1501
|
Ward IM, Reina-San-Martin B, Olaru A, Minn K, Tamada K, Lau JS, Cascalho M, Chen L, Nussenzweig A, Livak F, Nussenzweig MC, Chen J. 53BP1 is required for class switch recombination. ACTA ACUST UNITED AC 2004; 165:459-64. [PMID: 15159415 PMCID: PMC2172356 DOI: 10.1083/jcb.200403021] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
53BP1 participates early in the DNA damage response and is involved in cell cycle checkpoint control. Moreover, the phenotype of mice and cells deficient in 53BP1 suggests a defect in DNA repair (Ward et al., 2003b). Therefore, we asked whether or not 53BP1 would be required for the efficient repair of DNA double strand breaks. Our data indicate that homologous recombination by gene conversion does not depend on 53BP1. Moreover, 53BP1-deficient mice support normal V(D)J recombination, indicating that 53BP1 is not required for “classic” nonhomologous end joining. However, class switch recombination is severely impaired in the absence of 53BP1, suggesting that 53BP1 facilitates DNA end joining in a way that is not required or redundant for the efficient closing of RAG-induced strand breaks. These findings are similar to those observed in mice or cells deficient in the tumor suppressors ATM and H2AX, further suggesting that the functions of ATM, H2AX, and 53BP1 are closely linked.
Collapse
Affiliation(s)
- Irene M Ward
- 1306 Guggenheim, Mayo Clinic, 200 First St., SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1502
|
Bau DT, Fu YP, Chen ST, Cheng TC, Yu JC, Wu PE, Shen CY. Breast cancer risk and the DNA double-strand break end-joining capacity of nonhomologous end-joining genes are affected by BRCA1. Cancer Res 2004; 64:5013-9. [PMID: 15256476 DOI: 10.1158/0008-5472.can-04-0403] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A tumorigenic role of the nonhomologous end-joining (NHEJ) pathway for the repair of DNA double-strand breaks (DSBs) has been suggested by the finding of a significant association between increased breast cancer risk and a cooperative effect of single nucleotide polymorphisms (SNPs) in NHEJ genes. However, the lack of an association between hereditary breast cancer and defective NHEJ genes prevents conclusions from being drawn about a link between NHEJ and breast cancer development. Recently, BRCA1-deficient mouse embryonic fibroblasts were found to have significantly reduced NHEJ activity, suggesting an accessory role of BRCA1 in NHEJ. The present study was performed to confirm this observation in human breast cancer cell lines and to examine whether the interaction between BRCA1 and NHEJ was of tumorigenic significance. Support for this hypothesis came from the findings that (a) a case-control study (469 breast cancer patients and 740 healthy controls) showed that the breast cancer risk associated with high-risk genotypes of NHEJ genes was significantly modified by the BRCA1 genotype. A significant increase in the cancer risk associated either with harboring one additional putative high-risk NHEJ genotype or with the joint effect of having reproductive risk factors (reflected by an interval of > or =12 years between menarche and first full-term pregnancy) and a higher number of high-risk genotypes of the NHEJ genes was only seen in women with at least one variant BRCA1 allele (i.e., the Glu/Gly or Gly/Gly forms of BRCA1 Glu(1038)Gly); and (b) a phenotype-based study measuring in vitro and in vivo NHEJ capacity showed that the precise end-joining capacity was different in breast cancer cell lines with different BRCA1 statuses being higher in BRCA1-expressing MCF-7 cells than in HCC1937 cells (defective BRCA1 expression). Furthermore, this end-joining capacity was decreased in MCF-7 cells in which BRCA1 expression was blocked using small interfering RNA and increased in HCC1937 transfected with full-length BRCA1. Because BRCA1 is a well-documented breast cancer susceptibility gene, this association between NHEJ and BRCA1 not only suggests a role of BRCA1 in NHEJ but also provides essential support for the tumorigenic contribution of NHEJ in breast cancer development.
