101
|
Sibarani CR, Walter LM, Davey MJ, Nixon GM, Horne RSC. Sleep-disordered breathing and sleep macro- and micro-architecture in children with Down syndrome. Pediatr Res 2022; 91:1248-1256. [PMID: 34230620 DOI: 10.1038/s41390-021-01642-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Children with Down syndrome (DS) are at increased risk of sleep-disordered breathing (SDB), which is associated with intermittent hypoxia and sleep disruption affecting daytime functioning. We aimed to compare the impact of SDB on sleep quality in children with DS compared to typically developing (TD) children with and without SDB. METHODS Children with DS and SDB (n = 44) were age- and sex-matched with TD children without SDB (TD-) and also for SDB severity with TD children with SDB (TD+). Children underwent overnight polysomnography with sleep macro- and micro-architecture assessed using electroencephalogram (EEG) spectral analysis, including slow-wave activity (SWA, an indicator of sleep propensity). RESULTS Children with DS had greater hypoxic exposure, more respiratory events during REM sleep, higher total, delta, sigma, and beta EEG power in REM than TD+ children, despite the same overall frequency of obstructive events. Compared to TD- children, they also had more wake after sleep-onset and lower sigma power in N2 and N3. The DS group had reduced SWA, indicating reduced sleep drive, compared to both TD groups. CONCLUSIONS Our findings suggest that SDB has a greater impact on sleep quality in children with DS compared to TD children. IMPACT SDB in children with DS exacerbates disruption of sleep quality, compared to TD children. The prevalence of SDB is very high in children with DS; however, studies on the effects of SDB on sleep quality are limited in this population. Our findings suggest that SDB has a greater impact on sleep quality in children with DS compared to TD children, and should be screened for and treated as soon as possible.
Collapse
Affiliation(s)
- Christy R Sibarani
- Department of Paediatrics and The Ritchie Centre, Monash University, Melbourne, VIC, Australia
| | - Lisa M Walter
- Department of Paediatrics and The Ritchie Centre, Monash University, Melbourne, VIC, Australia
| | - Margot J Davey
- Department of Paediatrics and The Ritchie Centre, Monash University, Melbourne, VIC, Australia.,Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Gillian M Nixon
- Department of Paediatrics and The Ritchie Centre, Monash University, Melbourne, VIC, Australia.,Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Rosemary S C Horne
- Department of Paediatrics and The Ritchie Centre, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
102
|
Leong CWY, Leow JWS, Grunstein RR, Naismith SL, Teh JZ, D'Rozario AL, Saini B. A systematic scoping review of the effects of central nervous system active drugs on sleep spindles and sleep-dependent memory consolidation. Sleep Med Rev 2022; 62:101605. [PMID: 35313262 DOI: 10.1016/j.smrv.2022.101605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
Abstract
Sleep spindles are key electroencephalogram (EEG) oscillatory events that occur during non-rapid eye movement (NREM) sleep. Deficits in sleep spindles are present in populations with sleep and neurological disorders, and in severe mental illness. Pharmacological manipulation of these waveforms is of growing interest with therapeutic potential in targeting spindle deficits relating to memory impairment. This review integrates studies that provide insight into the feasibility of manipulating sleep spindles by using psychoactive drug classes, with consequent effects on sleep-dependent memory. Most studies showed that benzodiazepines and Z-drugs consistently enhanced sleep spindle activity unlike other psychoactive drug classes reviewed. However, how these spindle enhancements translate into improved sleep-dependent memory remains to be fully elucidated. From the few studies that examined both spindles and memory, preliminary evidence suggests that zolpidem may have some therapeutic potential to enhance declarative memory through boosting sleep spindle activity. There is a greater need to standardise methodological approaches for identifying and quantifying spindle activity as well as more exploratory studies to elucidate the role of spindle enhancement for other types of memory.
Collapse
Affiliation(s)
- Celeste W Y Leong
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Josiah W S Leow
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ronald R Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Royal Prince Alfred Hospital, and Sydney Health Partners, NSW; Sydney Medical School, The University of Sydney, NSW, Australia
| | - Sharon L Naismith
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Jun Z Teh
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Angela L D'Rozario
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, NSW, Australia; School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia.
| | - Bandana Saini
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
103
|
Halonen R, Kuula L, Lahti J, Räikkönen K, Pesonen AK. The association between overnight recognition accuracy and slow oscillation-spindle coupling is moderated by BDNF Val66Met. Behav Brain Res 2022; 428:113889. [DOI: 10.1016/j.bbr.2022.113889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/02/2022]
|
104
|
Solano A, Riquelme LA, Perez-Chada D, Della-Maggiore V. Visuomotor Adaptation Modulates the Clustering of Sleep Spindles Into Trains. Front Neurosci 2022; 16:803387. [PMID: 35368282 PMCID: PMC8966394 DOI: 10.3389/fnins.2022.803387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022] Open
Abstract
Sleep spindles are thought to promote memory consolidation. Recently, we have shown that visuomotor adaptation (VMA) learning increases the density of spindles and promotes the coupling between spindles and slow oscillations, locally, with the level of spindle-SO synchrony predicting overnight memory retention. Yet, growing evidence suggests that the rhythmicity in spindle occurrence may also influence the stabilization of declarative and procedural memories. Here, we examined if VMA learning promotes the temporal organization of sleep spindles into trains. We found that VMA increased the proportion of spindles and spindle-SO couplings in trains. In agreement with our previous work, this modulation was observed over the contralateral hemisphere to the trained hand, and predicted overnight memory retention. Interestingly, spindles grouped in a cluster showed greater amplitude and duration than isolated spindles. The fact that these features increased as a function of train length, provides evidence supporting a biological advantage of this temporal arrangement. Our work opens the possibility that the periodicity of NREM oscillations may be relevant in the stabilization of procedural memories.
Collapse
Affiliation(s)
- Agustín Solano
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Luis A. Riquelme
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Daniel Perez-Chada
- Department of Internal Medicine, Pulmonary and Sleep Medicine Service, Austral University Hospital, Buenos Aires, Argentina
| | - Valeria Della-Maggiore
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Valeria Della-Maggiore,
| |
Collapse
|
105
|
Beck J, Loretz E, Rasch B. Stress dynamically reduces sleep depth: temporal proximity to the stressor is crucial. Cereb Cortex 2022; 33:96-113. [PMID: 35196708 PMCID: PMC9758584 DOI: 10.1093/cercor/bhac055] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 11/12/2022] Open
Abstract
The anticipation of a future stressor can increase worry and cognitive arousal and has a detrimental effect on sleep. Similarly, experiencing a stressful event directly before sleep increases physiological and cognitive arousal and impairs subsequent sleep. However, the effects of post- vs. pre-sleep stress on sleep and their temporal dynamics have never been directly compared. Here, we examined the effect of an anticipated psychosocial stressor on sleep and arousal in a 90-min daytime nap, in 33 healthy female participants compared to an anticipated within-subject relaxation task. We compared the results to an additional group (n = 34) performing the same tasks directly before sleep. Anticipating stress after sleep reduced slow-wave activity/beta power ratio, slow-wave sleep, sleep spindles, and slow-wave parameters, in particular during late sleep, without a concomitant increase in physiological arousal. In contrast, pre-sleep psychosocial stress deteriorated the same parameters during early sleep with a concomitant increase in physiological arousal. Our results show that presleep cognitions directly affect sleep in temporal proximity to the stressor. While physiological arousal mediates the effects of presleep stress on early sleep, we suggest that effects during late sleep originate from a repeated reactivation of mental concepts associated with the stressful event during sleep.
Collapse
Affiliation(s)
- Jonas Beck
- Department of Psychology, University of Fribourg, Rue P.-A-de-Faucigny 2, CH-1700 Fribourg, Switzerland
| | - Erna Loretz
- The Siesta Group Schlafanalyse GmbH, Schlosshofer Strasse 11, 1210 Vienna, Austria
| | - Björn Rasch
- Corresponding author: Department of Psychology, University of Fribourg, Rue P.-A-de-Faucigny 2, CH-1700 Fribourg, Switzerland.
| |
Collapse
|
106
|
Hahn MA, Bothe K, Heib D, Schabus M, Helfrich RF, Hoedlmoser K. Slow oscillation-spindle coupling strength predicts real-life gross-motor learning in adolescents and adults. eLife 2022; 11:e66761. [PMID: 35188457 PMCID: PMC8860438 DOI: 10.7554/elife.66761] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/04/2022] [Indexed: 12/05/2022] Open
Abstract
Previously, we demonstrated that precise temporal coordination between slow oscillations (SOs) and sleep spindles indexes declarative memory network development (Hahn et al., 2020). However, it is unclear whether these findings in the declarative memory domain also apply in the motor memory domain. Here, we compared adolescents and adults learning juggling, a real-life gross-motor task. Juggling performance was impacted by sleep and time of day effects. Critically, we found that improved task proficiency after sleep lead to an attenuation of the learning curve, suggesting a dynamic juggling learning process. We employed individualized cross-frequency coupling analyses to reduce inter- and intragroup variability of oscillatory features. Advancing our previous findings, we identified a more precise SO-spindle coupling in adults compared to adolescents. Importantly, coupling precision over motor areas predicted overnight changes in task proficiency and learning curve, indicating that SO-spindle coupling relates to the dynamic motor learning process. Our results provide first evidence that regionally specific, precisely coupled sleep oscillations support gross-motor learning.
Collapse
Affiliation(s)
- Michael A Hahn
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
- Hertie-Institute for Clinical Brain Research, University Medical Center TübingenTübingenGermany
| | - Kathrin Bothe
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Dominik Heib
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Manuel Schabus
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain Research, University Medical Center TübingenTübingenGermany
| | - Kerstin Hoedlmoser
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| |
Collapse
|
107
|
Ben-Zion D, Gabitov E, Prior A, Bitan T. Effects of Sleep on Language and Motor Consolidation: Evidence of Domain General and Specific Mechanisms. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:180-213. [PMID: 37215556 PMCID: PMC10158628 DOI: 10.1162/nol_a_00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/21/2021] [Indexed: 05/24/2023]
Abstract
The current study explores the effects of time and sleep on the consolidation of a novel language learning task containing both item-specific knowledge and the extraction of grammatical regularities. We also compare consolidation effects in language and motor sequence learning tasks, to ask whether consolidation mechanisms are domain general. Young adults learned to apply plural inflections to novel words based on morphophonological rules embedded in the input, and learned to type a motor sequence using a keyboard. Participants were randomly assigned into one of two groups, practicing each task during either the morning or evening hours. Both groups were retested 12 and 24 hours post-training. Performance on frequent trained items in the language task stabilized only following sleep, consistent with a hippocampal mechanism for item-specific learning. However, regularity extraction, indicated by generalization to untrained items in the linguistic task, as well as performance on motor sequence learning, improved 24 hours post-training, irrespective of the timing of sleep. This consolidation process is consistent with a frontostriatal skill-learning mechanism, common across the language and motor domains. This conclusion is further reinforced by cross-domain correlations at the individual level between improvement across 24 hours in the motor task and in the low-frequency trained items in the linguistic task, which involve regularity extraction. Taken together, our results at the group and individual levels suggest that some aspects of consolidation are shared across the motor and language domains, and more specifically, between motor sequence learning and grammar learning.
Collapse
Affiliation(s)
- Dafna Ben-Zion
- Department of Learning Disabilities, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Ella Gabitov
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Anat Prior
- Department of Learning Disabilities, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
| | - Tali Bitan
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
- Department of Psychology, University of Haifa, Haifa, Israel
- Department of Speech Language Pathology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
108
|
Avvenuti G, Bernardi G. Local sleep: A new concept in brain plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:35-52. [PMID: 35034748 DOI: 10.1016/b978-0-12-819410-2.00003-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Traditionally, sleep and wakefulness have been considered as two global, mutually exclusive states. However, this view has been challenged by the discovery that sleep and wakefulness are actually locally regulated and that islands of these two states may often coexist in the same individual. Importantly, such a local regulation seems to be the key for many essential functions of sleep, including the maintenance of cognitive efficiency and the consolidation of new skills and memories. Indeed, local changes in sleep-related oscillations occur in brain areas that are used and involved in learning during wakefulness. In turn, these changes directly modulate experience-dependent brain adaptations and the consolidation of newly acquired memories. In line with these observations, alterations in the regional balance between wake- and sleep-like activity have been shown to accompany many pathologic conditions, including psychiatric and neurologic disorders. In the last decade, experimental research has started to shed light on the mechanisms involved in the local regulation of sleep and wakefulness. The results of this research have opened new avenues of investigation regarding the function of sleep and have revealed novel potential targets for the treatment of several pathologic conditions.
