1451
|
Davy A, Gale NW, Murray EW, Klinghoffer RA, Soriano P, Feuerstein C, Robbins SM. Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Dev 1999; 13:3125-35. [PMID: 10601038 PMCID: PMC317175 DOI: 10.1101/gad.13.23.3125] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eph receptor tyrosine kinases and their corresponding surface-bound ligands, the ephrins, provide cues to the migration of cells and growth cones during embryonic development. Here we show that ephrin-A5, which is attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidylinositol-anchor, induces compartmentalized signaling within a caveolae-like membrane microdomain when bound to the extracellular domain of its cognate Eph receptor. The physiological response induced by this signaling event is concomitant with a change in the cellular architecture and adhesion of the ephrin-A5-expressing cells and requires the activity of the Fyn protein tyrosine kinase. This study stresses the relevance of bidirectional signaling involving the ephrins and Eph receptors during brain development.
Collapse
Affiliation(s)
- A Davy
- Departments of Oncology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N-4N1 Canada
| | | | | | | | | | | | | |
Collapse
|
1452
|
Stan RV, Kubitza M, Palade GE. PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia. Proc Natl Acad Sci U S A 1999; 96:13203-7. [PMID: 10557298 PMCID: PMC23925 DOI: 10.1073/pnas.96.23.13203] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PV-1 is a novel endothelial protein shown by immunocytochemical tests to be specifically associated with the stomatal diaphragms of caveolae in lung endothelium. Although the highest expression levels of both mRNA and protein are in the lung, PV-1 also has been found to be expressed in other organs. Using a specific antibody to the extracellular domain of PV-1, we have extended the survey on the presence of this protein at light and electron microscope level in several rat organs. Here we show that by immunofluorescence the antibody recognizes with high specificity the endothelium of the fenestrated peritubular capillaries of the kidney and those of the intestinal villi, pancreas, and adrenals. By immunolocalization at electron microscope level, the antibody recognizes specifically the diaphragms of the fenestrae and the stomatal diaphragms of caveolae and transendothelial channels in the endothelia of these vascular beds. No signal was detected in the continuous endothelium of the heart, skeletal muscle, intestinal muscularis, or brain capillaries or the nondiaphragmed fenestrated endothelium of kidney glomeruli. Taken together, our findings define the only antigen to be localized thus far in fenestral diaphragms. They also show that the stomatal diaphragms of caveolae and transendothelial channels and the fenestral diaphragms might be biochemically related, in addition to being morphologically similar structures.
Collapse
Affiliation(s)
- R V Stan
- University of California at San Diego, Division of Cellular and Molecular Medicine, La Jolla, CA 92093-0651, USA
| | | | | |
Collapse
|
1453
|
Blair A, Shaul PW, Yuhanna IS, Conrad PA, Smart EJ. Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem 1999; 274:32512-9. [PMID: 10542298 DOI: 10.1074/jbc.274.45.32512] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hypercholesterolemia-induced vascular disease and atherosclerosis are characterized by a decrease in the bioavailability of endothelium-derived nitric oxide. Endothelial nitric-oxide synthase (eNOS) associates with caveolae and is directly regulated by the caveola protein, caveolin. In the present study, we examined the effects of oxidized low density lipoprotein (oxLDL) on the subcellular location of eNOS, on eNOS activation, and on caveola cholesterol in endothelial cells. We found that treatment with 10 microgram/ml oxLDL for 60 min caused greater than 90% of eNOS and caveolin to leave caveolae. Treatment with oxLDL also inhibited acetylcholine-induced activation of eNOS but not prostacyclin production. oxLDL did not affect total cellular eNOS abundance. Oxidized LDL also did not affect the palmitoylation, myristoylation or phosphorylation of eNOS. Oxidized LDL, but not native LDL, or HDL depleted caveolae of cholesterol by serving as an acceptor for cholesterol. Cyclodextrin also depleted caveolae of cholesterol and caused eNOS and caveolin to translocate from caveolae. Furthermore, removal of oxLDL allowed eNOS and caveolin to return to caveolae. We conclude that oxLDL-induced depletion of caveola cholesterol causes eNOS to leave caveolae and inhibits acetylcholine-induced activation of the enzyme. This process may be an important mechanism in the early pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- A Blair
- Department of Physiology, University of Kentucky Medical School, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
1454
|
Mignatti P, Rifkin DB. Nonenzymatic interactions between proteinases and the cell surface: novel roles in normal and malignant cell physiology. Adv Cancer Res 1999; 78:103-57. [PMID: 10547669 DOI: 10.1016/s0065-230x(08)61024-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- P Mignatti
- Department of Surgery, S. A. Localio General Surgery Research Laboratory, New York, New York, USA
| | | |
Collapse
|
1455
|
Munn AL, Heese-Peck A, Stevenson BJ, Pichler H, Riezman H. Specific sterols required for the internalization step of endocytosis in yeast. Mol Biol Cell 1999; 10:3943-57. [PMID: 10564282 PMCID: PMC25690 DOI: 10.1091/mbc.10.11.3943] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sterols are major components of the plasma membrane, but their functions in this membrane are not well understood. We isolated a mutant defective in the internalization step of endocytosis in a gene (ERG2) encoding a C-8 sterol isomerase that acts in the late part of the ergosterol biosynthetic pathway. In the absence of Erg2p, yeast cells accumulate sterols structurally different from ergosterol, which is the major sterol in wild-type yeast. To investigate the structural requirements of ergosterol for endocytosis in more detail, several erg mutants (erg2Delta, erg6Delta, and erg2Deltaerg6Delta) were made. Analysis of fluid phase and receptor-mediated endocytosis indicates that changes in the sterol composition lead to a defect in the internalization step. Vesicle formation and fusion along the secretory pathway were not strongly affected in the ergDelta mutants. The severity of the endocytic defect correlates with changes in sterol structure and with the abundance of specific sterols in the ergDelta mutants. Desaturation of the B ring of the sterol molecules is important for the internalization step. A single desaturation at C-8,9 was not sufficient to support internalization at 37 degrees C whereas two double bonds, either at C-5,6 and C-7,8 or at C-5,6 and C-8,9, allowed internalization.
Collapse
Affiliation(s)
- A L Munn
- Biozentrum of the University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
1456
|
Enrich C, Pol A, Calvo M, Pons M, Jäckle S. Dissection of the multifunctional "Receptor-Recycling" endocytic compartment of hepatocytes. Hepatology 1999; 30:1115-20. [PMID: 10534329 DOI: 10.1002/hep.510300505] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- C Enrich
- Departament de Biologia Cellular, Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
1457
|
Ilangumaran S, Borisch B, Hoessli DC. Signal transduction via CD44: role of plasma membrane microdomains. Leuk Lymphoma 1999; 35:455-69. [PMID: 10609783 DOI: 10.1080/10428199909169610] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CD44 is the principal cell surface receptor for extracellular matrix glycosaminoglycan hyaluronan. CD44-hyaluronan mediated cell adhesion is important in several pathophysiological processes such as inflammation and metastatic spread of cancer cells. It has been recently recognized that CD44 also functions as a signaling receptor in a variety of cell types. Cell stimulation by monoclonal anti-CD44 antibody or natural CD44 ligands activate several signaling pathways that culminate in cell proliferation, cytokine secretion, chemokine gene expression and cytolytic effector functions. One of the earliest signaling events following stimulation via CD44 is tyrosine phosphorylation of intracellular proteins substrates, and CD44 mediated cellular activation could be abolished by protein tyrosine kinase (PTK) inhibitors. The Src-family non-receptor PTKs such as Lck, Fyn, Lyn and Hck were shown to be coupled to CD44 via sphingolipid-rich microdomains (lipid rafts) of the plasma membrane. Studies on T cell receptor and IgE receptor mediated signaling in lymphocytes and mast cells have consolidated the notion that microdomains consist of signaling platforms where components of multiple signaling pathways are assembled. Co-isolation of CD44 with microdomains strongly suggests that CD44 generates cellular activation signals utilizing the signaling machinery of the plasma membrane microdomains.
