1451
|
Poulsen LK, Jacobsen N, Sørensen BB, Bergenhem NC, Kelly JD, Foster DC, Thastrup O, Ezban M, Petersen LC. Signal transduction via the mitogen-activated protein kinase pathway induced by binding of coagulation factor VIIa to tissue factor. J Biol Chem 1998; 273:6228-32. [PMID: 9497347 DOI: 10.1074/jbc.273.11.6228] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The putative role of tissue factor (TF) as a receptor involved in signal transduction is indicated by its sequence homology to cytokine receptors (Bazan, J. F. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 6934-6938). Signal transduction induced by binding of FVIIa to cells expressing TF was studied with baby hamster kidney (BHK) cells stably transfected with TF and with a reporter gene construct encoding a luciferase gene under transcriptional control of tandem cassettes of signal transducer and activator of transcription (STAT) elements and one serum response element (SRE). FVIIa induced a significant luciferase response in cells expressing TF, BHK(+TF), but not in cells without TF. The BHK(+TF) cells responded to the addition of FVIIa in a dose-dependent manner, whereas no response was observed with active site-inhibited FVIIa, which also worked as an antagonist to FVIIa-induced signaling. Activation of the p44/42 MAPK pathway upon binding of FVIIa to TF was demonstrated by suppression of signaling with the specific kinase inhibitor PD98059 and demonstration of a transient p44/42 MAPK phosphorylation. No stimulation of p44/42 MAPK phosphorylation was observed with catalytically inactive FVIIa derivatives suggesting that the catalytic activity of FVIIa was obligatory for activation of the MAPK pathway. Signal transduction caused by a putative generation of FXa activity was excluded by experiments showing that FVIIa/TF-induced signaling was not quenched by tick anticoagulant protein, just as addition of FXa could not induce phosphorylation of p44/42 MAPK in BHK(+TF) cells. These results suggest a specific mechanism by which binding of FVIIa to cell surface TF independent of coagulation can modulate cellular functions and possibly play a role in angiogenesis and tumor metastasis as indicated by several recent observations.
Collapse
Affiliation(s)
- L K Poulsen
- Bioimage, Health Care Discovery, Novo Nordisk A/S, Hagedornsvej 1, DK-2820 Gentofte, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
1452
|
Servidei T, Aoki Y, Lewis SE, Symes A, Fink JS, Reeves SA. Coordinate regulation of STAT signaling and c-fos expression by the tyrosine phosphatase SHP-2. J Biol Chem 1998; 273:6233-41. [PMID: 9497348 DOI: 10.1074/jbc.273.11.6233] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The src homology 2 (SH2) domain-containing protein-tyrosine phosphatase SHP-2 has been implicated as an important positive regulator of several mitogenic signaling pathways. SHP-2 has more recently been shown to be tyrosine phosphorylated and recruited to the gp130 component of the ciliary neurotrophic factor (CNTF) receptor complex upon stimulation with CNTF. CNTF does not, however, have a proliferative effect on responsive cells, but rather enhances the survival and differentiation of sympathetic, motor, and sensory neurons. In this study, expression of an interfering mutant of SHP-2 in the neuroblastoma cell line NBFL increased CNTF induction of a vasoactive intestinal peptide (VIP) reporter gene, and in cultures of sympathetic neurons, it resulted in an up-regulation of endogenous VIP and substance P (SP) gene expression. Members of the CNTF family of cytokines transmit their signal by activating signaling pathways involving both STAT and Fos-Jun transcription factors. In CNTF-stimulated NBFL cells that constitutively express the SHP-2 interfering mutant, there was increased and prolonged formation of STAT/DNA complexes, but decreased AP-1 binding activity, that mirrored a down-regulation of c-fos expression both at the mRNA and protein level. Taken together, these data indicate that SHP-2 has dual and opposing roles in a signaling cascade triggered by the same ligand, as illustrated by its ability to differentially regulate the levels of activity of both STAT and AP-1 transcription factors.
Collapse
Affiliation(s)
- T Servidei
- Neurosurgical Service, Molecular Neuro-Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|
1453
|
Park HJ, So EY, Lee CE. Interferon-gamma-induced factor binding to the interleukin-4-responsive element of CD23b promoter in human tonsillar mononuclear cells: role in transient up-regulation of the interleukin-4-induced CD23b mRNA. Mol Immunol 1998; 35:239-47. [PMID: 9736340 DOI: 10.1016/s0161-5890(98)00022-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stimulation of human tonsillar mononuclear cells with interleukin-4 (IL-4) and interferon-gamma (IFN-gamma) rapidly induced the activation of distinct nuclear factors with different mobilities, both of which bind the IL-4 response element (IL-4RE) of CD23b promoter as examined by electrophoretic mobility shift assays (EMSA). Co-treatment of IL-4 and IFN-gamma induced, in addition to the two distinct complexes, a new complex with an intermediate mobility. The IL-4-induced complex reacted with anti-STAT (signal transducers and activators of transcription) 6, resulting in a supershift whereas the formation of the IFN-gamma-induced complex was inhibited by anti-STAT 1. The intermediate complex appeared to react with both anti-STAT 6 and anti-STAT 1. Although IFN-gamma alone did not induce CD23 mRNA transcription, Northern blot analysis revealed a transient up-regulation of the IL-4-induced CD23 mRNA by IFN-gamma within 2 h of IFN-gamma treatment in these tonsillar cells. The results suggest that the IL-4RE of the IL-4-inducible gene can accommodate both IL-4- and IFN-gamma-activated factors, such as STAT 6 and STAT 1, either in homodimeric or heterodimeric forms and the binding of these different proteins to the respective promoter may play a potential regulatory role in the IL-4-inducible gene expression.
Collapse
Affiliation(s)
- H J Park
- Department of Biology and Institute of Basic Science, College of Natural Science, Sung Kyun Kwan Univ. Suwon, Korea
| | | | | |
Collapse
|
1454
|
Yamamura Y, Senda H, Kageyama Y, Matsuzaki T, Noda M, Ikawa Y. Erythropoietin and Friend virus gp55 activate different JAK/STAT pathways through the erythropoietin receptor in erythroid cells. Mol Cell Biol 1998; 18:1172-80. [PMID: 9488432 PMCID: PMC108830 DOI: 10.1128/mcb.18.3.1172] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abnormal erythropoietin (EPO)-independent cell growth is induced after infection of erythroid progenitor cells with a polycythemic strain of Friend virus (FVp). Binding of its Env-related glycoprotein (gp55) to the EPO receptor (EPOR) mimics the activation of the EPOR with EPO. We investigated the gp55-EPOR signaling in erythroblastoid cells from mice infected with FVp and in cells of FVp-induced or gp55-transgenic-mouse-derived erythroleukemia cell lines, comparing it with the EPO-EPOR signaling in EPO-responsive erythroblastoid cells. While the Janus protein tyrosine kinase JAK2 and the transcription factor STAT5 became tyrosine phosphorylated with the EPO stimulation in EPO-responsive erythroblastoid cells from anemic mice, JAK1 and STAT5 were constitutively tyrosine phosphorylated in all of these FVp gp55-induced erythroblastoid or erythroleukemic cells. Moreover, this constitutively tyrosine-phosphorylated STAT5 was unable to bind to its specific DNA sequences and did not translocate to the nucleus. Nuclear translocation and DNA binding of this STAT5 species required EPO stimulation. These findings clearly indicate that the FVp gp55-EPOR signaling is distinct from the EPO-EPOR signaling and suggest that STAT5 may not play an essential role in the transmission of the cell growth signals in FVp gp55-induced erythroleukemia cells.
Collapse
Affiliation(s)
- Y Yamamura
- Department of Retroviral Regulation, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | |
Collapse
|
1455
|
Abstract
Interferon regulatory factor-1 (IRF-1) is a transcription factor first identified as part of the nuclear response to interferons. IRF-1 has been shown to be activated by many cytokines, including PRL, and has been thought to play a role in PRL-regulated gene expression in several experimental systems, including the Nb2 T lymphoma cell line, where it was first characterized as a PRL-responsive gene. We now find that IRF-1 gene expression is rapidly activated in vivo by both PRL and GH treatment. A single i.p. injection of rat PRL to hypophysectomized female rats caused a transient increase in nascent hepatic nuclear IRF-1 RNA within 15 min of hormone treatment. The rise in IRF-1 transcripts was accompanied by induction of nuclear protein binding to a DNA element from the proximal IRF-1 promoter, as assessed by gel mobility shift assays; this element was shown previously to mediate PRL-activated gene transcription. GH treatment stimulated a greater and more sustained increase in nascent IRF-1 RNA than PRL, leading to accumulation of IRF-1 transcripts for up to 16 h after a single hormone injection. GH also caused a pronounced induction of hepatic nuclear protein binding to the IRF-1 promoter element. Supershift experiments with specific antibodies showed that signal transducer and activator of transcription 1 (STAT1) and to a lesser extent STAT3 were components of the GH-activated protein-DNA complexes. By contrast, these two STATs were not induced in the liver by PRL. Protein binding to the IRF-1 DNA element and IRF-1 gene activation by GH were not blunted by pretreatment with the protein synthesis inhibitor, cycloheximide, indicating that these hormonal effects are primary consequences of GH-activated signal transduction pathways. Our results identify another component of the rapid nuclear response to GH, and support the idea that multiple primary and secondary signaling pathways contribute to the acute actions of GH on gene expression.