Collapse
Affiliation(s)
- Giulia Avvenuti
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy.
| |
Collapse
|
109
|
Merten JE, Villarrubia SA, Holly KS, Kemp AS, Kumler AC, Larson-Prior LJ, Murray TA. The use of rodent models to better characterize the relationship among epilepsy, sleep, and memory. Epilepsia 2022; 63:525-536. [PMID: 34985784 DOI: 10.1111/epi.17161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022]
Abstract
Epilepsy, a neurological disorder characterized by recurrent seizures, is known to be associated with impaired sleep and memory. Although the specific mechanisms underlying these impairments are uncertain, the known role of sleep in memory consolidation suggests a potential relationship may exist between seizure activity, disrupted sleep, and memory impairment. A possible mediator in this relationship is the sleep spindle, the characteristic electroencephalographic (EEG) feature of non-rapid-eye-movement (NREM) sleep in humans and other mammals. Growing evidence supports the idea that sleep spindles, having thalamic origin, may mediate the process of long-term memory storage and plasticity by generating neuronal conditions that favor these processes. To study this potential relationship, a single model in which memory, sleep, and epilepsy can be simultaneously observed is of necessity. Rodent models of epilepsy appear to fulfill this requirement. Not only do rodents express both sleep spindles and seizure-induced sleep disruptions, but they also allow researchers to invasively study neurobiological processes both pre- and post- epileptic onset via the artificial induction of epilepsy (a practice that cannot be carried out in human subjects). However, the degree to which sleep architecture differs between rodents and humans makes direct comparisons between the two challenging. This review addresses these challenges and concludes that rodent sleep studies are useful in observing the functional roles of sleep and how they are affected by epilepsy.
Collapse
Affiliation(s)
- John E Merten
- College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, USA
| | | | - Kevin S Holly
- Biomedical Engineering, Louisiana Tech University, Ruston, Louisina, USA
| | - Aaron S Kemp
- Departments of Psychiatry and Biomedical Informatics, UAMS, Little Rock, Arkansas, USA
| | - Allison C Kumler
- Biomedical Engineering, Louisiana Tech University, Ruston, Louisina, USA
| | - Linda J Larson-Prior
- Departments of Psychiatry and Biomedical Informatics, UAMS, Little Rock, Arkansas, USA.,Departments of Neurology, Neurobiology & Developmental Sciences, Pediatrics, UAMS, Little Rock, Arkansas, USA
| | - Teresa A Murray
- Biomedical Engineering, Louisiana Tech University, Ruston, Louisina, USA
| |
Collapse
|
110
|
Mutti C, Misirocchi F, Zilioli A, Rausa F, Pizzarotti S, Spallazzi M, Parrino L. Sleep and brain evolution across the human lifespan: A mutual embrace. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:938012. [PMID: 36926070 PMCID: PMC10013002 DOI: 10.3389/fnetp.2022.938012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022]
Abstract
Sleep can be considered a window to ascertain brain wellness: it dynamically changes with brain maturation and can even indicate the occurrence of concealed pathological processes. Starting from prenatal life, brain and sleep undergo an impressive developmental journey that accompanies human life throughout all its steps. A complex mutual influence rules this fascinating course and cannot be ignored while analysing its evolution. Basic knowledge on the significance and evolution of brain and sleep ontogenesis can improve the clinical understanding of patient's wellbeing in a more holistic perspective. In this review we summarized the main notions on the intermingled relationship between sleep and brain evolutionary processes across human lifespan, with a focus on sleep microstructure dynamics.
Collapse
Affiliation(s)
- Carlotta Mutti
- Department of General and Specialized Medicine, Parma University Hospital, Parma, Italy
| | - Francesco Misirocchi
- Department of General and Specialized Medicine, Parma University Hospital, Parma, Italy
| | - Alessandro Zilioli
- Department of General and Specialized Medicine, Parma University Hospital, Parma, Italy
| | - Francesco Rausa
- Department of General and Specialized Medicine, Parma University Hospital, Parma, Italy
| | - Silvia Pizzarotti
- Department of General and Specialized Medicine, Parma University Hospital, Parma, Italy
| | - Marco Spallazzi
- Department of General and Specialized Medicine, Parma University Hospital, Parma, Italy
| | - Liborio Parrino
- Department of General and Specialized Medicine, Parma University Hospital, Parma, Italy
| |
Collapse
|
111
|
Hu DK, Goetz PW, To PD, Garner C, Magers AL, Skora C, Tran N, Yuen T, Hussain SA, Shrey DW, Lopour BA. Evolution of Cortical Functional Networks in Healthy Infants. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:893826. [PMID: 36926103 PMCID: PMC10013075 DOI: 10.3389/fnetp.2022.893826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022]
Abstract
During normal childhood development, functional brain networks evolve over time in parallel with changes in neuronal oscillations. Previous studies have demonstrated differences in network topology with age, particularly in neonates and in cohorts spanning from birth to early adulthood. Here, we evaluate the developmental changes in EEG functional connectivity with a specific focus on the first 2 years of life. Functional connectivity networks (FCNs) were calculated from the EEGs of 240 healthy infants aged 0-2 years during wakefulness and sleep using a cross-correlation-based measure and the weighted phase lag index. Topological features were assessed via network strength, global clustering coefficient, characteristic path length, and small world measures. We found that cross-correlation FCNs maintained a consistent small-world structure, and the connection strengths increased after the first 3 months of infancy. The strongest connections in these networks were consistently located in the frontal and occipital regions across age groups. In the delta and theta bands, weighted phase lag index networks decreased in strength after the first 3 months in both wakefulness and sleep, and a similar result was found in the alpha and beta bands during wakefulness. However, in the alpha band during sleep, FCNs exhibited a significant increase in strength with age, particularly in the 21-24 months age group. During this period, a majority of the strongest connections in the networks were located in frontocentral regions, and a qualitatively similar distribution was seen in the beta band during sleep for subjects older than 3 months. Graph theory analysis suggested a small world structure for weighted phase lag index networks, but to a lesser degree than those calculated using cross-correlation. In general, graph theory metrics showed little change over time, with no significant differences between age groups for the clustering coefficient (wakefulness and sleep), characteristics path length (sleep), and small world measure (sleep). These results suggest that infant FCNs evolve during the first 2 years with more significant changes to network strength than features of the network structure. This study quantifies normal brain networks during infant development and can serve as a baseline for future investigations in health and neurological disease.
Collapse
Affiliation(s)
- Derek K Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Parker W Goetz
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Phuc D To
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Cristal Garner
- Division of Neurology, Children's Hospital Orange County, Orange, CA, United States
| | - Amber L Magers
- Division of Neurology, Children's Hospital Orange County, Orange, CA, United States
| | - Clare Skora
- Division of Neurology, Children's Hospital Orange County, Orange, CA, United States
| | - Nhi Tran
- Division of Neurology, Children's Hospital Orange County, Orange, CA, United States
| | - Tammy Yuen
- Division of Neurology, Children's Hospital Orange County, Orange, CA, United States
| | - Shaun A Hussain
- Division of Pediatric Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel W Shrey
- Division of Neurology, Children's Hospital Orange County, Orange, CA, United States.,Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | - Beth A Lopour
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
112
|
Bartsch U, Corbin LJ, Hellmich C, Taylor M, Easey KE, Durant C, Marston HM, Timpson NJ, Jones MW. Schizophrenia-associated variation at ZNF804A correlates with altered experience-dependent dynamics of sleep slow waves and spindles in healthy young adults. Sleep 2021; 44:zsab191. [PMID: 34329479 PMCID: PMC8664578 DOI: 10.1093/sleep/zsab191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The rs1344706 polymorphism in ZNF804A is robustly associated with schizophrenia and schizophrenia is, in turn, associated with abnormal non-rapid eye movement (NREM) sleep neurophysiology. To examine whether rs1344706 is associated with intermediate neurophysiological traits in the absence of disease, we assessed the relationship between genotype, sleep neurophysiology, and sleep-dependent memory consolidation in healthy participants. We recruited healthy adult males with no history of psychiatric disorder from the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort. Participants were homozygous for either the schizophrenia-associated 'A' allele (N = 22) or the alternative 'C' allele (N = 18) at rs1344706. Actigraphy, polysomnography (PSG) and a motor sequence task (MST) were used to characterize daily activity patterns, sleep neurophysiology and sleep-dependent memory consolidation. Average MST learning and sleep-dependent performance improvements were similar across genotype groups, albeit more variable in the AA group. During sleep after learning, CC participants showed increased slow-wave (SW) and spindle amplitudes, plus augmented coupling of SW activity across recording electrodes. SW and spindles in those with the AA genotype were insensitive to learning, whilst SW coherence decreased following MST training. Accordingly, NREM neurophysiology robustly predicted the degree of overnight motor memory consolidation in CC carriers, but not in AA carriers. We describe evidence that rs1344706 polymorphism in ZNF804A is associated with changes in the coordinated neural network activity that supports offline information processing during sleep in a healthy population. These findings highlight the utility of sleep neurophysiology in mapping the impacts of schizophrenia-associated common genetic variants on neural circuit oscillations and function.
Collapse
Affiliation(s)
- Ullrich Bartsch
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
- Translational Neuroscience, Eli Lilly & Co Ltd UK, Erl Wood Manor, Windlesham, UK
- UK DRI Health Care & Technology at Imperial College London and the University of Surrey, Surrey Sleep Research Centre, University of Surrey, Clinical Research Building, Egerton Road, Guildford, Surrey, UK
| | - Laura J Corbin
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Charlotte Hellmich
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Michelle Taylor
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
| | - Kayleigh E Easey
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- UK Centre for Tobacco and Alcohol Studies, School of Psychological Science, University of Bristol, Bristol, UK
| | - Claire Durant
- Clinical Research and Imaging Centre (CRIC), University of Bristol, Bristol, UK
| | - Hugh M Marston
- Translational Neuroscience, Eli Lilly & Co Ltd UK, Erl Wood Manor, Windlesham, UK
- Böhringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew W Jones
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
113
|
Baek S, Yu H, Roh J, Lee J, Sohn I, Kim S, Park C. Effect of a Recliner Chair with Rocking Motions on Sleep Efficiency. SENSORS (BASEL, SWITZERLAND) 2021; 21:8214. [PMID: 34960304 PMCID: PMC8706869 DOI: 10.3390/s21248214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
In this study, we analyze the effect of a recliner chair with rocking motions on sleep quality of naps using automated sleep scoring and spindle detection models. The quality of sleep corresponding to the two rocking motions was measured quantitatively and qualitatively. For the quantitative evaluation, we conducted a sleep parameter analysis based on the results of the estimated sleep stages obtained on the brainwave and spindle estimation, and a sleep survey assessment from the participants was analyzed for the qualitative evaluation. The analysis showed that sleep in the recliner chair with rocking motions positively increased the duration of the spindles and deep sleep stage, resulting in improved sleep quality.
Collapse
Affiliation(s)
- Suwhan Baek
- Department of Computer engineering, Kwangwoon University, Seoul 01897, Korea
| | - Hyunsoo Yu
- Department of Computer engineering, Kwangwoon University, Seoul 01897, Korea
| | - Jongryun Roh
- Digital Transformation RnD Department, Korea Institute of Industrial Technology, Ansan 15588, Korea
| | - Jungnyun Lee
- Digital Transformation RnD Department, Korea Institute of Industrial Technology, Ansan 15588, Korea
| | - Illsoo Sohn
- Department of Computer Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Sayup Kim
- Digital Transformation RnD Department, Korea Institute of Industrial Technology, Ansan 15588, Korea
| | - Cheolsoo Park
- Department of Computer engineering, Kwangwoon University, Seoul 01897, Korea
| |
Collapse
|
114
|
Page J, Wakschlag LS, Norton ES. Nonrapid eye movement sleep characteristics and relations with motor, memory, and cognitive ability from infancy to preadolescence. Dev Psychobiol 2021; 63:e22202. [PMID: 34813099 PMCID: PMC8898567 DOI: 10.1002/dev.22202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/31/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023]
Abstract
Sleep plays a critical role in neural neurodevelopment. Hallmarks of sleep reflected in the electroencephalogram during nonrapid eye movement (NREM) sleep are associated with learning processes, cognitive ability, memory, and motor functioning. Research in adults is well-established; however, the role of NREM sleep in childhood is less clear. Growing evidence suggests the importance of two NREM sleep features: slow-wave activity and sleep spindles. These features may be critical for understanding maturational change and the functional role of sleep during development. Here, we review the literature on NREM sleep from infancy to preadolescence to provide insight into the network dynamics of the developing brain. The reviewed findings show distinct relations between topographical and maturational aspects of slow waves and sleep spindles; however, the direction and consistency of these relationships vary, and associations with cognitive ability remain unclear. Future research investigating the role of NREM sleep and development would benefit from longitudinal approaches, increased control for circadian and homeostatic influences, and in early childhood, studies recording daytime naps and overnight sleep to yield increased precision for detecting age-related change. Such evidence could help explicate the role of NREM sleep and provide putative physiological markers of neurodevelopment.