Collapse
Affiliation(s)
- S Ilangumaran
- Department of Experirmental Therapeutics, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Canada
| | | | | |
Collapse
|
1458
|
Abstract
Caveolae are specialized membrane microdomains that are found on the plasma membrane of most cells. Recent studies indicate that a variety of signaling molecules are highly organized in caveolae, where their interactions initiate specific signaling cascades. Molecules enriched in this membrane include G protein-coupled receptors, heterotrimeric GTP binding proteins, IP3 receptor-like protein, Ca2+ ATPase, eNOS, and several PKC isoforms. Direct measurements of calcium changes in endothelial cells suggest that caveolae may be sites that regulate intracellular Ca2+ concentration and Ca2+ dependent signal transduction. This review will focus on the role of caveolae in controlling the spatial and temporal pattern of intracellular Ca2+ signaling.
Collapse
Affiliation(s)
- M Isshiki
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas 75235-9039, USA
| | | |
Collapse
|
1459
|
Gustavsson J, Parpal S, Karlsson M, Ramsing C, Thorn H, Borg M, Lindroth M, Peterson KH, Magnusson K, Strålfors P. Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J 1999. [DOI: 10.1096/fasebj.13.14.1961] [Citation(s) in RCA: 289] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Santiago Parpal
- Department of Cell BiologyLinköping University S‐58185 Linköping Sweden
| | | | - Cecilia Ramsing
- Department of Cell BiologyLinköping University S‐58185 Linköping Sweden
| | - Hans Thorn
- Department of Cell BiologyLinköping University S‐58185 Linköping Sweden
| | - Marie Borg
- Department of Cell BiologyLinköping University S‐58185 Linköping Sweden
| | | | - Kajsa Holmgren Peterson
- Department of Medical MicrobiologyFaculty of Health SciencesLinköping University S‐58185 Linköping Sweden
| | - Karl‐Eric Magnusson
- Department of Medical MicrobiologyFaculty of Health SciencesLinköping University S‐58185 Linköping Sweden
| | - Peter Strålfors
- Department of Cell BiologyLinköping University S‐58185 Linköping Sweden
| |
Collapse
|
1460
|
Snyers L, Umlauf E, Prohaska R. Association of stomatin with lipid-protein complexes in the plasma membrane and the endocytic compartment. Eur J Cell Biol 1999; 78:802-12. [PMID: 10604657 DOI: 10.1016/s0171-9335(99)80031-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Membrane protein - microvilli - lipid raft - GPI-anchored protein - epithelial cell The 31 kDa integral membrane protein stomatin (protein 7.2b) has a monotopic structure and a cytofacial orientation. We have shown previously that stomatin is located in plasma membrane protruding structures and forms high-order homo-oligomers in the human epithelial cell line UAC, suggesting that this protein has a structural function in the cortical morphogenesis of the cells. It is also present in a pool of juxtanuclear vesicles. In this study, we show that stomatin colocalizes with the GPI-anchored proteins placental alkaline phosphatase (PLAP) and membrane folate receptor alpha (MFRalpha) endogenously expressed in UAC cells. This observation enabled us to demonstrate two different aspects of stomatin. First, using anti-PLAP antibody internalization, we show that the peri-centrosomal vesicles containing stomatin correspond to a subset of endosomes, which can also be labeled with the late endosomal/lysosomal marker LAMP-2. Secondly, we found that stomatin is partially present in detergent-insoluble membrane domains and co-patches with PLAP on the plasma membrane, after cross-linking of PLAP by antibodies. These data indicate that stomatin and GPI-anchored proteins are linked through lipid rafts and undergo the same sorting events. We propose that stomatin, through its affinity for lipid rafts, functions in concentrating GPI-anchored proteins in membrane microvillar structures. Consistent with this hypothesis, we found that stomatin is expressed exclusively in microvilli of the apical membrane in polarized Madin-Darby canine kidney (MDCK) cells.
Collapse
Affiliation(s)
- L Snyers
- Institute of Biochemistry, University of Vienna, Vienna Biocenter, Austria
| | | | | |
Collapse
|
1461
|
Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP. Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 1999; 19:7289-304. [PMID: 10523618 PMCID: PMC84723 DOI: 10.1128/mcb.19.11.7289] [Citation(s) in RCA: 787] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- E J Smart
- University of Kentucky, Department of Physiology, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|
1462
|
Mineo C, Gill GN, Anderson RG. Regulated migration of epidermal growth factor receptor from caveolae. J Biol Chem 1999; 274:30636-43. [PMID: 10521449 DOI: 10.1074/jbc.274.43.30636] [Citation(s) in RCA: 252] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In quiescent fibroblasts, epidermal growth factor (EGF) receptors (EGFR) are initially concentrated in caveolae but rapidly move out of this membrane domain in response to EGF. To better understand the dynamic localization of EGFR to caveolae, we have studied the behavior of wild-type and mutant receptors expressed in cells lacking endogenous EGFR. All of the receptors we examined, including those missing the first 274 amino acids or most of the cytoplasmic tail, were constitutively concentrated in caveolae. By contrast, migration from caveolae required EGF binding, an active receptor kinase domain, and at least one of the five tyrosine residues present in the regulatory domain of the receptor. Movement appears to be modulated by Src kinase, is blocked by activators of protein kinase C, and occurs independently of internalization by clathrin-coated pits. Two mutant receptors previously shown to induce an oncogenic phenotype lack the ability to move from caveolae in response to EGF, suggesting that a prolonged residence in this domain may contribute to abnormal cell behavior.
Collapse
Affiliation(s)
- C Mineo
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9039, USA
| | | | | |
Collapse
|
1463
|
Abstract
The role of lipid rafts in T cell antigen receptor (TCR) signaling was investigated using fluorescence microscopy. Lipid rafts labeled with cholera toxin B subunit (CT-B) and cross-linked into patches displayed characteristics of rafts isolated biochemically, including detergent resistance and colocalization with raft-associated proteins. LCK, LAT, and the TCR all colocalized with lipid patches, although TCR association was sensitive to nonionic detergent. Aggregation of the TCR by anti-CD3 mAb cross-linking also caused coaggregation of raft-associated proteins. However, the protein tyrosine phosphatase CD45 did not colocalize to either CT-B or CD3 patches. Cross-linking of either CD3 or CT-B strongly induced tyrosine phosphorylation and recruitment of a ZAP-70(SH2)(2)-green fluorescent protein (GFP) fusion protein to the lipid patches. Also, CT-B patching induced signaling events analagous to TCR stimulation, with the same dependence on expression of key TCR signaling molecules. Targeting of LCK to rafts was necessary for these events, as a nonraft- associated transmembrane LCK chimera, which did not colocalize with TCR patches, could not reconstitute CT-B-induced signaling. Thus, our results indicate a mechanism whereby TCR engagement promotes aggregation of lipid rafts, which facilitates colocalization of LCK, LAT, and the TCR whilst excluding CD45, thereby triggering protein tyrosine phosphorylation.