Collapse
Affiliation(s)
- Da-Tian Bau
- Institute of Biomedical Sciences and Life Science Library, Academia Sinica, Taipei, 11529 Taiwan
| | | | | | | | | | | | | |
Collapse
|
1503
|
Prithivirajsingh S, Story MD, Bergh SA, Geara FB, Ang KK, Ismail SM, Stevens CW, Buchholz TA, Brock WA. Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett 2004; 571:227-32. [PMID: 15280047 DOI: 10.1016/j.febslet.2004.06.078] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 05/12/2004] [Accepted: 06/29/2004] [Indexed: 11/26/2022]
Abstract
Point mutations and deletions in mitochondrial DNA (mtDNA) accumulate as a result of oxidative stress, including ionizing radiation. As a result, dysfunctional mitochondria suffer from a decline in oxidative phosphorylation and increased release of superoxides and other reactive oxygen species (ROS). Through this mechanism, mitochondria have been implicated in a host of degenerative diseases. Associated with this type of damage, and serving as a marker of total mtDNA mutations and deletions, the accumulation of a specific 4977-bp deletion, known as the common deletion (Delta-mtDNA(4977)), takes place. The Delta-mtDNA(4977) has been reported to increase with age and during the progression of mitochondrial degeneration. The purpose of this study was to investigate whether ionizing radiation induces the formation of the common deletion in a variety of human cell lines and to determine if it is associated with cellular radiosensitivity. Cell lines used included eight normal human skin fibroblast lines, a radiosensitive non-transformed and an SV40 transformed ataxia telangiectasia (AT) homozygous fibroblast line, a Kearns Sayre Syndrome (KSS) line known to contain mitochondrial deletions, and five human tumor lines. The Delta-mtDNA(4977) was assessed by polymerase chain reaction (PCR). Significant levels of Delta-mtDNA(4977) accumulated 72 h after irradiation doses of 2, 5, 10 or 20 Gy in all of the normal lines with lower response in tumor cell lines, but the absolute amounts of the induced deletion were variable. There was no consistent dose-response relationship. SV40 transformed and non-transformed AT cell lines both showed significant induction of the deletion. However, the five tumor cell lines showed only a modest induction of the deletion, including the one line that was deficient in DNA damage repair. No relationship was found between sensitivity to radiation-induced deletions and sensitivity to cell killing by radiation.
Collapse
Affiliation(s)
- Sheela Prithivirajsingh
- Department of Experimental Radiation Oncology, M.D. Anderson Cancer Center, The University of Texas, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1504
|
Affiliation(s)
- Eun Ryoung Jang
- Research Institute, National Cancer Center, Goyang, Gyeonggi, Korea
| | | |
Collapse
|
1505
|
Soubeyrand S, Schild-Poulter C, Haché RJG. Structured DNA promotes phosphorylation of p53 by DNA-dependent protein kinase at serine 9 and threonine 18. ACTA ACUST UNITED AC 2004; 271:3776-84. [PMID: 15355354 DOI: 10.1111/j.1432-1033.2004.04319.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phosphorylation at multiple sites within the N-terminus of p53 promotes its dissociation from hdm2/mdm2 and stimulates its transcriptional regulatory potential. The large phosphoinositide 3-kinase-like kinases ataxia telangiectasia mutated gene product and the ataxia telangectasia and RAD-3-related kinase promote phosphorylation of human p53 at Ser15 and Ser20, and are required for the activation of p53 following DNA damage. DNA-dependent protein kinase (DNA-PK) is another large phosphoinositide 3-kinase-like kinase with the potential to phosphorylate p53 at Ser15, and has been proposed to enhance phosphorylation of these sites in vivo. Moreover, recent studies support a role for DNA-PK in the regulation of p53-mediated apoptosis. We have shown previously that colocalization of p53 and DNA-PK to structured single-stranded DNA dramatically enhances the potential for p53 phosphorylation by DNA-PK. We report here the identification of p53 phosphorylation at two novel sites for DNA-PK, Thr18 and Ser9. Colocalization of p53 and DNA-PK on structured DNA was required for efficient phosphorylation of p53 at multiple sites, while specific recognition of Ser9 and Thr18 appeared to be dependent upon additional determinants of p53 beyond the N-terminal 65 amino acids. Our results suggest a role for DNA-PK in the modulation of p53 activity resultant from the convergence of p53 and DNA-PK on structured DNA.
