101
|
Zhang Y, Zhang H, Chan DWH, Ma Y, Lu A, Yu S, Zhang B, Zhang G. Strategies for developing long-lasting therapeutic nucleic acid aptamer targeting circulating protein: The present and the future. Front Cell Dev Biol 2022; 10:1048148. [PMID: 36393853 PMCID: PMC9664076 DOI: 10.3389/fcell.2022.1048148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/20/2022] [Indexed: 08/09/2023] Open
Abstract
Aptamers are short, single-stranded DNA or RNA oligonucleotide sequences that can bind specific targets. The molecular weight of aptamers (<20 kDa) is lower than the renal filtration threshold (30∼50 kDa), resulting in very short half-lives in vivo, which limit their druggability. The development of long-lasting modification approaches for aptamers can help address the druggability bottleneck of aptamers. This review summarized two distinct kinds of long-lasting modification approaches for aptamers, including macromolecular modification and low-molecular-weight modification. Though it is a current approach to extend the half-life of aptamers, the macromolecular modification approach could limit the space for the dosage increases, thus causing potential compliance concerns due to large molecular weight. As for the other modification approach, the low-molecular-weight modification approach, which uses low molecular weight coupling agents (LMWCAs) to modify aptamers, could greatly increase the proportion of aptamer moiety. However, some LMWCAs could bind to other proteins, causing a decrease in the drug amounts in blood circulation. Given these issues, the outlook for the next generation of long-lasting modification approaches was proposed at the end, including improving the administration method to increase dosage for aptamer drugs modified by macromolecule and developing Artificial intelligence (AI)-based strategies for optimization of LMWCAs.
Collapse
Affiliation(s)
- Yihao Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Huarui Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Daniel Wing Ho Chan
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Sifan Yu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| |
Collapse
|
102
|
Lee CH, Huang SC, Hung KC, Cho CJ, Liu SJ. Enhanced Diabetic Wound Healing Using Electrospun Biocompatible PLGA-Based Saxagliptin Fibrous Membranes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3740. [PMID: 36364516 PMCID: PMC9659155 DOI: 10.3390/nano12213740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 05/26/2023]
Abstract
Delayed diabetic wound healing is an adverse event that frequently leads to limb disability or loss. A novel and promising vehicle for the treatment of diabetic wounds is required for clinical purposes. The biocompatible and resorbable poly (lactic-co-glycolic acid) (PLGA)-based fibrous membranes prepared by electrospinning that provide a sustained discharge of saxagliptin for diabetic wound healing were fabricated. The concentration of released saxagliptin in Dulbecco’s phosphate-buffered saline was analyzed for 30 days using high-performance liquid chromatography. The effectiveness of the eluted saxagliptin was identified using an endothelial progenitor cell migration assay in vitro and a diabetic wound healing in vivo. Greater hydrophilicity and water storage were shown in the saxagliptin-incorporated PLGA membranes than in the pristine PLGA membranes (both p < 0.001). For diabetic wound healing, the saxagliptin membranes accelerated the wound closure rate, the dermal thickness, and the heme oxygenase-1 level over the follicle areas compared to those in the pristine PLGA group at two weeks post-treatment. The saxagliptin group also had remarkably higher expressions of insulin-like growth factor I expression and transforming growth factor-β1 than the control group (p = 0.009 and p < 0.001, respectively) in diabetic wounds after treatment. The electrospun PLGA-based saxagliptin membranes exhibited excellent biomechanical and biological features that enhanced diabetic wound closure and increased the antioxidant activity, cellular granulation, and functionality.
Collapse
Affiliation(s)
- Chen-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Shu-Chun Huang
- Department of Physical Medicine and Rehabilitation, New Taipei Municipal Tucheng Hospital, New Taipei City 23652, Taiwan
- Department of Physical Medicine & Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Kuo-Chun Hung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Chia-Jung Cho
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - Shih-Jung Liu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
103
|
Huang S, Hao XY, Li YJ, Wu JY, Xiang DX, Luo S. Nonviral delivery systems for antisense oligonucleotide therapeutics. Biomater Res 2022; 26:49. [PMID: 36180936 PMCID: PMC9523189 DOI: 10.1186/s40824-022-00292-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are an important tool for the treatment of many genetic disorders. However, similar to other gene drugs, vectors are often required to protect them from degradation and clearance, and to accomplish their transport in vivo. Compared with viral vectors, artificial nonviral nanoparticles have a variety of design, synthesis, and formulation possibilities that can be selected to accomplish protection and delivery for specific applications, and they have served critical therapeutic purposes in animal model research and clinical applications, allowing safe and efficient gene delivery processes into the target cells. We believe that as new ASO drugs develop, the exploration for corresponding nonviral vectors is inevitable. Intensive development of nonviral vectors with improved delivery strategies based on specific targets can continue to expand the value of ASO therapeutic approaches. Here, we provide an overview of current nonviral delivery strategies, including ASOs modifications, action mechanisms, and multi-carrier methods, which aim to address the irreplaceable role of nonviral vectors in the progressive development of ASOs delivery.
Collapse
Affiliation(s)
- Si Huang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin-Yan Hao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yong-Jiang Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jun-Yong Wu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Da-Xiong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shilin Luo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China. .,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China. .,Institute of Clinical Pharmacy, Central South University, Changsha, China.
| |
Collapse
|
104
|
Application of Intranasal Administration in the Delivery of Antidepressant Active Ingredients. Pharmaceutics 2022; 14:pharmaceutics14102070. [PMID: 36297505 PMCID: PMC9611373 DOI: 10.3390/pharmaceutics14102070] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
As a mental disease in modern society, depression shows an increasing occurrence, with low cure rate and high recurrence rate. It has become the most disabling disease in the world. At present, the treatment of depression is mainly based on drug therapy combined with psychological therapy, physical therapy, and other adjuvant therapy methods. Antidepressants are primarily administered peripherally (oral and intravenous) and have a slow onset of action. Antidepressant active ingredients, such as neuropeptides, natural active ingredients, and some chemical agents, are limited by factors such as the blood–brain barrier (BBB), first-pass metabolism, and extensive adverse effects caused by systemic administration. The potential anatomical link between the non-invasive nose–brain pathway and the lesion site of depression may provide a more attractive option for the delivery of antidepressant active ingredients. The purpose of this article is to describe the specific link between intranasal administration and depression, the challenges of intranasal administration, as well as studies of intranasal administration of antidepressant active ingredients.
Collapse
|
105
|
Antifungal Encapsulated into Ligand-Functionalized Nanoparticles with High Specificity for Macrophages. Pharmaceutics 2022; 14:pharmaceutics14091932. [PMID: 36145686 PMCID: PMC9501281 DOI: 10.3390/pharmaceutics14091932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/28/2022] Open
Abstract
Infectious diseases caused by intracellular microorganisms such as Histoplasma capsulatum represent a significant challenge worldwide. Drug encapsulation into functionalized nanoparticles (NPs) is a valuable alternative to improving drug solubility and bioavailability, preventing undesirable interactions and drug degradation, and reaching the specific therapeutic target with lower doses. This work reports on Itraconazole (ITZ) encapsulated into core-shell-like polymeric NPs and functionalized with anti-F4/80 antibodies for their targeted and controlled release into macrophages. Uptake assay on co-culture showed significant differences between the uptake of functionalized and bare NPs, higher with functionalized NPs. In vitro assays showed that F4/80-NPs with 0.007 µg/mL of encapsulated ITZ eliminated the H. capsulatum fungus in co-culture with macrophages effectively compared to the bare NPs, without any cytotoxic effect on macrophages after 24 h interaction. Furthermore, encapsulated ITZ modulated the gene expression of anti and pro-inflammatory cytokines (IL-1, INF-Y, IL-6 and IL-10) on macrophages. Additionally, the anti-F4/80 antibody-coating enhanced natural and adequate antifungal response in the cells, exerting a synergistic effect that prevented the growth of the fungus at the intracellular level. Functionalized NPs can potentially improve macrophage-targeted therapy, increasing NPs endocytosis and intracellular drug concentration.
Collapse
|
106
|
Wang C, Li Y, Tian Y, Ma W, Sun Y. Effects of polymer carriers on the occurrence and development of autophagy in drug delivery. NANOSCALE ADVANCES 2022; 4:3676-3688. [PMID: 36133340 PMCID: PMC9470016 DOI: 10.1039/d2na00355d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Autophagy is an evolutionarily conserved catabolic process that can degrade cytoplasmic materials and recycle energy to maintain metabolite homeostasis in cells. Autophagy is closely related to various physiological or pathological processes. Macromolecular materials are widely used in drug delivery systems and disease treatments due to their intrinsic effects, such as altered pharmacokinetics and biodistribution. Interaction of autophagic flux or the signal pathway with macromolecules may cause autophagy inhibition or autophagy cell death. This review covers autophagy regulation pathways and macromolecular materials (including functional micelles, biodegradable and pH-sensitive polymers, biomacromolecules, dendrimers, coordination polymers, and hybrid nanoparticles) mediated autophagy modulation.
Collapse
Affiliation(s)
- Changduo Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University Qingdao 266000 China +86-532-82991203
| | - Yang Li
- Department of Pharmacy, Qingdao Municipal Hospital Qingdao 266000 China
| | - Yu Tian
- Department of Pharmaceutics, School of Pharmacy, Qingdao University Qingdao 266000 China +86-532-82991203
| | - Wenyuan Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University Qingdao 266000 China +86-532-82991203
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University Qingdao 266000 China +86-532-82991203
| |
Collapse
|
107
|
Cao H, Li L, Li L, Meng X, Liu Y, Cheng W, Zhang P, Gao Y, Qin L, Wang X. New use for old drug: Local delivery of puerarin facilitates critical-size defect repair in rats by promoting angiogenesis and osteogenesis. J Orthop Translat 2022; 36:52-63. [PMID: 35979175 PMCID: PMC9352809 DOI: 10.1016/j.jot.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 11/02/2022] Open
Abstract
Objectives Methods Results Conclusion The Translational Potential of this Article
Collapse
|
108
|
Zhu JQ, Wu H, Li ZL, Xu XF, Xing H, Wang MD, Jia HD, Liang L, Li C, Sun LY, Wang YG, Shen F, Huang DS, Yang T. Responsive Hydrogels Based on Triggered Click Reactions for Liver Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201651. [PMID: 35583434 DOI: 10.1002/adma.202201651] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Globally, liver cancer, which is one of the major cancers worldwide, has attracted the growing attention of technological researchers for its high mortality and limited treatment options. Hydrogels are soft 3D network materials containing a large number of hydrophilic monomers. By adding moieties such as nitrobenzyl groups to the network structure of a cross-linked nanocomposite hydrogel, the click reaction improves drug-release efficiency in vivo, which improves the survival rate and prolongs the survival time of liver cancer patients. The application of a nanocomposite hydrogel drug delivery system can not only enrich the drug concentration at the tumor site for a long time but also effectively prevents the distant metastasis of residual tumor cells. At present, a large number of researches have been working toward the construction of responsive nanocomposite hydrogel drug delivery systems, but there are few comprehensive articles to systematically summarize these discoveries. Here, this systematic review summarizes the synthesis methods and related applications of nanocomposite responsive hydrogels with actions to external or internal physiological stimuli. With different physical or chemical stimuli, the structural unit rearrangement and the controlled release of drugs can be used for responsive drug delivery in different states.