Collapse
Affiliation(s)
- Peter W. Janes
- Division of Membrane Biology, National Institute for Medical Research, London NW7 1AA, United Kingdom
- Division of Cellular Immunology, National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Steven C. Ley
- Division of Cellular Immunology, National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Anthony I. Magee
- Division of Membrane Biology, National Institute for Medical Research, London NW7 1AA, United Kingdom
| |
Collapse
|
1464
|
Murakami M, Kambe T, Shimbara S, Yamamoto S, Kuwata H, Kudo I. Functional association of type IIA secretory phospholipase A(2) with the glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan in the cyclooxygenase-2-mediated delayed prostanoid-biosynthetic pathway. J Biol Chem 1999; 274:29927-36. [PMID: 10514475 DOI: 10.1074/jbc.274.42.29927] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An emerging body of evidence suggests that type IIA secretory phospholipase A(2) (sPLA(2)-IIA) participates in the amplification of the stimulus-induced cyclooxygenase (COX)-2-dependent delayed prostaglandin (PG)-biosynthetic response in several cell types. However, the biological importance of the ability of sPLA(2)-IIA to bind to heparan sulfate proteoglycan (HSPG) on cell surfaces has remained controversial. Here we show that glypican, a glycosylphosphatidylinositol (GPI)-anchored HSPG, acts as a physical and functional adaptor for sPLA(2)-IIA. sPLA(2)-IIA-dependent PGE(2) generation by interleukin-1-stimulated cells was markedly attenuated by treatment of the cells with heparin, heparinase or GPI-specific phospholipase C, which solubilized the cell surface-associated sPLA(2)-IIA. Overexpression of glypican-1 increased the association of sPLA(2)-IIA with the cell membrane, and glypican-1 was coimmunoprecipitated by the antibody against sPLA(2)-IIA. Glypican-1 overexpression led to marked augmentation of sPLA(2)-IIA-mediated arachidonic acid release, PGE(2) generation, and COX-2 induction in interleukin-1-stimulated cells, particularly when the sPLA(2)-IIA expression level was suboptimal. Immunofluorescent microscopic analyses of cytokine-stimulated cells revealed that sPLA(2)-IIA was present in the caveolae, a microdomain in which GPI-anchored proteins reside, and also appeared in the perinuclear area in proximity to COX-2. We therefore propose that a GPI-anchored HSPG glypican facilitates the trafficking of sPLA(2)-IIA into particular subcellular compartments, and arachidonic acid thus released from the compartments may link efficiently to the downstream COX-2-mediated PG biosynthesis.
Collapse
Affiliation(s)
- M Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan
| | | | | | | | | | | |
Collapse
|
1465
|
Teubl M, Groschner K, Kohlwein SD, Mayer B, Schmidt K. Na(+)/Ca(2+) exchange facilitates Ca(2+)-dependent activation of endothelial nitric-oxide synthase. J Biol Chem 1999; 274:29529-35. [PMID: 10506218 DOI: 10.1074/jbc.274.41.29529] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent evidence suggests the expression of a Na(+)/Ca(2+) exchanger (NCX) in vascular endothelial cells. To elucidate the functional role of endothelial NCX, we studied Ca(2+) signaling and Ca(2+)-dependent activation of endothelial nitric-oxide synthase (eNOS) at normal, physiological Na(+) gradients and after loading of endothelial cells with Na(+) ions using the ionophore monensin. Monensin-induced Na(+) loading markedly reduced Ca(2+) entry and, thus, steady-state levels of intracellular free Ca(2+) ([Ca(2+)](i)) in thapsigargin-stimulated endothelial cells due to membrane depolarization. Despite this reduction of overall [Ca(2+)](i), Ca(2+)-dependent activation of eNOS was facilitated as indicated by a pronounced leftward shift of the Ca(2+) concentration response curve in monensin-treated cells. This facilitation of Ca(2+)-dependent activation of eNOS was strictly dependent on the presence of Na(+) ions during treatment of the cells with monensin. Na(+)-induced facilitation of eNOS activation was not due to a direct effect of Na(+) ions on the Ca(2+) sensitivity of the enzyme. Moreover, the effect of Na(+) was not related to Na(+) entry-induced membrane depolarization or suppression of Ca(2+) entry, since neither elevation of extracellular K(+) nor the Ca(2+) entry blocker 1-(beta-[3-(4-methoxyphenyl)-propoxy]-4-methoxyphenethyl)-1H-imidazol e hydrochloride (SK&F 96365) mimicked the effects of Na(+) loading. The effects of monensin were completely blocked by 3', 4'-dichlorobenzamil, a potent and selective inhibitor of NCX, whereas the structural analog amiloride, which barely affects Na(+)/Ca(2+) exchange, was ineffective. Consistent with a pivotal role of Na(+)/Ca(2+) exchange in Ca(2+)-dependent activation of eNOS, an NCX protein was detected in caveolin-rich membrane fractions containing both eNOS and caveolin-1. These results demonstrate for the first time a crucial role of cellular Na(+) gradients in regulation of eNOS activity and suggest that a tight functional interaction between endothelial NCX and eNOS may take place in caveolae.
Collapse
Affiliation(s)
- M Teubl
- Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|
1466
|
Liu P, Li WP, Machleidt T, Anderson RG. Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nat Cell Biol 1999; 1:369-75. [PMID: 10559965 DOI: 10.1038/14067] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Caveolin-1 is a protein component (of relative molecular mass 22, 000) of the striated coat that decorates the cytoplasmic surface of caveolae membranes. Previous biochemical and molecular tests have indicated that caveolin-1 is an integral membrane protein that is co-translationally inserted into endoplasmic-reticulum membranes of fibroblast and epithelial cells such that its carboxy- and amino-terminal ends are in the cytoplasm. Here we identify caveolin-1 in the secretory pathway of exocrine cells. Secretion of caveolin-1 from pancreatic acinar cells and a transfected exocrine cell line, but not from Chinese hamster ovary cells, is stimulated by the secretagogues secretin, cholecystokinin and dexamethasone. The secreted caveolin-1 co-fractionates with apolipoproteins, indicating that it may be secreted in a complex with lipids.
Collapse
Affiliation(s)
- P Liu
- Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9039, USA
| | | | | | | |
Collapse
|
1467
|
Fortna RR, Watson HA, Nyquist SE. Glycosyl phosphatidylinositol-anchored ceruloplasmin is expressed by rat Sertoli cells and is concentrated in detergent-insoluble membrane fractions. Biol Reprod 1999; 61:1042-9. [PMID: 10491642 DOI: 10.1095/biolreprod61.4.1042] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The copper-binding protein, ceruloplasmin, is both a serum component and a secretory product of Sertoli cells. Studies on serum ceruloplasmin have demonstrated it to be a ferroxidase that is essential for iron transport throughout the body. We report here that a glycosyl phosphatidylinositol (GPI)-anchored form of ceruloplasmin is expressed by Sertoli cells. Sertoli cell GPI-anchored proteins were selectively released by phosphatidylinositol-specific phospholipase C and were analyzed by Western blotting. A 135-kDa band was identified as ceruloplasmin by multiple antibody recognition and by amino acid sequence analysis. The presence of the GPI anchor on ceruloplasmin was confirmed by Triton X-114 phase partitioning experiments and by recognition with an antibody to the GPI anchor. GPI-anchored ceruloplasmin was enriched in detergent-insoluble glycolipid-enriched membrane microdomains (DIGs) of Sertoli cells. This is the first report of GPI-anchored ceruloplasmin in Sertoli cells and the first study of GPI-anchored ceruloplasmin in DIGs. We suggest that GPI-anchored ceruloplasmin may be the dominant form expressed by Sertoli cells and that Sertoli cell DIGs may play a role in iron metabolism within the seminiferous tubule.