Collapse
Affiliation(s)
- Jessica Page
- Roxelyn and Richard Pepper Department of Communication
Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
| | - Lauren S. Wakschlag
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
- Department of Medical Social Sciences, Feinberg School of
Medicine, Northwestern, University, Chicago, Illinois, USA
| | - Elizabeth S. Norton
- Roxelyn and Richard Pepper Department of Communication
Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
- Department of Medical Social Sciences, Feinberg School of
Medicine, Northwestern, University, Chicago, Illinois, USA
| |
Collapse
|
115
|
Koller DP, Kasanin V, Flynn-Evans EE, Sullivan JP, Dijk DJ, Czeisler CA, Barger LK. Altered sleep spindles and slow waves during space shuttle missions. NPJ Microgravity 2021; 7:48. [PMID: 34795291 PMCID: PMC8602337 DOI: 10.1038/s41526-021-00177-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
Sleep deficiencies and associated performance decrements are common among astronauts during spaceflight missions. Previously, sleep in space was analyzed with a focus on global measures while the intricate structure of sleep oscillations remains largely unexplored. This study extends previous findings by analyzing how spaceflight affects characteristics of sleep spindles and slow waves, two sleep oscillations associated with sleep quality and quantity, in four astronauts before, during and after two Space Shuttle missions. Analysis of these oscillations revealed significantly increased fast spindle density, elevated slow spindle frequency, and decreased slow wave amplitude in space compared to on Earth. These results reflect sleep characteristics during spaceflight on a finer electrophysiological scale and provide an opportunity for further research on sleep in space.
Collapse
Affiliation(s)
- Dominik P Koller
- Advanced Concepts Team, European Space Agency, ESTEC, Noordwijk, The Netherlands.
| | - Vida Kasanin
- Advanced Concepts Team, European Space Agency, ESTEC, Noordwijk, The Netherlands
| | - Erin E Flynn-Evans
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, Exploration Technology Directorate, NASA Ames Research Center, Moffett Field, CA, USA
| | - Jason P Sullivan
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Laura K Barger
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
116
|
Ventura S, Mathieson SR, O'Toole JM, Livingstone V, Ryan MA, Boylan GB. EEG sleep macrostructure and sleep spindles in early infancy. Sleep 2021; 45:6424963. [PMID: 34755881 PMCID: PMC8754499 DOI: 10.1093/sleep/zsab262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
Study Objectives Sleep features in infancy are potential biomarkers for brain maturation but poorly characterized. We describe normative values for sleep macrostructure and sleep spindles at 4–5 months of age. Methods Healthy term infants were recruited at birth and had daytime sleep electroencephalograms (EEGs) at 4–5 months. Sleep staging was performed and five features were analyzed. Sleep spindles were annotated and seven quantitative features were extracted. Features were analyzed across sex, recording time (am/pm), infant age, and from first to second sleep cycles. Results We analyzed sleep recordings from 91 infants, 41% females. Median (interquartile range [IQR]) macrostructure results: sleep duration 49.0 (37.8–72.0) min (n = 77); first sleep cycle duration 42.8 (37.0–51.4) min; rapid eye movement (REM) percentage 17.4 (9.5–27.7)% (n = 68); latency to REM 36.0 (30.5–41.1) min (n = 66). First cycle median (IQR) values for spindle features: number 241.0 (193.0–286.5), density 6.6 (5.7–8.0) spindles/min (n = 77); mean frequency 13.0 (12.8–13.3) Hz, mean duration 2.9 (2.6–3.6) s, spectral power 7.8 (4.7–11.4) µV2, brain symmetry index 0.20 (0.16–0.29), synchrony 59.5 (53.2–63.8)% (n = 91). In males, spindle spectral power (µV2) was 24.5% lower (p = .032) and brain symmetry index 24.2% higher than females (p = .011) when controlling for gestational and postnatal age and timing of the nap. We found no other significant associations between studied sleep features and sex, recording time (am/pm), or age. Spectral power decreased (p < .001) on the second cycle. Conclusion This normative data may be useful for comparison with future studies of sleep dysfunction and atypical neurodevelopment in infancy. Clinical Trial Registration: BABY SMART (Study of Massage Therapy, Sleep And neurodevelopMenT) (BabySMART) URL: https://clinicaltrials.gov/ct2/show/results/NCT03381027?view=results. ClinicalTrials.gov Identifier: NCT03381027
Collapse
Affiliation(s)
- Soraia Ventura
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, University College Cork, Ireland
| | - Sean R Mathieson
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, University College Cork, Ireland
| | - John M O'Toole
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, University College Cork, Ireland
| | - Vicki Livingstone
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, University College Cork, Ireland
| | - Mary-Anne Ryan
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, University College Cork, Ireland
| | - Geraldine B Boylan
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, University College Cork, Ireland
| |
Collapse
|
117
|
McCloy K, Duce B, Hukins C, Abeyratne U. Mapping Sleep Spindle Characteristics to Vigilance Outcomes in Patients with Obstructive Sleep Apnea. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:704-707. [PMID: 34891389 DOI: 10.1109/embc46164.2021.9629998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Obstructive Sleep Apnea (OSA) is a sleep disorder associated with reduced vigilance. Vigilance status is often measured using the Psychomotor Vigilance Task (PVT). This paper investigates modelling strategies to map sleep spindle (Sp) characteristics to PVT metrics in patients with OSA. Sleep spindles (n=2305) were manually detected across blocks of sleep for 20 patients randomly selected from a cohort of 190 undergoing Polysomnography (PSG) for suspected OSA. Novel Sp metrics based on runs or "bursts" of Sps were used to model Sp characteristics to standardized (z) Lapse and Median Reaction Time (MdRT) scores, and to Groups based on zLapse and zMdRT scores. A model employing Sp Burst characteristics mapped to MdRT Group membership with an accuracy of 91.9%, (95% C.I. 90.8-93.0). The model had a sensitivity of 88.9%, (95% C.I. 87.5-89.0) and specificity of 89.1% (95% C.I. 87.3-90.5) for detecting patients with the lowest MdRTs in our cohort.Clinical Relevance- Based on these results it may be possible to use Sp data collected during overnight diagnostic PSG for OSA to detect patients at risk for attention deficits. This would improve triage for OSA therapy by identifying at risk patients at the time of OSA diagnosis and would remove the need to employ additional testing to assess vigilance status.
Collapse
|
118
|
Mason GM, Kurdziel LBF, Spencer RMC. The memory benefits of two naps per day during infancy: A pilot investigation. Infant Behav Dev 2021; 65:101647. [PMID: 34530287 PMCID: PMC8627454 DOI: 10.1016/j.infbeh.2021.101647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022]
Abstract
In infancy, sleep occurs in multiple nap and overnight bouts that change developmentally in quantity and distribution. Though studies suggest that infant memory benefits from a single nap, no work has assessed the relative benefits of different naps (morning vs. afternoon), nor how multiple naps support memory across the day. We investigated the memory benefit of a morning nap, relative to morning wake, and the effect of these intervals on afternoon nap function in 9-month-olds (n = 15). Infants participated in two within-subjects conditions (separated by 1-2 weeks). In the Nap-Nap condition, infants took their morning and afternoon naps; in the Wake-Nap condition, infants were kept awake during morning naptime, but napped unrestricted in the afternoon. Before each nap/wake interval, infants completed an imitation memory task, with memory assessed again shortly after the nap/wake interval. In the Nap-Nap condition, infants showed memory retention across morning and afternoon naps. In contrast, infants tended to forget items learned across morning wake in the Wake-Nap condition. Moreover, morning wake was associated with a significant decline in post-nap retention of items learned in the afternoon. Furthermore, relations between nap slow-wave activity (SWA) and memory varied across naps, with SWA either not predicting (morning naps) or positively predicting (afternoon naps) memory change in the Nap-Nap condition, but negatively predicting afternoon memory change in the Wake-Nap condition. We conclude that two naps per day (rather than one) aids memory at 9 months, and that skipping the morning nap may moderate relations between afternoon nap physiology and memory.
Collapse
Affiliation(s)
- Gina M Mason
- Department of Psychological & Brain Sciences, United States; Neuroscience & Behavior Program, University of Massachusetts, Amherst, United States
| | | | - Rebecca M C Spencer
- Department of Psychological & Brain Sciences, United States; Neuroscience & Behavior Program, University of Massachusetts, Amherst, United States; Institute for Applied Life Sciences, University of Massachusetts, Amherst, United States.
| |
Collapse
|
119
|
Stephan AM, Lecci S, Cataldi J, Siclari F. Conscious experiences and high-density EEG patterns predicting subjective sleep depth. Curr Biol 2021; 31:5487-5500.e3. [PMID: 34710350 DOI: 10.1016/j.cub.2021.10.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/06/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
What accounts for feeling deeply asleep? Standard sleep recordings only incompletely reflect subjective aspects of sleep and some individuals with so-called sleep misperception frequently feel awake although sleep recordings indicate clear-cut sleep. To identify the determinants of sleep perception, we performed 787 awakenings in 20 good sleepers and 10 individuals with sleep misperception and interviewed them about their subjective sleep depth while they underwent high-density EEG sleep recordings. Surprisingly, in good sleepers, sleep was subjectively lightest in the first 2 h of non-rapid eye movement (NREM) sleep, generally considered the deepest sleep, and deepest in rapid eye movement (REM) sleep. Compared to good sleepers, sleep misperceptors felt more frequently awake during sleep and reported lighter REM sleep. At the EEG level, spatially widespread high-frequency power was inversely related to subjective sleep depth in NREM sleep in both groups and in REM sleep in misperceptors. Subjective sleep depth positively correlated with dream-like qualities of reports of mental activity. These findings challenge the widely held notion that slow wave sleep best accounts for feeling deeply asleep. Instead, they indicate that subjective sleep depth is inversely related to a neurophysiological process that predominates in early NREM sleep, becomes quiescent in REM sleep, and is reflected in high-frequency EEG activity. In sleep misperceptors, this process is more frequently active, more spatially widespread, and abnormally persists into REM sleep. These findings help identify the neuromodulatory systems involved in subjective sleep depth and are relevant for studies aiming to improve subjective sleep quality.
Collapse
Affiliation(s)
- Aurélie M Stephan
- Center for Investigation and Research on Sleep, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1010 Lausanne, Switzerland
| | - Sandro Lecci
- Center for Investigation and Research on Sleep, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1010 Lausanne, Switzerland
| | - Jacinthe Cataldi
- Center for Investigation and Research on Sleep, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1010 Lausanne, Switzerland
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1010 Lausanne, Switzerland; Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1010 Lausanne, Switzerland.
| |
Collapse
|
120
|
Solano A, Riquelme LA, Perez-Chada D, Della-Maggiore V. Motor Learning Promotes the Coupling between Fast Spindles and Slow Oscillations Locally over the Contralateral Motor Network. Cereb Cortex 2021; 32:2493-2507. [PMID: 34649283 DOI: 10.1093/cercor/bhab360] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/03/2023] Open
Abstract
Recent studies from us and others suggest that traditionally declarative structures mediate some aspects of the encoding and consolidation of procedural memories. This evidence points to the existence of converging physiological pathways across memory systems. Here, we examined whether the coupling between slow oscillations (SO) and spindles, a mechanism well established in the consolidation of declarative memories, is relevant for the stabilization of human motor memories. To this aim, we conducted an electroencephalography study in which we quantified various parameters of these oscillations during a night of sleep that took place immediately after learning a visuomotor adaptation (VMA) task. We found that VMA increased the overall density of fast (≥12 Hz), but not slow (<12 Hz), spindles during nonrapid eye movement sleep, stage 3 (NREM3). This modulation occurred rather locally over the hemisphere contralateral to the trained hand. Although adaptation learning did not affect the density of SOs, it substantially enhanced the number of fast spindles locked to the active phase of SOs. The fact that only coupled spindles predicted overnight memory retention points to the relevance of this association in motor memory consolidation. Our work provides evidence in favor of a common mechanism at the basis of the stabilization of declarative and motor memories.