Collapse
Affiliation(s)
- Jia-Qi Zhu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Han Wu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Zhen-Li Li
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Xin-Fei Xu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Hao Xing
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Hang-Dong Jia
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Lei Liang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Li-Yang Sun
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Yu-Guang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Dong-Sheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Tian Yang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| |
Collapse
|
109
|
An overview of recent advances in insulin delivery and wearable technology for effective management of diabetes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
110
|
Mohan S, Karunanithi P, Raman Murali M, Anwar Ayob K, Megala J, Genasan K, Kamarul T, Balaji Raghavendran HR. Potential Use of 3D CORAGRAF-Loaded PDGF-BB in PLGA Microsphere Seeded Mesenchymal Stromal Cells in Enhancing the Repair of Calvaria Critical-Size Bone Defect in Rat Model. Mar Drugs 2022; 20:md20090561. [PMID: 36135749 PMCID: PMC9506139 DOI: 10.3390/md20090561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Our previous study evidenced that the 3D CORAGRAF loaded with PLGA microsphere constitutes PDGF-BB can support cell attachment and proliferation and can induce an osteogenic commitment of mesenchymal stromal cells in the in vitro condition. However, how this construct can perform in pathophysiological conditions in terms of repairing critical bone defects is yet to be understood. A study was therefore conducted to investigate the regeneration potential of calvaria critical-size defects using CORAGRAF + PLGA with PDGF-BB + mesenchymal stromal cells (MSCs) in a rat model. A 5 mm critical bone defect was created on calvaria of 40 male Sprague-Dawley rats. CORAGRAF incorporated either with or without PDGF-BB and seeded with rat bone-marrow-derived MSCs was implanted at the defect region. The bone regeneration potential of implanted constructs was assessed using micro-CT imaging and histological staining in weeks 4 and 8. The micro-CT images indicated a significant closure of defects in the cranial bone of the rats treated with 3D CORAGRAF + PLGA with PDGF-BB + MSCs on week 4 and 8 post-implantation. This finding, further supported with the histology outcome where the rat cranial defect treated with CORAGRAF + PLGA with PDGF-BB + MSCs indicated neo-bony ingrowth with organized and mature bone-like morphology as compared with other groups. The previous in vitro results substantiated with our pre-clinical findings demonstrate that the combination of CORAGRAF + PLGA with PDGF-BB + MSCs could be an ideal construct to support bone regeneration in critical bone defects. Hence, this construct can be further investigated for its safety and efficacy in large animal models, or it can be skipped to human trial prior for commercialization.
Collapse
Affiliation(s)
- Saktiswaren Mohan
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Puvanan Karunanithi
- Department of Anatomy, Faculty of Medicine, Manipal University College Malaysia, Melaka 75150, Malaysia
| | - Malliga Raman Murali
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Khairul Anwar Ayob
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jayaraman Megala
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai 603203, Tamil Nadu, India
| | - Krishnamurithy Genasan
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (K.G.); (T.K.); (H.R.B.R.)
| | - Tunku Kamarul
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Advanced Medical and Dental Institute (AMDI), University Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia
- Correspondence: (K.G.); (T.K.); (H.R.B.R.)
| | - Hanumantha Rao Balaji Raghavendran
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Biomaterials Laboratory, Faculty of Clinical Research, Central Research Facility, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, Tamil Nadu, India
- Correspondence: (K.G.); (T.K.); (H.R.B.R.)
| |
Collapse
|
111
|
How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT. Pharmaceutics 2022; 14:pharmaceutics14091817. [PMID: 36145569 PMCID: PMC9504126 DOI: 10.3390/pharmaceutics14091817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the most aggressive type of skin cancer, the incidence and mortality of which are increasing worldwide. Its extensive degree of heterogeneity has limited its response to existing therapies. For many years the therapeutic strategies were limited to surgery, radiotherapy, and chemotherapy. Fortunately, advances in knowledge have allowed the development of new therapeutic strategies. Despite the undoubted progress, alternative therapies are still under research. In this context, nanotechnology is also positioned as a strong and promising tool to develop nanosystems that act as drug carriers and/or light absorbents to potentially improve photothermal and photodynamic therapies outcomes. This review describes the latest advances in nanotechnology field in the treatment of melanoma from 2011 to 2022. The challenges in the translation of nanotechnology-based therapies to clinical applications are also discussed. To sum up, great progress has been made in the field of nanotechnology-based therapies, and our understanding in this field has greatly improved. Although few therapies based on nanoparticulate systems have advanced to clinical trials, it is expected that a large number will come into clinical use in the near future. With its high sensitivity, specificity, and multiplexed measurement capacity, it provides great opportunities to improve melanoma treatment, which will ultimately lead to enhanced patient survival rates.
Collapse
|
112
|
Li Y, Wu J, Oku H, Ma G. Polymer‐Modified Micromotors with Biomedical Applications: Promotion of Functionalization. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yanan Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- Division of Molecular Science Graduate School of Science and Engineering Gunma University Gunma 376-8515 Japan
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hiroyuki Oku
- Division of Molecular Science Graduate School of Science and Engineering Gunma University Gunma 376-8515 Japan
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
113
|
Formulation and optimization of Paliperidone palmitate biodegradable injectable microspheres using Box-Behnken design. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
114
|
Li N, Dong L, Shen Y, Wang Y, Chang L, Wu H, Chang Y, Li M, Li D, Li Z, He M, Li C, Wei Y, Xie H, Wang F. Therapeutic Effect of Ultrasound Combined With Porous Lipid Clioquinol/PLGA Microbubbles on Ferroptosis in HL-1 Cardiac Cell Induced by Isoproterenol Attack. Front Pharmacol 2022; 13:918292. [PMID: 35935822 PMCID: PMC9354950 DOI: 10.3389/fphar.2022.918292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, studies have shown a close relationship between cardiomyocyte death and ferroptosis. Clioquinol (CQ) can inhibit ferroptosis. Porous lipid-poly (lactic-co-glycolic acid) (PLGA) microbubbles (MBs) were prepared by double emulsification (W1/O/W2) using 1,2-dioctadecanoyl-sn-glycero-3-phophocholine and PLGA as raw materials. Porous lipid-PLGA MBs were used as carriers to prepare CQ/PLGA MBs containing CQ. CQ/PLGA had the advantages of high drug loading, good biocompatibility, and sustained release. Our results showed that CQ/PLGA improved the effect of CQ and reduced its cytotoxicity. Under low-frequency ultrasound with certain parameters, CQ/PLGA showed steady-state cavitation, which increased the membrane permeability of mouse cardiomyocyte HL-1 to a certain extent and further prevented the process of ferroptosis in mouse cardiomyocyte HL-1.
Collapse
Affiliation(s)
- Nana Li
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lei Dong
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuanyuan Shen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- *Correspondence: Haiqin Xie, ; Yuanyuan Shen, ; Feng Wang,
| | - Yongling Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Liansheng Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hongwei Wu
- Department of Chemistry, Xinxiang Medical University, Xinxiang, China
| | - Yuqiao Chang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Menghao Li
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Dan Li
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhaoyi Li
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Mei He
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Cheng Li
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yao Wei
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Haiqin Xie
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Haiqin Xie, ; Yuanyuan Shen, ; Feng Wang,
| | - Feng Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Haiqin Xie, ; Yuanyuan Shen, ; Feng Wang,
| |
Collapse
|
115
|
In Vitro Cell Behavior and Antibiotic Activity under Sustained Release of Doxycycline-Loaded Poly(lactic-co-glycolic acid) Microspheres. Antibiotics (Basel) 2022; 11:antibiotics11070945. [PMID: 35884199 PMCID: PMC9311981 DOI: 10.3390/antibiotics11070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
The state-of-the-art sustained drug delivery systems are related to features to improve pharmacological transport through a controlled ratio between drug release and the desired therapeutic effect. Microspheres of biodegradable polymers, such as poly(lactic-co-glycolic acid) (PLGA), play an important role in these approaches, directing the release in a specific region of interest. In this way, the encapsulation of doxycycline (DOX) as a microbial agent turns the PLGA microspheres into a potential device for the treatment of topic oral diseases. Thus, this work aimed to produce DOX-loaded PLGA microspheres and see how they interfered with mesenchymal stem cell viability and in the sustained release in antimicrobial assays. Scanning electron microscopy showed the spherical microstructured pattern, revealing assorted sized distribution, with major diameters ranging 1–3 µm. The encapsulation efficiency presented a mean of 80% in both methods to obtain the microspheres (sonication and magnetic rotation). The DOX release test revealed a gradual and continuous profile of 30–40% between 120 and 168 h. Mesenchymal stem cells cultured in PLGA with or without DOX at several concentrations revealed no effect on the cell metabolic activity. Striking morphology changes were observed by confocal microscopy after 1 to 3 days under culture. The live/dead assay indicated that when microsphere densities were increased (from 10 to 100 µg/mL) cultured cells presented an internalized pattern of microspheres in both groups of PLGA containing DOX or not, while slight cell death signals were identified nearby microsphere clusters. Microbiological assays performed by the agar diffusion test pointed out that an inhibition zone was identified in Staphylococcus aureus (S. aureus) cultures at earlier times of DOX release. Despite the well-known use of PLGA as a drug delivery vehicle, when synthesized with DOX, it presents both characteristics of the desired treatment to prevent healthy tissue damage while avoiding bacterial growth in a microenvironment with anatomical features, such as grooves, projections, and other tough conditions that favor the development of oral diseases.
Collapse
|
116
|
The Use of Polymer Blends in the Treatment of Ocular Diseases. Pharmaceutics 2022; 14:pharmaceutics14071431. [PMID: 35890326 PMCID: PMC9322751 DOI: 10.3390/pharmaceutics14071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
The eye is an organ with limited drug access due to its anatomical and physiological barriers, and the usual forms of ocular administration are limited in terms of drug penetration, residence time, and bioavailability, as well as low patient compliance. Hence, therapeutic innovations in new drug delivery systems (DDS) have been widely explored since they show numerous advantages over conventional methods, besides delivering the content to the eye without interfering with its normal functioning. Polymers are usually used in DDS and many of them are applicable to ophthalmic use, especially biodegradable ones. Even so, it can be a hard task to find a singular polymer with all the desirable properties to deliver the best performance, and combining two or more polymers in a blend has proven to be more convenient, efficient, and cost-effective. This review was carried out to assess the use of polymer blends as DDS. The search conducted in the databases of Pubmed and Scopus for specific terms revealed that although the physical combination of polymers is largely applied, the term polymer blend still has low compliance.