Collapse
Affiliation(s)
- R R Fortna
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania 17837, USA.
| | | | | |
Collapse
|
1468
|
Trouet D, Nilius B, Jacobs A, Remacle C, Droogmans G, Eggermont J. Caveolin-1 modulates the activity of the volume-regulated chloride channel. J Physiol 1999; 520 Pt 1:113-9. [PMID: 10517805 PMCID: PMC2269555 DOI: 10.1111/j.1469-7793.1999.t01-1-00113.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. Caveolae are small invaginations of the plasma membrane that have recently been implicated in signal transduction. In the present study, we have investigated whether caveolins, the principal protein of caveolae, also modulate volume-regulated anion channels (VRACs). 2. ICl,swell, the cell swelling-induced chloride current through VRACs, was studied in three caveolin-1-deficient cell lines: Caco-2, MCF-7 and T47D. 3. Electrophysiological measurements showed that ICl, swell was very small in these cells and that transient expression of caveolin-1 restored ICl,swell. The caveolin-1 effect was isoform specific: caveolin-1beta but not caveolin-1alpha upregulated VRACs. This correlated with a different subcellular distribution of caveolin-1alpha (perinuclear location) from caveolin-1beta (perinuclear and peripheral). 4. To explain the modulation of ICl, swell by caveolin-1 we propose that caveolin increases the availability of VRACs in the plasma membrane or, alternatively, that it plays a crucial role in the signal transduction cascade of VRACs.
Collapse
Affiliation(s)
- D Trouet
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
1469
|
Brown MS, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A 1999; 96:11041-8. [PMID: 10500120 PMCID: PMC34238 DOI: 10.1073/pnas.96.20.11041] [Citation(s) in RCA: 1020] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The integrity of cell membranes is maintained by a balance between the amount of cholesterol and the amounts of unsaturated and saturated fatty acids in phospholipids. This balance is maintained by membrane-bound transcription factors called sterol regulatory element-binding proteins (SREBPs) that activate genes encoding enzymes of cholesterol and fatty acid biosynthesis. To enhance transcription, the active NH(2)-terminal domains of SREBPs are released from endoplasmic reticulum membranes by two sequential cleavages. The first is catalyzed by Site-1 protease (S1P), a membrane-bound subtilisin-related serine protease that cleaves the hydrophilic loop of SREBP that projects into the endoplasmic reticulum lumen. The second cleavage, at Site-2, requires the action of S2P, a hydrophobic protein that appears to be a zinc metalloprotease. This cleavage is unusual because it occurs within a membrane-spanning domain of SREBP. Sterols block SREBP processing by inhibiting S1P. This response is mediated by SREBP cleavage-activating protein (SCAP), a regulatory protein that activates S1P and also serves as a sterol sensor, losing its activity when sterols overaccumulate in cells. These regulated proteolytic cleavage reactions are ultimately responsible for controlling the level of cholesterol in membranes, cells, and blood.
Collapse
Affiliation(s)
- M S Brown
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235, USA.
| | | |
Collapse
|
1470
|
Campbell L, Hollins AJ, Al-Eid A, Newman GR, von Ruhland C, Gumbleton M. Caveolin-1 expression and caveolae biogenesis during cell transdifferentiation in lung alveolar epithelial primary cultures. Biochem Biophys Res Commun 1999; 262:744-51. [PMID: 10471396 DOI: 10.1006/bbrc.1999.1280] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caveolae are omega-shaped invaginations of the plasmalemma possessing a cytoplasmic membrane protein coat of caveolin. Caveolae are present in the in vivo alveolar epithelial type I (ATI) lung cell, but absent in its progenitor, the alveolar epithelial type II (ATII) cell. In primary culture ATII cells grown on a plastic substratum acquire with time an ATI-"like" phenotype. We demonstrate that freshly isolated rat ATII cells lack caveolae and expression of caveolin-1 (a critical caveolae structural protein). As the ATII cells acquire an ATI-like phenotype in primary culture caveolin-1 expression increases, with caveolin-1 signal at 192 h postseeding up to 50-fold greater than at 60 h; caveolae were morphologically evident only after 132 h. When maintaining the differentiated ATII phenotype with time, i.e., culture upon collagen with an apical interface of air, a temporal increase in caveolin-1 expression was not observed, with only very faint signals evident even at 192 h postseeding; at no time did these cultures display caveolae. In late primary ATII cultures caveolin-1 expression and caveolae biogenesis occur as a function of in vitro transformation from the ATII to the ATI-like phenotype. The results have broad implications for the in vitro study of the role of caveolae and caveolin in alveolar epithelial cell biology.
Collapse
Affiliation(s)
- L Campbell
- Welsh School of Pharmacy, Cardiff University, Cardiff, CF10 3XF, United Kingdom
| | | | | | | | | | | |
Collapse
|
1471
|
Kittel A, Kaczmarek E, Sevigny J, Lengyel K, Csizmadia E, Robson SC. CD39 as a caveolar-associated ectonucleotidase. Biochem Biophys Res Commun 1999; 262:596-9. [PMID: 10471369 DOI: 10.1006/bbrc.1999.1254] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CD39 is a human lymphoid cell activation antigen, (also referred to E-ATPDase or apyrase) that hydrolyzes extracellular ATP and ADP. Although it has been widely studied, its physiological role, however, still remains unclear. This ectonucleotidase generally is said to be evenly distributed in the membrane of the cells. However, we observed that in cell types which possess caveolae, specialised membrane invaginations involved in signalling, CD39 is preferentially targeted to these membrane microdomains. Since all molecules involved in signalling (eNOS, G-proteins, receptors) which are targeted to the caveolae undergo posttranslational modifications (e.g., palmitoylation) we hypothesize the same to be the case for CD39. Furthermore, its presence in the caveolae supports its participation in signalling events.
Collapse
Affiliation(s)
- A Kittel
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1450, Hungary.
| | | | | | | | | | | |
Collapse
|
1472
|
Co-expression of scavenger receptor-BI and caveolin-1 is associated with enhanced selective cholesteryl ester uptake in THP-1 macrophages. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33410-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
1473
|
Abstract
Even though the modulation of EGF receptors by PDGF is well documented, it is not known where on the cell surface cross-talk between the two receptor systems takes place. The recent finding that both populations of receptors are concentrated in cell surface caveolae suggestes that the confinement of the two receptors to this space might facilitate their interaction. Here we show that stimulation of PDGF receptors in caveolae with PDGF causes a subpopulation of EGF receptors in the same membrane fraction to become phosphorylated on tyrosine. Coincident with tyrosine phosphorylation, the binding of EGF to its receptor markedly declines. Loss of EGF binding is partially blocked by tyrosine kinase inhibitors. Despite the close proximity of the two receptors in caveolae, we saw no evidence that EGF could stimulated PDGFR tyrosine phosphorylation. These results suggest that these two receptor systems are highly organized in caveolae.
Collapse
Affiliation(s)
- P Liu
- Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, 75235-9039, USA
| | | |
Collapse
|
1474
|
Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, Proia RL. A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci U S A 1999; 96:9142-7. [PMID: 10430909 PMCID: PMC17746 DOI: 10.1073/pnas.96.16.9142] [Citation(s) in RCA: 368] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glycosphingolipids (GSLs) are believed to be integral for the dynamics of many cell membrane events, including cellular interactions, signaling, and trafficking. We have investigated their roles in development and differentiation by eliminating the major synthesis pathway of GSLs through targeted disruption of the Ugcg gene encoding glucosylceramide synthase. In the absence of GSL synthesis, embryogenesis proceeded well into gastrulation with differentiation into primitive germ layers and patterning of the embryo but was abruptly halted by a major apoptotic process. In vivo, embryonic stem cells deficient in GSL synthesis were again able to differentiate into endodermal, mesodermal, and ectodermal derivatives but were strikingly deficient in their ability to form well differentiated tissues. In vitro, however, hematopoietic and neuronal differentiation could be induced. The results demonstrate that the synthesis of GSL structures is essential for embryonic development and for the differentiation of some tissues and support the concept that GSLs are involved in crucial cell interactions mediating these processes.