Collapse
Affiliation(s)
- Sébastien Soubeyrand
- Department of Medicine, University of Ottawa, The Ottawa Health Research Institute, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
1506
|
d'Adda di Fagagna F, Teo SH, Jackson SP. Functional links between telomeres and proteins of the DNA-damage response. Genes Dev 2004; 18:1781-99. [PMID: 15289453 DOI: 10.1101/gad.1214504] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In response to DNA damage, cells engage a complex set of events that together comprise the DNA-damage response (DDR). These events bring about the repair of the damage and also slow down or halt cell cycle progression until the damage has been removed. In stark contrast, the ends of linear chromosomes, telomeres, are generally not perceived as DNA damage by the cell even though they terminate the DNA double-helix. Nevertheless, it has become clear over the past few years that many proteins involved in the DDR, particularly those involved in responding to DNA double-strand breaks, also play key roles in telomere maintenance. In this review, we discuss the current knowledge of both the telomere and the DDR, and then propose an integrated model for the events associated with the metabolism of DNA ends in these two distinct physiological contexts.
Collapse
|
1507
|
Hao LY, Strong MA, Greider CW. Phosphorylation of H2AX at short telomeres in T cells and fibroblasts. J Biol Chem 2004; 279:45148-54. [PMID: 15322096 DOI: 10.1074/jbc.m403924200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic cells undergo arrest and enter apoptosis in response to short telomeres. T cells from late generation mTR(-/-) mice that lack telomerase show increased apoptosis when stimulated to enter the cell cycle. The increased apoptosis was not inhibited by colcemid, indicating that the response did not result from breakage of dicentric chromosomes at mitosis. The damage response protein gamma-H2AX localized to telomeres in metaphases from T cells and fibroblasts from mTR(-/-) cells with short telomeres. These data suggest that the major mechanism for induction of apoptosis in late generation mTR(-/-) cells is independent of chromosome segregation and that loss of telomere function through progressive telomere shortening in the absence of telomerase leads to recognition of telomeres as DNA breaks.
Collapse
Affiliation(s)
- Ling-Yang Hao
- Graduate Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
1508
|
Nowicki MO, Falinski R, Koptyra M, Slupianek A, Stoklosa T, Gloc E, Nieborowska-Skorska M, Blasiak J, Skorski T. BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood 2004; 104:3746-53. [PMID: 15304390 DOI: 10.1182/blood-2004-05-1941] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The oncogenic BCR/ABL tyrosine kinase induces constitutive DNA damage in Philadelphia chromosome (Ph)-positive leukemia cells. We find that BCR/ABL-induced reactive oxygen species (ROSs) cause chronic oxidative DNA damage resulting in double-strand breaks (DSBs) in S and G(2)/M cell cycle phases. These lesions are repaired by BCR/ABL-stimulated homologous recombination repair (HRR) and nonhomologous end-joining (NHEJ) mechanisms. A high mutation rate is detected in HRR products in BCR/ABL-positive cells, but not in the normal counterparts. In addition, large deletions are found in NHEJ products exclusively in BCR/ABL cells. We propose that the following series of events may contribute to genomic instability of Ph-positive leukemias: BCR/ABL --> ROSs --> oxidative DNA damage --> DSBs in proliferating cells --> unfaithful HRR and NHEJ repair.