Collapse
Affiliation(s)
- C Le Stunff
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
1456
|
O'Farrell AM, Liu Y, Moore KW, Mui AL. IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. EMBO J 1998; 17:1006-18. [PMID: 9463379 PMCID: PMC1170450 DOI: 10.1093/emboj/17.4.1006] [Citation(s) in RCA: 355] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interleukin-10 (IL-10) limits inflammatory responses by inhibiting macrophage activation. In macrophages, IL-10 activates Stat1 and Stat3. We characterized IL-10 responses of the J774 mouse macrophage cell line, and of J774 cells expressing wild-type hIL-10R, mutant hIL-10R lacking two membrane-distal tyrosines involved in recruitment of Stat3 (hIL-10R-TyrFF), a truncated Stat3 (DeltaStat3) which acts as a dominant negative, or an inducibly active Stat3-gyraseB chimera (Stat3-GyrB). A neutralizing anti-mIL-10R monoclonal antibody was generated to block the function of endogenous mIL-10R. IL-10 inhibited proliferation of J774 cells and of normal bone marrow-derived macrophages, but not J774 cells expressing hIL-10RTyrFF. Dimerization of Stat3-GyrB by coumermycin mimicked the effect of IL-10, and expression of DeltaStat3 blocked the anti-proliferative activity of IL-10. For macrophage de-activation responses, hIL10R-TyrFF could not mediate inhibition of lipopolysaccharide-induced TNFalpha, IL-1beta or CD86 expression, while DeltaStat3 did not interfere detectably with these IL-10 responses. Thus signals mediating both anti-proliferative and macrophage de-activation responses to IL-10 require the two membrane-distal tyrosines of IL-10R, but Stat3 appears to function only in the anti-proliferative response.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/physiology
- Antigens, CD/biosynthesis
- Antigens, CD/drug effects
- B7-2 Antigen
- Cell Division/drug effects
- Cell Division/immunology
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Female
- Growth Inhibitors/physiology
- Humans
- Interleukin-1/antagonists & inhibitors
- Interleukin-1/biosynthesis
- Interleukin-10/immunology
- Interleukin-10/physiology
- Macrophage Activation/drug effects
- Macrophage Activation/immunology
- Macrophages/cytology
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/drug effects
- Mice
- Mutagenesis, Site-Directed
- Nitric Oxide/antagonists & inhibitors
- Nitric Oxide/biosynthesis
- Receptors, IgG/biosynthesis
- Receptors, Interleukin/genetics
- Receptors, Interleukin/physiology
- Receptors, Interleukin-10
- STAT3 Transcription Factor
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Trans-Activators/genetics
- Trans-Activators/physiology
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/biosynthesis
- Tyrosine/genetics
- Tyrosine/physiology
Collapse
Affiliation(s)
- A M O'Farrell
- Department of Molecular Biology, DNAX Research Institute, Palo Alto, CA 94304-1104, USA
| | | | | | | |
Collapse
|
1457
|
Abstract
Recent studies have begun to elucidate the molecular actions of growth hormone, a major regulator of somatic growth and metabolic functions. The cell surface growth hormone receptor, a member of the cytokine receptor superfamily, binds as a dimer to a single growth hormone molecule. Receptor dimerization precedes signal transduction, which is predominantly mediated by the non-receptor tyrosine kinase, Jak2. Activation of Jak2 leads to mitogenic proliferation, phosphorylation of intracellular proteins, MAP kinase activation, activation of Stats 1, 3, and 5, and induction of target gene expression. Specific cytoplasmic domains of the growth hormone receptor mediate Jak2 activation, metabolic actions of growth hormone, Stat activation, and calcium influx.
Collapse
Affiliation(s)
- M J Thomas
- Department of Internal Medicine, University of Iowa College of Medicine, VA Medical Center, Iowa City 52246, USA.
| |
Collapse
|
1458
|
Sakatsume M, Stancato LF, David M, Silvennoinen O, Saharinen P, Pierce J, Larner AC, Finbloom DS. Interferon gamma activation of Raf-1 is Jak1-dependent and p21ras-independent. J Biol Chem 1998; 273:3021-6. [PMID: 9446616 DOI: 10.1074/jbc.273.5.3021] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Signal transduction through the interferongamma (IFNgamma) receptor involves the formation of a ligand-dependent multimolecular association of receptor chains (alpha and beta), Janus tyrosine kinases (Jak1 and Jak2), and the transcription factor (signal transducers and activators of transcription 1alpha (STAT1alpha)) in addition to activation of mitogen-activated protein kinases (MAPK). Interactions between components of the Jak/STAT cascade and the p21(ras)/Raf-1/MAPK cascade are unexplored. Treatment of HeLa cells with IFNgamma resulted in the rapid and transient activation of Raf-1 and MAPK. Parallel activation of cells resulted in essentially no enhancement of p21(ras) activation despite marked enhancement after treatment with epidermal growth factor. In HeLa (E1C3) and fibrosarcoma (U4A) cell lines, both of which are deficient in Jak1 kinase, Raf-1 activation by IFNgamma was absent. Reconstitution of Raf-1 activity was observed only with kinase active Jak1 in both cell lines. In COS cells, transient expression of wild type or kinase-inactive Jak1 coimmunoprecipitated with Raf-1, but activation of Raf-1 activity was only observed in cells expressing kinase-active Jak1. These observations suggest that a kinase-active Jak1 is required for IFNgamma activation of Raf-1 that is p21(ras)-independent.
Collapse
Affiliation(s)
- M Sakatsume
- Division of Cytokine Biology, Center for Biologics Research and Evaluation, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
1459
|
Novak U, Nicholson S, Bourette RP, Rohrschneider LR, Alexander W, Paradiso L. CSF-1 and interferon-gamma act synergistically to promote differentiation of FDC-P1 cells into macrophages. Growth Factors 1998; 15:159-71. [PMID: 9570038 DOI: 10.3109/08977199809002114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
FDC-P1 cells expressing the wildtype CSF-1 receptor, FDwtfms, differentiate into macrophages during incubation with CSF-1. This response is amplified in the presence of interferon-gamma. Cells expressing the 807F mutant receptor, 807F cells, proliferate in response to CSF-1 and do not differentiate. However, in response to CSF-1 and interferon-gamma they differentiate as well. CSF-1 causes the activation of STAT proteins in FDwtfms cells, but not in 807F cells. Cellular differentiation correlates with a sustained activation of STAT1 and STAT3 in response to interferon-gamma over at least 40 hours. However, interferon-gamma alone did not cause differentiation of cells expressing either receptor. Other defects in response to CSF-1 of the 807F cells, such as lack of PLC gamma 2 activation, were not complemented by co-incubation of the cells with CSF-1 and interferon-gamma. It appears that a combination of signaling pathways are activated by CSF-1 and interferon-gamma which caused the shift of response from proliferation to differentiation in the 807F cells and an enhanced differentiation in the FDwtfms cells.
Collapse
Affiliation(s)
- U Novak
- University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Australia.
| | | | | | | | | | | |
Collapse
|
1460
|
Inhibition of Interferon Regulatory Factor-1 Expression Results in Predominance of Cell Growth Stimulatory Effects of Interferon-γ Due to Phosphorylation of Stat1 and Stat3. Blood 1997. [DOI: 10.1182/blood.v90.12.4749.4749_4749_4758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Interferon-γ (IFN-γ) is a potent inhibitor of hematopoiesis in vitro and has been implicated in the pathophysiology of human bone marrow failure syndromes. IFN-γ both inhibits cell cycling and induces expression of the Fas-receptor, resulting in subsequent apoptosis of hematopoietic progenitor cells. IFN regulatory factor-1 (IRF-1) mediates some of these suppressive effects by activation of downstream inducible genes, such as double-stranded RNA-activatable protein kinase and inducible nitric oxide synthase. However, under certain experimental conditions, IFN-γ appears to stimulate proliferation of hematopoietic cells. Based on the hypothesis that IFN-γ–receptor triggering may activate diverse signaling cascades, we designed experiments to determine which intracellular mechanisms (in addition to the IRF-1 transduction pathway) influence the biologic effects of IFN-γ. Using antisense technique, we inhibited the IRF-1–mediated pathway in KG1a cells stimulated with IFN-γ. In contrast to the suppressive effects of IFN-γ observed in control cells, untreated and IFN-γ–treated KG-1a cells that were transduced with retroviral vectors expressing IRF-1 antisense mRNA showed enhanced proliferation. The increased growth rate was associated with decreased levels of IRF-1 mRNA and protein but unchanged levels of IRF-2. We inferred that IFN-γ could also activate a stimulatory transduction pathway that, under specific conditions, may control the cellular response to this cytokine. The family of Stat proteins is involved in signal transduction of hematopoietic growth factors. We showed that, in KG-1a cells, IFN-γ also induced phosphorylation of Stat1 and Stat3, whereas p42 MAP kinase was phosphorylated regardless of the presence of IFN-γ. Using electrophoresis mobility shift assays, IFN-γ enhanced Stat1-Stat1 homodimer and Stat1-Stat3 heterodimer formation, suggesting that, in addition to inhibitory signals mediated by IRF-1, IFN-γ may activate proliferative signals by phosphorylation of Stat1 and Stat3 proteins. The observations made in experiments with KG-1a cells were confirmed in primary hematopoietic cells. After inhibition of the IRF-1 pathway by transduction of an antisense IRF-1 retrovirus into human CD34+ cells, IFN-γ produced an aberrant stimulatory effect on hematopoietic colony formation. Conversely, in control vector-transduced CD34+ cells, the typical inhibitory response to IFN-γ was seen. Our results indicate that inhibitory cytokines such as IFN-γ may exhibit diverse biologic effects depending on the intracellular balance of transcriptional regulators, in turn influenced by the activation and differentiation status of the target cells.
Collapse
|
1461
|
Frank DA, Mahajan S, Ritz J. B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues. J Clin Invest 1997; 100:3140-8. [PMID: 9399961 PMCID: PMC508527 DOI: 10.1172/jci119869] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To explore the pathogenesis of chronic lymphocytic leukemia (CLL), we examined whether phosphorylation of one or more signal transducer and activator of transcription (STAT) factors was abnormal in cells from CLL patients. No constitutive tyrosine phosphorylation was detected on any STAT in CLL cells. To assess the phosphorylation of serine residues of STAT1 and STAT3 in CLL cells, we raised antibodies that specifically recognize the form of STAT1 phosphorylated on ser-727 and the form of STAT3 phosphorylated on ser-727. We found that in 100% of patients with CLL (n = 32), STAT1 and STAT3 were constitutively phosphorylated on serine. This was in contrast to normal peripheral blood B lymphocytes or CD5+) B cells isolated from tonsils, in which this phosphorylation was absent. Serine phosphorylation of STAT1 and STAT3 was seen occasionally in other leukemias, but it was a universal finding only in CLL. The serine phosphorylation of these STATs was a continuous process, as incubation of CLL cells with the kinase inhibitor H7 led to the dephosphorylation of these serine residues. The STAT serine kinase in CLL cells has not been identified, and appears to be neither mitogen-activated protein kinase nor pp70(s6k). In summary, the constitutive serine phosphorylation of STAT1 and STAT3 is present in all CLL samples tested to date, although the physiologic significance of this modification remains to be determined.