Collapse
Affiliation(s)
- T Yamashita
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
1475
|
Payne SG, Brindley DN, Guilbert LJ. Epidermal growth factor inhibits ceramide-induced apoptosis and lowers ceramide levels in primary placental trophoblasts. J Cell Physiol 1999; 180:263-70. [PMID: 10395296 DOI: 10.1002/(sici)1097-4652(199908)180:2<263::aid-jcp14>3.0.co;2-h] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The activation of sphingomyelinase and the subsequent generation of ceramide are emerging as important components of signaling pathways leading to apoptosis. The combination of tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) induces apoptosis of primary placental trophoblasts in vitro. This apoptosis is inhibited completely by cotreatment with epidermal growth factor (EGF). We therefore examined the role of sphingomyelinase and ceramide in trophoblast apoptosis and how this may be influenced by EGF. Exogenous C16-ceramide (20 microM) and acid sphingomyelinase induced trophoblast apoptosis, an effect abrogated completely by cotreatment with 10 ng/ml EGF. Neutral sphingomyelinase also increased ceramide levels but did not induce apoptosis. Treatment with EGF alone decreased cellular ceramide levels. This decrease could be blocked by cotreatment with the acid ceramidase inhibitor N-oleoylethanolamine (OE). OE alone increased ceramide levels and induced apoptosis that could not be blocked by cotreatment with EGF. In contrast, the alkaline ceramidase inhibitor D-MAPP, although it also increased ceramide levels, did not induce apoptosis nor did it affect TNF-alpha/IFN-alpha-induced cell death. These results implicate sphingolipids as important mediators in trophoblast apoptosis and suggest that the antiapoptotic properties of EGF can in part be explained by its control of ceramide concentrations in trophoblasts.
Collapse
Affiliation(s)
- S G Payne
- Department of Medical Microbiology and Immunology (Perinatal Research Centre), University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
1476
|
Ge M, Field KA, Aneja R, Holowka D, Baird B, Freed JH. Electron spin resonance characterization of liquid ordered phase of detergent-resistant membranes from RBL-2H3 cells. Biophys J 1999; 77:925-33. [PMID: 10423437 PMCID: PMC1300383 DOI: 10.1016/s0006-3495(99)76943-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The dynamic structure of detergent-resistant membranes (DRMs) isolated from RBL-2H3 cells was characterized using two different acyl chain spin-labeled phospholipids (5PC and 16PC), a headgroup labeled sphingomyelin (SM) analog (SD-Tempo) and a spin-labeled cholestane (CSL). It was shown, by comparison to dispersions of SM, dipalmitoylphosphatidylcholine (DPPC), and DPPC/cholesterol of molar ratio 1, that DRM contains a substantial amount of liquid ordered phase: 1) The rotational diffusion rates (R( perpendicular)) of 16PC in DRM between -5 degrees C and 45 degrees C are nearly the same as those in molar ratio DPPC/Chol = 1 dispersions, and they are substantially greater than R( perpendicular) in pure DPPC dispersions in the gel phase studied above 20 degrees C; 2) The order parameters (S) of 16PC in DRM at temperatures above 4 degrees C are comparable to those in DPPC/Chol = 1 dispersions, but are greater than those in DPPC dispersions in both the gel and liquid crystalline phases. 3) Similarly, R( perpendicular) for 5PC and CSL in DRM is greater than in pure SM dispersions in the gel phase, and S for these labels in DRM is greater than in the SM dispersions in both the gel and liquid crystalline phases. 4) R( perpendicular) of SD-Tempo in DRM is greater than in dispersions of SM in both gel and liquid phases, consistent with the liquid-like mobility in the acyl chain region in DRM. However, S of SD-Tempo in DRM is substantially less than that of this spin label in SM in gel and liquid crystalline phases (in absolute values), indicating that the headgroup region in DRMs is less ordered than in pure SM. These results support the hypothesis that plasma membranes contain DRM domains with a liquid ordered phase that may coexist with a liquid crystalline phase. There also appears to be a coexisting region in DRMs in which the chain labels 16PC and 5PC are found to cluster. We suggest that other biological membranes containing high concentrations of cholesterol also contain a liquid ordered phase.
Collapse
Affiliation(s)
- M Ge
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
1477
|
Krönke M. Biophysics of ceramide signaling: interaction with proteins and phase transition of membranes. Chem Phys Lipids 1999; 101:109-21. [PMID: 10810929 DOI: 10.1016/s0009-3084(99)00059-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ceramides have been implied in intracellular signal transduction systems regulating cellular differentiation, activation, survival and apoptosis and thus appear capable of changing the life style of virtually any cell type. Ceramide belongs to the group of sphingosine-based lipid second messenger molecules that are critically involved in the regulation of diverse cellular responses to exogenous stimuli. The emerging picture suggests that coupling of ceramide to specific signaling cascades is both stimulus and cell-type specific and depends on the subcellular topology of its production. However, little is understood about the molecular mode of ceramide action. In particular, in lieu of a defined ceramide binding motif it is not clear how ceramide would directly interact with putative target signaling proteins. This article proposes two modes of ceramide action. First, a protruding alkyl chain of ceramide may interact with a hydrophobic cavity of a signaling protein providing a lipid anchor to attach proteins to membranes. Second, the generation of ceramide generally increases the volume of hydrocarbon chains within the lipid bilayer thereby enhancing its propensity of to form a hexagonal II phase (Hex II). Besides the generation of a hydrophobic interaction site for proteins local hexagonal phase II formation can also change the membrane fluidity and permeability, which may impinge on membrane fusion processes, solubilization of detergent-resistant signaling rafts, or membrane receptor internalization. Thus, ceramide production by sphingomyelinases (SMase) can play a pivotal signaling role through direct interaction with signaling proteins or through facilitating the formation and trafficking of signal transduction complexes.
Collapse
Affiliation(s)
- M Krönke
- Institute of Medical Microbiology and Hygiene, University of Cologne, Koln, Germany
| |
Collapse
|
1478
|
Maekawa S, Sato C, Kitajima K, Funatsu N, Kumanogoh H, Sokawa Y. Cholesterol-dependent localization of NAP-22 on a neuronal membrane microdomain (raft). J Biol Chem 1999; 274:21369-74. [PMID: 10409698 DOI: 10.1074/jbc.274.30.21369] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A membrane microdomain called raft has been under extensive study since the assembly of various signal-transducing molecules into this region has been envisaged. This domain is isolated as a low buoyant membrane fraction after the extraction with a nonionic detergent such as Triton X-100. The characteristic low density of this fraction is ascribed to the enrichment of several lipids including cholesterol. To clear the molecular mechanism of raft formation, several extraction methods were applied to solubilize raft components. Cholesterol extraction using methyl-beta-cyclodextrin was found to be effective to solubilize NAP-22, a neuron-enriched Ca(2+)-dependent calmodulin-binding protein as well as one of the main protein components of brain raft. Purified NAP-22 bound to the liposomes that were made from phosphatidylcholine and cholesterol. This binding was dependent on the amount of cholesterol in liposomes. Calmodulin inhibited this binding in a dose-dependent manner. These results suggest that the presence of a calcium-dependent regulatory mechanism works on the assembly of raft within the neuron.
