.2005.05.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although systemic lupus erythematosus (SLE) is indeed a complex autoimmune disease, recent advances in our understanding of lupus pathogenesis have suggested new, targeted approaches to therapy. The purpose of this review is to discuss the underlying scientific rationale and results of first clinical studies of new treatment approaches to SLE, with a focus on cell-depleting therapies and cytokine blockade. It has become clear that the B lymphocyte plays a key role in disease pathogenesis by both autoantibody-dependent and autoantibody-independent mechanisms. Additionally, aberrant interactions between B and T cells are critical to disease emergence and progression. New agents that directly target immune cells abnormal in SLE include the B-cell depleting or modulating antibodies, rituximab (anti-CD20) and epratuzumab (anti-CD22) and the anti-dsDNA tolerogen LJP394. Another promising approach has been to block co-stimulatory interactions between T and B cells, for example by inhibiting the CD40-CD40 ligand pathway with anti-CD40 ligand monoclonal antibody or the B7 pathway with CTLA-4Ig. Immune cells can also be manipulated indirectly through cytokine effects. For B cells, anti-BAFF (B-cell activation factor of the tumor necrosis family) provides an example of this approach. Other, more pleiotropic cytokines can likewise be blocked in SLE. In addition to the blockade of interleukin-10 (IL-10), the first anti-cytokine approach examined, it is mainly anti-tumor necrosis factor therapy that has come into focus, holding promise for some patients with lupus nephritis. The majority of the available data on these new treatment approaches stems from open-label trials, but controlled trials are under way. Moreover, many additional cytokines, such as interleukin (IL)-6, IL-18, and the type I interferons, represent interesting future targets.
Collapse
Affiliation(s)
- Jennifer H Anolik
- Allergy, Immunology, Rheumatology Unit, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | |
Collapse
|
138
|
Abstract
Graves' hyperthyroidism can be induced in mice or hamsters by novel approaches, namely injecting cells expressing the TSH receptor (TSHR) or vaccination with TSHR-DNA in plasmid or adenoviral vectors. These models provide unique insight into several aspects of Graves' disease: 1) manipulating immunity toward Th1 or Th2 cytokines enhances or suppresses hyperthyroidism in different models, perhaps reflecting human disease heterogeneity; 2) the role of TSHR cleavage and A subunit shedding in immunity leading to thyroid-stimulating antibodies (TSAbs); and 3) epitope spreading away from TSAbs and toward TSH-blocking antibodies in association with increased TSHR antibody titers (as in rare hypothyroid patients). Major developments from the models include the isolation of high-affinity monoclonal TSAbs and analysis of antigen presentation, T cells, and immune tolerance to the TSHR. Studies of inbred mouse strains emphasize the contribution of non-MHC vs. MHC genes, as in humans, supporting the relevance of the models to human disease. Moreover, other findings suggest that the development of Graves' disease is affected by environmental factors, including infectious pathogens, regardless of modifications in the Th1/Th2 balance. Finally, developing immunospecific forms of therapy for Graves' disease will require painstaking dissection of immune recognition and responses to the TSHR.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Autoimmune Disease Unit, Cedars-Sinai Medical Center, University of California Los Angeles School of Medicine, CA 90048, USA.
| | | | | |
Collapse
|
139
|
Arnaboldi PM, Behr MJ, Metzger DW. Mucosal B cell deficiency in IgA-/- mice abrogates the development of allergic lung inflammation. THE JOURNAL OF IMMUNOLOGY 2005; 175:1276-85. [PMID: 16002732 DOI: 10.4049/jimmunol.175.2.1276] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have investigated the consequence of lack of IgA on host immunity using a murine model of allergic lung inflammation. Mice with a targeted disruption of the alpha-switch region and 5' H chain gene (IgA(-/-) mice), which lack total IgA, developed significantly reduced pulmonary inflammation with fewer inflammatory cells in lung tissue and bronchoalveolar lavage fluids, as well as reduced levels of total and IgG1 OVA-specific Abs and decreased IL-4 and IL-5 in bronchoalveolar lavage fluids compared with IgA(+/+) controls, following allergen sensitization and challenge. This defect was attributable to fewer B cells in the lungs of IgA(-/-) mice. Polymeric IgR-deficient (pIgR(-/-)) mice, which lack the receptor that transports polymeric IgA across the mucosal epithelium where it is cleaved to form secretory IgA, were used to assess the contribution of secretory IgA vs total IgA in the induction of allergic lung inflammation. pIgR(-/-) and pIgR(+/+) mice had comparable levels of inflammation, demonstrating that IgA bound to secretory component is not necessary for the development of allergic lung inflammation, although this does not necessarily rule out a role for transudated IgA in lung secretions because of "mucosal leakiness" in these mice. The results indicate that Ag-specific B cells are required at mucosal surfaces for induction of inflammation and likely function as major APCs in the lung for soluble protein Ags.