Collapse
Affiliation(s)
- D A Frank
- Department of Adult Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
1462
|
Inhibition of Interferon Regulatory Factor-1 Expression Results in Predominance of Cell Growth Stimulatory Effects of Interferon-γ Due to Phosphorylation of Stat1 and Stat3. Blood 1997. [DOI: 10.1182/blood.v90.12.4749] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AbstractInterferon-γ (IFN-γ) is a potent inhibitor of hematopoiesis in vitro and has been implicated in the pathophysiology of human bone marrow failure syndromes. IFN-γ both inhibits cell cycling and induces expression of the Fas-receptor, resulting in subsequent apoptosis of hematopoietic progenitor cells. IFN regulatory factor-1 (IRF-1) mediates some of these suppressive effects by activation of downstream inducible genes, such as double-stranded RNA-activatable protein kinase and inducible nitric oxide synthase. However, under certain experimental conditions, IFN-γ appears to stimulate proliferation of hematopoietic cells. Based on the hypothesis that IFN-γ–receptor triggering may activate diverse signaling cascades, we designed experiments to determine which intracellular mechanisms (in addition to the IRF-1 transduction pathway) influence the biologic effects of IFN-γ. Using antisense technique, we inhibited the IRF-1–mediated pathway in KG1a cells stimulated with IFN-γ. In contrast to the suppressive effects of IFN-γ observed in control cells, untreated and IFN-γ–treated KG-1a cells that were transduced with retroviral vectors expressing IRF-1 antisense mRNA showed enhanced proliferation. The increased growth rate was associated with decreased levels of IRF-1 mRNA and protein but unchanged levels of IRF-2. We inferred that IFN-γ could also activate a stimulatory transduction pathway that, under specific conditions, may control the cellular response to this cytokine. The family of Stat proteins is involved in signal transduction of hematopoietic growth factors. We showed that, in KG-1a cells, IFN-γ also induced phosphorylation of Stat1 and Stat3, whereas p42 MAP kinase was phosphorylated regardless of the presence of IFN-γ. Using electrophoresis mobility shift assays, IFN-γ enhanced Stat1-Stat1 homodimer and Stat1-Stat3 heterodimer formation, suggesting that, in addition to inhibitory signals mediated by IRF-1, IFN-γ may activate proliferative signals by phosphorylation of Stat1 and Stat3 proteins. The observations made in experiments with KG-1a cells were confirmed in primary hematopoietic cells. After inhibition of the IRF-1 pathway by transduction of an antisense IRF-1 retrovirus into human CD34+ cells, IFN-γ produced an aberrant stimulatory effect on hematopoietic colony formation. Conversely, in control vector-transduced CD34+ cells, the typical inhibitory response to IFN-γ was seen. Our results indicate that inhibitory cytokines such as IFN-γ may exhibit diverse biologic effects depending on the intracellular balance of transcriptional regulators, in turn influenced by the activation and differentiation status of the target cells.
Collapse
|
1463
|
Zhang Z, Jones S, Hagood JS, Fuentes NL, Fuller GM. STAT3 acts as a co-activator of glucocorticoid receptor signaling. J Biol Chem 1997; 272:30607-10. [PMID: 9388192 DOI: 10.1074/jbc.272.49.30607] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interleukin-6 (IL-6) and glucocorticoids are important mediators of inflammatory and immunological responses. Glucocorticoids are known to synergistically enhance IL-6-mediated cellular responses. We now show that IL-6 also has a synergistic effect upon glucocorticoid signaling. In particular, IL-6-activated STAT3 associates with ligand-bound glucocorticoid receptor to form a transactivating/signaling complex, which can function through either an IL-6-responsive element or a glucocorticoid-responsive element. These findings reveal a new level of interaction between these two crucial signaling cascades and indicate that activated STAT3 can also act as a transcriptional co-activator without direct association with its DNA binding motif.
Collapse
Affiliation(s)
- Z Zhang
- Department of Cell Biology, Pulmonary Division, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
1464
|
Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, Shuai K. Specific inhibition of Stat3 signal transduction by PIAS3. Science 1997; 278:1803-5. [PMID: 9388184 DOI: 10.1126/science.278.5344.1803] [Citation(s) in RCA: 744] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The signal transducer and activator of transcription-3 (Stat3) protein is activated by the interleukin 6 (IL-6) family of cytokines, epidermal growth factor, and leptin. A protein named PIAS3 (protein inhibitor of activated STAT) that binds to Stat3 was isolated and characterized. The association of PIAS3 with Stat3 in vivo was only observed in cells stimulated with ligands that cause the activation of Stat3. PIAS3 blocked the DNA-binding activity of Stat3 and inhibited Stat3-mediated gene activation. Although Stat1 is also phosphorylated in response to IL-6, PIAS3 did not interact with Stat1 or affect its DNA-binding or transcriptional activity. The results indicate that PIAS3 is a specific inhibitor of Stat3.
Collapse
Affiliation(s)
- C D Chung
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
1465
|
Sawka-Verhelle D, Filloux C, Tartare-Deckert S, Mothe I, Van Obberghen E. Identification of Stat 5B as a substrate of the insulin receptor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:411-7. [PMID: 9428692 DOI: 10.1111/j.1432-1033.1997.0411a.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have screened a human placenta library using the yeast two-hybrid system to identify proteins that interact with the cytoplasmic domain of the insulin receptor. Doing so, we trapped a cDNA clone which encodes the Stat 5B region comprising amino acids 469 to 786. We show that interaction between Stat 5B and the receptor requires a functional insulin-receptor kinase, Tyr960 of insulin receptor is implicated in the interaction with Stat 5B, whereas asparagine and proline forming the NPEY960-motif are not, and Stat 5B mutated at Thr684, a potential phosphorylation site of mitogen-activated protein kinase, loses its ability to interact with the insulin receptor. Further, we found that insulin promotes rapid tyrosine phosphorylation of endogenous Stat 5B in 293 EBNA cells overexpressing insulin receptor and in NHIR cells. Taken together, our findings suggest that Stat 5B corresponds to a substrate for the insulin-receptor kinase, and this widens the repertoire of insulin-signaling pathways.
Collapse
Affiliation(s)
- D Sawka-Verhelle
- Institut National de la Santé et de la Recherche Médicale U145, Nice, France
| | | | | | | | | |
Collapse
|
1466
|
Abstract
Through the cloning of two transcription factors named NF-IL6 and STAT3/APRF, two types of IL-6 signal transduction pathways from the cell surface to the nucleus have been revealed. NF-IL6 is phosphorylated and activated by a Ras-dependent MAP kinase cascade, while STAT3/APRF is directly tyrosine-phosphorylated by JAK kinases that associate with the cytoplasmic portion of the receptor, and translocates to the nucleus and activates transcription (JAK-STAT pathway). STAT3 is also tyrosine phosphorylated in response to epidermal growth factor (EGF), granulocyte colony-stimulating factor (G-CSF), leptin and other IL-6-type cytokines including ciliary neurotrophic factor (CNTF), oncostatin M and leukemia inhibitory factor (LIF). Mice deficient in the genes for NF-IL6 and STAT3 were generated. NF-IL6 mice were highly susceptible to facultative intracellular bacteria owing to ineffective killing of the pathogens by the macrophages. Futhermore, the tumor cytotoxicity of macrophages from NF-IL6 KO mice was severely impaired. These results demonstrate a crucial role of NF-IL6 in macrophage bactericidal and tumoricidal activities. The target disruption of STAT3 resulted in embryonic lethality prior to gastrulation, demonstrating that STAT3 is essential for the early development of mouse embryos.
Collapse
Affiliation(s)
- S Akira
- Department of Biochemistry, Hyogo College of Medicine, Japan
| |
Collapse
|
1467
|
Abstract
Changes in gene expression are necessary for an adaptive response of cells to immunological stimuli and thus for their proper function in the context of the immune system. Regulatory inputs usually originate from cell surface receptors and in many cases affect the transcription rates of specific genes by modulating the activity of transcription factors. The Jak-Stat signalling paradigm has received large attention by molecular immunologists because it applies to nuclear signalling by all cytokine receptors. In its simplest form it requires only two protein components downstream of the receptor: Janus family protein tyrosine kinases (Jaks) which are usually receptor-associated, and signal transducer and activator of transcription (Stat) family transcription factors which carry the receptor-generated signal to the nucleus and stimulate gene expression. Here we give a brief overview of both recent progress and open questions concerning the Jak and Stat molecules, their regulation, and the biological implications of their activity.
Collapse
Affiliation(s)
- T Decker
- Vienna Biocenter, Institute of Microbiology and Genetics, Austria.
| | | |
Collapse
|
1468
|
Hirano T, Nakajima K, Hibi M. Signaling mechanisms through gp130: a model of the cytokine system. Cytokine Growth Factor Rev 1997; 8:241-52. [PMID: 9620640 DOI: 10.1016/s1359-6101(98)80005-1] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The interleukin-6 cytokine family plays roles in a wide variety of tissues and organs, including the immune hematopoietic and nervous systems. Gp130 is a signal-transducing subunit shared by the receptors for the IL-6 family of cytokines. The binding of a ligand to its receptor induces the dimerization of gp130, leading to the activation of JAK tyrosine kinase and tyrosine phosphorylation of gp130. These events lead to the activation of multiple signal-transduction pathways, such as the STAT, Ras-MAPK and PI-3 kinase pathways whose activation is controlled by distinct regions of gp130. We propose a model showing that the outcome of the signal transduction depends on the balance or interplay among the contradictory signal transduction pathways that are simultaneously generated through a cytokine receptor in a given target cell.
Collapse
Affiliation(s)
- T Hirano
- Department of Oncology, Biomedical Research Center, Osaka University Medical School, Suita, Japan.
| | | | | |
Collapse
|
1469
|
The Bmx Tyrosine Kinase Induces Activation of the Stat Signaling Pathway, Which Is Specifically Inhibited by Protein Kinase Cδ. Blood 1997. [DOI: 10.1182/blood.v90.11.4341.4341_4341_4353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the hematopoietically expressed Tec tyrosine kinase family have an important role in hematopoietic signal transduction, as exemplified by the crucial role of Btk for B-cell differentiation and activation. Although a variety of cell surface receptors have been found to activate Tec tyrosine kinases, the specific signaling pathways and substrate molecules used by Tec kinases are still largely unknown. In this study a Tec family kinase, Bmx, was found to induce activation of the Stat signaling pathway. Bmx induced the tyrosine phosphorylation and DNA binding activity of all the Stat factors tested, including Stat1, Stat3, and Stat5, both in mammalian and insect cells. Bmx also induced transcriptional activation of Stat1- and Stat5-dependent reporter genes. Other cytoplasmic tyrosine kinases, Syk, Fyn, and c-Src, showed no or only weak ability to activate Stat proteins. Expression of Bmx in mammalian cells was found to induce activation of endogenous Stat proteins without activation of endogenous Jak kinases. We further analyzed the Bmx-mediated activation of Stat1, which was found to be regulated by protein kinase C δ (PKCδ) isoform, but not β 1, ε, or ζ isoforms, leading to inhibition of Stat1 tyrosine phosphorylation. In conclusion, these studies show that Bmx, a Tec family kinase, can function as an activator of the Stat signaling pathway and identify a role for PKCδ in the regulation of Bmx signaling.