Collapse
Affiliation(s)
- S Maekawa
- Department of Biotechnology, Faculty of Textile Science, Kyoto Institute of Technology, Kyoto, 606-8585, Japan.
| | | | | | | | | | | |
Collapse
|
1479
|
Michaely PA, Mineo C, Ying YS, Anderson RG. Polarized distribution of endogenous Rac1 and RhoA at the cell surface. J Biol Chem 1999; 274:21430-6. [PMID: 10409706 DOI: 10.1074/jbc.274.30.21430] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rac1 and RhoA regulate membrane ruffling and stress fiber formation. Both molecules appear to exert their control from the plasma membrane. In fibroblasts stimulated with platelet-derived growth factor or lysophosphatidic acid, the reorganization of the cytoskeleton begins at specific sites on the cell surface. We now report that endogenous Rac1 and RhoA also have a polarized distribution at the cell surface. Cell fractionation and immunogold labeling show that in quiescent fibroblasts both of these molecules are concentrated in caveolae, which are plasma membrane domains that are associated with actin-rich regions of the cell. Treatment of these cells with platelet-derived growth factor stimulated the recruitment of additional Rac1 and RhoA to caveolae fractions, while lysophosphatidic acid only caused the recruitment of RhoA. We could reconstitute the recruitment of RhoA using either whole cell lysates or purified caveolae. Surprisingly, pretreatment of the lysates with exoenzyme C3 shifted both resident and recruited RhoA from caveolae to noncaveolae membranes. The shift in location was not caused by inactivation of the RhoA effector domain. Moreover, chimeric proteins containing the C-terminal consensus site for Rac1 and RhoA prenylation were constitutively targeted to caveolae fractions. These results suggest that the polarized distribution of Rho family proteins at the cell surface involves an initial targeting of the protein to caveolae and a mechanism for retaining it at this site.
Collapse
Affiliation(s)
- P A Michaely
- Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9039, USA
| | | | | | | |
Collapse
|
1480
|
Affiliation(s)
- T Magee
- Division of Membrane Biology, National Institute for Medical Research, London, United Kingdom
| | | |
Collapse
|
1481
|
Lencer WI, Hirst TR, Holmes RK. Membrane traffic and the cellular uptake of cholera toxin. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1450:177-90. [PMID: 10395933 DOI: 10.1016/s0167-4889(99)00070-1] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In nature, cholera toxin (CT) and the structurally related E. coli heat labile toxin type I (LTI) must breech the epithelial barrier of the intestine to cause the massive diarrhea seen in cholera. This requires endocytosis of toxin-receptor complexes into the apical endosome, retrograde transport into Golgi cisternae or endoplasmic reticulum (ER), and finally transport of toxin across the cell to its site of action on the basolateral membrane. Targeting into this pathway depends on toxin binding ganglioside GM1 and association with caveolae-like membrane domains. Thus to cause disease, both CT and LTI co-opt the molecular machinery used by the host cell to sort, move, and organize their cellular membranes and substituent components.
Collapse
Affiliation(s)
- W I Lencer
- Combined Program in Pediatric Gastroenterology, Children's Hospital, Harvard Medical School, Harvard Digestive Diseases Center, Boston, MA, USA.
| | | | | |
Collapse
|
1482
|
Abstract
How does the Golgi stack mediate transport of cargo from the endoplasmic reticulum (ER) to the cell surface? A possibility is that cargo-containing vesicles derived from the ER form early Golgi compartments that then mature by retrieval of processing enzymes from later Golgi compartments. Maturation continues at terminal Golgi compartments by retrieval of transport components from the endocytic pathway to promote sorting of cargo to multiple cellular destinations. Hence, retrograde movement may integrate exocytic and endocytic pathways in eukaryotic cells and coordinate membrane flow and cargo transport through the Golgi stack.
Collapse
Affiliation(s)
- B B Allan
- The Scripps Research Institute, Department of Cell Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
1483
|
Luetterforst R, Stang E, Zorzi N, Carozzi A, Way M, Parton RG. Molecular characterization of caveolin association with the Golgi complex: identification of a cis-Golgi targeting domain in the caveolin molecule. J Cell Biol 1999; 145:1443-59. [PMID: 10385524 PMCID: PMC2133166 DOI: 10.1083/jcb.145.7.1443] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Caveolins are integral membrane proteins which are a major component of caveolae. In addition, caveolins have been proposed to cycle between intracellular compartments and the cell surface but the exact trafficking route and targeting information in the caveolin molecule have not been defined. We show that antibodies against the caveolin scaffolding domain or against the COOH terminus of caveolin-1 show a striking specificity for the Golgi pool of caveolin and do not recognize surface caveolin by immunofluorescence. To analyze the Golgi targeting of caveolin in more detail, caveolin mutants were expressed in fibroblasts. Specific mutants lacking the NH2 terminus were targeted to the cis Golgi but were not detectable in surface caveolae. Moreover, a 32-amino acid segment of the putative COOH-terminal cytoplasmic domain of caveolin-3 was targeted specifically and exclusively to the Golgi complex and could target a soluble heterologous protein, green fluorescent protein, to this compartment. Palmitoylation-deficient COOH-terminal mutants showed negligible association with the Golgi complex. This study defines unique Golgi targeting information in the caveolin molecule and identifies the cis Golgi complex as an intermediate compartment on the caveolin cycling pathway.
Collapse
Affiliation(s)
- R Luetterforst
- Centre for Microscopy and Microanalysis, Department of Physiology and Pharmacology, and Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
1484
|
Ko YG, Lee JS, Kang YS, Ahn JH, Seo JS. TNF-α-Mediated Apoptosis Is Initiated in Caveolae-Like Domains. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.12.7217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Caveolae-like domains (CLDs) have been hypothesized to mediate apoptosis, since they contain sphingomyelin and initiate the conversion of sphingomyelin to ceramide. To address whether CLDs are directly involved in apoptosis, CLDs from U937 cells were isolated, taking advantage of their detergent insolubility and low density. The CLDs contained alkaline phosphatase as well as many signaling molecules, including Fyn, protein kinase Cα, Raf-1, phospholipase Cγ1, and tyrosine phosphoproteins. Immunoblotting and immunofluorescent data showed that TNF receptor 1 colocalized with CD36 in CLDs, suggesting that TNF-α-initiated apoptosis occurs in CLDs. When cells were incubated with lipoprotein-deficient medium, the cholesterol concentration was greatly decreased in CLDs but not in other fractions, implying that the CLDs were selectively disrupted. In the CLD-disrupted cells, the surface expression of TNF receptor 1 and CD36 was significantly reduced. Analysis of cellular morphology, percent DNA fragmentation, DNA laddering, and caspase-3 activity showed that TNF-α-mediated apoptosis was blocked in CLD-disrupted cells, whereas anti-Fas-mediated apoptosis was not. Since Fas was not found in CLDs of Jurkat cells, apoptosis by Fas ligation might not require CLDs. Taken together, these data strongly imply that TNF-α-mediated apoptosis is initiated in CLDs.
Collapse
Affiliation(s)
- Young-Gyu Ko
- Ilchun Molecular Medicine Institute Medical Research Center, Cancer Research Center, and Department of Biochemistry, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Seon Lee
- Ilchun Molecular Medicine Institute Medical Research Center, Cancer Research Center, and Department of Biochemistry, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Sun Kang
- Ilchun Molecular Medicine Institute Medical Research Center, Cancer Research Center, and Department of Biochemistry, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Hyuck Ahn
- Ilchun Molecular Medicine Institute Medical Research Center, Cancer Research Center, and Department of Biochemistry, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong-Sun Seo
- Ilchun Molecular Medicine Institute Medical Research Center, Cancer Research Center, and Department of Biochemistry, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
1485
|
Stan RV, Ghitescu L, Jacobson BS, Palade GE. Isolation, cloning, and localization of rat PV-1, a novel endothelial caveolar protein. J Biophys Biochem Cytol 1999; 145:1189-98. [PMID: 10366592 PMCID: PMC2133139 DOI: 10.1083/jcb.145.6.1189] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
By using an immunoisolation procedure (Stan, R.-V., W.G. Roberts, K. Ihida, D. Predescu, L. Saucan, L. Ghitescu, and G.E. Palade. 1997. Mol. Biol. Cell. 8:595-605) developed in our laboratory, we have isolated a caveolar subfraction from rat lung endothelium and we have partially characterized the proteins of this subfraction which include an apparently caveolae-specific glycoprotein we propose to call PV-1 (formerly known as gp68). The isolation and partial sequencing of PV-1, combined with the cloning of the full length PV-1 cDNA led to the following conclusions: (a) PV-1 is a novel single span type II integral membrane protein (438 amino acids long) which forms homodimers in situ; (b) the transmembrane domain of PV-1 is near the NH2 terminus defining a short cytoplasmic endodomain and a large COOH-terminal ectodomain exposed to the blood plasma; (c) PV-1 is N-glycosylated and its glycan antennae bear terminal nonreducing galactosyl residues in alpha1-3 linkage. PV-1 is expressed mostly in the lung but both the messenger RNA and the protein can be detected at lower levels also in kidney, spleen, liver, heart, muscle, and brain. No signal could be detected in testis and two lower molecular weight forms were detected in brain. Immunocytochemical studies carried out by immunodiffusion on rat lung with an anti-PV-1 polyclonal antibody directed against a COOH-terminal epitope reveal a specific localization of PV-1 to the stomatal diaphragms of rat lung endothelial caveolae and confirm the extracellular orientation of the PV-1 COOH terminus.