Collapse
|
117
|
Blando S, Anchesi I, Mazzon E, Gugliandolo A. Can a Scaffold Enriched with Mesenchymal Stem Cells Be a Good Treatment for Spinal Cord Injury? Int J Mol Sci 2022; 23:ijms23147545. [PMID: 35886890 PMCID: PMC9319719 DOI: 10.3390/ijms23147545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/10/2022] Open
Abstract
Spinal cord injury (SCI) is a worldwide highly crippling disease that can lead to the loss of motor and sensory neurons. Among the most promising therapies, there are new techniques of tissue engineering based on stem cells that promote neuronal regeneration. Among the different types of stem cells, mesenchymal stem cells (MSCs) seem the most promising. Indeed, MSCs are able to release trophic factors and to differentiate into the cell types that can be found in the spinal cord. Currently, the most common procedure to insert cells in the lesion site is infusion. However, this causes a low rate of survival and engraftment in the lesion site. For these reasons, tissue engineering is focusing on bioresorbable scaffolds to help the cells to stay in situ. Scaffolds do not only have a passive role but become fundamental for the trophic support of cells and the promotion of neuroregeneration. More and more types of materials are being studied as scaffolds to decrease inflammation and increase the engraftment as well as the survival of the cells. Our review aims to highlight how the use of scaffolds made from biomaterials enriched with MSCs gives positive results in in vivo SCI models as well as the first evidence obtained in clinical trials.
Collapse
|
118
|
Hamimed S, Jabberi M, Chatti A. Nanotechnology in drug and gene delivery. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:769-787. [PMID: 35505234 PMCID: PMC9064725 DOI: 10.1007/s00210-022-02245-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Over the last decade, nanotechnology has widely addressed many nanomaterials in the biomedical area with an opportunity to achieve better-targeted delivery, effective treatment, and an improved safety profile. Nanocarriers have the potential property to protect the active molecule during drug delivery. Depending on the employing nanosystem, the delivery of drugs and genes has enhanced the bioavailability of the molecule at the disease site and exercised an excellent control of the molecule release. Herein, the chapter discusses various advanced nanomaterials designed to develop better nanocarrier systems used to face different diseases such as cancer, heart failure, and malaria. Furthermore, we demonstrate the great attention to the promising role of nanocarriers in ease diagnostic and biodistribution for successful clinical cancer therapy.
Collapse
Affiliation(s)
- Selma Hamimed
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia. .,Departement of Biology, Faculty of Exact Sciences, Natural and Life Sciences, Chaikh Larbi Tebessi University, Tebessa, Algeria.
| | - Marwa Jabberi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia.,Laboratory of Energy and Matter for Development of Nuclear Sciences (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, 2020, Ariana, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia
| |
Collapse
|
119
|
García-Melero J, López-Mitjavila JJ, García-Celma MJ, Rodriguez-Abreu C, Grijalvo S. Rosmarinic Acid-Loaded Polymeric Nanoparticles Prepared by Low-Energy Nano-Emulsion Templating: Formulation, Biophysical Characterization, and In Vitro Studies. MATERIALS 2022; 15:ma15134572. [PMID: 35806696 PMCID: PMC9267406 DOI: 10.3390/ma15134572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
Rosmarinic acid (RA), a caffeic acid derivative, has been loaded in polymeric nanoparticles made up of poly(lactic-co-glycolic acid) (PLGA) through a nano-emulsion templating process using the phase-inversion composition (PIC) method at room temperature. The obtained RA-loaded nanoparticles (NPs) were colloidally stable exhibiting average diameters in the range of 70–100 nm. RA was entrapped within the PLGA polymeric network with high encapsulation efficiencies and nanoparticles were able to release RA in a rate-controlled manner. A first-order equation model fitted our experimental data and confirmed the prevalence of diffusion mechanisms. Protein corona formation on the surface of NPs was assessed upon incubation with serum proteins. Protein adsorption induced an increase in the hydrodynamic diameter and a slight shift towards more negative surface charges of the NPs. The radical scavenging activity of RA-loaded NPs was also studied using the DPPH·assay and showed a dose–response relationship between the NPs concentration and DPPH inhibition. Finally, RA-loaded NPs did not affect the cellular proliferation of the human neuroblastoma SH-SY5Y cell line and promoted efficient cellular uptake. These results are promising for expanding the use of O/W nano-emulsions in biomedical applications.
Collapse
Affiliation(s)
- Jessica García-Melero
- Institute for Advanced Chemistry of Catalonia (CSIC-IQAC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (J.G.-M.); (J.-J.L.-M.)
| | - Joan-Josep López-Mitjavila
- Institute for Advanced Chemistry of Catalonia (CSIC-IQAC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (J.G.-M.); (J.-J.L.-M.)
| | - María José García-Celma
- Department of Pharmacy, Pharmaceutical Technology, and Physical-Chemistry, R+D Associated Unit to CSIC Pharmaceutical Nanotechnology, IN2UB, University of Barcelona, Joan XXIII 27-31, E-08028 Barcelona, Spain;
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Carlos Rodriguez-Abreu
- Institute for Advanced Chemistry of Catalonia (CSIC-IQAC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (J.G.-M.); (J.-J.L.-M.)
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Correspondence: (C.R.-A.); (S.G.)
| | - Santiago Grijalvo
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Correspondence: (C.R.-A.); (S.G.)
| |
Collapse
|
120
|
Long L, Zhong W, Guo L, Ji J, Nie H. Effect of Bufalin-PLGA Microspheres in the Alleviation of Neuropathic Pain via the CCI Model. Front Pharmacol 2022; 13:910885. [PMID: 35770074 PMCID: PMC9234216 DOI: 10.3389/fphar.2022.910885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
The treatment of neuropathic pain (NPP) is considered challenging, while the search for alternative medication is striving. NPP pathology is related with the expression of both the purinergic 2X7 (P2X7) receptor and the transient receptor potential vanilloid 1 receptor (TRPV1). Bufalin is a traditional Chinese medication derived from toad venom with pronounced antitumor, analgesic, and anti-inflammatory properties. However, poor solubility, rapid metabolism, and the knowledge gap on its pain alleviation mechanism have limited the clinical application of bufalin. Hence, the purpose of this study is to illustrate the NPP alleviation mechanism of bufalin via chronic constriction injury (CCI). To address the concern on fast metabolism, bufalin-PLGA microspheres (MS) were prepared via membrane emulsification to achieve prolonged pain-relieving effects. Western blot, real-time PCR, immunofluorescence, and molecular docking were employed to demonstrate the therapeutic action of bufalin on NPP. The results showed enhanced thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) after the administration of both bufalin and bufalin-PLGA MS in the CCI rats. Prolonged pain-relieving effects for up to 3 days with reduced dose frequency was achieved via bufalin-PLGA MS. In the CCI rats treated with bufalin-PLGA MS, the expression levels of protein and mRNA in TRPV1 and P2X7, both localized in the dorsal root ganglion (DRG), were reduced. Moreover, bufalin-PLGA MS effectively reduced the levels of IL-1β, IL-18, IL-6, and TNF-α in the CCI group. The results from molecular docking suggested a possible mechanism of NPP alleviation of bufalin through binding to P2X7 receptors directly. The administration of bufalin-PLGA MS prepared by membrane emulsification demonstrated promising applications for sustained effect on the alleviation of NPP.
Collapse
Affiliation(s)
- Lina Long
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenwei Zhong
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Yunfu, China
- Guangzhou Nansha Information Technology Park Post-Doctoral Scientific Research Station, Guangzhou, China
- *Correspondence: Wenwei Zhong, ; Hong Nie,
| | - Liwei Guo
- Guangzhou Bio-Green Biotechnology Co., Ltd., Guangzhou, China
- National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, Guangzhou, China
- Guangzhou Dayuan Studio of Membrane Science and Technology for Traditional Chinese Medicine, Guangzhou, China
| | - Jing Ji
- Guangzhou Nansha Information Technology Park Post-Doctoral Scientific Research Station, Guangzhou, China
| | - Hong Nie
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
- *Correspondence: Wenwei Zhong, ; Hong Nie,
| |
Collapse
|
121
|
Rahiminezhad Z, Tamaddon A, Dehshahri A, Borandeh S, Abolmaali SS, Najafi H, Azarpira N. PLGA-graphene quantum dot nanocomposites targeted against α vβ 3 integrin receptor for sorafenib delivery in angiogenesis. BIOMATERIALS ADVANCES 2022; 137:212851. [PMID: 35929279 DOI: 10.1016/j.bioadv.2022.212851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Angiogenesis is a vital step in many severe diseases such as cancer, diabetic retinopathy, and rheumatoid arthritis. Sorafenib (SFB), a multi-tyrosine kinase inhibitor, has recently been shown to inhibit tumor progression and suppress angiogenesis. Its narrow therapeutic window, however, has limited its clinical application and therapeutic efficacy. Accordingly, in this study, a nanocomposite formulation comprising of graphene quantum dots (GQDs) and poly (D, l-lactide-co-glycolide) (PLGA) nanoparticles was functionalized with an integrin-targeting ligand (RGD peptide) to improve SFB delivery for the treatment of angiogenesis. Physicochemical and biological properties of the targeted nanocomposite were evaluated in terms of chemical structure, morphology, particle size, zeta potential, photoluminescence, and cell toxicity. The loading capacity of the nanocomposite was optimized at different drug-to-PLGA ratios. Drug release behavior was also investigated at 37 °C in pH = 7.4. The SFB-to-PLGA ratio of 1:3 was selected as the optimum condition which resulted in the encapsulation efficiency and encapsulation capacity of 68.93 ± 1.39 and 18.77 ± 0.46, respectively. Photoluminescence properties of GQD in nanocomposite were used to track the delivery system. The results indicated that conjugating targeting ligand could enhance cellular uptake of nanocomposite in cells overexpressing integrin receptors. In vivo anti-angiogenesis activity of targeted nanocomposite was investigated in chick chorioallantoic membrane (CAM). The findings showed that SFB loaded in the targeted nanocomposite reduced VEGF secretion in vitro and its anti-angiogenic effect surpass free SFB. Thanks to its unique therapeutic and bioimaging properties, the developed nanocomposite could be an effective drug delivery system for poorly water-soluble therapeutic agents.