Collapse
|
1470
|
Iritani BM, Forbush KA, Farrar MA, Perlmutter RM. Control of B cell development by Ras-mediated activation of Raf. EMBO J 1997; 16:7019-31. [PMID: 9384581 PMCID: PMC1170305 DOI: 10.1093/emboj/16.23.7019] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cell fate commitment in a variety of lineages requires signals conveyed via p21ras. To examine the role of p21ras in the development of B lymphocytes, we generated transgenic mice expressing a dominant-negative form of Ras in B lymphocyte progenitors, using a novel transcriptional element consisting of the Emu enhancer and the lck proximal promoter. Expression of dominant-negative Ras arrests B cell development at a very early stage, prior to formation of the pre-B cell receptor. Furthermore, an activated form of Raf expressed in the same experimental system could both drive the maturation of normal pro-B cells and rescue development of progenitors expressing dominant-negative Ras. Hence p21ras normally regulates early development of B lymphocytes by a mechanism that involves activation of the serine/threonine kinase Raf.
Collapse
Affiliation(s)
- B M Iritani
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
1471
|
The Bmx Tyrosine Kinase Induces Activation of the Stat Signaling Pathway, Which Is Specifically Inhibited by Protein Kinase Cδ. Blood 1997. [DOI: 10.1182/blood.v90.11.4341] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractMembers of the hematopoietically expressed Tec tyrosine kinase family have an important role in hematopoietic signal transduction, as exemplified by the crucial role of Btk for B-cell differentiation and activation. Although a variety of cell surface receptors have been found to activate Tec tyrosine kinases, the specific signaling pathways and substrate molecules used by Tec kinases are still largely unknown. In this study a Tec family kinase, Bmx, was found to induce activation of the Stat signaling pathway. Bmx induced the tyrosine phosphorylation and DNA binding activity of all the Stat factors tested, including Stat1, Stat3, and Stat5, both in mammalian and insect cells. Bmx also induced transcriptional activation of Stat1- and Stat5-dependent reporter genes. Other cytoplasmic tyrosine kinases, Syk, Fyn, and c-Src, showed no or only weak ability to activate Stat proteins. Expression of Bmx in mammalian cells was found to induce activation of endogenous Stat proteins without activation of endogenous Jak kinases. We further analyzed the Bmx-mediated activation of Stat1, which was found to be regulated by protein kinase C δ (PKCδ) isoform, but not β 1, ε, or ζ isoforms, leading to inhibition of Stat1 tyrosine phosphorylation. In conclusion, these studies show that Bmx, a Tec family kinase, can function as an activator of the Stat signaling pathway and identify a role for PKCδ in the regulation of Bmx signaling.
Collapse
|
1472
|
Affiliation(s)
- T Hoey
- Tularik, South San Francisco, CA 94080, USA.
| |
Collapse
|
1473
|
Berchtold S, Moriggl R, Gouilleux F, Silvennoinen O, Beisenherz C, Pfitzner E, Wissler M, Stöcklin E, Groner B. Cytokine receptor-independent, constitutively active variants of STAT5. J Biol Chem 1997; 272:30237-43. [PMID: 9374508 DOI: 10.1074/jbc.272.48.30237] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
STAT (signal transducers and activators of transcription) proteins are dual function proteins, which participate in cytokine-mediated signal transduction events at the cell surface and transcriptional regulation in the nucleus. We have exploited insights into the activation mechanism of STAT factors to derive constitutively active variants. Chimeric genes encoding fusion proteins of STAT5 and the kinase domain of JAK2 have been derived. The functional properties of the fusion proteins have been investigated in transiently transfected COS cells or in HeLa cells stably transfected with STAT5-JAK2 gene constructs regulated by a tetracycline-sensitive promoter. The STAT5-JAK2 proteins exhibit tyrosine kinase activity and are phosphorylated on tyrosine. The molecules are activated through an intramolecular or a cross-phosphorylation reaction and exhibit constitutive, STAT5-specific DNA binding activity. The transactivation potentials of three constitutively activated STAT5-JAK2 variants comprising different transactivation domains (TADs) derived from STAT5, STAT6, and VP16 were compared. The chimeric molecule containing the STAT5 TAD had no or only a very low, the molecule with the STAT6 TAD a medium, and the molecule with the VP16 TAD a very high transactivation potential. Transcription from STAT5-responsive gene promoter regions of the beta-casein, oncostatin M, and the cytokine-inducible Src homology 2 domain-containing protein genes was observed. These chimeric STAT molecules allow the study of the function of STAT5 independent of cytokine receptors and the activation of other signal transduction pathways.
Collapse
Affiliation(s)
- S Berchtold
- Institute for Experimental Cancer Research, Tumor Biology Center, Breisacher Strasse 117, D-79106 Freiburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
1474
|
Kumar A, Commane M, Flickinger TW, Horvath CM, Stark GR. Defective TNF-alpha-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science 1997; 278:1630-2. [PMID: 9374464 DOI: 10.1126/science.278.5343.1630] [Citation(s) in RCA: 412] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Signal transducers and activators of transcription (STATs) enhance transcription of specific genes in response to cytokines and growth factors. STAT1 is also required for efficient constitutive expression of the caspases Ice, Cpp32, and Ich-1 in human fibroblasts. As a consequence, STAT1-null cells are resistant to apoptosis by tumor necrosis factor alpha (TNF-alpha). Reintroduction of STAT1alpha restored both TNF-alpha-induced apoptosis and the expression of Ice, Cpp32, and Ich-1. Variant STAT1 proteins carrying point mutations that inactivate domains required for STAT dimer formation nevertheless restored protease expression and sensitivity to apoptosis, indicating that the functions of STAT1 required for these activities are different from those that mediate induced gene expression.
Collapse
Affiliation(s)
- A Kumar
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
1475
|
Walter MJ, Look DC, Tidwell RM, Roswit WT, Holtzman MJ. Targeted inhibition of interferon-gamma-dependent intercellular adhesion molecule-1 (ICAM-1) expression using dominant-negative Stat1. J Biol Chem 1997; 272:28582-9. [PMID: 9353323 DOI: 10.1074/jbc.272.45.28582] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A subset of epithelial immune-response genes (including intercellular adhesion molecule-1 (ICAM-1)) depends on an IFN-gamma signal transduction pathway with the Stat1 transcription factor as a critical intermediate. Excessive local activation of this pathway may lead to airway inflammation, so we sought to selectively down-regulate the pathway using a dominant-negative strategy for inhibition of epithelial Stat1 in a primary culture airway epithelial cell model. Using a Stat1-deficient cell line, we demonstrated that transfection of wild-type Stat1 expression plasmid restored appropriate Stat1 expression and IFN-gamma-dependent phosphorylation as well as consequent IFN-gamma activation of cotransfected ICAM-1 promoter constructs and endogenous ICAM-1 gene expression. However, mutations of Stat1 at Tyr-701 (JAK kinase phosphorylation site), Glu-428/429 (putative DNA-binding site), His-713 (splice site resulting in Stat1beta formation), or Ser-727 (MAP kinase phosphorylation site) all decreased Stat1 capacity to activate the ICAM-1 promoter. The Tyr-701 mutant (followed by the His-713 mutant) were most effective in disabling Stat1 function and in overcoming the activating effect of cotransfected wild-type Stat1 in this cell system thereby highlighting the effectiveness of blocking Stat1 homo- and hetero-dimerization. In experiments using primary culture human tracheobronchial epithelial cells (hTBECs) and each of the four Stat1 mutant plasmids, transfection with the Tyr-701 and His-713 mutants again most effectively inhibited IFN-gamma activation of an ICAM-1 gene promoter construct. Then by transfecting hTBECs with wild-type or mutant Stat1 tagged with a Flag reporter sequence, we used dual immunofluorescence to show that hTBECs expressing the Tyr-701 or His-713 mutants were prevented from expressing endogenous ICAM-1 in response to IFN-gamma treatment. The capacity of a specific Stat1 mutations to exert a potent dominant-negative effect on IFN-gamma signal transduction provides for further definition of Stat1 structure function and a means for natural or engineered expression of mutant Stat1 to selectively down-regulate activity of this pathway in a cell type- or tissue-specific manner during immune and/or inflammatory responses.
Collapse
Affiliation(s)
- M J Walter
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
1476
|
Yamauchi T, Ueki K, Tobe K, Tamemoto H, Sekine N, Wada M, Honjo M, Takahashi M, Takahashi T, Hirai H, Tushima T, Akanuma Y, Fujita T, Komuro I, Yazaki Y, Kadowaki T. Tyrosine phosphorylation of the EGF receptor by the kinase Jak2 is induced by growth hormone. Nature 1997; 390:91-6. [PMID: 9363897 DOI: 10.1038/36369] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
When growth hormone binds to its receptor, which belongs to the cytokine receptor superfamily, it activates the Janus kinase Jak2 which has tyrosine-kinase activity and initiates an activation of several key intracellular proteins (for example, mitogen-activated protein (MAP) kinases) that eventually execute the biological actions induced by growth hormone, including the expression of particular genes. In contrast to receptors that themselves have tyrosine kinase activity, the signalling pathways leading to MAP kinase activation that are triggered by growth hormone are poorly understood, but appear to be mediated by the proteins Grb2 and Shc. We now show that growth hormone stimulates tyrosine phosphorylation of the receptor for epidermal growth factor (EGFR) and its association with Grb2 and at the same time stimulates MAP kinase activity in liver, an important target tissue of growth hormone. Expression of EGFR and its mutants revealed that growth-hormone-induced activation of MAP kinase and expression of the transcription factor c-fos requires phosphorylation of tyrosines on EGFR, but not its own intrinsic tyrosine-kinase activity. Moreover, tyrosine at residue 1,068 of the EGFR is proposed to be one of the principal phosphorylation sites and Grb2-binding sites stimulated by growth hormone via Jak2. Our results indicate that the role of EGFR in signalling by growth hormone is to be phosphorylated by Jak2, thereby providing docking sites for Grb2 and activating MAP kinases and gene expression, independently of the intrinsic tyrosine kinase activity of EGFR. This may represent a novel cross-talk pathway between the cytokine receptor superfamily and growth factor receptor.