Collapse
Affiliation(s)
- R V Stan
- Division of Cellular and Molecular Medicine, University of California, San Diego, San Diego, California 92093, USA
| | | | | | | |
Collapse
|
1486
|
|
1487
|
Owen DJ, Vallis Y, Noble ME, Hunter JB, Dafforn TR, Evans PR, McMahon HT. A structural explanation for the binding of multiple ligands by the alpha-adaptin appendage domain. Cell 1999; 97:805-15. [PMID: 10380931 DOI: 10.1016/s0092-8674(00)80791-6] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The alpha subunit of the endocytotic AP2 adaptor complex contains a 30 kDa "appendage" domain, which is joined to the rest of the protein via a flexible linker. The 1.9 A resolution crystal structure of this domain reveals a single binding site for its ligands, which include amphiphysin, Eps15, and epsin. This domain when overexpressed in COS7 fibroblasts is shown to inhibit transferrin uptake, whereas mutants in which interactions with its binding partners are abolished do not. DPF/W motifs present in appendage domain-binding partners are shown to play a crucial role in their interactions with the domain. A single site for binding multiple ligands would allow for temporal and spatial regulation in the recruitment of components of the endocytic machinery.
Collapse
Affiliation(s)
- D J Owen
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
1488
|
|
1489
|
Pol A, Calvo M, Lu A, Enrich C. The "early-sorting" endocytic compartment of rat hepatocytes is involved in the intracellular pathway of caveolin-1 (VIP-21). Hepatology 1999; 29:1848-57. [PMID: 10347129 DOI: 10.1002/hep.510290602] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The sinusoidal plasma membrane of the hepatocyte is organized into functional and structural microdomains whose origin, maintenance, and functioning are closely related with the endocytic compartment. Three different subcellular fractions, from rat liver, containing caveolin-1, the structural protein of caveolae, were morphologically and biochemically characterized. A caveolae-enriched plasma membrane fraction (CEF), contains large membrane structures surrounding attached internal plasmalemmal vesicles; the receptor-recycling compartment (RRC), contains tubules and vesicles with similar morphology to the internal vesicles observed by electron microscopy in CEF; and finally, caveolin-1 was also detected in early-sorting endosomes (CURL, compartment of uncoupling receptors and ligands). In this study, we show that following an intravenous administration of retinol-binding protein (RBP), there was a redistribution of caveolin-1 from the plasma membrane (CEF) to intracellular endocytic compartments (RRC and early-sorting endosomes). Thus, these results indicate that, in the hepatocyte, caveolae are dynamic structures actively interacting with the endocytic compartment.
Collapse
Affiliation(s)
- A Pol
- Departament de Biologia Cellular, Institut de Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
1490
|
Scheel J, Srinivasan J, Honnert U, Henske A, Kurzchalia TV. Involvement of caveolin-1 in meiotic cell-cycle progression in Caenorhabditis elegans. Nat Cell Biol 1999; 1:127-9. [PMID: 10559886 DOI: 10.1038/10100] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J Scheel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | | |
Collapse
|
1491
|
Roy S, Luetterforst R, Harding A, Apolloni A, Etheridge M, Stang E, Rolls B, Hancock JF, Parton RG. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol 1999; 1:98-105. [PMID: 10559881 DOI: 10.1038/10067] [Citation(s) in RCA: 289] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The plasma membrane pits known as caveolae have been implicated both in cholesterol homeostasis and in signal transduction. CavDGV and CavKSY, two dominant-negative amino-terminal truncation mutants of caveolin, the major structural protein of caveolae, significantly inhibited caveola-mediated SV40 infection, and were assayed for effects on Ras function. We find that CavDGV completely blocked Raf activation mediated by H-Ras, but not that mediated by K-Ras. Strikingly, the inhibitory effect of CavDGV on H-Ras signalling was completely reversed by replenishing cell membranes with cholesterol and was mimicked by cyclodextrin treatment, which depletes membrane cholesterol. These results provide a crucial link between the cholesterol-trafficking role of caveolin and its postulated role in signal transduction through cholesterol-rich surface domains. They also provide direct evidence that H-Ras and K-Ras, which are targeted to the plasma membrane by different carboxy-terminal anchors, operate in functionally distinct microdomains of the plasma membrane.
Collapse
Affiliation(s)
- S Roy
- Queensland Cancer Fund Laboratory of Experimental Oncology, Department of Pathology, University of Queensland Medical School, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
1492
|
Ohta K, Sato C, Matsuda T, Toriyama M, Lennarz WJ, Kitajima K. Isolation and characterization of low density detergent-insoluble membrane (LD-DIM) fraction from sea urchin sperm. Biochem Biophys Res Commun 1999; 258:616-23. [PMID: 10383376 DOI: 10.1006/bbrc.1999.0686] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The low density detergent-insoluble membrane (LD-DIM) fraction was obtained by a sucrose-density gradient centrifugation from sperm of three sea urchin species, Hemicentrotus pulcherrimus, Strongylocentrotus purpuratus, and Anthocidaris crassispina. These LD-DIM preparations were characterized by enriched glycosphingolipids (GSL) including gangliosides and sulfatide (SLF), having more than 50% of the total amount of GSL present in these sperm. Interestingly, a minor component of H. pulcherrimus sperm (HO3S-->8Neu5Acalpha2-->8Neu5Acalpha2-->6Glcbeta1++ +-->Cer) was shown to be even more enriched in the LD-DIM as revealed by using monoclonal antibody (mAb.3G9) speific to this ganglioside. In addition to the GSL, phosphatidyl-serine (PS) and diacylglcerol (DG) were enriched in the LD-DIM. On the other hand, cholesterol (CL) and sphingomyelin (SM) were not so enriched, which contrasted with the LD-DIM from Madin-Darby canine kidney (MDCK) cells, where CL and SM were reported to be abundant. Because mammalian somatic cell-derived DIMs have been proposed to be associated with functional signal transduction, it seems possible that the ganglioside-enriched LD-DIM in sea urchin sperm can participate in binding to eggs and the subsequent egg activation process. To our knowledge this is the chemical characterization of the LD-DIM fraction of a gametic cell.