Collapse
Affiliation(s)
- Zahra Rahiminezhad
- Pharmaceutical Nanotechnology Department, School of Pharmay, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - AliMohammad Tamaddon
- Pharmaceutical Nanotechnology Department, School of Pharmay, Shiraz University of Medical Sciences, Shiraz 71345, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, School of Pharmay, Shiraz University of Medical Sciences, Shiraz 71345, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, School of Pharmay, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
122
|
Allahyari M. PLGA Nanoparticles as an Efficient Platform in Protein Vaccines Against Toxoplasma gondii. Acta Parasitol 2022; 67:582-591. [PMID: 35013939 DOI: 10.1007/s11686-021-00499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) as an obligatory intracellular is widespread all over the world and causes considerable concerns in immunocompromised patients by developing toxoplasmic encephalitis and in pregnancy because of serious consequences in the fetus. Although vaccination is the only approach to overcome toxoplasmosis, there is no commercially available human vaccine against T. gondii. PURPOSE The remarkable features of poly (lactic-co-glycolic acid) (PLGA) particles have brought up the application of PLGA as a promising vaccine delivery vehicle against T. gondii and other intracellular parasites. This review focuses on the application of the PLGA delivery system in the development of preventive vaccines against T. gondii. METHODS In this study, all required data were collected from articles indexed in English databases, including Scopus, PubMed, Web of Science, Science Direct, and Google Scholar. RESULT Immunity against T. gondii, characteristics of PLGA particles as a delivery vehicle, and all researches on particulate PLGA vaccines with different T. gondii antigens and DNA against were discussed and their efficacies in conferring protection against a lethal challenge based on increased survival or reduced brain cyst loads have been shown. CONCLUSION Although various levels of protection against lethal challenge have been achieved through PLGA-based vaccinations, there is still no complete protection against T. gondii infection. Surprisingly, the application of surface modifications of PLGA particles by mucoadhesive polymers, cationic agents, DCs (dendritic cells) targeting receptors, specialized membranous epithelial cells (M-cells), and co-delivery of the desired antigen along with toll-like receptor ligands would be a revolutionized vaccine strategy against T. gondii.
Collapse
Affiliation(s)
- Mojgan Allahyari
- Recombinant Protein Production Department, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran.
| |
Collapse
|
123
|
Hsu YH, Yu YH, Lee D, Chou YC, Wu CK, Lu CJ, Liu SJ. Pharmaceutical-eluting hybrid degradable hydrogel/microparticle loaded sacs for finger joint interpositional arthroplasty. BIOMATERIALS ADVANCES 2022; 137:212846. [PMID: 35929275 DOI: 10.1016/j.bioadv.2022.212846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Despite recent advances in medical technology, treatment of chronic osteomyelitis in the small joint of the hand remains challenging. Here, we exploited hybrid biodegradable hydrogel/microparticle/polycaprolactone (PCL) sacs for finger joint interpositional arthroplasty via electrospraying and rotational molding techniques. Degradable Pluronic F127, poly(lactic-co-glycolic acid) (PLGA), and PCL were starting materials for the hydrogels, microparticles, and sac, respectively. Vancomycin, ceftazidime, and lidocaine were the embedded pharmaceuticals. The in vitro and in vivo drug release behaviors of hybrid drug-eluting sacs were assessed. The empirical outcomes show that the size distribution of the electrosprayed vancomycin/ceftazidime/lidocaine PLGA microparticles was 8.25 ± 3.35 μm. Biodegradable PCL sacs offered sustainable and effective release of vancomycin, ceftazidime, and lidocaine, respectively, after 30, 16, and 11 days in vitro. The sacs also discharged high levels of anti-microbial agents for 56 days and analgesics for 14 days in a rabbit knee joint model. The blood urea nitrogen (creatinine) levels remained normal at various time points: 16.5 ± 2.5 mg/dL (0.85 ± 0.24 mg/dL), 20.0 ± 1.4 mg/dL (1.0 ± 0.16 mg/dL), 19.3 ± 2.4 mg/dL (1.13 ± 0.15 mg/dL), and 20.0 ± 2.16 mg/dL (1.0 ± 0.16 mg/dL) at days 7, 14, 21, and 35, respectively. The empirical outcomes of this study suggested that the hybrid biodegradable drug-eluting sacs with extended liberation of pharmaceuticals may find applications in the small joints for post-operative pain relief and infection control.
Collapse
Affiliation(s)
- Yung-Heng Hsu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
| | - Yi-Hsun Yu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
| | - Demei Lee
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ying-Chao Chou
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
| | - Chen-Kai Wu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chia-Jung Lu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shih-Jung Liu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
124
|
Wang F, Dong L, Liang S, Wei X, Wang Y, Chang L, Guo K, Wu H, Chang Y, Yin Y, Wang L, Shi Y, Yan F, Li N. Ultrasound-triggered drug delivery for glioma therapy through gambogic acid-loaded nanobubble-microbubble complexes. Biomed Pharmacother 2022; 150:113042. [PMID: 35658212 DOI: 10.1016/j.biopha.2022.113042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/02/2022] Open
Abstract
Glioma is one of the most common primary brain tumors. Gambogic acid (GA) is widely used in tumor chemotherapy. However, GA has poor water solubility, low bioavailability, and difficult permeability across the blood-brain barrier (BBB), leading to poor efficacy against brain tumors. In our study, we developed negatively charged GA-loaded PLGA nanobubbles [GA/poly(lactic-co-glycolic acid) (PLGA)] and conjugated them onto the surface of cationic lipid microbubbles (CMBs) through electrostatic interactions. The resulting GA/PLGA-CMB complex was characterized for its particle size, distribution, drug encapsulation efficiency, and ultrasound imaging property, revealing a high drug encapsulation efficiency and excellent contrast imaging capability. Importantly, significantly enhanced GA delivery into the brain could be observed after the intravenous administration of GA/PLGA-CMBs combined with low-intensity focused ultrasound (FUS) due to the cavitation from CMBs, which mediated blood-brain barrier (BBB) opening. Taking advantage of the opened BBB, GA/PLGA nanobubbles could be delivered into the tumor. Then, the second FUS irradiation at higher energy was used to induce the cavitation of GA/PLGA nanobubbles, producing the second cavitation on tumor cells, significantly enhancing the ability of GA to enter tumor cells and inhibit tumor growth inhibition efficacy.
Collapse
Affiliation(s)
- Feng Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Lei Dong
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Simin Liang
- The Sixth Clinical Medical College, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Fu-tian), Shenzhen, Guangdong, China
| | - Xixi Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yongling Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Liansheng Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Kang Guo
- Department of Oncology, The third affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Hongwei Wu
- Department of Chemistry, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Yuqiao Chang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yaling Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Lu Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yu Shi
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Nana Li
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| |
Collapse
|
125
|
Quadir SS, Saharan V, Choudhary D, Harish, Jain CP, Joshi G. Nano-strategies as Oral Drug Delivery Platforms for Treatment of Cancer: Challenges and Future Perspectives. AAPS PharmSciTech 2022; 23:152. [PMID: 35606661 DOI: 10.1208/s12249-022-02301-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Oral drug administration is the oldest and widely used method for drug administration. The objectives behind developing an oral drug delivery for the treatment of cancer are to achieve low cost treatment by utilizing novel techniques to target cancer through gut-associated lymphoid tissue (GALT) and to enhance patient comfort and compliance through a hospital-free treatment leading to "Chemotherapy at Home." Unfortunately, due to the physiological environment of the GIT and physicochemical properties of drug candidate, the efficacy of oral drug delivery methods is limited in the treatment of cancer. Due to their low hydrophilicity, high P-gp efflux and restricted intestinal permeability most of the anti-cancer drugs fail to achieve oral bioavailability. The review focuses on the efforts, challenges, opportunities and studies conducted by scientists worldwide on the oral administration of anticancer medications via nanocarriers such as liposomes, SLNs and dendrimers, because of their potential to overcome the epithelial barrier associated with GALT, as well as the applications of different polymers in targeting the cancer. The oral delivery can set newer horizons in cancer therapy to make it more patient friendly.
Collapse
|
126
|
Electrospun, Resorbable, Drug-Eluting, Nanofibrous Membranes Promote Healing of Allograft Tendons. MEMBRANES 2022; 12:membranes12050529. [PMID: 35629855 PMCID: PMC9147671 DOI: 10.3390/membranes12050529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022]
Abstract
In spite of advances in medical technology, the repair of Achilles tendon ruptures remains challenging. Reconstruction with an autograft tendon provides the advantage of a higher healing rate; nevertheless, the development of donor-site morbidity cannot be ignored. We developed biodegradable, drug-eluting, nanofibrous membranes employing an electrospinning technique and evaluated their effectiveness on the healing of allograft tendons. Poly-D-L-lactide-glycolide was used as the polymeric material for the nanofibers, while doxycycline was selected as the drug for delivery. The in vitro and in vivo drug-release profiles were investigated. The biomechanical properties of allografted Achilles tendons repaired using the nanofibrous membranes were tested in euthanized rabbits at 2-, 4-, and 6-week time intervals. Histological examination was performed for the evaluation of tissue reaction and tendon healing. The level of postoperative animal activity was also monitored using an animal behavior cage. The experimental results showed that the degradable nanofibers used as a vehicle could provide sustained release of doxycycline for 42 days after surgery with very low systemic drug concentration. Allograft Achilles tendon reconstruction assisted by drug-loaded nanofibers was associated with better biomechanical properties at 6 weeks post-surgery. In addition, the animals exhibited a better level of activity after surgery. The use of drug-eluting, nanofibrous membranes could enhance healing in Achilles tendon allograft reconstruction surgery.
Collapse
|
127
|
Wu J, Zhai T, Sun J, Yu Q, Feng Y, Li R, Wang H, Ouyang Q, Yang T, Zhan Q, Deng L, Qin M, Wang F. Mucus-permeable polymyxin B-hyaluronic acid/ poly (lactic-co-glycolic acid) nanoparticle platform for the nebulized treatment of lung infections. J Colloid Interface Sci 2022; 624:307-319. [DOI: 10.1016/j.jcis.2022.05.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
128
|
Yan Y, Yao R, Zhao J, Chen K, Duan L, Wang T, Zhang S, Guan J, Zheng Z, Wang X, Liu Z, Li Y, Li G. Implantable nerve guidance conduits: Material combinations, multi-functional strategies and advanced engineering innovations. Bioact Mater 2022; 11:57-76. [PMID: 34938913 PMCID: PMC8665266 DOI: 10.1016/j.bioactmat.2021.09.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 01/15/2023] Open
Abstract
Nerve guidance conduits (NGCs) have attracted much attention due to their great necessity and applicability in clinical use for the peripheral nerve repair. Great efforts in recent years have been devoted to the development of high-performance NGCs using various materials and strategies. The present review provides a comprehensive overview of progress in the material innovation, structural design, advanced engineering technologies and multi functionalization of state-of-the-art nerve guidance conduits NGCs. Abundant advanced engineering technologies including extrusion-based system, laser-based system, and novel textile forming techniques in terms of weaving, knitting, braiding, and electrospinning techniques were also analyzed in detail. Findings arising from this review indicate that the structural mimetic NGCs combined with natural and synthetic materials using advanced manufacturing technologies can make full use of their complementary advantages, acquiring better biomechanical properties, chemical stability and biocompatibility. Finally, the existing challenges and future opportunities of NGCs were put forward aiming for further research and applications of NGCs.