Collapse
Affiliation(s)
- T Yamauchi
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1477
|
Chung J, Uchida E, Grammer TC, Blenis J. STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol 1997; 17:6508-16. [PMID: 9343414 PMCID: PMC232504 DOI: 10.1128/mcb.17.11.6508] [Citation(s) in RCA: 498] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent studies have indicated that serine phosphorylation regulates the activities of STAT1 and STAT3. However, the kinase(s) responsible and the role of serine phosphorylation in STAT function remain unresolved. In the present studies, we examined the growth factor-dependent serine phosphorylation of STAT1 and STAT3. We provide in vitro and in vivo evidence that the ERK family of mitogen-activated protein (MAP) kinases, but not JNK or p38, specifically phosphorylate STAT3 at serine 727 in response to growth factors. Evidence for additional mitogen-regulated serine phosphorylation is also provided. STAT1 is a relatively poor substrate for all MAP kinases tested both in vitro and in vivo. STAT3 serine phosphorylation, not its tyrosine phosphorylation, results in retarded mobility of the STAT3 protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Importantly, serine 727 phosphorylation negatively modulates STAT3 tyrosine phosphorylation, which is required for dimer formation, nuclear translocation, and the DNA binding activity of this transcriptional regulator. Interestingly, the cytokine interleukin-6 also stimulates STAT3 serine phosphorylation, but in contrast to growth factors, this occurs by an ERK-independent process.
Collapse
Affiliation(s)
- J Chung
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
1478
|
O'Shea JJ, Notarangelo LD, Johnston JA, Candotti F. Advances in the understanding of cytokine signal transduction: the role of Jaks and STATs in immunoregulation and the pathogenesis of immunodeficiency. J Clin Immunol 1997; 17:431-47. [PMID: 9418183 DOI: 10.1023/a:1027388508570] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokines are of great importance in the growth and differentiation of hematopoietic and other cells. Moreover, they are also crucial in immunoregulation and in host defense. Although our understanding of the molecular basis of cytokine action is far from complete, recent advances have substantially improved our knowledge of cytokine-dependent signal transduction. The delineation of the structure of cytokine receptors and the signaling pathways they utilize has provided clues as to how the strikingly specific effects of cytokines are achieved. Additionally, the basis of some of the pleiotropic and redundant effects of cytokines has also become clear. The discovery of the Janus family of protein tyrosine kinases (Jaks) and the STATs (signal transducers and activators of transcription) has also provided key insights into the mechanism by which intracellular signals are transduced. The following paradigm has emerged: cytokines induce dimerization of receptor subunits that are constitutively associated with Jaks. This activates the Jaks, which then phosphorylate the receptors. The phosphorylated receptors are bound by SH2-containing proteins, one class of which is the STATs. Activated STATs, then, translocate to the nucleus to effect gene transcription. Though the Jaks do not explain much in terms of specificity in signaling, the function of the STATs does. The discovery of patients with autosomal recessive severe combined immunodeficiency due to mutations of a particular Jak, Jak3, and the phenotype of knockout mice lacking Jak3 and various STATs demonstrate the specific and critical roles of these molecules in the development and function of the immune system.
Collapse
Affiliation(s)
- J J O'Shea
- Lymphocyte Cell Biology Section, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
1479
|
Zhu X, Wen Z, Xu LZ, Darnell JE. Stat1 serine phosphorylation occurs independently of tyrosine phosphorylation and requires an activated Jak2 kinase. Mol Cell Biol 1997; 17:6618-23. [PMID: 9343425 PMCID: PMC232515 DOI: 10.1128/mcb.17.11.6618] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gamma interferon (IFN-gamma) induces both tyrosine and serine phosphorylation of Stat1. Stat1 serine phosphorylation is required for maximal transcriptional activity of Stat1. In this report, we present evidence that Stat1 tyrosine phosphorylation is not a prerequisite for Stat1 serine phosphorylation, although an active Jak2 kinase is required for both phosphorylation events. Stat1 serine phosphorylation occurs with a more delayed time course than tyrosine phosphorylation. The occurrence of serine phosphorylation without tyrosine phosphorylation suggests that serine phosphorylation takes place in the cytoplasm. Experiments performed with cells expressing either dominant-negative or constitutively active Ras protein indicated that the Ras-mitogen-activated protein kinase pathway is probably not involved in IFN-gamma-induced Stat1 serine phosphorylation. Finally, a kinase capable of correct Stat1 serine phosphorylation was detected in partially purified cytoplasmic extracts from both IFN-gamma-treated and untreated cells.
Collapse
Affiliation(s)
- X Zhu
- Laboratory of Molecular Cell Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
1480
|
Stoecklin E, Wissler M, Moriggl R, Groner B. Specific DNA binding of Stat5, but not of glucocorticoid receptor, is required for their functional cooperation in the regulation of gene transcription. Mol Cell Biol 1997; 17:6708-16. [PMID: 9343435 PMCID: PMC232525 DOI: 10.1128/mcb.17.11.6708] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Prolactin and glucocorticoid hormone are signals which regulate the transcription of milk protein genes in mammary epithelial cells. We have investigated the molecular mechanisms by which these hormones cooperate in the induction of transcription. Both hormones activate latent transcription factors in the cytoplasm of mammary epithelial cells. Prolactin exerts its effect through binding to the extracellular domain of the prolactin receptor and through receptor dimerization. This leads to the activation of a protein tyrosine kinase (Jak2), which is noncovalently associated with the cytoplasmic domain of the prolactin receptor. Jak2 phosphorylates the signal transducer and transcription activator (Stat5) which causes its dimerization and nuclear translocation where Stat5 specifically binds to sequence elements in the promoter regions of milk protein genes. In comparison, the glucocorticoid receptor is activated by a lipophilic steroid ligand in the cytoplasm which causes allosteric changes in the molecule, dimerization, and nuclear localization. It has been demonstrated that Stat5 and the glucocorticoid receptor form a molecular complex which cooperates in the induction of transcription of the beta-casein gene. We have defined the DNA sequence requirements for this cooperative mechanism and have delimited the functional domains in Stat5 and the glucocorticoid receptor that are necessary for the functional interaction. We find that the Stat5 response element (Stat5RE) within the beta-casein gene promoter is sufficient to elicit the cooperative action of Stat5 and the glucocorticoid receptor on transcription. Activation of Stat5 through phosphorylation of tyrosine 694 is an absolute prerequisite for transcription. Deletion of the transactivation domain of Stat5 results in a molecule which cannot mediate transactivation by itself but can still cooperate with the glucocorticoid receptor. Mutated variants of the glucocorticoid receptor with a nonfunctional DNA binding domain or a DNA binding domain contributed by the estrogen receptor are still able to cooperate with Stat5 in transcriptional induction. Deletion of the ligand binding domain of the glucocorticoid receptor does not impede cooperation with Stat5, whereas deletion of the AF-1 transactivation domain does prevent cooperation. Our results indicate that the glucocorticoid receptor acts as a ligand-dependent coactivator of Stat5 independently of its DNA binding function.
Collapse
Affiliation(s)
- E Stoecklin
- Institute for Experimental Cancer Research, Tumor Biology Center Freiburg, Germany
| | | | | | | |
Collapse
|
1481
|
Pircher TJ, Flores-Morales A, Mui AL, Saltiel AR, Norstedt G, Gustafsson JA, Haldosén LA. Mitogen-activated protein kinase kinase inhibition decreases growth hormone stimulated transcription mediated by STAT5. Mol Cell Endocrinol 1997; 133:169-76. [PMID: 9406863 DOI: 10.1016/s0303-7207(97)00164-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have investigated the possible involvement of the MAPK pathway in the growth hormone(GH)-induced activation of one of the members of signal transducers and activators of transcription, STAT5, by using the MAPK kinase (MEK) inhibitor PD98059. PD98059 treatment of Chinese hamster ovarian cells, stably transfected with the GH receptor (CHOA cells), abolished the GH-induced MAPK activity. PD98059 decreased the amount of GH-induced STAT5 in nuclear extract with DNA-binding capacity. Furthermore, GH dependent transcription of a STAT5 regulated reporter gene was inhibited by PD98059. The MEK inhibitor did not reduce GH-stimulated nuclear translocation of STAT5. We also investigated if PD98059 differentially influences the activation of the two STAT5 homologs, STAT5a and STAT5b, which differ mainly at the C-terminal end, one of the differences being the presence of a possible MAPK phosphorylation site in STAT5a. Expression plasmids for these transcription factors were transfected into CHOA cells together with a reporter gene. GH-stimulated fold induction of transcription was reduced by PD98059 in STAT5a but not in STAT5b overexpressing cells. A MAPK phosphorylation site-mutated version of STAT5a was also transfected into CHOA cells. GH-stimulated fold induction of cotransfected reporter gene was not reduced by PD98059 in cells overexpressing mutant STAT5a. The above data show that the MAPK pathway is required for the full activation of one of the STAT5 isoforms (STAT5a).
Collapse
Affiliation(s)
- T J Pircher
- Department of Medical Nutrition, Karolinska Institute, Novum, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
1482
|
Wang D, Zamorano J, Keegan AD, Boothby M. HMG-I(Y) phosphorylation status as a nuclear target regulated through insulin receptor substrate-1 and the I4R motif of the interleukin-4 receptor. J Biol Chem 1997; 272:25083-90. [PMID: 9312117 DOI: 10.1074/jbc.272.40.25083] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interleukin (IL)-4 is a cytokine that regulates both the growth and differentiation of hematopoietic cells. Its ligand binding specificity and important signal transduction mechanisms are conferred by the IL-4 receptor alpha chain (IL-4Ralpha). The I4R is a tyrosine-containing motif within IL-4Ralpha that is critical for proliferative responses to IL-4. Although the I4R also contributes to gene regulation, nuclear targets directly regulated by this motif have not been described. It is shown here that the tyrosine at position 497 in the I4R is critical for regulation of the phosphorylation status of a set of nuclear proteins that includes HMG-I(Y), small non-histone chromosomal proteins involved in the control of gene expression in hematopoietic cell lines. Moreover, IL-4 is unable to induce HMG-I(Y) phosphorylation in insulin receptor substrate-1-deficient cells, and the inhibitor wortmannin completely blocks IL-4 regulation of HMG-I(Y) phosphorylation status but not activation of an IL-4 Stat protein. Taken together, these data indicate that HMG-I(Y) is a nuclear target whose phosphorylation status is regulated through the I4R motif via insulin receptor substrate proteins, independent of activation of the Stat pathway.