Collapse
Affiliation(s)
- Michal O Nowicki
- Center for Biotechnology, College of Science and Technology, Temple University, Bio-Life Sciences Bldg, Rm 419, 1900 N 12th St, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1509
|
Blackburn AC, McLary SC, Naeem R, Luszcz J, Stockton DW, Donehower LA, Mohammed M, Mailhes JB, Soferr T, Naber SP, Otis CN, Jerry DJ. Loss of Heterozygosity Occurs via Mitotic Recombination in Trp53+/− Mice and Associates with Mammary Tumor Susceptibility of the BALB/c Strain. Cancer Res 2004; 64:5140-7. [PMID: 15289317 DOI: 10.1158/0008-5472.can-03-3435] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss of heterozygosity (LOH) occurs commonly in cancers causing disruption of tumor suppressor genes and promoting tumor progression. BALB/c-Trp53(+/-) mice are a model of Li-Fraumeni syndrome, exhibiting a high frequency of mammary tumors and other tumor types seen in patients. However, the frequency of mammary tumors and LOH differs among strains of Trp53(+/-) mice, with mammary tumors occurring only on a BALB/c genetic background and showing a high frequency of LOH, whereas Trp53(+/-) mice on a 129/Sv or (C57BL/6 x 129/Sv) mixed background have a very low frequency of mammary tumors and show LOH for Trp53 in only approximately 50% of tumors. We have performed studies on tumors from Trp53(+/-) mice of several genetic backgrounds to examine the mechanism of LOH in BALB/c-Trp53(+/-) mammary tumors. By Southern blotting, 96% (24 of 25) of BALB/c-Trp53(+/-) mammary tumors displayed LOH for Trp53. Karyotype analysis indicated that cells lacking one copy of chromosome 11 were present in all five mammary tumors analyzed but were not always the dominant population. Comparative genomic hybridization analysis of these five tumors indicated either loss or retention of the entire chromosome 11. Thus chromosome loss or deletions within chromosome 11 do not account for the LOH observed by Southern blotting. Simple sequence length polymorphism analysis of (C57BL/6 x BALB/c) F1-Trp53(+/-) mammary tumors showed that LOH occurred over multiple loci and that a combination of maternal and paternal alleles were retained, indicating that mitotic recombination is the most likely mechanism of LOH. Nonmammary tumors of BALB/c mice also showed a high frequency of LOH (22 of 26, 85%) indicating it was not a mammary tumor specific phenomenon but rather a feature of the BALB/c strain. In (C57BL/6 x BALB/c) F1-Trp53(+/-) mice LOH was observed in 93% (13 of 14) of tumors, indicating that the high frequency of LOH was a dominant genetic trait. Thus the high frequency of LOH for Trp53 in BALB/c-Trp53(+/-) mammary tumors occurs via mitotic recombination and is a dominant genetic trait that associates with the occurrence of mammary tumors in (C57BL/6 x BALB/c) F1-Trp53(+/-) mice. These results further implicate double-strand DNA break repair machinery as important contributors to mammary tumorigenesis.
Collapse
Affiliation(s)
- Anneke C Blackburn
- Department of Veterinary and Animal Sciences, Paige Laboratory, University of Massachusetts, Amherst, MA 01003-6410, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1510
|
Abstract
The DNA-dependent protein kinase (DNA-PK) plays a critical role in DNA double-strand break (DSB) repair and in V(D)J recombination. DNA-PK also plays a very important role in triggering apoptosis in response to severe DNA damage or critically shortened telomeres. Paradoxically, components of the DNA-PK complex are present at the mammalian telomere where they function in capping chromosome ends to prevent them from being mistaken for double-strand breaks. In addition, DNA-PK appears to be involved in mounting an innate immune response to bacterial DNA and to viral infection. As DNA-PK localizes very rapidly to DNA breaks and phosphorylates itself and other damage-responsive proteins, it appears that DNA-PK serves as both a sensor and a transducer of DNA-damage signals. The many roles of DNA-PK in the mammalian cell are discussed in this review with particular emphasis on recent advances in our understanding of the phosphorylation events that take place during the activation of DNA-PK at DNA breaks.