Collapse
Affiliation(s)
- Paul M Arnaboldi
- Center for Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | |
Collapse
|
140
|
Kleindienst P, Brocker T. Concerted antigen presentation by dendritic cells and B cells is necessary for optimal CD4 T-cell immunity in vivo. Immunology 2005; 115:556-64. [PMID: 16011524 PMCID: PMC1782172 DOI: 10.1111/j.1365-2567.2005.02196.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The relative contributions of different types of antigen presenting cells to T-cell activation, expansion and induction of effector functions are still not fully understood. In order to evaluate the roles of dendritic versus B cells during these phases of a CD4 T-cell response in vivo, we adoptively transferred major histocompatibility complex class II restricted, T-cell receptor-transgenic CD4+ T cells into transgenic mice expressing selectively the T-cell restricting class II molecules on either dendritic cells, B cells or both. Upon immunization with peptide antigen, we observed that dendritic cells were sufficient to induce activation, expansion, interleukin-2 production and germinal centre migration of antigen-specific T cells, independently of other antigen-presenting cells. In contrast, neither resting nor activated B cells had similar antigen-presenting capacities in vivo. However, in double transgenic mice where both B cells and dendritic cells were capable of presenting antigen, T cells showed increased proliferation, expansion and cytokine production in vivo. Moreover, higher antigen-specific CD4 T-cell numbers accumulated in germinal centres. Our data demonstrate that dendritic cells are sufficient to activate naive CD4 T cells in vivo, but B cells subsequently can enhance CD4 T-cell expansion further.
Collapse
Affiliation(s)
- Petra Kleindienst
- Institute for Immunology, Ludwig- Maximilians-University Munich, Munich, Germany
| | | |
Collapse
|
141
|
Neelapu SS, Kwak LW, Kobrin CB, Reynolds CW, Janik JE, Dunleavy K, White T, Harvey L, Pennington R, Stetler-Stevenson M, Jaffe ES, Steinberg SM, Gress R, Hakim F, Wilson WH. Vaccine-induced tumor-specific immunity despite severe B-cell depletion in mantle cell lymphoma. Nat Med 2005; 11:986-91. [PMID: 16116429 DOI: 10.1038/nm1290] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 07/26/2005] [Indexed: 11/08/2022]
Abstract
The role of B cells in T-cell priming is unclear, and the effects of B-cell depletion on immune responses to cancer vaccines are unknown. Although results from some mouse models suggest that B cells may inhibit induction of T cell-dependent immunity by competing with antigen-presenting cells for antigens, skewing T helper response toward a T helper 2 profile and/or inducing T-cell tolerance, results from others suggest that B cells are necessary for priming as well as generation of T-cell memory. We assessed immune responses to a well-characterized idiotype vaccine in individuals with severe B-cell depletion but normal T cells after CD20-specific antibody-based chemotherapy of mantle cell lymphoma in first remission. Humoral antigen- and tumor-specific responses were detectable but delayed, and they correlated with peripheral blood B-cell recovery. In contrast, vigorous CD4(+) and CD8(+) antitumor type I T-cell cytokine responses were induced in most individuals in the absence of circulating B cells. Analysis of relapsing tumors showed no mutations or change in expression of target antigen to explain escape from therapy. These results show that severe B-cell depletion does not impair T-cell priming in humans. Based on these results, it is justifiable to administer vaccines in the setting of B-cell depletion; however, vaccine boosts after B-cell recovery may be necessary for optimal humoral responses.