Collapse
Affiliation(s)
- D Wang
- Department of Microbiology & Immunology, Vanderbilt University Medical School, Nashville, Tennessee 37232-2363, USA
| | | | | | | |
Collapse
|
1483
|
Ceresa BP, Horvath CM, Pessin JE. Signal transducer and activator of transcription-3 serine phosphorylation by insulin is mediated by a Ras/Raf/MEK-dependent pathway. Endocrinology 1997; 138:4131-7. [PMID: 9322921 DOI: 10.1210/endo.138.10.5266] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We recently reported that insulin stimulation results in the serine phosphorylation of STAT3 (signal transducer and activator of transcription-3). In the present study, we identified serine 727 as the site of insulin-stimulated STAT3 serine phosphorylation. This phosphorylation event occurs independent of tyrosine phosphorylation. Furthermore, interleukin-6-induced tyrosine phosphorylation can occur independent of serine phosphorylation, demonstrating that these two phosphorylation pathways are mechanistically unrelated. Selective activation of the JNK and p38 family of mitogen-activated protein (MAP) kinases by anisomycin treatment did not result in the phosphorylation of STAT3. In contrast, activation of the ERK MAP kinase pathway with both insulin and osmotic shock resulted in the serine phosphorylation of STAT3. In addition, expression of a dominant-interfering Ras mutant (N17Ras) or treatment with the specific MEK inhibitor (PD98059) prevented the insulin stimulation of STAT3 serine phosphorylation. Blockade of ERK activation by expression of the MAP kinase phosphatase (MKP-1) had no effect on insulin-stimulated STAT3 serine phosphorylation. Together, these data demonstrate that the insulin-stimulated serine phosphorylation of STAT3 occurs by a MEK-dependent pathway that is independent of ERK activation.
Collapse
Affiliation(s)
- B P Ceresa
- Department of Physiology and Biophysics, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
1484
|
Lin HY, Yen PM, Davis FB, Davis PJ. Protein synthesis-dependent potentiation by thyroxine of antiviral activity of interferon-gamma. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1225-32. [PMID: 9357766 DOI: 10.1152/ajpcell.1997.273.4.c1225] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have studied the prenuclear signal transduction pathway by which thyroid hormone potentiates the antiviral activity of human interferon-gamma (IFN-gamma) in HeLa cells, which are deficient in thyroid hormone receptor (TR). The action of thyroid hormone was compared with that of milrinone, which has structural homologies with thyroid hormone. L-Thyroxine (T4), 3,5,3'-L-triiodothyronine (T3), and milrinone enhanced the antiviral activity of IFN-gamma up to 100-fold, a potentiation blocked by cycloheximide. The 5'-deiodinase inhibitor 6-n-propyl-2-thiouracil did not block the T4 effect. 3,3',5,5'-Tetraiodothyroacetic acid prevented the effect of T4 but not of milrinone. The effects of T4 and milrinone were blocked by inhibitors of protein kinases C (PKC) and A (PKA) and restored by PKC and PKA agonists; only the effect of T4 was blocked by genistein, a tyrosine kinase inhibitor. In separate models, milrinone was shown not to interact with nuclear TR-beta. T4 potentiation of the antiviral activity of IFN-gamma requires PKC, PKA, and tyrosine kinase activities but not traditional TR.
Collapse
Affiliation(s)
- H Y Lin
- Department of Medicine, Albany Medical College and Stratton Veterans Affairs Medical Center, New York 12208, USA
| | | | | | | |
Collapse
|
1485
|
Ng J, Cantrell D. STAT3 is a serine kinase target in T lymphocytes. Interleukin 2 and T cell antigen receptor signals converge upon serine 727. J Biol Chem 1997; 272:24542-9. [PMID: 9305919 DOI: 10.1074/jbc.272.39.24542] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interleukin 2 (IL-2) induces tyrosine phosphorylation of STATs 3 and 5 (signal transducer and activator of transcription). We now show that IL-2 regulation of STAT3 proteins in T cells is a complex response involving activation of two forms of STAT3: 90-kDa STAT3alpha and an 83-kDa carboxyl-terminal truncated STAT3beta. The phosphorylation of STAT proteins on serine residues is also required for competent STAT transcription. A critical serine phosphorylation site in STAT3alpha is at position 727. In this study we have produced an antisera specific for STAT3alpha proteins phosphorylated on serine 727 and used this to monitor the phosphorylation of this residue during T lymphocyte activation. Our results show that phosphorylation of STAT3alpha on serine 727 is not constitutive in quiescent T cells but can be induced by the cytokine IL-2. Interestingly, triggering of the T cell antigen receptor complex or activation of protein kinase C with phorbol esters also induces phosphorylation of serine 727 but without simultaneously inducing STAT3 tyrosine phosphorylation or DNA binding. Hence, the present results show that STAT3 serine phosphorylation can be regulated independently of the tyrosine phosphorylation of this molecule. IL-2 and T cell antigen receptor complex induction of STAT3alpha serine 727 phosphorylation is dependent on the activity of the MEK/ERK pathway. Previous studies have identified H-7-sensitive kinase pathways that regulate STAT3 DNA binding. We show that H-7-sensitive pathways regulate STAT3 DNA binding in T cells. Nevertheless, we show that H-7-sensitive kinases do not regulate STAT3 tyrosine phosphorylation or phosphorylation of serine 727. These results thus show that STAT3 proteins are targets for multiple kinase pathways in T cells and can integrate signals from both cytokine receptors and antigen receptors.
Collapse
Affiliation(s)
- J Ng
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund Laboratories, 44, Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | |
Collapse
|
1486
|
Boeuf H, Hauss C, Graeve FD, Baran N, Kedinger C. Leukemia inhibitory factor-dependent transcriptional activation in embryonic stem cells. J Biophys Biochem Cytol 1997; 138:1207-17. [PMID: 9298977 PMCID: PMC2132559 DOI: 10.1083/jcb.138.6.1207] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
STAT transcription factors are induced by a number of growth factors and cytokines. Within minutes of induction, the STAT proteins are phosphorylated on tyrosine and serine residues and translocated to the nucleus, where they bind to their DNA targets. The leukemia inhibitory factor (LIF) mediates pleiotropic and sometimes opposite effects both in vivo and in cultured cells. It is known, for example, to prevent differentiation of embryonic stem (ES) cells in vitro. To get insights into LIF-regulated signaling in ES cells, we have analyzed protein-binding and transcriptional properties of STAT recognition sites in ES cells cultivated in the presence and in the absence of LIF. We have detected a specific LIF-regulated DNA-binding activity implicating the STAT3 protein. We show that STAT3 phosphorylation is essential for this LIF-dependent DNA-binding activity. The possibility that ERK2 or a closely related protein kinase, whose activity is modulated in a LIF-dependent manner, contributes to this phosphorylation is discussed. Finally, we show that the multimerized STAT3-binding DNA element confers LIF responsiveness to a minimal thymidine kinase promoter. This, together with our observation that overexpression of STAT3 dominant-negative mutants abrogates this LIF responsiveness, clearly indicates that STAT3 is involved in LIF-regulated transcriptional events in ES cells. Finally, stable expression of such a dominant negative mutant of STAT3 induces morphological differentiation of ES cells despite continuous LIF supply. Our results suggest that STAT3 is a critical target of the LIF signaling pathway, which maintains pluripotent cell proliferation.
Collapse
Affiliation(s)
- H Boeuf
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Medicale/Université Louis Pasteur), F-67404 ILLKIRCH Cedex C.U. de Strasbourg, France
| | | | | | | | | |
Collapse
|
1487
|
Abstract
STATs (signal transducers and activators of transcription) are a family of latent cytoplasmic proteins that are activated to participate in gene control when cells encounter various extracellular polypeptides. Biochemical and molecular genetic explorations have defined a single tyrosine phosphorylation site and, in a dimeric partner molecule, an Src homology 2 (SH2) phosphotyrosine-binding domain, a DNA interaction domain, and a number of protein-protein interaction domains (with receptors, other transcription factors, the transcription machinery, and perhaps a tyrosine phosphatase). Mouse genetics experiments have defined crucial roles for each known mammalian STAT. The discovery of a STAT in Drosophila, and most recently in Dictyostelium discoideum, implies an ancient evolutionary origin for this dual-function set of proteins.
Collapse
Affiliation(s)
- J E Darnell
- Laboratory of Molecular Cell Biology, Rockefeller University, New York, NY 10021, USA
| |
Collapse
|
1488
|
You M, Zhao Z. Positive effects of SH2 domain-containing tyrosine phosphatase SHP-1 on epidermal growth factor- and interferon-gamma-stimulated activation of STAT transcription factors in HeLa cells. J Biol Chem 1997; 272:23376-81. [PMID: 9287352 DOI: 10.1074/jbc.272.37.23376] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
SHP-1 (also known as PTP1C, SHPTP-1, SHP, and HCP) is an SH2 domain-containing protein-tyrosine phosphatase. We have stably overexpressed the native form and a catalytically inactive cysteine to serine mutant of the enzyme, SHP-1-(Cys --> Ser), in human cervical carcinoma HeLa cells. Following stimulation of the cells with epidermal growth factor (EGF) and interferon-gamma (INF-gamma), signal transducers and activators of transcription (STAT) activity was analyzed by using two 32P-labeled DNA probes, namely hSIE which is derived from a high affinity mutant form of the serum-inducible element in the c-fos promotor and GAS which resembles the INF-gamma activation site. EGF induced hSIE binding activity only, and the activity was suppressed by approximately 70% when the inactive mutant form of SHP-1 was expressed but was essentially unaffected by expression of the native enzyme. INF-gamma treatment resulted in appearance of both hSIE and GAS binding activities. While expression of the inactive mutant reduced the activities by 30-50%, the native enzyme caused a 20-30% increase. Consistent with effects on STAT activation, altered SHP-1 expression also affected EGF-induced activation of the mitogen-activated protein kinase pathway; expression of SHP-1-(Cys --> Ser) inhibited activity of MEK by approximately 25%, whereas expression of SHP-1 resulted in a approximately 25% increase. Further studies revealed that overexpression of SHP-1 caused decreased tyrosine phosphorylation of the EGF receptor and that EGF induced phosphorylation and recruitment of SHP-1. Together, the data suggest that SHP-1 is positively involved in EGF- and INF-gamma-induced STAT activation in non-hematopoietic HeLa cells and that, in the EGF signaling system, SHP-1 functions at least partly by modulating tyrosine phosphorylation of EGF receptor.