Collapse
Affiliation(s)
- Sandeep Burma
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | |
Collapse
|
1511
|
Shin DS, Chahwan C, Huffman JL, Tainer JA. Structure and function of the double-strand break repair machinery. DNA Repair (Amst) 2004; 3:863-73. [PMID: 15279771 DOI: 10.1016/j.dnarep.2004.03.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The discovery of the recA gene toward the middle of the 20th century sparked work in perhaps one of the most biochemically and biophysically intriguing systems of DNA repair-homologous recombination. The inner workings of this system, in particular those of the more complex eukaryotes, have been and in many ways remain mysterious. Yet at the turn of this century, a wealth of structural and genetic results has unveiled a detailed picture of the roles, relationships, and mechanics of interacting homologous recombination proteins. Here we focus on the predominant questions addressed by these exciting 21st century structural results-from detection of broken DNA ends to coordination of pathway progression. The emerging structural view of double-strand break repair, therefore, reveals the molecular basis both for functions specific to DNA recombination and for general features characterizing DNA repair processes.
Collapse
Affiliation(s)
- David S Shin
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, Molecular Biology 4, La Jolla, CA 92037-1027, USA
| | | | | | | |
Collapse
|
1512
|
Lio YC, Schild D, Brenneman MA, Redpath JL, Chen DJ. Human Rad51C deficiency destabilizes XRCC3, impairs recombination, and radiosensitizes S/G2-phase cells. J Biol Chem 2004; 279:42313-20. [PMID: 15292210 DOI: 10.1074/jbc.m405212200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly conserved Rad51 protein plays an essential role in repairing DNA damage through homologous recombination. In vertebrates, five Rad51 paralogs (Rad51B, Rad51C, Rad51D, XRCC2, and XRCC3) are expressed in mitotically growing cells and are thought to play mediating roles in homologous recombination, although their precise functions remain unclear. Among the five paralogs, Rad51C was found to be a central component present in two complexes, Rad51C-XRCC3 and Rad51B-Rad51C-Rad51D-XRCC2. We have shown previously that the human Rad51C protein exhibits three biochemical activities, including DNA binding, ATPase, and DNA duplex separation. Here we report the use of RNA interference to deplete expression of Rad51C protein in human HT1080 and HeLa cells. In HT1080 cells, depletion of Rad51C by small interfering RNA caused a significant reduction of frequency in homologous recombination. The level of XRCC3 protein was also sharply reduced in Rad51C-depleted HeLa cells, suggesting that XRCC3 is dependent for its stability upon heterodimerization with Rad51C. In addition, Rad51C-depleted HeLa cells showed hypersensitivity to the DNA-cross-linking agent mitomycin C and moderately increased sensitivity to ionizing radiation. Importantly, the radiosensitivity of Rad51C-deficient HeLa cells was evident in S and G(2)/M phases of the cell cycle but not in G(1) phase. Together, these results provide direct cellular evidence for the function of human Rad51C in homologous recombinational repair.
Collapse
Affiliation(s)
- Yi-Ching Lio
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
1513
|
Poot M, Jin X, Hill JP, Gollahon KA, Rabinovitch PS. Distinct functions for WRN and TP53 in a shared pathway of cellular response to 1-beta-D-arabinofuranosylcytosine and bleomycin. Exp Cell Res 2004; 296:327-36. [PMID: 15149862 DOI: 10.1016/j.yexcr.2004.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 02/10/2004] [Accepted: 02/13/2004] [Indexed: 11/23/2022]
Abstract
Mutations in the WRN or the TP53 genes lead to spontaneous genetic instability, an elevated risk of tumor formation, and sensitivity to compounds that interfere with DNA replication, such as camptothecin and DNA interstrand cross-linking drugs. We investigated the hypothesis that WRN and TP53 are involved in cellular responses to DNA replication-blocking lesions by exposing WRN deficient and TP53 mutant lymphoblastoid cell lines (LCLs) to 1-beta-d-arabinofuranosylcytosine (AraC) and bleomycin. Loss of WRN or TP53 function resulted in induction of apoptosis and lesser proliferative survival in response to AraC and bleomycin. WRN and TP53 operate in a shared DNA damage response pathway, since in cells in which TP53 was inactivated by SV-40 transformation, no difference in AraC and bleomycin sensitivity was found regardless of WRN status. In contrast to TP53 mutant LCLs, WRN-deficient cells showed unaffected cell cycle arrest after AraC and bleomycin exposure, which indicates that WRN is not involved in DNA damage-activated cell cycle arrest. Neither WRN nor TP53 deficiency affected cellular recovery from exposure to AraC and bleomycin, which disagrees with a direct role in repair of these DNA lesions. Our results indicate that WRN and TP53 perform different functions in a shared DNA damage response pathway.