Collapse
Affiliation(s)
- Sattva S Neelapu
- Experimental and Transplantation Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
O'Neill SK, Shlomchik MJ, Glant TT, Cao Y, Doodes PD, Finnegan A. Antigen-specific B cells are required as APCs and autoantibody-producing cells for induction of severe autoimmune arthritis. THE JOURNAL OF IMMUNOLOGY 2005; 174:3781-8. [PMID: 15749919 DOI: 10.4049/jimmunol.174.6.3781] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cells play an important role in rheumatoid arthritis, but whether they are required as autoantibody-producing cells as well as APCs has not been determined. We assessed B cell autoantibody and APC functions in a murine model of autoimmune arthritis, proteoglycan (PG)-induced arthritis, using both B cell-deficient mice and Ig-deficient mice (mIgM) mice that express an H chain transgene encoding for membrane-bound, but not secreted, IgM. The IgH transgene, when paired with endogenous lambda L chain, recognizes the hapten 4-hydroxy-3-nitro-phenyl acetyl and is expressed on 1-4% of B cells. B cell-deficient and mIgM mice do not develop arthritis after immunization with PG. In adoptive transfer of PG-induced arthritis into SCID mice, T cells from mIgM mice immunized with PG were unable to transfer disease even when B cells from PG-immunized wild-type mice were provided, suggesting that the T cells were not adequately primed and that Ag-specific B cells may be required. In fact, when PG was directly targeted to the B cell Ig receptor through a conjugate of 4-hydroxy-3-nitrophenyl acetyl-PG, T cells in mIgM mice were activated and competent to transfer arthritis. Such T cells caused mild arthritis in the absence of autoantibody, demonstrating a direct pathogenic role for T cells activated by Ag-specific B cells. Transfer of arthritic serum alone induced only mild and transient arthritis. However, both autoreactive T cells and autoantibody are required to cause severe arthritis, indicating that both B cell-mediated effector pathways contribute synergistically to autoimmune disease.
Collapse
Affiliation(s)
- Shannon K O'Neill
- Department of Immunology/Microbiology, Rush University medical Center, Cohn Research Building, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
143
|
Liu Z, Liu Q, Pesce J, Anthony RM, Lamb E, Whitmire J, Hamed H, Morimoto M, Urban JF, Gause WC. Requirements for the development of IL-4-producing T cells during intestinal nematode infections: what it takes to make a Th2 cell in vivo. Immunol Rev 2005; 201:57-74. [PMID: 15361233 DOI: 10.1111/j.0105-2896.2004.00186.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Components of the type 2 immune response may mediate host protection against both helminthic parasites and harmful allergic responses. A central player in this response is the T-helper 2 (Th2) effector cell, which produces interleukin (IL)-4, IL-5, IL-13, and other Th2 cytokines during the primary and memory response. Specific aspects of the parasite that trigger Th2-cell differentiation are not yet defined. Furthermore, the cell types and cell surface and secreted molecules that provide the immune milieu required for the development of Th2 effector cells and also Th2 memory cells are not well understood. They will probably vary with the particular helminth or other antigen inducing the Th2 response. We have used third stage larvae of intestinal nematode parasites as adjuvants to promote naïve nonparasite antigen-specific T cells to differentiate into Th2 cells. This model system avoids possible parasite antigen-specific T-cell clones or cross-reactive memory T cells that may preferentially differentiate into Th2 effector cells during the course of infection and confound the stereotypical components of parasite-induced Th2 cell differentiation. We have found that these parasites have a potent adjuvant effect and have used our model system to begin to investigate the events that lead to the development of polarized Th2 cells in vivo.