Collapse
Affiliation(s)
- Agustín Solano
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, C1121ABG, Argentina
| | - Luis A Riquelme
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, C1121ABG, Argentina
| | - Daniel Perez-Chada
- Department of Internal Medicine, Pulmonary and Sleep Medicine Service, Austral University Hospital, Buenos Aires B1629AHJ, Argentina
| | - Valeria Della-Maggiore
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, C1121ABG, Argentina
| |
Collapse
|
121
|
Baena D, Cantero JL, Atienza M. Stability of neural encoding moderates the contribution of sleep and repeated testing to memory consolidation. Neurobiol Learn Mem 2021; 185:107529. [PMID: 34597816 DOI: 10.1016/j.nlm.2021.107529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
There is evidence suggesting that online consolidation during retrieval-mediated learning interacts with offline consolidation during subsequent sleep to transform memory. Here we investigate whether this interaction persists when retrieval-mediated learning follows post-training sleep and whether the direction of this interaction is conditioned by the quality of encoding resulting from manipulation of the amount of sleep on the previous night. The quality of encoding was determined by computing the degree of similarity between EEG-activity patterns across restudy of face pairs in two groups of young participants, one who slept the last 4 h of the pre-training night, and another who slept 8 h. The offline consolidation was assessed by computing the degree of coupling between slow oscillations (SOs) and spindles (SPs) during post-training sleep, while the online consolidation was evaluated by determining the degree of similarity between EEG-activity patterns recorded during the study phase and during repeated recognition of either the same face pair (i.e., specific similarity) or face pairs sharing sex and profession (i.e., categorical similarity) to evaluate differentiation and generalization, respectively. The study and recognition phases were separated by a night of normal sleep duration. Mixed-effects models revealed that the stability of neural encoding moderated the relationship between sleep- and retrieval-mediated consolidation processes over left frontal regions. For memories showing lower encoding stability, the enhanced SO-SP coupling was associated with increased reinstatement of category-specific encoding-related activity at the expense of content-specific activity, whilst the opposite occurred for memories showing greater encoding stability. Overall, these results suggest that offline consolidation during post-training sleep interacts with online consolidation during retrieval the next day to favor the reorganization of memory contents, by increasing specificity of stronger memories and generalization of the weaker ones.
Collapse
Affiliation(s)
- Daniel Baena
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville 41013, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville 41013, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Spain.
| |
Collapse
|
122
|
Lepage KQ, Fleming CN, Witcher M, Vijayan S. Multitaper estimates of phase-amplitude coupling. J Neural Eng 2021; 18:10.1088/1741-2552/ac1deb. [PMID: 34399415 PMCID: PMC10511062 DOI: 10.1088/1741-2552/ac1deb] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/16/2021] [Indexed: 11/12/2022]
Abstract
Phase-amplitude coupling (PAC) is the association of the amplitude of a high-frequency oscillation with the phase of a low-frequency oscillation. In neuroscience, this relationship provides a mechanism by which neural activity might be coordinated between distant regions. The dangers and pitfalls of assessing PAC with commonly used statistical measures have been well-documented. The limitations of these measures include: (1) response to non-oscillatory, high-frequency, broad-band activity, (2) response to high-frequency components of the low-frequency oscillation, (3) adhoc selection of analysis frequency-intervals, and (4) reliance upon data shuffling to assess statistical significance.Objective.To address issues (1)-(4) by introducing a nonparametric multitaper estimator of PAC.Approach.In this work, a multitaper PAC estimator is proposed that addresses these issues. Specifically, issue (1) is addressed by replacing the analytic signal envelope estimator computed using the Hilbert transform with a multitaper estimator that down-weights non-sinusoidal activity using a classical, multitaper super-resolution technique. Issue (2) is addressed by replacing coherence between the low-frequency and high-frequency components in a standard PAC estimator with multitaper partial coherence, while issue (3) is addressed with a physical argument regarding meaningful neural oscillation. Finally, asymptotic statistical assessment of the multitaper estimator is introduced to address issue (4).Main results.Multitaper estimates of PAC are introduced. Their efficacy is demonstrated in simulation and on human intracranial recordings obtained from epileptic patients.Significance.This work facilitates a more informative statistical assessment of PAC, a phenomena exhibited by many neural systems, and provides a basis upon which further nonparametric multitaper-related methods can be developed.
Collapse
Affiliation(s)
- Kyle Q Lepage
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States of America
| | - Cavan N Fleming
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States of America
| | - Mark Witcher
- School of Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Sujith Vijayan
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
123
|
Carbone J, Bibián C, Reischl P, Born J, Forcato C, Diekelmann S. The effect of zolpidem on targeted memory reactivation during sleep. Learn Mem 2021; 28:307-318. [PMID: 34400532 PMCID: PMC8372567 DOI: 10.1101/lm.052787.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023]
Abstract
According to the active system consolidation theory, memory consolidation during sleep relies on the reactivation of newly encoded memory representations. This reactivation is orchestrated by the interplay of sleep slow oscillations, spindles, and theta, which are in turn modulated by certain neurotransmitters like GABA to enable long-lasting plastic changes in the memory store. Here we asked whether the GABAergic system and associated changes in sleep oscillations are functionally related to memory reactivation during sleep. We administered the GABAA agonist zolpidem (10 mg) in a double-blind placebo-controlled study. To specifically focus on the effects on memory reactivation during sleep, we experimentally induced such reactivations by targeted memory reactivation (TMR) with learning-associated reminder cues presented during post-learning slow-wave sleep (SWS). Zolpidem significantly enhanced memory performance with TMR during sleep compared with placebo. Zolpidem also increased the coupling of fast spindles and theta to slow oscillations, although overall the power of slow spindles and theta was reduced compared with placebo. In an uncorrected exploratory analysis, memory performance was associated with slow spindle responses to TMR in the zolpidem condition, whereas it was associated with fast spindle responses in placebo. These findings provide tentative first evidence that GABAergic activity may be functionally implicated in memory reactivation processes during sleep, possibly via its effects on slow oscillations, spindles and theta as well as their interplay.
Collapse
Affiliation(s)
- Julia Carbone
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, 72076 Tübingen, Germany
| | - Carlos Bibián
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, 72076 Tübingen, Germany
| | - Patrick Reischl
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
| | - Cecilia Forcato
- Laboratorio de Sueño y Memoria, Departamento de Ciencias de la Vida, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires C1106ACD, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Susanne Diekelmann
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
124
|
The essential role of hippocampo-cortical connections in temporal coordination of spindles and ripples. Neuroimage 2021; 243:118485. [PMID: 34425227 DOI: 10.1016/j.neuroimage.2021.118485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022] Open
Abstract
The predominant activity of slow wave sleep is cortical slow oscillations (SOs), thalamic spindles and hippocampal sharp wave ripples. While the precise temporal nesting of these rhythms was shown to be essential for memory consolidation, the coordination mechanism is poorly understood. Here we develop a minimal hippocampo-cortico-thalamic network that can explain the mechanism underlying the SO-spindle-ripple coupling indicating of the succession of regional neuronal interactions. Further we verify the model predictions experimentally in naturally sleeping rodents showing our simple model provides a quantitative match to several experimental observations including the nesting of ripples in the spindle troughs and larger duration but lower amplitude of the ripples co-occurring with spindles or SOs compared to the isolated ripples. The model also predicts that the coupling of ripples to SOs and spindles monotonically enhances by increasing the strength of hippocampo-cortical connections while it is stronger at intermediate values of the cortico-hippocampal projections.
Collapse
|
125
|
Lutz ND, Admard M, Genzoni E, Born J, Rauss K. Occipital sleep spindles predict sequence learning in a visuo-motor task. Sleep 2021; 44:zsab056. [PMID: 33743012 PMCID: PMC8361350 DOI: 10.1093/sleep/zsab056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES The brain appears to use internal models to successfully interact with its environment via active predictions of future events. Both internal models and the predictions derived from them are based on previous experience. However, it remains unclear how previously encoded information is maintained to support this function, especially in the visual domain. In the present study, we hypothesized that sleep consolidates newly encoded spatio-temporal regularities to improve predictions afterwards. METHODS We tested this hypothesis using a novel sequence-learning paradigm that aimed to dissociate perceptual from motor learning. We recorded behavioral performance and high-density electroencephalography (EEG) in male human participants during initial training and during testing two days later, following an experimental night of sleep (n = 16, including high-density EEG recordings) or wakefulness (n = 17). RESULTS Our results show sleep-dependent behavioral improvements correlated with sleep-spindle activity specifically over occipital cortices. Moreover, event-related potential (ERP) responses indicate a shift of attention away from predictable to unpredictable sequences after sleep, consistent with enhanced automaticity in the processing of predictable sequences. CONCLUSIONS These findings suggest a sleep-dependent improvement in the prediction of visual sequences, likely related to visual cortex reactivation during sleep spindles. Considering that controls in our experiments did not fully exclude oculomotor contributions, future studies will need to address the extent to which these effects depend on purely perceptual versus oculomotor sequence learning.
Collapse
Affiliation(s)
- Nicolas D Lutz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience/IMPRS for Cognitive & Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Marie Admard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Elsa Genzoni
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Germany
| | - Karsten Rauss
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
126
|
Ladenbauer J, Ladenbauer J, Külzow N, Flöel A. Memory-relevant nap sleep physiology in healthy and pathological aging. Sleep 2021; 44:6066546. [PMID: 33406266 DOI: 10.1093/sleep/zsab002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Aging is associated with detrimental changes in sleep physiology, a process accelerated in Alzheimer's disease. Fine-tuned temporal interactions of non-rapid eye movement slow oscillations and spindles were shown to be particularly important for memory consolidation, and to deteriorate in healthy older adults. Whether this oscillatory interaction further decline in early stages of Alzheimer's disease such as mild cognitive impairment has not been investigated to date, but may have important therapeutic implications. METHODS Here, we assessed differences in sleep architecture and memory-relevant slow oscillation, sleep spindles and their functional coupling during a 90-min nap between healthy young and older adults, and in older patients with mild cognitive impairment. Furthermore, associations of nap-sleep characteristics with sleep-dependent memory performance change were evaluated. RESULTS We found significant differences between young and older healthy adults, and between young adults and patients with mild cognitive impairment, but not between healthy older adults and patients for several sleep metrics, including slow oscillation-spindle coupling. Moreover, sleep-dependent retention of verbal memories was significantly higher in young healthy adults versus older adults with and without mild cognitive impairment, but no difference between the two older groups was observed. Associations with sleep metrics were only found for pre-nap memory performances. CONCLUSIONS In conclusion, our results indicate changes in nap sleep physiology and sleep-related memory consolidation in older adults with and without mild cognitive impairment. Thus, interventions targeted at improving sleep physiology may help to reduce memory decline in both groups, but our study does not indicate additional benefits for patients with mild cognitive impairment. CLINICAL TRAIL REGISTRATION Effects of Brain Stimulation During Daytime Nap on Memory Consolidation in Younger, Healthy Subjects: https://clinicaltrials.gov/ct2/show/NCT01840865; NCT01840865. Effects of Brain Stimulation During a Daytime Nap on Memory Consolidation in Older Adults; https://clinicaltrials.gov/ct2/show/study/NCT01840839?term=01840839&draw=2&rank=1; NCT01840839. Effects of Brain Stimulation During a Daytime Nap on Memory Consolidation in Patients With Mild Cognitive Impairment; https://clinicaltrials.gov/ct2/show/NCT01782365?term=01782365&draw=2&rank=1; NCT01782365.
Collapse
Affiliation(s)
- Julia Ladenbauer
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.,Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Ladenbauer
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, École Normale Supérieure, PSL Research University, Paris, France
| | - Nadine Külzow
- Kliniken Beelitz GmbH, Neurologische Rehabilitation, Beelitz-Heilstätten, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.,Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
127
|
Hay YA, Deperrois N, Fuchsberger T, Quarrell TM, Koerling AL, Paulsen O. Thalamus mediates neocortical Down state transition via GABA B-receptor-targeting interneurons. Neuron 2021; 109:2682-2690.e5. [PMID: 34314698 DOI: 10.1016/j.neuron.2021.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 02/24/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022]
Abstract
Slow-wave sleep is characterized by near-synchronous alternation of active Up states and quiescent Down states in the neocortex. Although the cortex itself can maintain these oscillations, the full expression of Up-Down states requires intact thalamocortical circuits. Sensory thalamic input can drive the cortex into an Up state. Here we show that midline thalamic neurons terminate Up states synchronously across cortical areas. Combining local field potential, single-unit, and patch-clamp recordings in conjunction with optogenetic stimulation and silencing in mice in vivo, we report that thalamic input mediates Down transition via activation of layer 1 neurogliaform inhibitory neurons acting on GABAB receptors. These results strengthen the evidence that thalamocortical interactions are essential for the full expression of slow-wave sleep, show that Down transition is an active process mediated by cortical GABAB receptors, and demonstrate that thalamus synchronizes Down transitions across cortical areas during natural slow-wave sleep.