Collapse
Affiliation(s)
- K Ohta
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
1493
|
Ostrom RS, Insel PA. Caveolar microdomains of the sarcolemma: compartmentation of signaling molecules comes of age. Circ Res 1999; 84:1110-2. [PMID: 10325248 DOI: 10.1161/01.res.84.9.1110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
1494
|
Schwab W, Hempel U, Funk RH, Kasper M. Ultrastructural identification of caveolae and immunocytochemical as well as biochemical detection of caveolin in chondrocytes. THE HISTOCHEMICAL JOURNAL 1999; 31:315-20. [PMID: 10461866 DOI: 10.1023/a:1003718002088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using fluorescence immunocytochemistry, transmission electron microscopy and Western blotting, we have shown that caveolae and caveolin are abundant on chondrocytes of different cartilaginous structures of newborn and adult rat knee joints. Caveolin was detected in chondrocytes of the outer layer of articular cartilage, in the fibrocartilage of the menisci, and in fibrocartilage-like cells at tendon and ligament insertions. Electron microscopical studies revealed caveolae-like invaginations along the plasmalemmal membrane of articular chondrocytes and fibrocartilage cells. Immunoblot analysis demonstrated caveolin in detergent-insoluble and soluble complexes isolated from cultured rat chondrocytes.
Collapse
Affiliation(s)
- W Schwab
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany
| | | | | | | |
Collapse
|
1495
|
Affiliation(s)
- L Liscum
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | | |
Collapse
|
1496
|
Abstract
MHC class I molecules are a necessary component of the cell surface receptor for simian virus 40 (SV40). After binding to class I molecules, SV40 enters cells via a unique endocytic pathway that involves caveolae, rather than clathrin-coated pits. This pathway is dependent on a transmembrane signal that SV40 transmits from the cell surface. Furthermore, it delivers SV40 to the endoplasmic reticulum, rather than to the endosomal/lysosomal compartment, which is the usual target for endocytic traffic. The glycosphingolipid and cholesterol-enriched plasma membrane domains that contain caveolae are also enriched for class I molecules, relative to whole plasma membrane. Nevertheless, although class I molecules bind SV40, they do not enter with SV40, nor do they enter spontaneously into uninfected SV40 host cells. Instead, they are shed from the cell surface by the activity of a metalloprotease. These results imply the existence of a putative secondary receptor for SV40 that might mediate SV40 entry. It is not yet clear whether class I molecules are active in transmitting the SV40 signal. Monoclonal antibodies against class I molecules also induce a signal in the SV40 host cells. However, the antibody-induced signal is mediated by mitogen-activated protein kinase (MAP kinase), whereas the SV40 signal is independent of MAP kinase.
Collapse
Affiliation(s)
- L C Norkin
- Department of Microbiology, University of Massachusetts, Amherst 01003-5720, USA.
| |
Collapse
|
1497
|
Toran-Allerand CD, Singh M, Sétáló G. Novel mechanisms of estrogen action in the brain: new players in an old story. Front Neuroendocrinol 1999; 20:97-121. [PMID: 10328986 DOI: 10.1006/frne.1999.0177] [Citation(s) in RCA: 345] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Estrogen elicits a selective enhancement of the growth and differentiation of axons and dendrites (neurites) in the developing brain. Widespread colocalization of estrogen and neurotrophin receptors (trk) within estrogen and neurotrophin targets, including neurons of the cerebral cortex, sensory ganglia, and PC12 cells, has been shown to result in differential and reciprocal transcriptional regulation of these receptors by their ligands. In addition, estrogen and neurotrophin receptor coexpression leads to convergence or cross-coupling of their signaling pathways, particularly at the level of the mitogen-activated protein (MAP) kinase cascade. 17beta-Estradiol elicits rapid (within 5-15 min) and sustained (at least 2 h) tyrosine phosphorylation and activation of the MAP kinases, extracellular-signal regulated kinase (ERK)1, and ERK2, which is successfully inhibited by the MAP kinase/ERK kinase 1 inhibitor PD98059, but not by the estrogen receptor (ER) antagonist ICI 182,780 and also does not appear to result from estradiol-induced activation of trk. Furthermore, the ability of estradiol to phosphorylate ERK persists even in ER-alpha knockout mice, implicating other estrogen receptors such as ER-beta in these actions of estradiol. The existence of an estrogen receptor-containing, multimeric complex consisting of hsp90, src, and B-Raf also suggests a direct link between the estrogen receptor and the MAP kinase signaling cascade. Collectively, these novel findings, coupled with our growing understanding of additional signaling substrates utilized by estrogen, provide alternative mechanisms for estrogen action in the developing brain which could explain not only some of the very rapid effects of estrogen, but also the ability of estrogen and neurotrophins to regulate the same broad array of cytoskeletal and growth-associated genes involved in neurite growth and differentiation. This review expands the usually restrictive view of estrogen action in the brain beyond the confines of sexual differentiation and reproductive neuroendocrine function. It considers the much broader question of estrogen as a neural growth factor with important influences on the development, survival, plasticity, regeneration, and aging of the mammalian brain and supports the view that the estrogen receptor is not only a ligand-induced transcriptional enhancer but also a mediator of rapid, nongenomic events.
Collapse
Affiliation(s)
- C D Toran-Allerand
- Department of Anatomy and Cell Biology, Center for Neurobiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
1498
|
Parton RG, Lindsay M. Exploitation of major histocompatibility complex class I molecules and caveolae by simian virus 40. Immunol Rev 1999; 168:23-31. [PMID: 10399062 DOI: 10.1111/j.1600-065x.1999.tb01280.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Simian virus 40 (SV40), a non-enveloped DNA virus, is transported from the cell surface to the nucleus where virus replication occurs. This pathway of virus uptake involves binding to surface MHC class I molecules, entry via non-coated pits, and subsequent transport to the endoplasmic reticulum (ER). At some stage in this pathway the virus must cross a membrane to reach the cytosol. In the present review, the cellular machinery which the virus has utilized to enter the cell will be examined. In particular, we will consider recent evidence for the involvement of caveolae in the infectious entry step and propose a model involving recruitment of caveolar proteins around the membrane-bound virus. We also speculate that a similar mechanism may have been exploited by bacterial pathogens. The subsequent steps by which SV40 reaches the ER remain unclear but recent evidence suggests that this pathway may be shared with several other proteins that are transported from surface caveolae to the ER.
Collapse
Affiliation(s)
- R G Parton
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia.
| | | |
Collapse
|
1499
|
Luttrell LM, Daaka Y, Lefkowitz RJ. Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 1999; 11:177-83. [PMID: 10209148 DOI: 10.1016/s0955-0674(99)80023-4] [Citation(s) in RCA: 525] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitogenic signaling by G-protein-coupled receptors (GPCRs) involves tyrosine phosphorylation of adaptor proteins and assembly of multiprotein Ras activation complexes. Over the past three years, three types of scaffolds for GPCR-directed complex assembly have been identified: transactivated receptor tyrosine kinases (RTKs), integrin-based focal adhesions, and GPCRs themselves. Nonreceptor tyrosine kinases play an important role in each case. The processes of GPCR desensitization and sequestration via clathrin-coated pits are also involved in signaling through the RTK- and GPCR-based scaffolds.
Collapse
Affiliation(s)
- L M Luttrell
- The Howard Hughes Medical Institute, Departments of Medicine, Surgery and Biochemistry, Box 3821, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
1500
|
Abstract
The notion that microdomains enriched in certain specialized lipids exist in membranes has been both attractive and controversial since it was first proposed that such domains, termed rafts, might act as apical sorting devices in epithelial cells. The observation that certain lipids are not extractable in cold nonionic detergent supports the raft concept, but the nature of the in vivo correlate of such detergent-resistant membranes remains enigmatic. In principle, microscopy should be able to determine whether the postulated rafts exist. This article focuses on recent microscopy experiments addressing this question. Several, but not all, results support the raft concept, but further definition of the structure, dynamics and function of lipid domains in various biological contexts is urgently required.
Collapse
Affiliation(s)
- K Jacobson
- Dept of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599-7090, USA
| | | |
Collapse
|