Collapse
Affiliation(s)
- Zhugong Liu
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Hussain S, Delovitch TL. Dysregulated B7-1 and B7-2 Expression on Nonobese Diabetic Mouse B Cells Is Associated with Increased T Cell Costimulation and the Development of Insulitis. THE JOURNAL OF IMMUNOLOGY 2005; 174:680-7. [PMID: 15634886 DOI: 10.4049/jimmunol.174.2.680] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Little is known about the pathogenic role of B cell dysfunction in T cell-mediated autoimmune disease. We previously reported that B cell hyper-responsiveness, resistance to apoptosis, and accumulation in islets occur during the onset of insulitis, but not in type 1 diabetes (T1D), in NOD mice. In this study we extended these studies to further determine how islet-infiltrated B cells contribute to this inflammatory insulitis. We demonstrate the presence of an increased percentage of B7-1(+) and a decreased percentage of B7-2(+) B cells in the spleen of autoimmune disease-prone NOD and nonobese diabetes-resistant mice compared with the spleen of nonautoimmune disease-prone C57BL/6 and BALB/c mice. An age-dependent differential expression of B7-1 and B7-2 was associated with the development of insulitis and CD4(+)CD25(+) T cell deficiency in autoimmune disease-prone mice. Whereas BCR and LPS stimulation increased B7-2 expression on B cells from autoimmune disease-prone and nonautoimmune disease-prone mice, LPS-induced B7-1 expression was higher on NOD than C57BL/6 B cells. Interestingly, increased expression of B7-1 and B7-2 was found on islet-infiltrated B cells, and this increase was associated with enhanced T cell costimulation. Islet-infiltrated B cells were shown to be a source of TNF-alpha production in islets. B7 blockade of BCR-stimulated NOD B cells by anti-B7-1 and anti-B7-2 mAbs during coadoptive transfer with diabetogenic T cells into NOD.scid mice protected these recipients from T1D. These results suggest that increased B7-1 and B7-2 expression on islet-infiltrated NOD B cells is associated with increased T cell costimulation and the development of inflammatory insulitis in NOD mice.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibodies, Anti-Idiotypic/pharmacology
- Antibodies, Blocking/pharmacology
- Antigens, CD/biosynthesis
- Antigens, CD/immunology
- Antigens, CD/physiology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- B-Lymphocyte Subsets/pathology
- B-Lymphocyte Subsets/transplantation
- B7-1 Antigen/biosynthesis
- B7-1 Antigen/immunology
- B7-1 Antigen/physiology
- B7-2 Antigen
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- Cell Movement/immunology
- Cell Proliferation
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Female
- Genetic Predisposition to Disease
- Immunoglobulin Fab Fragments/pharmacology
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Lymphocyte Activation/immunology
- Lymphopenia/immunology
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Interleukin-2/biosynthesis
- Spleen/immunology
- Spleen/pathology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- Tumor Necrosis Factor-alpha/biosynthesis
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Shabbir Hussain
- Autoimmunity/Diabetes Group, Robarts Research Institute, University of Western Ontario, London, Canada
| | | |
Collapse
|
145
|
Lenert P, Brummel R, Field EH, Ashman RF. TLR-9 Activation of Marginal Zone B Cells in Lupus Mice Regulates Immunity Through Increased IL-10 Production. J Clin Immunol 2005; 25:29-40. [PMID: 15742155 DOI: 10.1007/s10875-005-0355-6] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2004] [Indexed: 12/14/2022]
Abstract
Bacterial DNA triggers B-cell proliferation and induces immunoglobulin secretion. Chromatin-IgG complexes activate autoreactive B cells by co-engaging B-cell receptor (BCR) and TLR-9, thus suggesting a role for innate signaling in systemic autoimmunity. Spleen cells from lupus prone Palmerston North (PN) mice produce several fold less IL-12p40 than controls in response to CpG-oligodeoxynucleotides (ODNs). Here we show that B cells are primarily responsible for this abnormality. The removal of B cells from PN cultures markedly increased IL-12p40. Moreover, the addition of purified B cells back to PN splenocyte cultures resulted in a B-cell number dependent/ IL-10-mediated suppression of IL-12p40. The B cells were the major source of IL-10. In response to CpG, B cells from several lupus strains produced twice as a much IL-10 as controls, but failed to produce IL-10 when stimulated through BCR or CD40. PN and control mice expressed IL-10R similarly, and the difference in IL-10 secretion remained when anti-IL-10R blocking antibodies were used. IFN-gamma and IL-4 regulated CpG-induced IL-10 secretion in opposite directions. The abnormal IL-10 response in lupus mice was derived from B cells with the marginal zone phenotype, and could be downregulated with inhibitory ODNs. We hypothesize that TLR-9 activated lupus B cells can modulate T-cell mediated inflammatory responses through IL-10 production. Therefore, B cells may contribute to the lupus pathogenesis in many different ways: as antigen-presenting cells for self antigens, as effector cells for autoantibody production, and as IL-10 secreting regulatory cells.