Collapse
Affiliation(s)
- Y Audrey Hay
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK.
| | - Nicolas Deperrois
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK
| | - Tanja Fuchsberger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK
| | - Thomas Matthew Quarrell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK
| | - Anna-Lucia Koerling
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK.
| |
Collapse
|
128
|
Leong RLF, Yu N, Ong JL, Ng ASC, Jamaluddin SA, Cousins JN, Chee NIYN, Chee MWL. Memory performance following napping in habitual and non-habitual nappers. Sleep 2021; 44:6031654. [PMID: 33313925 PMCID: PMC8193563 DOI: 10.1093/sleep/zsaa277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/16/2020] [Indexed: 11/14/2022] Open
Abstract
Study Objectives Afternoon naps benefit memory but this may depend on whether one is a habitual napper (HN; ≥1 nap/week) or non-habitual napper (NN). Here, we investigated whether a nap would benefit HN and NN differently, as well as whether HN would be more adversely affected by nap restriction compared to NN. Methods Forty-six participants in the nap condition (HN-nap: n = 25, NN-nap: n = 21) took a 90-min nap (14:00–15:30 pm) on experimental days while 46 participants in the Wake condition (HN-wake: n = 24, NN-wake: n = 22) remained awake in the afternoon. Memory tasks were administered after the nap to assess short-term topographical memory and long-term memory in the form of picture encoding and factual knowledge learning respectively. Results An afternoon nap boosted picture encoding and factual knowledge learning irrespective of whether one habitually napped (main effects of condition (nap/wake): ps < 0.037). However, we found a significant interaction for the hippocampal-dependent topographical memory task (p = 0.039) wherein a nap, relative to wake, benefitted habitual nappers (HN-nap vs HN-wake: p = 0.003) compared to non-habitual nappers (NN-nap vs. NN-wake: p = 0.918). Notably for this task, habitual nappers’ performance significantly declined if they were not allowed to nap (HN-wake vs NN-wake: p = 0.037). Conclusions Contrary to concerns that napping may be disadvantageous for non-habitual nappers, we found that an afternoon nap was beneficial for long-term memory tasks even if one did not habitually nap. Naps were especially beneficial for habitual nappers performing a short-term topographical memory task, as it restored the decline that would otherwise have been incurred without a nap. Clinical Trial Information NCT04044885.
Collapse
Affiliation(s)
- Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicole Yu
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ju Lynn Ong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alyssa S C Ng
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - S Azrin Jamaluddin
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - James N Cousins
- Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Centre, EN, Nijmegen, The Netherlands
| | - Nicholas I Y N Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
129
|
Dimanico MM, Klaassen AL, Wang J, Kaeser M, Harvey M, Rasch B, Rainer G. Aspects of tree shrew consolidated sleep structure resemble human sleep. Commun Biol 2021; 4:722. [PMID: 34117351 PMCID: PMC8196209 DOI: 10.1038/s42003-021-02234-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding human sleep requires appropriate animal models. Sleep has been extensively studied in rodents, although rodent sleep differs substantially from human sleep. Here we investigate sleep in tree shrews, small diurnal mammals phylogenetically close to primates, and compare it to sleep in rats and humans using electrophysiological recordings from frontal cortex of each species. Tree shrews exhibited consolidated sleep, with a sleep bout duration parameter, τ, uncharacteristically high for a small mammal, and differing substantially from the sleep of rodents that is often punctuated by wakefulness. Two NREM sleep stages were observed in tree shrews: NREM, characterized by high delta waves and spindles, and an intermediate stage (IS-NREM) occurring on NREM to REM transitions and consisting of intermediate delta waves with concomitant theta-alpha activity. While IS-NREM activity was reliable in tree shrews, we could also detect it in human EEG data, on a subset of transitions. Finally, coupling events between sleep spindles and slow waves clustered near the beginning of the sleep period in tree shrews, paralleling humans, whereas they were more evenly distributed in rats. Our results suggest considerable homology of sleep structure between humans and tree shrews despite the large difference in body mass between these species. Dimanico et al investigated sleep in tree shrews using electrophysiological recordings and compared it to equivalent read-outs in rats and humans. They reported that there was considerable homology of sleep structure between humans and tree shrews despite the difference in body mass between these species.
Collapse
Affiliation(s)
- Marta M Dimanico
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Arndt-Lukas Klaassen
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Jing Wang
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Melanie Kaeser
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Harvey
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Gregor Rainer
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
130
|
Kurz EM, Conzelmann A, Barth GM, Renner TJ, Zinke K, Born J. How do children with autism spectrum disorder form gist memory during sleep? A study of slow oscillation-spindle coupling. Sleep 2021; 44:zsaa290. [PMID: 33367905 PMCID: PMC8193554 DOI: 10.1093/sleep/zsaa290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Sleep is assumed to support memory through an active systems consolidation process that does not only strengthen newly encoded representations but also facilitates the formation of more abstract gist memories. Studies in humans and rodents indicate a key role of the precise temporal coupling of sleep slow oscillations (SO) and spindles in this process. The present study aimed at bolstering these findings in typically developing (TD) children, and at dissecting particularities in SO-spindle coupling underlying signs of enhanced gist memory formation during sleep found in a foregoing study in children with autism spectrum disorder (ASD) without intellectual impairment. Sleep data from 19 boys with ASD and 20 TD boys (9-12 years) were analyzed. Children performed a picture-recognition task and the Deese-Roediger-McDermott (DRM) task before nocturnal sleep (encoding) and in the next morning (retrieval). Sleep-dependent benefits for visual-recognition memory were comparable between groups but were greater for gist abstraction (recall of DRM critical lure words) in ASD than TD children. Both groups showed a closely comparable SO-spindle coupling, with fast spindle activity nesting in SO-upstates, suggesting that a key mechanism of memory processing during sleep is fully functioning already at childhood. Picture-recognition at retrieval after sleep was positively correlated to frontocortical SO-fast-spindle coupling in TD children, and less in ASD children. Critical lure recall did not correlate with SO-spindle coupling in TD children but showed a negative correlation (r = -.64, p = .003) with parietal SO-fast-spindle coupling in ASD children, suggesting other mechanisms specifically conveying gist abstraction, that may even compete with SO-spindle coupling.
Collapse
Affiliation(s)
- Eva-Maria Kurz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Annette Conzelmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
- PFH – Private University of Applied Sciences, Department of Psychology (Clinical Psychology II), Göttingen, Germany
| | - Gottfried Maria Barth
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
| | - Tobias J Renner
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
| | - Katharina Zinke
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Tübingen, Germany
| |
Collapse
|
131
|
Dehnavi F, Koo-Poeggel PC, Ghorbani M, Marshall L. Spontaneous slow oscillation - slow spindle features predict induced overnight memory retention. Sleep 2021; 44:6277833. [PMID: 34003291 PMCID: PMC8503833 DOI: 10.1093/sleep/zsab127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Study Objectives Synchronization of neural activity within local networks and between brain regions is a major contributor to rhythmic field potentials such as the EEG. On the other hand, dynamic changes in microstructure and activity are reflected in the EEG, for instance slow oscillation (SO) slope can reflect synaptic strength. SO-spindle coupling is a measure for neural communication. It was previously associated with memory consolidation, but also shown to reveal strong interindividual differences. In studies, weak electric current stimulation has modulated brain rhythms and memory retention. Here, we investigate whether SO-spindle coupling and SO slope during baseline sleep are associated with (predictive of) stimulation efficacy on retention performance. Methods Twenty-five healthy subjects participated in three experimental sessions. Sleep-associated memory consolidation was measured in two sessions, in one anodal transcranial direct current stimulation oscillating at subjects individual SO frequency (so-tDCS) was applied during nocturnal sleep. The third session was without a learning task (baseline sleep). The dependence on SO-spindle coupling and SO-slope during baseline sleep of so-tDCS efficacy on retention performance were investigated. Results Stimulation efficacy on overnight retention of declarative memories was associated with nesting of slow spindles to SO trough in deep nonrapid eye movement baseline sleep. Steepness and direction of SO slope in baseline sleep were features indicative for stimulation efficacy. Conclusions Findings underscore a functional relevance of activity during the SO up-to-down state transition for memory consolidation and provide support for distinct consolidation mechanisms for types of declarative memories.
Collapse
Affiliation(s)
- Fereshteh Dehnavi
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ping Chai Koo-Poeggel
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck
| | - Maryam Ghorbani
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.,Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck
| |
Collapse
|
132
|
McConnell BV, Kronberg E, Teale PD, Sillau SH, Fishback GM, Kaplan RI, Fought AJ, Dhanasekaran AR, Berman BD, Ramos AR, McClure RL, Bettcher BM. The Aging Slow Wave: A Shifting Amalgam of Distinct Slow Wave and Spindle Coupling Subtypes Define Slow Wave Sleep Across the Human Lifespan. Sleep 2021; 44:6276901. [PMID: 33999194 PMCID: PMC8503831 DOI: 10.1093/sleep/zsab125] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 03/14/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Slow wave and spindle coupling supports memory consolidation, and loss of coupling is linked with cognitive decline and neurodegeneration. Coupling is proposed to be a possible biomarker of neurological disease, yet little is known about the different subtypes of coupling that normally occur throughout human development and aging. Here we identify distinct subtypes of spindles within slow wave upstates and describe their relationships with sleep stage across the human lifespan. METHODS Coupling within a cross-sectional cohort of 582 subjects was quantified from stages N2 and N3 sleep across ages 6-88 years old. Results were analyzed across the study population via mixed model regression. Within a subset of subjects, we further utilized coupling to identify discrete subtypes of slow waves by their coupled spindles. RESULTS Two different subtypes of spindles were identified during the upstates of (distinct) slow waves: an "early-fast" spindle, more common in stage N2 sleep, and a "late-fast" spindle, more common in stage N3. We further found stages N2 and N3 sleep contain a mixture of discrete subtypes of slow waves, each identified by their unique coupled-spindle timing and frequency. The relative contribution of coupling subtypes shifts across the human lifespan, and a deeper sleep phenotype prevails with increasing age. CONCLUSIONS Distinct subtypes of slow waves and coupled spindles form the composite of slow wave sleep. Our findings support a model of sleep-dependent synaptic regulation via discrete slow wave/spindle coupling subtypes and advance a conceptual framework for the development of coupling-based biomarkers in age-associated neurological disease.
Collapse
Affiliation(s)
- Brice V McConnell
- Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Eugene Kronberg
- Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Peter D Teale
- Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Stefan H Sillau
- Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Grace M Fishback
- Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Rini I Kaplan
- Psychological & Brain Sciences Boston University, Boston, MA, USA
| | - Angela J Fought
- Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | | | - Brian D Berman
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA.,Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Alberto R Ramos
- Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Brianne M Bettcher
- Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
133
|
Joechner AK, Wehmeier S, Werkle-Bergner M. Electrophysiological indicators of sleep-associated memory consolidation in 5- to 6-year-old children. Psychophysiology 2021; 58:e13829. [PMID: 33951193 DOI: 10.1111/psyp.13829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
In adults, the synchronized interplay of sleep spindles (SP) and slow oscillations (SO) supports memory consolidation. Given tremendous developmental changes in SP and SO morphology, it remains elusive whether across childhood the same mechanisms as identified in adults are functional. Based on topography and frequency, we characterize slow and fast SPs and their temporal coupling to SOs in 24 pre-school children. Further, we ask whether slow and fast SPs and their modulation during SOs are associated with behavioral indicators of declarative memory consolidation as suggested by the literature on adults. Employing an individually tailored approach, we reliably identify an inherent, development-specific fast centro-parietal SP type, nested in the adult-like slow SP frequency range, along with a dominant slow frontal SP type. Further, we provide evidence that the modulation of fast centro-parietal SPs during SOs is already present in pre-school children. However, the temporal coordination between fast centro-parietal SPs and SOs is weaker and less precise than expected from research on adults. While we do not find evidence for a critical contribution of SP-SO coupling for memory consolidation, crucially, slow frontal and fast centro-parietal SPs are each differentially related to sleep-associated consolidation of items of varying quality. Whereas a higher number of slow frontal SPs is associated with stronger maintenance of medium-quality memories, a higher number of fast centro-parietal SPs is linked to a greater gain of low-quality items. Our results demonstrate two functionally relevant inherent SP types in pre-school children although SP-SO coupling is not yet fully mature.