Collapse
Affiliation(s)
- M You
- Division of Hematology, Department of Medicine, Department of Veterans Affairs Medical Center, Vanderbilt University, Nashville, Tennessee 37232-6305, USA
| | | |
Collapse
|
1489
|
Rouyez MC, Boucheron C, Gisselbrecht S, Dusanter-Fourt I, Porteu F. Control of thrombopoietin-induced megakaryocytic differentiation by the mitogen-activated protein kinase pathway. Mol Cell Biol 1997; 17:4991-5000. [PMID: 9271377 PMCID: PMC232350 DOI: 10.1128/mcb.17.9.4991] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Thrombopoietin (TPO) is the major regulator of both growth and differentiation of megakaryocytes. We previously showed that both functions can be generated by TPO in the megakaryoblastic cell line UT7, in which murine Mpl was introduced, and are independently controlled by distinct regions of the cytoplasmic domain of Mpl. Particularly, residues 71 to 94 of this domain (deleted in the mutant mpl delta3) were found to be required for megakaryocytic maturation but dispensable for proliferation. We show here that TPO-induced differentiation in UT7 cells is tightly dependent on a strong, long-lasting activation of the mitogen-activated protein kinase (MAPK) pathway. Indeed, (i) in UT7-mpl cells, TPO induced a strong activation of extracellular signal-regulated kinases (ERK) which was persistent until at least 4 days in TPO-containing medium; (ii) a specific MAPK kinase (MEK) inhibitor inhibited TPO-induced megakaryocytic gene expression; (iii) the Mpl mutant mpl delta3, which displayed no maturation activity, transduced only a weak and transient ERK activation in UT7 cells; and (iv) TPO-induced megakaryocytic differentiation in UT7-mpl delta3 cells was partially restored by expression of a constitutively activated mutant of MEK. The capacity of TPO to trigger a strong and prolonged MAPK signal depended on the cell in which Mpl was introduced. In BAF3-mpl cells, TPO triggered a weak and transient ERK activation, similar to that induced in UT7-mpl delta3 cells. In these cells, no difference in MAPK activation was found between normal Mpl and mpl delta3. Thus, depending on the cellular context, several distinct regions of the cytoplasmic domain of Mpl and signaling pathways may contribute to generate quantitative variations in MAPK activation.
Collapse
Affiliation(s)
- M C Rouyez
- Institut National de la Santé et de la Recherche Médicale U363, Institut Cochin de Génétique Moléculaire, Hôpital Cochin, Paris, France
| | | | | | | | | |
Collapse
|
1490
|
Touw IP. Granulocyte colony-stimulating factor receptor mutations in severe chronic neutropenia and acute myeloid leukaemia: biological and clinical significance. BAILLIERE'S CLINICAL HAEMATOLOGY 1997; 10:577-87. [PMID: 9421617 DOI: 10.1016/s0950-3536(97)80027-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Blood cell formation is governed by the haemopoietic growth factors that control the proliferation, maturation and survival of the haemopoietic progenitor cells via activation of receptors expressed on the cell membrane. Most of these receptors share structural features and have been grouped in the haemopoietin or class I receptor superfamily. Recently considerable progress has been made in elucidating the regions critical for the function of these receptors and the signal transduction mechanisms that they activate. Moreover, it has become clear that certain clinical haematological conditions can be linked to specific defects in these receptors. The significance of defects in the receptor for granulocyte colony-stimulating factor (G-CSF) in the pathogenesis of severe congenital neutropenia and acute myeloid leukaemias is discussed.
Collapse
Affiliation(s)
- I P Touw
- Department of Haematology, Dr Daniel den Hoed Cancer Centre, Erasmus University, Rotterdam, The Netherlands
| |
Collapse
|
1491
|
Pestka S, Kotenko SV, Muthukumaran G, Izotova LS, Cook JR, Garotta G. The interferon gamma (IFN-gamma) receptor: a paradigm for the multichain cytokine receptor. Cytokine Growth Factor Rev 1997; 8:189-206. [PMID: 9462485 DOI: 10.1016/s1359-6101(97)00009-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the purification and cloning of the interferon gamma (IFN-gamma) receptor chains the mechanism of IFN-gamma action and the resultant signal transduction events were delineated in remarkable detail. The interferon gamma (IFN-gamma) receptor complex consists of two chains: IFN-gammaR1, the ligand-binding chain, and IFN-gammaR2, the accessory chain. Binding of IFN-gamma causes oligomerization of the two IFN-gamma receptor subunits, IFN-gammaR1 and IFN-gammaR2, which initiates the signal transduction events: activation of Jak1 and Jak2 receptor associated protein tyrosine kinases, phosphorylation of the IFN-gammaR1 intracellular domain on Tyr440 followed by phosphorylation and activation of Stat1alpha, the latent transcriptional factor. With all these steps established, the IFN-gamma receptor complex has provided the basic model for understanding the receptors for other members of the family of class II cytokine receptors.
Collapse
Affiliation(s)
- S Pestka
- UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
1492
|
Wishingrad MA, Koshlukova S, Halvorsen SW. Ciliary neurotrophic factor stimulates the phosphorylation of two forms of STAT3 in chick ciliary ganglion neurons. J Biol Chem 1997; 272:19752-7. [PMID: 9242633 DOI: 10.1074/jbc.272.32.19752] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) is a neuropoietic cytokine that was identified, purified, and cloned based on its neurotrophic activity on cultured chick ciliary ganglion neurons. The molecular mechanisms by which CNTF elicits its effects on these neurons are unknown. We have previously identified functional receptors for CNTF on ciliary ganglion neurons and demonstrated the CNTF-specific tyrosine phosphorylation of an approximately 90-kDa protein. Here we show that CNTF induced the rapid tyrosine phosphorylation and nuclear accumulation of this protein and identify it as an avian form of the transcription factor, STAT3. Identification was confirmed by its recognition with two distinct anti-STAT3 antibodies and the lack of binding to antibodies against STAT1, -2, -4, -5, or -6. The phosphorylation was stable for up to 2 h but required the continued presence of CNTF. CNTF also induced the tyrosine phosphorylation of a similar protein in cultured chick dorsal root ganglion and retinal neurons. In addition, we identify a second, 100-kDa form of STAT3 that appears in response to CNTF. Unlike previous reports, utilizing mammalian cell lines that detected a slower migrating form of STAT3 resulting from H7-sensitive protein phosphorylation, H7 did not prevent the appearance of the 100-kDa form in ciliary neurons. Thus, the 100-kDa avian protein may represent a novel form of CNTF-inducible STAT3.
Collapse
Affiliation(s)
- M A Wishingrad
- Department of Biochemical Pharmacology, State University of New York, Buffalo, New York 14260, USA
| | | | | |
Collapse
|
1493
|
Smit LS, Vanderkuur JA, Stimage A, Han Y, Luo G, Yu-Lee LY, Schwartz J, Carter-Su C. Growth hormone-induced tyrosyl phosphorylation and deoxyribonucleic acid binding activity of Stat5A and Stat5B. Endocrinology 1997; 138:3426-34. [PMID: 9231797 DOI: 10.1210/endo.138.8.5332] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
GH is known to activate JAK2 tyrosine kinase and members of the Stat family of transcription factors, including Stats 1, 3, and 5. The recent observation that at least two Stat5 proteins (Stat5A and Stat5B) exist in mouse and human, raises the question of whether GH activates both Stat5A and Stat5B and, if so, whether the requirements for activation are the same. An initial report investigating this issue demonstrated GH-dependent activation of Stat5A but not Stat5B. In this paper, we demonstrate (in COS cells expressing rat GH receptor (rGHR) and either Stat5A or Stat5B, 3T3-F442A fibroblasts, and CHO cells expressing rGHR) that GH induces tyrosyl phosphorylation of both Stat5A and Stat5B. Similar time courses of phosphorylation were observed for the two proteins. Interestingly, the pattern of observed bands differs for the two forms of Stat5. Two closely migrating Stat5A bands can be detected in cells treated with or without GH. Both of these bands become tyrosyl phosphorylated in response to GH. Three species of Stat5B are observed in untreated cells. An additional, more slowly migrating Stat5B band, appears upon treatment with GH. The three more slower migrating Stat5B bands observed in response to GH contain phosphorylated tyrosyl residues. We further demonstrate that GH induces binding of Stat5A and Stat5B, as well as Stat1, to the GAS-like element in the beta-casein promoter. We and others have demonstrated previously that specific regions of GHR are required for GH-dependent activation of what is here identified as Stat5B. To gain insight into the mechanism by which GH promotes tyrosyl phosphorylation of Stat5A, GH-dependent tyrosyl phosphorylation of Stat5A was examined in CHO cells expressing truncated and mutated rGHR. The results indicate that Stat5A and Stat5B require the same regions of rGHR for maximal activation by GH: the C-terminal half of the cytoplasmic domain; tyrosines 333 and/or 338 in the N-terminal half of the cytoplasmic domain; and the regions required for JAK2 activation. To dissect further the mechanism by which GH activates Stat5A and B, the requirement for JAK2 in GH-dependent Stat5 tyrosyl phosphorylation was assessed using JAK2-deficient cells expressing GHR (gamma2A-GHR) and the wild-type parental cell line expressing GHR (2C4-GHR). GH-induced tyrosyl phosphorylation of Stat5B in 2C4-GHR cells but not in the JAK2 deficient, gamma2A-GHR cells, indicating that JAK2 is required for GH-dependent tyrosyl phosphorylation of Stat5B. Western blotting revealed that Stat5A is not expressed in this cell type. Taken together, these findings suggest that: 1) GH activates both Stat5A and Stat5B in several cell types; 2) the pattern of bands observed differs for Stat5A and Stat5B; 3) GH-dependent tyrosyl phosphorylation of Stat5A requires specific regions of GHR, and these requirements are the same as for Stat5B; and 4) JAK2 kinase is required for GH-dependent tyrosyl phosphorylation of Stat5B and, most likely, Stat5A.
Collapse
Affiliation(s)
- L S Smit
- Department of Physiology, University of Michigan Medical School, Ann Arbor 49109-0622, USA
| | | | | | | | | | | | | | | |
Collapse
|
1494
|
Sasse J, Hemmann U, Schwartz C, Schniertshauer U, Heesel B, Landgraf C, Schneider-Mergener J, Heinrich PC, Horn F. Mutational analysis of acute-phase response factor/Stat3 activation and dimerization. Mol Cell Biol 1997; 17:4677-86. [PMID: 9234724 PMCID: PMC232320 DOI: 10.1128/mcb.17.8.4677] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Signal transducer and transcription (STAT) factors are activated by tyrosine phosphorylation in response to a variety of cytokines, growth factors, and hormones. Tyrosine phosphorylation triggers dimerization and nuclear translocation of these transcription factors. In this study, the functional role of carboxy-terminal portions of the STAT family member acute-phase response factor/Stat3 in activation, dimerization, and transactivating potential was analyzed. We demonstrate that truncation of 55 carboxy-terminal amino acids causes constitutive activation of Stat3 in COS-7 cells, as is known for the Stat3 isoform Stat3beta. By the use of deletion and point mutants, it is shown that both carboxy- and amino-terminal portions of Stat3 are involved in this phenomenon. Dimerization of Stat3 was blocked by point mutations affecting residues both in the vicinity of the tyrosine phosphorylation site (Y705) and more distant from this site, suggesting that multiple interactions are involved in dimer formation. Furthermore, by reporter gene assays we demonstrate that carboxy-terminally truncated Stat3 proteins are incapable of transactivating an interleukin-6-responsive promoter in COS-7 cells. In HepG2 hepatoma cells, however, these truncated Stat3 forms transmit signals from the interleukin-6 signal transducer gp130 equally well as does full-length Stat3. We conclude that, dependent on the cell type, different mechanisms allow Stat3 to regulate target gene transcription either with or without involvement of its putative carboxy-terminal transactivation domain.