Collapse
Affiliation(s)
- Yixin Yan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ruotong Yao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jingyuan Zhao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Kaili Chen
- Department of Materials, Imperial College London, SW7 2AZ, UK
| | - Lirong Duan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Tian Wang
- Wilson College of Textiles, North Carolina State University, Raleigh, 27695, USA
| | - Shujun Zhang
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jinping Guan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Zekun Liu
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Yi Li
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| |
Collapse
|
129
|
Pozniak T, Shcharbin D, Bryszewska M. Circulating microRNAs in Medicine. Int J Mol Sci 2022; 23:ijms23073996. [PMID: 35409354 PMCID: PMC8999557 DOI: 10.3390/ijms23073996] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Circulating microRNAs (c-microRNAs, c-miRNAs), which are present in almost all biological fluids, are promising sensitive biomarkers for various diseases (oncological and cardiovascular diseases, neurodegenerative pathologies, etc.), and their signatures accurately reflect the state of the body. Studies of the expression of microRNA markers show that they can enable a wide range of diseases to be diagnosed before clinical symptoms are manifested, and they can help to assess a patient’s response to therapy in order to correct and personalize treatments. This review discusses the latest trends in the uses of miRNAs for diagnosing and treating various diseases, viral and non-viral. It is concluded that exogenous microRNAs can be used as high-precision therapeutic agents for these purposes.
Collapse
Affiliation(s)
- Tetiana Pozniak
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 02000 Kyiv, Ukraine
- Correspondence: (T.P.); (D.S.)
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus
- Correspondence: (T.P.); (D.S.)
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
130
|
Crawford D, Lau TC, Frost MC, Hatch NE. Control of Orthodontic Tooth Movement by Nitric Oxide Releasing Nanoparticles in Sprague-Dawley Rats. FRONTIERS IN DENTAL MEDICINE 2022; 9:811251. [PMID: 36081866 PMCID: PMC9451041 DOI: 10.3389/fmats.2022.811251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Orthodontic treatment commonly requires the need to prevent movement of some teeth while maximizing movement of other teeth. This study aimed to investigate the influence of locally injected nitric oxide (NO) releasing nanoparticles on orthodontic tooth movement in rats. Materials and Methods Experimental tooth movement was achieved with nickel-titanium alloy springs ligated between the maxillary first molar and ipsilateral incisor. 2.2 mg/kg of silica nanoparticles containing S-nitrosothiol groups were injected into the mucosa just mesial to 1st molar teeth immediately prior to orthodontic appliance activation. NO release from nanoparticles was measured in vitro by chemiluminescence. Tooth movement was measured using polyvinyl siloxane impressions. Bones were analyzed by microcomputed tomography. Local tissue was assessed by histomorphometry. Results Nanoparticles released a burst of NO within the first hours at approximately 10 ppb/mg particles that diminished by 10 × to approximately 1 ppb/mg particles over the next 1-4 days, and then diminished again by tenfold from day 4 to day 7, at which point it was no longer measurable. Molar but not incisor tooth movement was inhibited over 50% by injection of the NO releasing nanoparticles. Inhibition of molar tooth movement occurred only during active NO release from nanoparticles, which lasted for approximately 1 week. Molar tooth movement returned to control levels of tooth movement after end of NO release. Alveolar and long bones were not impacted by injection of the NO releasing nanoparticles, and serum cyclic guanosine monophosphate (cGMP) levels were not increased in animals that received the NO releasing nanoparticles. Root resorption was decreased and periodontal blood vessel numbers were increased in animals with appliances that were injected with the NO releasing nanoparticles as compared to animals with appliances that did not receive injections with the nanoparticles. Conclusion Nitric oxide (NO) release from S-nitrosothiol containing nanoparticles inhibits movement of teeth adjacent to the site of nanoparticle injection for 1 week. Additional studies are needed to establish biologic mechanisms, optimize efficacy and increase longevity of this orthodontic anchorage effect.
Collapse
Affiliation(s)
- Derrick Crawford
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Tommy C. Lau
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Megan C. Frost
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
131
|
Qiao Q, Fu X, Huang R, Lei S, Leng Y, Liu Z, Xia Z, Jiang X. Ropivacaine-loaded, hydroxypropyl chitin thermo-sensitive hydrogel combined with hyaluronan: an injectable, sustained-release system for providing long-lasting local anesthesia in rats. Reg Anesth Pain Med 2022; 47:234-241. [PMID: 35168948 DOI: 10.1136/rapm-2021-102726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Ropivacaine hydrochloride is a commonly used local anesthetic in clinics. However, local injection or continuous infusion of ropivacaine has been associated with several disadvantages. Accordingly, it is important to develop a new controlled release system for local administration of ropivacaine to achieve a prolong anesthetic effect, improve efficacy, and minimize the side effects. METHODS We developed injectable hydroxypropyl chitin thermo-sensitive hydrogel (HPCH) combined with hyaluronan (HA), which was used to synthesize a ropivacaine (R)-loaded controlled release system. We then conducted drug release test and cytotoxicity assay in vitro. Importantly, we examined the analgesic effects and biocompatibility of this system in vivo by injecting different concentrations of R-HPCH-HA (7.5, 15, 22.5 mg/mL), ropivacaine hydrochloride (RHCL, 7.5 mg/mL), or saline (all in 0.5 mL) near the sciatic nerve in rats. RESULTS R-HPCH-HA induced concentration-dependent thermal-sensory blockade and motor blockade in vivo. In hot plate test, R-HPCH-HA (22.5 mg/mL) induced a significant longer thermal-sensory blockade (17.7±0.7 hours), as compared with RHCL (7.5 mg/mL, 5.7±0.8 hours, n=6/group, p<0.05). It also produced a more prolonged motor blockade (6.8±0.8 hours) than RHCL (3.5±0.8 hours, p<0.05). R-HPCH-HA caused less cytotoxicity than RHCL, as indicated by the higher cell viability in vitro (n=8/group). CONCLUSION Our findings in a sciatic nerve block model demonstrated that the injectable, ropivacaine-loaded controlled release system effectively prolonged the local analgesic effect in rats without notable side effects.
Collapse
Affiliation(s)
- Qianqian Qiao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiangyun Fu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui Huang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhigang Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
132
|
Kazemzadeh P, Sayadi K, Toolabi A, Sayadi J, Zeraati M, Chauhan NPS, Sargazi G. Structure-Property Relationship for Different Mesoporous Silica Nanoparticles and its Drug Delivery Applications: A Review. Front Chem 2022; 10:823785. [PMID: 35372272 PMCID: PMC8964429 DOI: 10.3389/fchem.2022.823785] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are widely used as a promising candidate for drug delivery applications due to silica’s favorable biocompatibility, thermal stability, and chemical properties. Silica’s unique mesoporous structure allows for effective drug loading and controlled release at the target site. In this review, we have discussed various methods of MSNs’ mechanism, properties, and its drug delivery applications. As a result, we came to the conclusion that more in vivo biocompatibility studies, toxicity studies, bio-distribution studies and clinical research are essential for MSN advancement.
Collapse
Affiliation(s)
| | - Khalil Sayadi
- Department of Chemistry, Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ali Toolabi
- Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran
| | - Jalil Sayadi
- Department Environmental Engineering, University of Zabol, Zabol, Iran
| | - Malihe Zeraati
- Department of Materials Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Narendra Pal Singh Chauhan
- Department of Chemistry, Faculty of Science, Bhupal Nobles’ University, Udaipur, India
- *Correspondence: Ghasem Sargazi, ; Narendra Pal Singh Chauhan,
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- *Correspondence: Ghasem Sargazi, ; Narendra Pal Singh Chauhan,
| |
Collapse
|
133
|
Sustained Release of Risedronate from PLGA Microparticles Embedded in Alginate Hydrogel for Treatment of Bony Lesions. IRANIAN BIOMEDICAL JOURNAL 2022; 26:124-31. [PMID: 35090303 PMCID: PMC8987410 DOI: 10.52547/ibj.26.2.124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background: Inflammatory bone resorption in periodontitis can lead to tooth loss. Systemic administration of bisphosphonates such as risedronate for preventing bone resorption can cause adverse effects. ALG and PLGA microparticles have been studied as drug delivery systems for sustained release of drugs. Therefore, the release pattern of risedronate from PLGA microparticles embedded with ALG was studied as a drug delivery system for sustained release of the drug, which can be used in local administrations. Methods: Risedronate-containing PLGA microparticles were fabricated using double emulsion solvent evaporation technique. Ionic cross-linking method was used to fabricate risedronate-loaded ALG. Risedronate-containing PLGA microparticles were then coated with ALG. The calibration curve of risedronate was traced to measure EE and study the release pattern. SEM imaging was carried out, and cell toxicity was examined using MTT assay. Statistical analysis of data was carried out using SPSS ver. 20 software, via one-way ANOVA and Tukey’s tests. Results: SEM imaging showed open porosities on ALGs. The mean EE of PLGA microparticles for risedronate was 57.14 ± 3.70%. Risedronate released completely after 72 h from ALG, and the cumulative release was significantly higher (p = 0.000) compared to PLGA microspheres coated with ALG, which demonstrated sustained released of risedronate until day 28. Risedronate-loaded ALG showed a significant decrease in gingival fibroblasts cell viability (p < 0.05). Conclusion: Alginate-coated PLGA microspheres could release risedronate in a sustained and controlled way and also did not show cell toxicity. Therefore, they seem to be an appropriate system for risedronate delivery in local applications.
Collapse
|
134
|
Sha X, Chan L, Fan X, Guo P, Chen T, Liu L, Zhong J. Thermosensitive Tri-Block Polymer Nanoparticle-Hydrogel Composites as Payloads of Natamycin for Antifungal Therapy Against Fusarium Solani. Int J Nanomedicine 2022; 17:1463-1478. [PMID: 35378880 PMCID: PMC8976233 DOI: 10.2147/ijn.s332127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Fusarium Solani is the principal pathogen associated with fungal keratitis. As a sensitive drug to F. Solani, natamycin (NAT) was limited by the poor penetration and low bioavailability in clinical application. The aim of this study was to develop a new type of tri-block polymer nanoparticle-gel complex (Gel@PLGA-PEI-PEG@NAT) for delivering NAT and evaluate its physicochemical properties, antifungal activity, safety, penetrability, adhesion, and efficacy in treating fungal keratitis. Methods PLGA-PEI-PEG@NAT was prepared and characterized with a nano-particle size analyzer, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The minimum inhibitory concentration (MIC), cytotoxicity, penetrability of NAT (Natacyn® 5% ophthalmic suspension; Alcon) and PLGA-PEI-PEG@NAT with different concentrations were assessed. The eye surface retention time, ocular irritation, and curative effect of the NAT ophthalmic suspension and Gel@PLGA-PEI-PEG@NAT on a rabbit fungal keratitis model were evaluated. Results PLGA-PEI-PEG@NAT had a particle size of 150 nm, a positive surface charge, and a sustained-release effect. The MIC for F. Solani was 2 μg/mL. A cytotoxicity test and ocular irritation test showed that PLGA-PEI-PEG@NAT and Gel@PLGA-PEI-PEG@NAT had good biocompatibility and no obvious irritation for rabbit corneas. Penetration experiments confirmed that PLGA-PEI-PEG@NAT can successfully enter corneal epithelial cells and through the cornea to enter the anterior chamber. Compared with NAT ophthalmic suspension, Gel@PLGA-PEI-PEG@NAT had stronger cornea permeation at the same concentration. The therapeutic effect and precorneal retention ability of the NAT ophthalmic suspension and Gel@PLGA-PEI-PEG@NAT on the fungal keratitis rabbit model were compared. Gel@PLGA-PEI-PEG@NAT achieved a better therapeutic effect at a lower drug concentration, and its eye surface retention time was significantly longer than that of the NAT ophthalmic suspension. Conclusion Gel@PLGA-PEI-PEG@NAT was shown to be a safe and effective nanodrug delivery system for NAT. It has great potential to improve the cure rate of fungal keratitis, reduce the administration frequency during the treatment process, and improve patient compliance.