Collapse
Affiliation(s)
- Ann-Kathrin Joechner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Sarah Wehmeier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
134
|
Sleep Spindles Preferentially Consolidate Weakly Encoded Memories. J Neurosci 2021; 41:4088-4099. [PMID: 33741722 DOI: 10.1523/jneurosci.0818-20.2021] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/22/2023] Open
Abstract
Sleep has been shown to be critical for memory consolidation, with some research suggesting that certain memories are prioritized for consolidation. Initial strength of a memory appears to be an important boundary condition in determining which memories are consolidated during sleep. However, the role of consolidation-mediating oscillations, such as sleep spindles and slow oscillations, in this preferential consolidation has not been explored. Here, 54 human participants (76% female) studied pairs of words to three distinct encoding strengths, with recall being tested immediately following learning and again 6 h later. Thirty-six had a 2 h nap opportunity following learning, while the remaining 18 remained awake throughout. Results showed that, across 6 h awake, weakly encoded memories deteriorated the fastest. In the nap group, however, this effect was attenuated, with forgetting rates equivalent across encoding strengths. Within the nap group, consolidation of weakly encoded items was associated with fast sleep spindle density during non-rapid eye movement sleep. Moreover, sleep spindles that were coupled to slow oscillations predicted the consolidation of weak memories independently of uncoupled sleep spindles. These relationships were unique to weakly encoded items, with spindles not correlating with memory for intermediate or strong items. This suggests that sleep spindles facilitate memory consolidation, guided in part by memory strength.SIGNIFICANCE STATEMENT Given the countless pieces of information we encode each day, how does the brain select which memories to commit to long-term storage? Sleep is known to aid in memory consolidation, and it appears that certain memories are prioritized to receive this benefit. Here, we found that, compared with staying awake, sleep was associated with better memory for weakly encoded information. This suggests that sleep helps attenuate the forgetting of weak memory traces. Fast sleep spindles, a hallmark oscillation of non-rapid eye movement sleep, mediate consolidation processes. We extend this to show that fast spindles were uniquely associated with the consolidation of weakly encoded memories. This provides new evidence for preferential sleep-based consolidation and elucidates a physiological correlate of this benefit.
Collapse
|
135
|
Sunwoo JS, Cha KS, Byun JI, Jun JS, Kim TJ, Shin JW, Lee ST, Jung KH, Park KI, Chu K, Kim M, Lee SK, Kim HJ, Schenck CH, Jung KY. Nonrapid eye movement sleep electroencephalographic oscillations in idiopathic rapid eye movement sleep behavior disorder: a study of sleep spindles and slow oscillations. Sleep 2021; 44:5896006. [PMID: 32827438 DOI: 10.1093/sleep/zsaa160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/18/2020] [Indexed: 12/29/2022] Open
Abstract
STUDY OBJECTIVES We investigated electroencephalographic (EEG) slow oscillations (SOs), sleep spindles (SSs), and their temporal coordination during nonrapid eye movement (NREM) sleep in patients with idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD). METHODS We analyzed 16 patients with video-polysomnography-confirmed iRBD (age, 65.4 ± 6.6 years; male, 87.5%) and 10 controls (age, 62.3 ± 7.5 years; male, 70%). SSs and SOs were automatically detected during stage N2 and N3. We analyzed their characteristics, including density, frequency, duration, and amplitude. We additionally identified SO-locked spindles and examined their phase distribution and phase locking with the corresponding SO. For inter-group comparisons, we used the independent samples t-test or Wilcoxon rank-sum test, as appropriate. RESULTS The SOs of iRBD patients had significantly lower amplitude, longer duration (p = 0.005 for both), and shallower slope (p < 0.001) than those of controls. The SS power of iRBD patients was significantly lower than that of controls (p = 0.002), although spindle density did not differ significantly. Furthermore, SO-locked spindles of iRBD patients prematurely occurred during the down-to-up-state transition of SOs, whereas those of controls occurred at the up-state peak of SOs (p = 0.009). The phase of SO-locked spindles showed a positive correlation with delayed recall subscores (p = 0.005) but not with tonic or phasic electromyography activity during REM sleep. CONCLUSIONS In this study, we found abnormal EEG oscillations during NREM sleep in patients with iRBD. The impaired temporal coupling between SOs and SSs may reflect early neurodegenerative changes in iRBD.
Collapse
Affiliation(s)
- Jun-Sang Sunwoo
- Department of Neurosurgery, Seoul National University Hospital, Seoul, South Korea
| | - Kwang Su Cha
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Jung-Ick Byun
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Jin-Sun Jun
- Department of Neurology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Tae-Joon Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | - Jung-Won Shin
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Protein Metabolism and Dementia Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Carlos H Schenck
- Minnesota Regional Sleep Disorders Center and Department of Psychiatry, Hennepin County Medical Center, University of Minnesota Medical School, Minneapolis, MN
| | - Ki-Young Jung
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
136
|
Zhang J, Yetton B, Whitehurst LN, Naji M, Mednick SC. The effect of zolpidem on memory consolidation over a night of sleep. Sleep 2021; 43:5824815. [PMID: 32330272 DOI: 10.1093/sleep/zsaa084] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Nonrapid eye movement sleep boosts hippocampus-dependent, long-term memory formation more so than wake. Studies have pointed to several electrophysiological events that likely play a role in this process, including thalamocortical sleep spindles (12-15 Hz). However, interventional studies that directly probe the causal role of spindles in consolidation are scarce. Previous studies have used zolpidem, a GABA-A agonist, to increase sleep spindles during a daytime nap and promote hippocampal-dependent episodic memory. The current study investigated the effect of zolpidem on nighttime sleep and overnight improvement of episodic memories. METHODS We used a double-blind, placebo-controlled within-subject design to test the a priori hypothesis that zolpidem would lead to increased memory performance on a word-paired associates task by boosting spindle activity. We also explored the impact of zolpidem across a range of other spectral sleep features, including slow oscillations (0-1 Hz), delta (1-4 Hz), theta (4-8 Hz), sigma (12-15 Hz), as well as spindle-SO coupling. RESULTS We showed greater memory improvement after a night of sleep with zolpidem, compared to placebo, replicating a prior nap study. Additionally, zolpidem increased sigma power, decreased theta and delta power, and altered the phase angle of spindle-SO coupling, compared to placebo. Spindle density, theta power, and spindle-SO coupling were associated with next-day memory performance. CONCLUSIONS These results are consistent with the hypothesis that sleep, specifically the timing and amount of sleep spindles, plays a causal role in the long-term formation of episodic memories. Furthermore, our results emphasize the role of nonrapid eye movement theta activity in human memory consolidation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cognitive Sciences, University of California, Irvine
| | - Ben Yetton
- Department of Cognitive Sciences, University of California, Irvine
| | | | - Mohsen Naji
- Department of Medicine, University of California, San Diego
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California, Irvine
| |
Collapse
|
137
|
Navarrete M, Schneider J, Ngo HVV, Valderrama M, Casson AJ, Lewis PA. Examining the optimal timing for closed-loop auditory stimulation of slow-wave sleep in young and older adults. Sleep 2021; 43:5686285. [PMID: 31872860 PMCID: PMC7294407 DOI: 10.1093/sleep/zsz315] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/13/2019] [Indexed: 11/23/2022] Open
Abstract
Study Objectives Closed-loop auditory stimulation (CLAS) is a method for enhancing slow oscillations (SOs) through the presentation of auditory clicks during sleep. CLAS boosts SOs amplitude and sleep spindle power, but the optimal timing for click delivery remains unclear. Here, we determine the optimal time to present auditory clicks to maximize the enhancement of SO amplitude and spindle likelihood. Methods We examined the main factors predicting SO amplitude and sleep spindles in a dataset of 21 young and 17 older subjects. The participants received CLAS during slow-wave-sleep in two experimental conditions: sham and auditory stimulation. Post-stimulus SOs and spindles were evaluated according to the click phase on the SOs and compared between and within conditions. Results We revealed that auditory clicks applied anywhere on the positive portion of the SO increased SO amplitudes and spindle likelihood, although the interval of opportunity was shorter in the older group. For both groups, analyses showed that the optimal timing for click delivery is close to the SO peak phase. Click phase on the SO wave was the main factor determining the impact of auditory stimulation on spindle likelihood for young subjects, whereas for older participants, the temporal lag since the last spindle was a better predictor of spindle likelihood. Conclusions Our data suggest that CLAS can more effectively boost SOs during specific phase windows, and these differ between young and older participants. It is possible that this is due to the fluctuation of sensory inputs modulated by the thalamocortical networks during the SO.
Collapse
Affiliation(s)
- Miguel Navarrete
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Jules Schneider
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Hong-Viet V Ngo
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
| | - Mario Valderrama
- Department of Biomedical Engineering, University of Los Andes, Bogotá, Colombia
| | - Alexander J Casson
- School of Electrical and Electronic Engineering, University of Manchester, Manchester, UK
| | - Penelope A Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
138
|
Schneider J, Lewis PA, Koester D, Born J, Ngo HVV. Susceptibility to auditory closed-loop stimulation of sleep slow oscillations changes with age. Sleep 2021; 43:5850478. [PMID: 32562487 PMCID: PMC7734479 DOI: 10.1093/sleep/zsaa111] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/10/2020] [Indexed: 11/20/2022] Open
Abstract
Study Objectives Cortical slow oscillations (SOs) and thalamocortical sleep spindles hallmark slow wave sleep and facilitate memory consolidation, both of which are reduced with age. Experiments utilizing auditory closed-loop stimulation to enhance these oscillations showed great potential in young and older subjects. However, the magnitude of responses has yet to be compared between these age groups. We examined the possibility of enhancing SOs and performance on different memory tasks in a healthy middle-aged population using this stimulation and contrast effects to younger adults. Methods In a within-subject design, 17 subjects (55.7 ± 1.0 years) received auditory stimulation in synchrony with SO up-states, which was compared to a no-stimulation sham condition. Overnight memory consolidation was assessed for declarative word-pairs and procedural finger-tapping skill. Post-sleep encoding capabilities were tested with a picture recognition task. Electrophysiological effects of stimulation were compared to a previous younger cohort (n = 11, 24.2 ± 0.9 years). Results Overnight retention and post-sleep encoding performance of the older cohort revealed no beneficial effect of stimulation, which contrasts with the enhancing effect the same stimulation protocol had in our younger cohort. Auditory stimulation prolonged endogenous SO trains and induced sleep spindles phase-locked to SO up-states in the older population. However, responses were markedly reduced compared to younger subjects. Additionally, the temporal dynamics of stimulation effects on SOs and spindles differed between age groups. Conclusions Our findings suggest that the susceptibility to auditory stimulation during sleep drastically changes with age and reveal the difficulties of translating a functional protocol from younger to older populations.
Collapse
Affiliation(s)
- Jules Schneider
- School of Biological Sciences, University of Manchester, Manchester, UK
- School of Psychology, Cardiff University, Cardiff, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Penelope A Lewis
- School of Biological Sciences, University of Manchester, Manchester, UK
- School of Psychology, Cardiff University, Cardiff, UK
- Corresponding authors. Hong-Viet V. Ngo, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands. ; Penelope A. Lewis, School of Psychology, Cardiff University, Cardiff, UK.
| | - Dominik Koester
- Institute for Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute for Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Hong-Viet V Ngo
- Institute for Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Corresponding authors. Hong-Viet V. Ngo, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands. ; Penelope A. Lewis, School of Psychology, Cardiff University, Cardiff, UK.
| |
Collapse
|
139
|
Xu W, De Carvalho F, Clarke AK, Jackson A. Communication from the cerebellum to the neocortex during sleep spindles. Prog Neurobiol 2021; 199:101940. [PMID: 33161064 PMCID: PMC7938225 DOI: 10.1016/j.pneurobio.2020.101940] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/14/2020] [Accepted: 11/01/2020] [Indexed: 10/30/2022]
Abstract
Surprisingly little is known about neural activity in the sleeping cerebellum. Using long-term wireless recording, we characterised dynamic cerebro-thalamo-cerebellar interactions during natural sleep in monkeys. Similar sleep cycles were evident in both M1 and cerebellum as cyclical fluctuations in firing rates as well as a reciprocal pattern of slow waves and sleep spindles. Directed connectivity from motor cortex to the cerebellum suggested a neocortical origin of slow waves. Surprisingly however, spindles were associated with a directional influence from the cerebellum to motor cortex, conducted via the thalamus. Furthermore, the relative phase of spindle-band oscillations in the neocortex and cerebellum varied systematically with their changing amplitudes. We used linear dynamical systems analysis to show that this behaviour could only be explained by a system of two coupled oscillators. These observations appear inconsistent with a single spindle generator within the thalamo-cortical system, and suggest instead a cerebellar contribution to neocortical sleep spindles. Since spindles are implicated in the off-line consolidation of procedural learning, we speculate that this may involve communication via cerebello-thalamo-neocortical pathways in sleep.