Collapse
Affiliation(s)
- Petar Lenert
- Division of Rheumatology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
146
|
Anolik JH, Barnard J, Cappione A, Pugh-Bernard AE, Felgar RE, Looney RJ, Sanz I. Rituximab improves peripheral B cell abnormalities in human systemic lupus erythematosus. ACTA ACUST UNITED AC 2004; 50:3580-90. [PMID: 15529346 DOI: 10.1002/art.20592] [Citation(s) in RCA: 340] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE B lymphocyte depletion has recently emerged as a promising approach to the treatment of systemic lupus erythematosus (SLE). As part of a phase I/II dose-ranging trial of rituximab in the treatment of SLE, we evaluated the fate of discrete B cell subsets in the setting of selective depletion by anti-CD20 monoclonal antibody and during the B cell recovery phase. METHODS B cell depletion and phenotype were examined by flow cytometry of peripheral blood mononuclear cells for CD19, CD20, CD27, IgD, and CD38 expression. Changes in autoreactive B lymphocytes and plasma cells were assessed by determination of serum autoantibody levels (anti-double-stranded DNA and VH4.34) and by direct monitoring of a unique autoreactive B cell population bearing surface antibodies whose heavy chain is encoded by the VH4.34 gene segment. RESULTS Compared with normal controls, SLE patients displayed several abnormalities in peripheral B cell homeostasis at baseline, including naive lymphopenia, expansion of a CD27-,IgD- (double negative) population, and expansion of circulating plasmablasts. Remarkably, these abnormalities resolved after effective B cell depletion with rituximab and immune reconstitution. The frequency of autoreactive VH4.34 memory B cells also decreased 1 year posttreatment, despite the presence of low levels of residual memory B cells at the point of maximal B cell depletion and persistently elevated serum autoantibody titers in most patients. CONCLUSION This study is the first to show evidence that in SLE, specific B cell depletion therapy with rituximab dramatically improves abnormalities in B cell homeostasis and tolerance that are characteristic of this disease. The persistence of elevated autoantibody titers may reflect the presence of low levels of residual autoreactive memory B cells and/or long-lived autoreactive plasma cells.
Collapse
Affiliation(s)
- Jennifer H Anolik
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
147
|
Catron DM, Itano AA, Pape KA, Mueller DL, Jenkins MK. Visualizing the first 50 hr of the primary immune response to a soluble antigen. Immunity 2004; 21:341-7. [PMID: 15357945 DOI: 10.1016/j.immuni.2004.08.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 08/10/2004] [Accepted: 08/12/2004] [Indexed: 01/13/2023]
Abstract
Recently, static and dynamic imaging methods have produced the first glimpses of the interactions between antigen-specific T cells and peptide-MHC-bearing antigen-presenting cells in the lymph nodes. Using data from these experiments, we produced a numerically, spatially, and temporally scaled simulation of the first 50 hr of the primary T cell-dependent immune response. The simulation highlights how lymph node structure facilitates antigen presentation to rare, naive, antigen-specific CD4+ T cells.