Collapse
Affiliation(s)
- Xiaoyuan Sha
- Department of Ophthalmology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, People’s Republic of China
| | - Leung Chan
- Department of Ophthalmology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, People’s Republic of China
| | - Xiaoyi Fan
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Penghao Guo
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Tianfeng Chen
- Department of Ophthalmology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, People’s Republic of China
| | - Lian Liu
- Department of Ophthalmology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, People’s Republic of China
- Correspondence: Lian Liu; Tianfeng Chen, Department of Ophthalmology, The First Affiliated Hospital of Jinan University; Department of Chemistry, Jinan University, 601 Huangpu Road, Guangzhou, 510632, People’s Republic of China, Email ;
| | - Jingxiang Zhong
- Department of Ophthalmology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, People’s Republic of China
- Department of Ophthalmology, The Sixth Affiliated Hospital, Jinan University, Dongguan, People’s Republic of China
| |
Collapse
|
135
|
Weng CJ, Liao CT, Hsu MY, Chang FP, Liu SJ. Simvastatin-Loaded Nanofibrous Membrane Efficiency on the Repair of Achilles Tendons. Int J Nanomedicine 2022; 17:1171-1184. [PMID: 35321025 PMCID: PMC8935736 DOI: 10.2147/ijn.s353066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/10/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Chun-Jui Weng
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Orthopaedics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chieh-Tun Liao
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yi Hsu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Radiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Fu-Pang Chang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Jung Liu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
- Correspondence: Shih-Jung Liu, Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou and Department of Mechanical Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 33302, Taiwan, Tel +886-3-2118166, Fax +886-3-2118558, Email
| |
Collapse
|
136
|
Xu W, Zhao Z, Falconer J, Whittaker AK, Popat A, Smith MT, Kumeria T, Han FY. Sustained release ketamine-loaded porous silicon-PLGA microparticles prepared by an optimized supercritical CO 2 process. Drug Deliv Transl Res 2022; 12:676-694. [PMID: 33907987 DOI: 10.1007/s13346-021-00991-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/15/2022]
Abstract
Ketamine in sub-anaesthetic doses has analgesic properties and an opioid-sparing effect. Intrathecal (i.t.) delivery of analgesics bypasses systemic metabolism and delivers the analgesic agent adjacent to the target receptors in the spinal cord and so small doses are required to achieve effective pain relief. In order to relieve intractable cancer-related pain, sustained-release ketamine formulations are required in combination with a strong opioid because frequent i.t. injection is not practical. In this study, ketamine or ketamine-loaded porous silicon (pSi) were encapsulated into poly(lactic-co-glycolic acid) (PLGA) microparticles by a novel supercritical carbon dioxide (scCO2) method, thereby avoiding the use of organic solvent. Multiple parameters including theoretical drug loading (DL), presence of pSi, size of scCO2 vessel, PLGA type, and use of co-solvent were investigated with a view to obtaining high DL and a sustained-release for an extended period. The most important finding was that the use of a large scCO2 vessel (60 mL) resulted in a much higher encapsulation efficiency (EE) compared with a small vessel (12 mL). In addition, pre-loading ketamine into pSi slightly improved the level of drug incorporation (i.e. EE and DL). Although the in vitro release was mainly affected by the drug payload, the use of the large scCO2 vessel reduced the burst release and extended the release period for PLGA microparticles with 10% or 20% ketamine loading. Together, our findings provide valuable information for optimization of drug delivery systems prepared with the aid of scCO2.
Collapse
Affiliation(s)
- Weizhi Xu
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Zonglan Zhao
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - James Falconer
- School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew K Whittaker
- Australia Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- ARC Centre of Excellence in Convergent Bio Nano Science and Technology, The University of Queensland, Brisbane, QLD, Australia
| | - Amirali Popat
- School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Tushar Kumeria
- School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia.
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, Australia.
| | - Felicity Y Han
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
- Australia Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
137
|
Sunoqrot S, Niazi M, Al-Natour MA, Jaber M, Abu-Qatouseh L. Loading of Coal Tar in Polymeric Nanoparticles as a Potential Therapeutic Modality for Psoriasis. ACS OMEGA 2022; 7:7333-7340. [PMID: 35252723 PMCID: PMC8892641 DOI: 10.1021/acsomega.1c07267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/04/2022] [Indexed: 05/07/2023]
Abstract
Coal tar (CT) is a commonly used therapeutic agent in psoriasis treatment. CT formulations currently in clinical use have limitations such as toxicity and skin staining properties, leading to patient nonadherence. The purpose of this study was to develop a nanoparticle (NP) formulation for CT based on biocompatible poly(lactide-co-glycolide) (PLGA). CT was entrapped in PLGA NPs by nanoprecipitation, and the resulting NPs were characterized using dynamic light scattering and high-performance liquid chromatography (HPLC) to determine the particle size and CT loading efficiency, respectively. In vitro biocompatibility of the NPs was examined in human dermal fibroblasts. Permeation, washability, and staining experiments were carried out using skin-mimetic Strat-M membranes in Franz diffusion cells. The optimal CT-loaded PLGA NPs achieved 92% loading efficiency and were 133 nm in size with a polydispersity index (PDI) of 0.10 and a zeta potential of -40 mV, promoting colloidal stability during storage. CT NPs significantly reduced the cytotoxicity of crude CT in human dermal fibroblasts, maintaining more than 75% cell viability at the highest concentration tested, whereas an equivalent concentration of CT was associated with 28% viability. Permeation studies showed that only a negligible amount of CT NPs could cross the Strat-M membrane after 24 h, with 97% of the applied dose found accumulated within the membrane. The superiority of CT NPs was further demonstrated by the notably diminished staining ability and enhanced washability compared to those of crude CT. Our findings present a promising CT nanoformulation that can overcome its limitations in the treatment of psoriasis and other skin disorders.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| | - Mohammad Niazi
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
| | | | - Malak Jaber
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
| | - Luay Abu-Qatouseh
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
| |
Collapse
|
138
|
Yang S, Lyu X, Zhang J, Shui Y, Yang R, Xu X. The Application of Small Molecules to the Control of Typical Species Associated With Oral Infectious Diseases. Front Cell Infect Microbiol 2022; 12:816386. [PMID: 35265531 PMCID: PMC8899129 DOI: 10.3389/fcimb.2022.816386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Oral microbial dysbiosis is the major causative factor for common oral infectious diseases including dental caries and periodontal diseases. Interventions that can lessen the microbial virulence and reconstitute microbial ecology have drawn increasing attention in the development of novel therapeutics for oral diseases. Antimicrobial small molecules are a series of natural or synthetic bioactive compounds that have shown inhibitory effect on oral microbiota associated with oral infectious diseases. Novel small molecules, which can either selectively inhibit keystone microbes that drive dysbiosis of oral microbiota or inhibit the key virulence of the microbial community without necessarily killing the microbes, are promising for the ecological management of oral diseases. Here we discussed the research progress in the development of antimicrobial small molecules and delivery systems, with a particular focus on their antimicrobial activity against typical species associated with oral infectious diseases and the underlying mechanisms.
Collapse
Affiliation(s)
- Sirui Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoying Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yusen Shui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ran Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
139
|
Liu KS, Chen WH, Lee CH, Su YF, Liu YW, Liu SJ. Novel Biodegradable 3D-Printed Analgesics-Eluting-Nanofibers Incorporated Nuss Bars for Therapy of Pectus Excavatum. Int J Mol Sci 2022; 23:2265. [PMID: 35216381 PMCID: PMC8878723 DOI: 10.3390/ijms23042265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/29/2022] Open
Abstract
A novel hybrid biodegradable Nuss bar model was developed to surgically correct the pectus excavatum and reduce the associated pain during treatment. The scheme consisted of a three-dimensional (3D) printed biodegradable polylactide (PLA) Nuss bar as the surgical implant and electrospun polylactide-polyglycolide (PLGA) nanofibers loaded with lidocaine and ketorolac as the analgesic agents. The degradation rate and mechanical properties of the PLA Nuss bars were characterized after submersion in a buffered mixture for different time periods. In addition, the in vivo biocompatibility of the integrated PLA Nuss bars/analgesic-loaded PLGA nanofibers was assessed using a rabbit chest wall model. The outcomes of this work suggest that integration of PLA Nuss bar and PLGA/analgesic nanofibers could successfully enhance the results of pectus excavatum treatment in the animal model. The histological analysis also demonstrated good biocompatibility of the PLA Nuss bars with animal tissues. Eventually, the 3D printed biodegradable Nuss bars may have a potential role in pectus excavatum treatment in humans.
Collapse
Affiliation(s)
- Kuo-Sheng Liu
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; (K.-S.L.); (W.-H.C.)
| | - Wei-Hsun Chen
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; (K.-S.L.); (W.-H.C.)
| | - Chen-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
| | - Yong-Fong Su
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Yen-Wei Liu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan;
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
| |
Collapse
|
140
|
Koshari SHS, Shi X, Jiang L, Chang D, Rajagopal K, Lenhoff AM, Wagner NJ. Design of PLGA-Based Drug Delivery Systems Using a Physically-Based Sustained Release Model. J Pharm Sci 2022; 111:345-357. [PMID: 34516986 PMCID: PMC8792208 DOI: 10.1016/j.xphs.2021.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/16/2021] [Accepted: 09/04/2021] [Indexed: 02/03/2023]
Abstract
An extensive data set has been developed and used to further the progress of a model-informed design of controlled drug release. An improved drug-release model with mechanistic modeling of hydrolytic polymer degradation is used and validated by comparing model predictions to in vitro experiments. Combining parameter estimates from the literature with model fits to the data set, this study can aid in achieving a priori design of controlled drug release from a model PLGA release system. A systematic series of model release systems were formulated with FITC-labeled dextran, as a surrogate for biopharmaceuticals, in PLGA rods over a broad range of compositions. While general comparisons between the model and experiments were favorable, important discrepancies were identified for several formulations with significant first-phase drug release. Supported by cross-sectional fluorescence microscopy images of the FITC-dextran distribution within the rods, this first-phase release was attributed to a combination of two main factors: (1) percolation of the drug particles and (2) swelling of and pore formation in the rods due to water uptake. These observations indicate the importance of careful selection of the PLGA polymer grade when designing drug release systems but also reflect a need for better understanding of phenomena such as pore formation. Adapting model parameters, without modifying the physical processes included in the model, enabled accurate fitting of the experimental data for all formulations, highlighting the applicability of the model.