Collapse
Affiliation(s)
- W Xu
- Institute of Neuroscience, Newcastle University, Newcastle NE2 4HH, UK.
| | - F De Carvalho
- Institute of Neuroscience, Newcastle University, Newcastle NE2 4HH, UK.
| | - A K Clarke
- Institute of Neuroscience, Newcastle University, Newcastle NE2 4HH, UK.
| | - A Jackson
- Institute of Neuroscience, Newcastle University, Newcastle NE2 4HH, UK.
| |
Collapse
|
140
|
Lachner-Piza D, Kunz L, Brandt A, Dümpelmann M, Thomschewski A, Schulze-Bonhage A. Effects of Spatial Memory Processing on Hippocampal Ripples. Front Neurol 2021; 12:620670. [PMID: 33746877 PMCID: PMC7973270 DOI: 10.3389/fneur.2021.620670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
Human High-Frequency-Oscillations (HFO) in the ripple band are oscillatory brain activity in the frequency range between 80 and 250 Hz. HFOs may comprise different subgroups that either play a role in physiologic or pathologic brain functions. An exact differentiation between physiologic and pathologic HFOs would help elucidate their relevance for cognitive and epileptogenic brain mechanisms, but the criteria for differentiating between physiologic and pathologic HFOs remain controversial. In particular, the separation of pathologic HFOs from physiologic HFOs could improve the identification of epileptogenic brain regions during the pre-surgical evaluation of epilepsy patients. In this study, we performed intracranial electroencephalography recordings from the hippocampus of epilepsy patients before, during, and after the patients completed a spatial navigation task. We isolated hippocampal ripples from the recordings and categorized the ripples into the putative pathologic group iesRipples, when they coincided with interictal spikes, and the putative physiologic group isolRipples, when they did not coincide with interictal spikes. We found that the occurrence of isolRipples significantly decreased during the task as compared to periods before and after the task. The rate of iesRipples was not modulated by the task. In patients who completed the spatial navigation task on two consecutive days, we furthermore examined the occurrence of ripples in the intervening night. We found that the rate of ripples that coincided with sleep spindles and were therefore putatively physiologic correlated with the performance improvement on the spatial navigation task, whereas the rate of all ripples did not show this relationship. Together, our results suggest that the differentiation of HFOs into putative physiologic and pathologic subgroups may help identify their role for spatial memory and memory consolidation processes. Conversely, excluding putative physiologic HFOs from putative pathologic HFOs may improve the HFO-based identification of epileptogenic brain regions in future studies.
Collapse
Affiliation(s)
- Daniel Lachner-Piza
- Epilepsy Center, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lukas Kunz
- Epilepsy Center, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Matthias Dümpelmann
- Epilepsy Center, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
141
|
Sulkamo S, Hagström K, Huupponen E, Isokangas S, Lapinlampi AM, Alakuijala A, Saarenpää-Heikkilä O, Himanen SL. Sleep Spindle Features and Neurobehavioral Performance in Healthy School-Aged Children. J Clin Neurophysiol 2021; 38:149-155. [PMID: 31800466 DOI: 10.1097/wnp.0000000000000655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE In adults, central fast-frequency sleep spindles are involved in learning and memory functions. The density of local spindles is higher than global spindles, emphasizing the importance of local plastic neural processes. In children, findings on the association of spindles with cognition are more variable. Hence, we aim to study whether the local spindles are also important for neurobehavioral performance in children. METHODS We studied the correlations between local (occurring in only one channel: Fp1, Fp2, C3, or C4), bilateral, and diffuse (occurring in all four channels) spindles and neurobehavioral performance in 17 healthy children (median age 9.6 years). RESULTS Local spindles were not as frequent as bilateral spindles (P-values < 0.05). Central spindle types had significant correlations with sensorimotor and language functions (e.g., the density of bilateral central spindles correlated positively with the Object Assembly in NEPSY, r = 0.490). Interestingly, frontopolar spindles correlated with behavior (e.g., the more bilateral the frontopolar spindles, the less hyperactive the children, r = -0.618). CONCLUSIONS In children, the local spindles, but also more widespread central spindles, seem to be involved in the cognitive processes. Based on our findings, it is important that ageadjusted frequency limits are used in studies evaluating the frequencies of spindles in children.
Collapse
Affiliation(s)
- Saramia Sulkamo
- Department of Clinical Neurophysiology, Medical Imaging Centre and Hospital Pharmacy, Tampere University Hospital, Tampere, Finland
- Department of Clinical Neurophysiology, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Kati Hagström
- Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Eero Huupponen
- Department of Clinical Neurophysiology, Medical Imaging Centre and Hospital Pharmacy, Tampere University Hospital, Tampere, Finland
| | - Sirkku Isokangas
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anna-Maria Lapinlampi
- Department of Clinical Neurophysiology, Medical Imaging Centre and Hospital Pharmacy, Tampere University Hospital, Tampere, Finland
| | - Anniina Alakuijala
- Department of Clinical Neurophysiology, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
- Department of Neurological Sciences, University of Helsinki, Helsinki, Finland ; and
| | | | - Sari-Leena Himanen
- Department of Clinical Neurophysiology, Medical Imaging Centre and Hospital Pharmacy, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
142
|
Stevens D, Leong CWY, Cheung H, Arciuli J, Vakulin A, Kim JW, Openshaw HD, Rae CD, Wong KKH, Dijk DJ, Siong Leow JW, Saini B, Grunstein RR, D'Rozario AL. Sleep spindle activity correlates with implicit statistical learning consolidation in untreated obstructive sleep apnea patients. Sleep Med 2021; 86:126-134. [PMID: 33707093 DOI: 10.1016/j.sleep.2021.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE/BACKGROUND The aim of this study was to examine the relationship between overnight consolidation of implicit statistical learning with spindle frequency EEG activity and slow frequency delta power during non-rapid eye movement (NREM) sleep in obstructive sleep apnea (OSA). PATIENTS/METHODS Forty-seven OSA participants completed the experiment. Prior to sleep, participants performed a reaction time cover task containing hidden patterns of pictures, about which participants were not informed. After the familiarisation phase, participants underwent overnight polysomnography. 24 h after the familiarisation phase, participants performed a test phase to assess their learning of the hidden patterns, expressed as a percentage of the number of correctly identified patterns. Spindle frequency activity (SFA) and delta power (0.5-4.5 Hz), were quantified from NREM electroencephalography. Associations between statistical learning and sleep EEG, and OSA severity measures were examined. RESULTS SFA in NREM sleep in frontal and central brain regions was positively correlated with statistical learning scores (r = 0.41 to 0.31, p = 0.006 to 0.044). In multiple regression, greater SFA and longer sleep onset latency were significant predictors of better statistical learning performance. Delta power and OSA severity were not significantly correlated with statistical learning. CONCLUSIONS These findings suggest spindle activity may serve as a marker of statistical learning capability in OSA. This work provides novel insight into how altered sleep physiology relates to consolidation of implicitly learnt information in patients with moderate to severe OSA.
Collapse
Affiliation(s)
- David Stevens
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia; College of Nursing and Health Sciences, Flinders University, Bedford Park, SA, Australia; Adelaide Institute for Sleep Health: A Flinders Centre of Research Excellence, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | | | - Helena Cheung
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Joanne Arciuli
- College of Nursing and Health Sciences, Flinders University, Bedford Park, SA, Australia
| | - Andrew Vakulin
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia; Adelaide Institute for Sleep Health: A Flinders Centre of Research Excellence, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Jong-Won Kim
- Department of Healthcare IT, Inje University, Inje-ro 197, Kimhae, Kyunsangnam-do, 50834, South Korea
| | - Hannah D Openshaw
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia
| | - Caroline D Rae
- Neuroscience Research Australia (NeuRA), Sydney, Australia; School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Keith K H Wong
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia; Royal Prince Alfred Hospital, Sydney Health Partners, NSW, Australia; Sydney Medical School, The University of Sydney, NSW, Australia
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK; UK Dementia Research Institute at the University of Surrey, UK
| | - Josiah Wei Siong Leow
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia
| | - Bandana Saini
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia; Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Ronald R Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia; Royal Prince Alfred Hospital, Sydney Health Partners, NSW, Australia; Sydney Medical School, The University of Sydney, NSW, Australia
| | - Angela L D'Rozario
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia; The University of Sydney, School of Psychology, Brain and Mind Centre and Charles Perkins Centre, Australia.
| |
Collapse
|
143
|
Fehér KD, Wunderlin M, Maier JG, Hertenstein E, Schneider CL, Mikutta C, Züst MA, Klöppel S, Nissen C. Shaping the slow waves of sleep: A systematic and integrative review of sleep slow wave modulation in humans using non-invasive brain stimulation. Sleep Med Rev 2021; 58:101438. [PMID: 33582581 DOI: 10.1016/j.smrv.2021.101438] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 10/14/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023]
Abstract
The experimental study of electroencephalographic slow wave sleep (SWS) stretches over more than half a century and has corroborated its importance for basic physiological processes, such as brain plasticity, metabolism and immune system functioning. Alterations of SWS in aging or pathological conditions suggest that modulating SWS might constitute a window for clinically relevant interventions. This work provides a systematic and integrative review of SWS modulation through non-invasive brain stimulation in humans. A literature search using PubMed, conducted in May 2020, identified 3220 studies, of which 82 fulfilled inclusion criteria. Three approaches have been adopted to modulate the macro- and microstructure of SWS, namely auditory, transcranial electrical and transcranial magnetic stimulation. Our current knowledge about the modulatory mechanisms, the space of stimulation parameters and the physiological and behavioral effects are reported and evaluated. The integration of findings suggests that sleep slow wave modulation bears the potential to promote our understanding of the functions of SWS and to develop new treatments for conditions of disrupted SWS.
Collapse
Affiliation(s)
- Kristoffer D Fehér
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Jonathan G Maier
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Elisabeth Hertenstein
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Carlotta L Schneider
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Christian Mikutta
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland; Privatklinik Meiringen, Meiringen, Switzerland
| | - Marc A Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland.
| |
Collapse
|
144
|
Focal Sleep Spindle Deficits Reveal Focal Thalamocortical Dysfunction and Predict Cognitive Deficits in Sleep Activated Developmental Epilepsy. J Neurosci 2021; 41:1816-1829. [PMID: 33468567 DOI: 10.1523/jneurosci.2009-20.2020] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/16/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023] Open
Abstract
Childhood epilepsy with centrotemporal spikes (CECTS) is the most common focal epilepsy syndrome, yet the cause of this disease remains unknown. Now recognized as a mild epileptic encephalopathy, children exhibit sleep-activated focal epileptiform discharges and cognitive difficulties during the active phase of the disease. The association between the abnormal electrophysiology and sleep suggests disruption to thalamocortical circuits. Thalamocortical circuit dysfunction resulting in pathologic epileptiform activity could hinder the production of sleep spindles, a brain rhythm essential for memory processes. Despite this pathophysiologic connection, the relationship between spindles and cognitive symptoms in epileptic encephalopathies has not been previously evaluated. A significant challenge limiting such work has been the poor performance of available automated spindle detection methods in the setting of sharp activities, such as epileptic spikes. Here, we validate a robust new method to accurately measure sleep spindles in patients with epilepsy. We then apply this detector to a prospective cohort of male and female children with CECTS with combined high-density EEGs during sleep and cognitive testing at varying time points of disease. We show that: (1) children have a transient, focal deficit in spindles during the symptomatic phase of disease; (2) spindle rate anticorrelates with spike rate; and (3) spindle rate, but not spike rate, predicts performance on cognitive tasks. These findings demonstrate focal thalamocortical circuit dysfunction and provide a pathophysiological explanation for the shared seizures and cognitive symptoms in CECTS. Further, this work identifies sleep spindles as a potential treatment target of cognitive dysfunction in this common epileptic encephalopathy.SIGNIFICANCE STATEMENT Childhood epilepsy with centrotemporal spikes is the most common idiopathic focal epilepsy syndrome, characterized by self-limited focal seizures and cognitive symptoms. Here, we provide the first evidence that focal thalamocortical circuit dysfunction underlies the shared seizures and cognitive dysfunction observed. In doing so, we identify sleep spindles as a mechanistic biomarker, and potential treatment target, of cognitive dysfunction in this common developmental epilepsy and provide a novel method to reliably quantify spindles in brain recordings from patients with epilepsy.