Collapse
Affiliation(s)
- J Sasse
- Institute of Biochemistry, Rheinisch-Westfälische Technische Hochschule Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
1495
|
Wang Y, O'Neal KD, Yu-Lee L. Multiple prolactin (PRL) receptor cytoplasmic residues and Stat1 mediate PRL signaling to the interferon regulatory factor-1 promoter. Mol Endocrinol 1997; 11:1353-64. [PMID: 9259325 DOI: 10.1210/mend.11.9.9982] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Nb2 PRL receptor (PRL-R) is known to mediate PRL signaling to the interferon (IFN) regulatory factor-1 (IRF-1) gene via the family of signal transducers and activators of transcription or Stats. To analyze the components of the PRL-R/Stat/IRF-1 signaling pathway, various PRL-R, Stat, and IRF-1-CAT reporter constructs were transiently cotransfected into COS cells. First, mutations in the IFNgamma-activated sequence (GAS), either multimerized or in the context of the 1.7-kb IRF-1 promoter, failed to mediate a PRL response, showing that the IRF-1 GAS is a target of PRL signaling. Next, pairwise alanine substitutions into conserved residues in the proline-rich motif or Box 1 region and two tyrosine mutations, Y308F and Y382F, in the PRL-R intracellular domain all impaired PRL signaling to multimerized GAS or to the 1.7-kb IRF-1 promoter. Furthermore, these PRL-R mutants mediated reduced Stat1 binding to the IRF-1 GAS. Transfection of Stat1 further enhanced PRL signaling to the IRF-1 promoter, suggesting that Stat1 is a positive mediator of PRL action. These studies show that both membrane proximal and distal residues of the PRL-R are involved in signaling to the IRF-1 gene. Further, Stat1 and the GAS element are important for PRL activation of the IRF-1 gene.
Collapse
Affiliation(s)
- Y Wang
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
1496
|
Abstract
Murine embryonic stem (ES) cells have been a useful model system for the study of various aspects of hematopoietic differentiation. Because we had observed a sharp peak of expression of the receptor tyrosine phosphatase gamma (Ptpγ) gene between 14 and 18 days of ES-derived embryoid body differentiation, we investigated the effect of perturbation of expression of the Ptpγ gene on ES cell differentiation, first by analyzing the effect of Ptpγ overexpression. The murine full-length Ptpγ cDNA in an expression vector was transfected into ES-D3 cells and stably transfected clones were isolated. Ptpγ was expressed as an approximately 230-kD cell surface protein, and differentiating ES clones that overexpressed Ptpγ gave rise to a normal number of hematopoietic colonies, approximately 1 CFU per 100 cells. There was, however, a significant increase of expression of early hematopoietic markers in colonies from Ptpγ overexpressing ES cells. To confirm that the pertubation of hematopoietic differentiation was a result of Ptpγ overexpression, we isolated ES stem cell clones expressing Ptpγ antisense constructs and assayed embryoid bodies for the presence of hematopoietic precursors. We observed a complete absence of methylcellulose colonies, indicating absence of hematopoietic lineages. Results of these experiments point to an essential role for Ptpγ in hematopoietic differentiation.
Collapse
|
1497
|
Abstract
AbstractMurine embryonic stem (ES) cells have been a useful model system for the study of various aspects of hematopoietic differentiation. Because we had observed a sharp peak of expression of the receptor tyrosine phosphatase gamma (Ptpγ) gene between 14 and 18 days of ES-derived embryoid body differentiation, we investigated the effect of perturbation of expression of the Ptpγ gene on ES cell differentiation, first by analyzing the effect of Ptpγ overexpression. The murine full-length Ptpγ cDNA in an expression vector was transfected into ES-D3 cells and stably transfected clones were isolated. Ptpγ was expressed as an approximately 230-kD cell surface protein, and differentiating ES clones that overexpressed Ptpγ gave rise to a normal number of hematopoietic colonies, approximately 1 CFU per 100 cells. There was, however, a significant increase of expression of early hematopoietic markers in colonies from Ptpγ overexpressing ES cells. To confirm that the pertubation of hematopoietic differentiation was a result of Ptpγ overexpression, we isolated ES stem cell clones expressing Ptpγ antisense constructs and assayed embryoid bodies for the presence of hematopoietic precursors. We observed a complete absence of methylcellulose colonies, indicating absence of hematopoietic lineages. Results of these experiments point to an essential role for Ptpγ in hematopoietic differentiation.
Collapse
|
1498
|
Moriggl R, Berchtold S, Friedrich K, Standke GJ, Kammer W, Heim M, Wissler M, Stöcklin E, Gouilleux F, Groner B. Comparison of the transactivation domains of Stat5 and Stat6 in lymphoid cells and mammary epithelial cells. Mol Cell Biol 1997; 17:3663-78. [PMID: 9199300 PMCID: PMC232218 DOI: 10.1128/mcb.17.7.3663] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Stat (signal transducers and activators of transcription) and Jak (Janus kinases) proteins are central components in the signal transduction events in hematopoietic and epithelial cells. They are rapidly activated by various cytokines, hormones, and growth factors. Upon ligand binding and cytokine receptor dimerization, Stat proteins are phosphorylated on tyrosine residues by Jak kinases. Activated Stat proteins form homo- or heterodimers, translocate to the nucleus, and induce transcription from responsive genes. Stat5 and Stat6 are transcription factors active in mammary epithelial cells and immune cells. Prolactin activates Stat5, and interleukin-4 (IL-4) activates Stat6. Both cytokines are able to stimulate cell proliferation, differentiation, and survival. We investigated the transactivation potential of Stat6 and found that it is not restricted to lymphocytes. IL-4-dependent activation of Stat6 was also observed in HC11 mammary epithelial cells. In these cells, Stat6 activation led to the induction of the beta-casein gene promoter. The induction of this promoter was confirmed in COS7 cells. The glucocorticoid receptor was able to further enhance IL-4-induced gene transcription through the action of Stat6. Deletion analysis of the carboxyl-terminal region of Stat6 and recombination of this region with a heterologous DNA binding domain allowed the delimitation and characterization of the transactivation domain of Stat6. The potencies of the transactivation domains of Stat5, Stat6, and viral protein VP16 were compared. Stat6 had a transactivation domain which was about 10-fold stronger than that of Stat5. In pre-B cells (Ba/F3), the transactivation domain of Stat6 was IL-4 regulated, independently from its DNA binding function.
Collapse
Affiliation(s)
- R Moriggl
- Tumor Biology Center, and Dept. of Biology, University of Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1499
|
Jenab S, Morris PL. Transcriptional regulation of Sertoli cell immediate early genes by interleukin-6 and interferon-gamma is mediated through phosphorylation of STAT-3 and STAT-1 proteins. Endocrinology 1997; 138:2740-6. [PMID: 9202212 DOI: 10.1210/endo.138.7.5243] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The immediate early genes are regulated by a variety of extracellular signals, including pleiotropic cytokines. The effects of the testicular cytokines, interleukin-6 (IL-6) and interferon-gamma (IFN-gamma), on signal transducers and activators of transcription 3 and 1 (STAT-3 and STAT-1) and on c-fos gene expression in primary Sertoli cells are suggestive of their roles in differential function. Using the tyrosine phosphorylation inhibitor, genistein, and electrophoretic mobility shift assay, we show that IL-6 and IFN-gamma induce nuclear factor STAT-3 and STAT-1 DNA-binding activity to the sis-inducible element of c-fos in a genistein-dependent pathway. Quantitative solution hybridization, Northern blot, and nuclear run-on analysis show that differential induction of c-fos, junB, and c-myc messenger RNA (mRNA) by these cytokines occur at transcriptional levels. IL-6 stimulates c-fos mRNA levels by 6-fold while increasing junB levels by 2-fold. IFN-gamma increases c-fos message 2-fold, but has no effect on junB mRNA levels. Furthermore, genistein treatment blocks the induction of c-fos and junB gene expression, demonstrating that tyrosine phosphorylation of STAT proteins is involved in the cytokine regulation of the Sertoli immediate early genes. H7, a serine/threonine phosphorylation inhibitor, also blocks c-fos gene induction by IL-6 and IFN-gamma, but does not affect the DNA-binding activities of STAT-3 and STAT-1. Finally, IL-6 treatment of Sertoli cells (3-6 h) increases the amounts of activating protein-1 binding to activating protein-1 element and c-myc transcription.
Collapse
Affiliation(s)
- S Jenab
- The Population Council, New York, New York 10021, USA
| | | |
Collapse
|
1500
|
Silvennoinen O, Saharinen P, Paukku K, Takaluoma K, Kovanen P. Cytokine receptor signal transduction through Jak tyrosine kinases and Stat transcription factors. APMIS 1997; 105:497-509. [PMID: 9269296 DOI: 10.1111/j.1699-0463.1997.tb05047.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cytokines are the principal regulators of cell proliferation and differentiation of hematopoietic cells and these responses are initiated through activation of hematopoietic cytokine receptors. Although the receptor intracellular domains lack any kinase domains, activation of cytokine receptors lead to rapid induction of tyrosine phosphorylation. Recently, cytokine receptors have been shown to associate with and activate members of the cytoplasmic Jak tyrosine kinase family. Activation of Jak kinases leads to phosphorylation of several signaling proteins and thereby couples ligand-mediated receptor stimulation to activation of intracellular signaling pathways. The best characterized substrates for Jaks are the Stat transcription factors, which are crucial mediators of cytokine-mediated gene responses, and, particularly, central determinants for the specificity in cytokine responses.
Collapse
Affiliation(s)
- O Silvennoinen
- University of Tampere, Department of Microbiology, University Hospital of Tampere, Finland
| | | | | | | | | |
Collapse
|