Collapse
Affiliation(s)
- Stijn H. S. Koshari
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Xutao Shi
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Linda Jiang
- Eurofins Lancaster Laboratories Inc., Lancaster, Pennsylvania 17605, USA
| | - Debby Chang
- Pharmaceutical Development, Genentech, South San Francisco, California 94080, USA
| | - Karthikan Rajagopal
- Pharmaceutical Development, Genentech, South San Francisco, California 94080, USA
| | - Abraham M. Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA, Corresponding author at: Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA, (A.M. Lenhoff)
| | - Norman J. Wagner
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
141
|
Zumaya ALV, Rimpelová S, Štějdířová M, Ulbrich P, Vilčáková J, Hassouna F. Antibody Conjugated PLGA Nanocarriers and Superparmagnetic Nanoparticles for Targeted Delivery of Oxaliplatin to Cells from Colorectal Carcinoma. Int J Mol Sci 2022; 23:ijms23031200. [PMID: 35163122 PMCID: PMC8835878 DOI: 10.3390/ijms23031200] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Anti-CD133 monoclonal antibody (Ab)-conjugated poly(lactide-co-glycolide) (PLGA) nanocarriers, for the targeted delivery of oxaliplatin (OXA) and superparamagnetic nanoparticles (IO-OA) to colorectal cancer cells (CaCo-2), were designed, synthesized, characterized, and evaluated in this study. The co-encapsulation of OXA and IO-OA was achieved in two types of polymeric carriers, namely, PLGA and poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) by double emulsion. PLGA_IO-OA_OXA and PEGylated PLGA_IO-OA_OXA nanoparticles displayed a comparable mean diameter of 207 ± 70 nm and 185 ± 119 nm, respectively. The concentration of the released OXA from the PEGylated PLGA_IO-OA_OXA increased very rapidly, reaching ~100% release after only 2 h, while the PLGA_IO-OA_OXA displayed a slower and sustained drug release. Therefore, for a controlled OXA release, non-PEGylated PLGA nanoparticles were more convenient. Interestingly, preservation of the superparamagnetic behavior of the IO-OA, without magnetic hysteresis all along the dissolution process, was observed. The non-PEGylated nanoparticles (PLGA_OXA, PLGA_IO-OA_OXA) were selected for the anti-CD133 Ab conjugation. The affinity of Ab-coated nanoparticles for CD133-positive cells was examined using fluorescence microscopy in CaCo-2 cells, which was followed by a viability assay.
Collapse
Affiliation(s)
- Alma Lucia Villela Zumaya
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (A.L.V.Z.); (M.Š.)
| | - Silvie Rimpelová
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (S.R.); (P.U.)
| | - Markéta Štějdířová
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (A.L.V.Z.); (M.Š.)
| | - Pavel Ulbrich
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (S.R.); (P.U.)
| | - Jarmila Vilčáková
- Faculty of Technology, Tomas Bata University, 760 01 Zlín, Czech Republic;
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (A.L.V.Z.); (M.Š.)
- Correspondence: ; Tel.: +420-220-444-099
| |
Collapse
|
142
|
Effects of rAmb a 1-Loaded PLGA-PEG Nanoparticles in a Murine Model of Allergic Conjunctivitis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030598. [PMID: 35163859 PMCID: PMC8837990 DOI: 10.3390/molecules27030598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022]
Abstract
Ambrosia artemisiifolia (Amb a) contains many allergens. Allergic conjunctivitis caused by Ambrosia artemisiifolia and its related allergen-specific immunotherapy (AIT) are seldom studied at present. poly(DL-lactide-co-glycolide)-polyethylene glycol (PLGA-PEG) is a very good nano-carrier, which has been applied in the medical field. In this context, we studied the immunotherapy effect and potential mechanism of recombinant Amb a 1 (rAmb a 1)-loaded PLGA-PEG nanoparticles. A mouse allergic conjunctivitis model was established with Ambrosia artemisiifolia crude extract, and the nanoparticles were used for AIT through direct observation of conjunctival tissue, degranulation of mast cells in conjunctival tissue, serum-specific antibodies, cytokines and other assessment models. The treatment of nanoparticles enhanced the secretion of T-helper 1 (Th1) cytokine Interferon-gama (IFN-γ) and the production of immunoglobulin G (IgG)2a (IgG2a), inhibited the secretion of T-helper 2 (Th2) cytokine Interleukin (IL)-13 and IL-4 and the level of IgE. Especially, degranulation of mast cells and expression of mast cell protease-1 (MCP-1) in conjunctival tissue was reduced significantly. In this study, we proved that the nanoparticles prepared by rAmb a 1 and PLGA-PEG have an immunotherapy effect on allergic conjunctivitis in mice.
Collapse
|
143
|
Despotopoulou D, Lagopati N, Pispas S, Gazouli M, Demetzos C, Pippa N. The technology of transdermal delivery nanosystems: from design and development to preclinical studies. Int J Pharm 2022; 611:121290. [PMID: 34788674 DOI: 10.1016/j.ijpharm.2021.121290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Transdermal administration has gained much attention due to the remarkable advantages such as patient compliance, drug escape from first-pass elimination, favorable pharmacokinetic profile and prolonged release properties. However, the major limitation of these systems is the limited skin penetration of the stratum corneum, the skin's most important barrier, which protects the body from the insertion of substances from the environment. Transdermal drug delivery systems are aiming to the disruption of the stratum corneum in order for the active pharmaceutical ingredients to enter successfully the circulation. Therefore, nanoparticles are holding a great promise because they can act as effective penetration enhancers due to their small size and other physicochemical properties that will be analyzed thoroughly in this report. Apart from the investigation of the physicochemical parameters, a comparison between the different types of nanoparticles will be performed. The complexity of skin anatomy and the unclear mechanisms of penetration should be taken into consideration to reach some realistic conclusions regarding the way that the described parameters affect the skin permeability. To the best of the authors knowledge, this is among the few reports on the literature describing the technology of transdermal delivery systems and how this technology affects the biological activity.
Collapse
Affiliation(s)
- Despoina Despotopoulou
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Lagopati
- Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Science, Laboratory of Biology, School of Medicine National and Kapodistrian University of Athens, Greece
| | - Costas Demetzos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
144
|
Yang M, Yang C, Zhang Y, Yan X, Ma Y, Zhang Y, Cao Y, Xu Q, Tu K, Zhang M. Orally pH-activated "nano-bomb" carrier combined with berberine by regulating gene silencing and gut microbiota for site-specific treatment of ulcerative colitis. Biomater Sci 2022; 10:1053-1067. [DOI: 10.1039/d1bm01765a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ulcerative colitis (UC) is a chronic, relapsing inflammatory bowel disease that features colonic epithelial barrier dysfunction and gut dysbiosis. Preclinical studies demonstrated that inhibiting the overexpression of CD98 via small...
Collapse
|
145
|
Chen Q, Zhang L, Li L, Tan M, Liu W, Liu S, Xie Z, Zhang W, Wang Z, Cao Y, Shang T, Ran H. Cancer cell membrane-coated nanoparticles for bimodal imaging-guided photothermal therapy and docetaxel-enhanced immunotherapy against cancer. J Nanobiotechnology 2021; 19:449. [PMID: 34952587 PMCID: PMC8710014 DOI: 10.1186/s12951-021-01202-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mono-therapeutic modality has limitations in combating metastatic lesions with complications. Although emerging immunotherapy exhibits preliminary success, solid tumors are usually immunosuppressive, leading to ineffective antitumor immune responses and immunotherapeutic resistance. The rational combination of several therapeutic modalities may potentially become a new therapeutic strategy to effectively combat cancer. RESULTS Poly lactic-co-glycolic acid (PLGA, 50 mg) nanospheres were constructed with photothermal transduction agents (PTAs)-Prussian blue (PB, 2.98 mg) encapsulated in the core and chemotherapeutic docetaxel (DTX, 4.18 mg)/ immune adjuvant-imiquimod (R837, 1.57 mg) loaded in the shell. Tumor cell membranes were further coated outside PLGA nanospheres (designated "M@P-PDR"), which acted as "Nano-targeted cells" to actively accumulate in tumor sites, and were guided/monitored by photoacoustic (PA)/ magnetic resonance (MR) imaging. Upon laser irradiation, photothermal effects were triggered. Combined with DTX, PTT induced in situ tumor eradication. Assisted by the immune adjuvant R837, the maturation rate of DCs increased by 4.34-fold compared with that of the control. In addition, DTX polarized M2-phenotype tumor-associated macrophages (TAMs) to M1-phenotype, relieving the immunosuppressive TME. The proportion of M2-TAMs decreased from 68.57% to 32.80%, and the proportion of M1-TAMs increased from 37.02% to 70.81%. Integrating the above processes, the infiltration of cytotoxic T lymphocytes (CTLs) increased from 17.33% (control) to 35.5%. Primary tumors and metastasis were significantly inhibited when treated with "Nano-targeted cells"-based cocktail therapy. CONCLUSION "Nano-targeted cells"-based therapeutic cocktail therapy is a promising approach to promote tumor regression and counter metastasis/recurrence.