Collapse
Affiliation(s)
- Drew M Catron
- Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis 55455, USA.
| | | | | | | | | |
Collapse
|
148
|
Abstract
CD4 T-cell memory is in some ways more enigmatic than CD8 T-cell memory. This is mostly due to the fact that CD4 T cells tend to expand far less in response to antigenic stimuli, thereby thwarting attempts at their detection during the course of an immune response. Nevertheless, there is a wide range of experimental models that have provided information regarding the survival and maintenance of CD4 memory cells, their functional capacities, their differentiation states and program of development following activation. The emerging picture is one of great versatility and functional heterogeneity as befits their central position within the immune system.
Collapse
Affiliation(s)
- Brigitta Stockinger
- Division of Molecular Immunology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, UK.
| | | | | |
Collapse
|
149
|
Looney RJ, Anolik JH, Campbell D, Felgar RE, Young F, Arend LJ, Sloand JA, Rosenblatt J, Sanz I. B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. ACTA ACUST UNITED AC 2004; 50:2580-9. [PMID: 15334472 DOI: 10.1002/art.20430] [Citation(s) in RCA: 583] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Safer and more effective therapies are needed for the treatment of systemic lupus erythematosus (SLE). B lymphocytes have been shown to play fundamental pathogenic roles in SLE, and therefore, elimination of B cells with the use of rituximab may represent a new therapy for SLE. METHODS A phase I/II dose-escalation trial of rituximab added to ongoing therapy in SLE was conducted. Rituximab was administered as a single infusion of 100 mg/m2 (low dose), a single infusion of 375 mg/m2 (intermediate dose), or as 4 infusions (1 week apart) of 375 mg/m2 (high dose). CD19+ lymphocytes were measured to determine the effectiveness of B cell depletion. The Systemic Lupus Activity Measure (SLAM) score was used as the primary outcome for clinical efficacy. RESULTS Rituximab was well tolerated in this patient population, with most experiencing no significant adverse effects. Only 3 serious adverse events, which were thought to be unrelated to rituximab administration, were noted. A majority of patients (11 of 17) had profound B cell depletion (to <5 CD19+ B cells/microl). In these patients, the SLAM score was significantly improved at 2 and 3 months compared with baseline (P = 0.0016 and P = 0.0022, respectively, by paired t-test). This improvement persisted for 12 months, despite the absence of a significant change in anti-double-stranded DNA antibody and complement levels. Six patients developed human antichimeric antibodies (HACAs) at a level > or =100 ng/ml. These HACA titers were associated with African American ancestry, higher baseline SLAM scores, reduced B cell depletion, and lower levels of rituximab at 2 months after initial infusion. CONCLUSION Rituximab therapy appears to be safe for the treatment of SLE and holds significant therapeutic promise, at least for the majority of patients experiencing profound B cell depletion. Based on these results, controlled trials of rituximab appear to be warranted.
Collapse
Affiliation(s)
- R John Looney
- University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Messer RJ, Dittmer U, Peterson KE, Hasenkrug KJ. Essential role for virus-neutralizing antibodies in sterilizing immunity against Friend retrovirus infection. Proc Natl Acad Sci U S A 2004; 101:12260-5. [PMID: 15297622 PMCID: PMC514466 DOI: 10.1073/pnas.0404769101] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The current experiments use the Friend retrovirus model to demonstrate that vaccine-primed B cells are essential for sterilizing immunity, and the results indicate that the requisite function of these cells is the production of virus-neutralizing antibodies rather than priming or reactivation of T cells. B cell-deficient mice were poorly protected by vaccination, but adoptive transfer experiments showed that the T cells from B cell-deficient mice were primed as well as those from wild-type mice. Furthermore, passive transfer of virus-neutralizing antibodies completely compensated for B cell deficiency. The presence of virus-neutralizing antibodies at the time of infection was crucial for vaccine efficacy. Interestingly, virus-neutralizing antibodies worked synergistically with vaccine-primed T cells to provide a level of protection many orders of magnitude greater than either antibodies or immune T cells alone. Nonneutralizing antibodies also contributed to protection and acted cooperatively with neutralizing antibodies to reduce infection levels. These results emphasize the importance of inducing both T cell responses and virus-neutralizing antibody responses for effective retroviral vaccine protection.
Collapse
Affiliation(s)
- Ronald J Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|