Collapse
|
145
|
Beck J, Cordi MJ, Rasch B. Hypnotic Suggestions Increase Slow-Wave Parameters but Decrease Slow-Wave Spindle Coupling. Nat Sci Sleep 2021; 13:1383-1393. [PMID: 34393533 PMCID: PMC8355552 DOI: 10.2147/nss.s316997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/22/2021] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Sleep, in particular slow-wave sleep, is beneficial for memory consolidation. In two recent studies, a hypnotic suggestion to sleep more deeply increased the amount of slow-wave sleep in both a nap and a night design. In spite of these increases in slow-wave sleep, no beneficial effect on declarative memory consolidation was found. As coupling of slow-waves and sleep spindles is assumed to be critical for declarative memory consolidation during sleep, we hypothesized that the missing memory benefit after increased SWS could be related to a decrease in slow-wave/spindle coupling. PARTICIPANTS AND METHODS Data from 33 highly hypnotizable subjects were retrieved from a nap (n = 14) and a night (n = 19) study with a similar design and procedure. After an adaptation session, subjects slept in the sleep laboratory for two experimental sessions with polysomnography. Prior to sleep, a paired-associate learning task was conducted. Next, subjects either listened to a hypnotic suggestion to sleep more deeply or to a control text in a randomized order according to a within-subject design. After sleep, subjects performed the recall of the memory task. Here, we conducted a fine-grained analysis of the sleep data on slow-waves, spindles and their coupling. RESULTS In line with our hypothesis, listening to a hypnosis tape decreased the percentage of spindles coupled to slow-waves. Slow-wave parameters were consistently increased, but sleep spindles remained unaffected by the hypnotic suggestion. CONCLUSION Our results suggest that selectively enhancing slow-waves without affecting sleep spindles might not be sufficient to improve memory consolidation during sleep.
Collapse
Affiliation(s)
- Jonas Beck
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Maren Jasmin Cordi
- Department of Psychology, University of Fribourg, Fribourg, Switzerland.,Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland.,Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
146
|
Cebreros-Paniagua R, Ayala-Guerrero F, Mateos-Salgado EL, Villamar-Flores CI, Gutiérrez-Chávez CA, Jiménez-Correa U. Analysis of sleep spindles in children with Asperger's syndrome. Sleep Sci 2021; 14:201-206. [PMID: 35186197 PMCID: PMC8848528 DOI: 10.5935/1984-0063.20200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 11/20/2022] Open
Abstract
Sleep spindles are an element of the sleep microstructure observed on the EEG during the NREM sleep phase. Sleep spindles are associated to sleep stability functions as well as memory consolidation and optimization of different cognitive processes. On the other hand, Asperger's syndrome (AS) is a generalized developmental disorder in which cognitive and sleep disturbances have been described. In this study we analyzed different characteristics of sleep spindles in a group of children with AS and compared them with sleep spindles of a group of children with typical development paired by age; both groups ranged from 6 to 12 years of age and were all male. We observed a statistically significant decrease in sleep spindles intrinsic frequency in different brain regions in the AS group in relation to the typical development group. This finding could be due to immaturity in brain regions related to the integration of sleep spindles; and this immaturity could be related with cognitive aspects in these patients.
Collapse
Affiliation(s)
- Rodolfo Cebreros-Paniagua
- National Autonomous University of Mexico, Psychology Faculty - Mexico City - Mexico. ,Corresponding author: Rodolfo Cebreros-Paniagua. E-mail:
| | | | | | | | | | - Ulises Jiménez-Correa
- National Autonomous University of Mexico, Sleep Disorders Clinic, Medicine Faculty, Research Division - Mexico City - Mexico. , National Autonomous University of Mexico, Postgraduate Program in Behavioral Neuroscience, Psychology Faculty - Mexico City - Mexico
| |
Collapse
|
147
|
Djonlagic I, Mariani S, Fitzpatrick AL, Van Der Klei VMGTH, Johnson DA, Wood AC, Seeman T, Nguyen HT, Prerau MJ, Luchsinger JA, Dzierzewski JM, Rapp SR, Tranah GJ, Yaffe K, Burdick KE, Stone KL, Redline S, Purcell SM. Macro and micro sleep architecture and cognitive performance in older adults. Nat Hum Behav 2021; 5:123-145. [PMID: 33199858 PMCID: PMC9881675 DOI: 10.1038/s41562-020-00964-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 09/15/2020] [Indexed: 01/31/2023]
Abstract
We sought to determine which facets of sleep neurophysiology were most strongly linked to cognitive performance in 3,819 older adults from two independent cohorts, using whole-night electroencephalography. From over 150 objective sleep metrics, we identified 23 that predicted cognitive performance, and processing speed in particular, with effects that were broadly independent of gross changes in sleep quality and quantity. These metrics included rapid eye movement duration, features of the electroencephalography power spectra derived from multivariate analysis, and spindle and slow oscillation morphology and coupling. These metrics were further embedded within broader associative networks linking sleep with aging and cardiometabolic disease: individuals who, compared with similarly aged peers, had better cognitive performance tended to have profiles of sleep metrics more often seen in younger, healthier individuals. Taken together, our results point to multiple facets of sleep neurophysiology that track coherently with underlying, age-dependent determinants of cognitive and physical health trajectories in older adults.
Collapse
Affiliation(s)
- Ina Djonlagic
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sara Mariani
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - Alexis C Wood
- USDA/ARS Children's Nutrition Center, Baylor College of Medicine, Houston, TX, USA
| | - Teresa Seeman
- University of California, Los Angeles, Los Angeles, CA, USA
| | - Ha T Nguyen
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Michael J Prerau
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - Stephen R Rapp
- Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Kristine Yaffe
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Katherine E Burdick
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Katie L Stone
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Susan Redline
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Shaun M Purcell
- Harvard Medical School, Boston, MA, USA.
- Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
148
|
Plamberger CP, Van Wijk HE, Kerschbaum H, Pletzer BA, Gruber G, Oberascher K, Dresler M, Hahn MA, Hoedlmoser K. Impact of menstrual cycle phase and oral contraceptives on sleep and overnight memory consolidation. J Sleep Res 2020; 30:e13239. [PMID: 33348471 PMCID: PMC8365641 DOI: 10.1111/jsr.13239] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 01/17/2023]
Abstract
Sleep spindles benefit declarative memory consolidation and are considered to be a biological marker for general cognitive abilities. However, the impact of sexual hormones and hormonal oral contraceptives (OCs) on these relationships are less clear. Thus, we here investigated the influence of endogenous progesterone levels of naturally cycling women and women using OCs on nocturnal sleep and overnight memory consolidation. Nineteen healthy women using OCs (MAge = 21.4, SD = 2.1 years) were compared to 43 healthy women with a natural menstrual cycle (follicular phase: n = 16, MAge = 21.4, SD = 3.1 years; luteal phase: n = 27, MAge = 22.5, SD = 3.6 years). Sleep spindle density and salivary progesterone were measured during an adaptation and an experimental night. A word pair association task preceding the experimental night followed by two recalls (pre‐sleep and post‐sleep) was performed to test declarative memory performance. We found that memory performance improved overnight in all women. Interestingly, women using OCs (characterized by a low endogenous progesterone level but with very potent synthetic progestins) and naturally cycling women during the luteal phase (characterized by a high endogenous progesterone level) had a higher fast sleep spindle density compared to naturally cycling women during the follicular phase (characterized by a low endogenous progesterone level). Furthermore, we observed a positive correlation between endogenous progesterone level and fast spindle density in women during the luteal phase. Results suggest that the use of OCs and the menstrual cycle phase affects sleep spindles and therefore should be considered in further studies investigating sleep spindles and cognitive performance.
Collapse
Affiliation(s)
| | - Helen Elisabeth Van Wijk
- Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.,Radboud University, Nijmegen, The Netherlands
| | - Hubert Kerschbaum
- Department of Cell Biology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Belinda Angela Pletzer
- Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Georg Gruber
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Karin Oberascher
- Department of Cell Biology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | | | - Michael Andreas Hahn
- Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Kerstin Hoedlmoser
- Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
149
|
Stokes PA, Prerau MJ. Estimation of Time-Varying Spectral Peaks and Decomposition of EEG Spectrograms. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:218257-218278. [PMID: 33816040 PMCID: PMC8015841 DOI: 10.1109/access.2020.3042737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Detection of spectral peaks and estimation of their properties, including frequency and amplitude, are fundamental to many applications of signal processing. Electroencephalography (EEG) of sleep, in particular, displays characteristic oscillations that change continuously throughout the night. Capturing these dynamics is essential to understanding the sleep process and characterizing the heterogeneity observed across individuals. Most sleep EEG analyses rely on either time-averaged spectra or bandpassed amplitude/power. Unfortunately, these approaches obscure the time-variability of peak properties, require specification of a priori criteria, and cannot distinguish power from nearby oscillations. More sophisticated approaches, using various spectral models, have been proposed to better estimate oscillatory properties, but these too have limitations. We present an improved approach to spectrogram decomposition, tracking time-varying parameterized peak functions and dynamically estimating their parameters using a modified form of the iterated extended Kalman filter (IEKF) that incorporates discrete On/Off-switching of peak combinations and a sampling step to draw the initial reference trajectory. We evaluate this approach on two types of simulated examples-one nearly within the model class and one outside. We find excellent performance, in terms of spectral fits and accuracy of estimated states, for both simulation types. We then apply the approach to real EEG data of sleep onset, obtaining quality spectral estimates with estimated peak combinations closely matching the expert-scored sleep stages. This approach offers not only the ability to estimate time-varying parameters of spectral peaks but, moving forward, the potential to estimate the governing dynamics and analyze their variability across nights, subjects, and clinical groups.
Collapse
Affiliation(s)
- Patrick A Stokes
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Michael J Prerau
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
150
|
Oyanedel CN, Durán E, Niethard N, Inostroza M, Born J. Temporal associations between sleep slow oscillations, spindles and ripples. Eur J Neurosci 2020; 52:4762-4778. [PMID: 32654249 DOI: 10.1111/ejn.14906] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023]
Abstract
The systems consolidation of memory during slow-wave sleep (SWS) is thought to rely on a dialogue between hippocampus and neocortex that is regulated by an interaction between neocortical slow oscillations (SOs), thalamic spindles and hippocampal ripples. Here, we examined the occurrence rates of and the temporal relationships between these oscillatory events in rats, to identify the possible direction of interaction between these events under natural conditions. To facilitate comparisons with findings in humans, we combined frontal and parietal surface EEG with local field potential (LFP) recordings in medial prefrontal cortex (mPFC) and dorsal hippocampus (dHC). Consistent with a top-down driving influence, EEG SO upstates were associated with an increase in spindles and hippocampal ripples. This increase was missing in SO upstates identified in mPFC recordings. Ripples in dHC recordings always followed the onset of spindles consistent with spindles timing ripple occurrence. Comparing ripple activity during co-occurring SO-spindle events with that during isolated SOs or spindles, suggested that ripple dynamics during SO-spindle events are mainly determined by the spindle, with only the SO downstate providing a global inhibitory signal to both thalamus and hippocampus. As to bottom-up influences, we found an increase in hippocampal ripples ~200 ms before the SO downstate, but no similar increase of spindles preceding SO downstates. Overall, the temporal pattern is consistent with a loop-like scenario where, top-down, SOs can trigger thalamic spindles which, in turn, regulate the occurrence of hippocampal ripples. Ripples, bottom-up, and independent from thalamic spindles, can contribute to the emergence of neocortical SOs.
Collapse
Affiliation(s)
- Carlos N Oyanedel
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate School of Neural & Behavioural Science, International Max Planck Research School, Tübingen, Germany
| | - Ernesto Durán
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate School of Neural & Behavioural Science, International Max Planck Research School, Tübingen, Germany
- Laboratorio de Circuitos Neuronales, Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| |
Collapse
|