Collapse
Affiliation(s)
- Qiaoqi Chen
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Liang Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.,Department of Ultrasound, The First Affiliated Hospital, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Lin Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Mixiao Tan
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Weiwei Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Shuling Liu
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Zhuoyan Xie
- Chongqing General Hospital, University of Chinese Academy of Sciences, No.114 Longshan Road, Yubei District, Chongqing, 401121, People's Republic of China
| | - Wei Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Tingting Shang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
146
|
Burmistrov DE, Simakin AV, Smirnova VV, Uvarov OV, Ivashkin PI, Kucherov RN, Ivanov VE, Bruskov VI, Sevostyanov MA, Baikin AS, Kozlov VA, Rebezov MB, Semenova AA, Lisitsyn AB, Vedunova MV, Gudkov SV. Bacteriostatic and Cytotoxic Properties of Composite Material Based on ZnO Nanoparticles in PLGA Obtained by Low Temperature Method. Polymers (Basel) 2021; 14:49. [PMID: 35012071 PMCID: PMC8747160 DOI: 10.3390/polym14010049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
A low-temperature technology was developed for producing a nanocomposite based on poly (lactic-co-glycolic acid) and zinc oxide nanoparticles (ZnO-NPs), synthesized by laser ablation. Nanocomposites were created containing 0.001, 0.01, and 0.1% of zinc oxide nanoparticles with rod-like morphology and a size of 40-70 nm. The surface of the films from the obtained nanomaterial was uniform, without significant defects. Clustering of ZnO-NPs in the PLGA matrix was noted, which increased with an increase in the concentration of the dopant in the polymer. The resulting nanomaterial was capable of generating reactive oxygen species (ROS), such as hydrogen peroxide and hydroxyl radicals. The rate of ROS generation increased with an increase in the concentration of the dopant. It was shown that the synthesized nanocomposite promotes the formation of long-lived reactive protein species, and is also the reason for the appearance of a key biomarker of oxidative stress, 8-oxoguanine, in DNA. The intensity of the process increased with an increase in the concentration of nanoparticles in the matrix. It was found that the nanocomposite exhibits significant bacteriostatic properties, the severity of which depends on the concentration of nanoparticles. In particular, on the surface of the PLGA-ZnO-NPs composite film containing 0.001% nanoparticles, the number of bacterial cells was 50% lower than that of pure PLGA. The surface of the composite is non-toxic to eukaryotic cells and does not interfere with their adhesion, growth, and division. Due to its low cytotoxicity and bacteriostatic properties, this nanocomposite can be used as coatings for packaging in the food industry, additives for textiles, and also as a material for biomedicine.
Collapse
Affiliation(s)
- Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (A.V.S.); (V.V.S.); (O.V.U.); (P.I.I.); (R.N.K.); (V.E.I.); (M.B.R.)
| | - Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (A.V.S.); (V.V.S.); (O.V.U.); (P.I.I.); (R.N.K.); (V.E.I.); (M.B.R.)
| | - Veronika V. Smirnova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (A.V.S.); (V.V.S.); (O.V.U.); (P.I.I.); (R.N.K.); (V.E.I.); (M.B.R.)
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (A.V.S.); (V.V.S.); (O.V.U.); (P.I.I.); (R.N.K.); (V.E.I.); (M.B.R.)
| | - Petr I. Ivashkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (A.V.S.); (V.V.S.); (O.V.U.); (P.I.I.); (R.N.K.); (V.E.I.); (M.B.R.)
| | - Roman N. Kucherov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (A.V.S.); (V.V.S.); (O.V.U.); (P.I.I.); (R.N.K.); (V.E.I.); (M.B.R.)
- Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Kashirskoe Highway 31, 115409 Moscow, Russia
| | - Vladimir E. Ivanov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (A.V.S.); (V.V.S.); (O.V.U.); (P.I.I.); (R.N.K.); (V.E.I.); (M.B.R.)
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia;
| | - Vadim I. Bruskov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia;
| | - Mihail A. Sevostyanov
- A. A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Leninsky Prospect 49, 119991 Moscow, Russia; (M.A.S.); (A.S.B.)
| | - Alexander S. Baikin
- A. A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Leninsky Prospect 49, 119991 Moscow, Russia; (M.A.S.); (A.S.B.)
| | - Valery A. Kozlov
- Faculty of Fundamental Sciences, Bauman Moscow State Technical University, Vtoraya Baumanskaya Ul. 5, 105005 Moscow, Russia;
| | - Maksim B. Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (A.V.S.); (V.V.S.); (O.V.U.); (P.I.I.); (R.N.K.); (V.E.I.); (M.B.R.)
- V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Anastasia A. Semenova
- V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Andrey B. Lisitsyn
- V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (A.V.S.); (V.V.S.); (O.V.U.); (P.I.I.); (R.N.K.); (V.E.I.); (M.B.R.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia;
| |
Collapse
|
147
|
Chavan YR, Tambe SM, Jain DD, Khairnar SV, Amin PD. Redefining the importance of polylactide-co-glycolide acid (PLGA) in drug delivery. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 80:603-616. [PMID: 34896382 DOI: 10.1016/j.pharma.2021.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022]
Abstract
The limitations of non-biodegradable polymers have paved the way for biodegradable polymers in the pharmaceutical and biomedical sciences over the years. Poly (lactic-co-glycolic acid) (PLGA), also known as 'Smart polymer', is one of the most successfully developed biodegradable polymers due to its favorable properties, such as biodegradability, biocompatibility, controllable drug release profile, and ability to alter surface with targeting agents for diagnosis and treatment. The release behavior of drugs from PLGA delivery devices is influenced by the physicochemical properties of PLGA. In this review, the current state of the art of PLGA, its synthesis, physicochemical properties, and degradation are discussed to enunciate the boundaries of future research in terms of its applicability with the optimized design in today's modern age. The fundamental objective of this review is to highlight the significance of PLGA as a polymer in the field of cancer, cardiovascular diseases, neurological disorders, dentistry, orthopedics, vaccine therapy, theranostics and lastly emerging epidemic diseases like COVID-19. Furthermore, the coverage of recent PLGA-based drug delivery systems including nanosystems, microsystems, scaffolds, hydrogels, etc. has been summarized. Overall, this review aims to disseminate the PLGA-driven revolution of the drug delivery arena in the pharmaceutical and biomedical industry and bridge the lacunae between material research, preclinical experimentation, and clinical reality.
Collapse
Affiliation(s)
- Y R Chavan
- Institute of Chemical Technology, Department of Pharmaceutical Science and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - S M Tambe
- Institute of Chemical Technology, Department of Pharmaceutical Science and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - D D Jain
- Institute of Chemical Technology, Department of Pharmaceutical Science and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - S V Khairnar
- Institute of Chemical Technology, Department of Pharmaceutical Science and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - P D Amin
- Institute of Chemical Technology, Department of Pharmaceutical Science and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India.
| |
Collapse
|
148
|
He Y, Li Y, Zuo E, Chai S, Ren X, Fei T, Ma G, Wang X, Liu H. A Novel Antibacterial Titanium Modification with a Sustained Release of Pac-525. NANOMATERIALS 2021; 11:nano11123306. [PMID: 34947655 PMCID: PMC8704243 DOI: 10.3390/nano11123306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022]
Abstract
For the benefit of antibacterial Ti on orthopedic and dental implants, a bioactive coating (Pac@PLGA MS/HA coated Ti) was deposited on the surface of pure titanium (Ti), which included two layers: an acid-alkali heat pretreated biomimetic mineralization layer and an electrosprayed Poly (D,L-lactide-co- glycolic acid) (PLGA) microsphere layer as a sustained-release system. Hydroxyapatite (HA) in mineralization layer was primarily prepared on the Ti followed by the antibacterial coating of Pac-525 loaded by PLGA microspheres. After observing the antimicrobial peptides distributed uniformly on the titanium surface, the release assay showed that the release of Pac-525 from Pac@PLGA MS/HA coated Ti provided a large initial burst followed by a slow release at a flat rate. Pac@PLGA MS/HA coated Ti exhibited a strong cytotoxicity to both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). In addition, Pac@PLGA MS/HA coated Ti did not affect the growth and adhesion of the osteoblast-like cell line, MC3T3-E1. These data suggested that a bionic mineralized composite coating with long-term antimicrobial activity was successfully prepared.
Collapse
Affiliation(s)
- Yuzhu He
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Li
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Enjun Zuo
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
| | - Songling Chai
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
| | - Xiang Ren
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
| | - Tao Fei
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
- Correspondence: (G.M.); (X.W.); (H.L.); Tel.: +86-8611-0401 (G.M.); +86-1062-782-966 (X.W.); +86-8611-0404 (H.L.)
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Correspondence: (G.M.); (X.W.); (H.L.); Tel.: +86-8611-0401 (G.M.); +86-1062-782-966 (X.W.); +86-8611-0404 (H.L.)
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
- Correspondence: (G.M.); (X.W.); (H.L.); Tel.: +86-8611-0401 (G.M.); +86-1062-782-966 (X.W.); +86-8611-0404 (H.L.)
| |
Collapse
|
149
|
Abdel-Moneim A, Ramadan H. Novel strategies to oral delivery of insulin: Current progress of nanocarriers for diabetes management. Drug Dev Res 2021; 83:301-316. [PMID: 34859477 DOI: 10.1002/ddr.21903] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/30/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus is one of the most serious public health problems in the world. Repeated daily injections of subcutaneous insulin is the standard treatment for patients with type 1 diabetes mellitus; however, subcutaneous insulin injections can potentially cause local discomfort, patient noncompliance, hypoglycemia, failure to regulate glucose homeostasis, infections, and fat deposits at the injection sites. In recent years, numerous attempts have been made to produce safe and efficient nanoparticles for oral insulin delivery. Oral administration is considered the most effective alternative route to insulin injection, but it is accompanied by several challenges related to enzymatic proteolysis, digestive breakdown, and absorption barriers. A number of natural and synthetic polymeric, lipid-based, and inorganic nanoparticles have been investigated for use. Although improvements have recently been made in potential oral insulin delivery systems, these require further investigation before clinical trials are conducted. In this review, new approaches to oral insulin delivery for diabetes treatment are discussed, including polymeric, lipid-based, and inorganic nanoparticles, as well as the clinical trials performed for this purpose.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hanaa Ramadan
- Histology and Molecular Cytology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
150
|
Dai J, Dong X, Wang Q, Lou X, Xia F, Wang S. PEG-Polymer Encapsulated Aggregation-Induced Emission Nanoparticles for Tumor Theranostics. Adv Healthc Mater 2021; 10:e2101036. [PMID: 34414687 DOI: 10.1002/adhm.202101036] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Indexed: 12/15/2022]
Abstract
In the field of tumor imaging and therapy, the aggregation-caused quenching (ACQ) effect of fluorescent dyes at high concentration is a great challenge. In this regard, the aggregation-induced emission luminogens (AIEgens) show great potential, since AIEgens effectively overcome the ACQ effect and have better fluorescence quantum yield, photobleaching resistance, and photosensitivity. Polyethylene glycol (PEG)-polymer is the most commonly used carrier to prepare nanoparticles (NPs). The advantage of PEGylation is that it can greatly prolong the metabolic half-life and reduce immunogenicity and toxicity. Considering that the hydrophobicity of most AIEgens hinders their application in organisms, the use of PEG-polymer encapsulation is an effective strategy to overcome this obstacle. Importantly, bioactive functional groups can be modified on PEG-polymers to enhance the biological effect of NPs. The combination of powerful AIEgens and PEG-polymers provides a new strategy for tumor imaging and therapy, which is promising for clinical application.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology 1095 Jiefang Avenue Wuhan 430032 China
| | - Xiaoqi Dong
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Quan Wang
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology 1095 Jiefang Avenue Wuhan 430032 China
| |
Collapse
|