Collapse
Affiliation(s)
- Martin Poot
- Department of Pathology, University of Washington, Seattle, WA 98195-7705, USA.
| | | | | | | | | |
Collapse
|
1514
|
Nishikawa T, Munshi A, Story MD, Ismail S, Stevens C, Chada S, Meyn RE. Adenoviral-mediated mda-7 expression suppresses DNA repair capacity and radiosensitizes non-small-cell lung cancer cells. Oncogene 2004; 23:7125-31. [PMID: 15273727 DOI: 10.1038/sj.onc.1207917] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The melanoma differentiation-associated gene-7 (mda-7) was identified by virtue of its enhanced expression in human melanoma cells induced into terminal differentiation. Enforced expression of mda-7 in human cancer cell lines of diverse origins results in the suppression of growth and induction of apoptosis. We have shown that adenoviral-mediated mda-7 (Ad-mda7) radiosensitizes non-small-cell lung cancer (NSCLC) cells by enhancing the apoptotic pathway. To identify the mechanism of this radiosensitization, we examined the level of proteins involved in the nonhomologous end-joining (NHEJ) pathway of DNA double-strand break (DSB) repair. Western blot analysis indicated that the expression of NHEJ pathway components Ku70, XRCC4, and DNA ligase IV was downregulated in NSCLC cells--A549 with Ad-mda7 treatment. No such change was observed in normal human CCD16 fibroblasts previously shown not to be radiosensitized by Ad-mda7. The biological significance of these changes of expression of proteins critical for repair of radiation-induced DSBs was confirmed via the analysis of DSB rejoining kinetics using pulsed field gel electrophoresis and assessment of host cell reactivation capacity following Ad-mda7 treatment. Based on these results, we hypothesize that Ad-mda7 sensitizes NSCLC cells to ionizing radiation by suppressing the activity of NHEJ, a pathway essential for repair of radiation-induced DSBs.
Collapse
Affiliation(s)
- Takashi Nishikawa
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
1515
|
Watanabe F, Fukazawa H, Masutani M, Suzuki H, Teraoka H, Mizutani S, Uehara Y. Poly(ADP-ribose) polymerase-1 inhibits ATM kinase activity in DNA damage response. Biochem Biophys Res Commun 2004; 319:596-602. [PMID: 15178448 DOI: 10.1016/j.bbrc.2004.05.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Indexed: 11/25/2022]
Abstract
DNA double-strand breaks (DSB) mobilize DNA-repair machinery and cell cycle checkpoint by activating the ataxia-telangiectasia (A-T) mutated (ATM). Here we show that ATM kinase activity is inhibited by poly(ADP-ribose) polymerase-1 (PARP-1) in vitro. It was shown by biochemical fractionation procedure that PARP-1 as well as ATM increases at chromatin level after induction of DSB with neocarzinostatin (NCS). Phosphorylation of histone H2AX on serine 139 and p53 on serine 15 in Parp-1 knockout (Parp-1(-/-)) mouse embryonic fibroblasts (MEF) was significantly induced by NCS treatment compared with MEF derived from wild-type (Parp-1(+/+)) mouse. NCS-induced phosphorylation of histone H2AX on serine 139 in Parp-1(-/-) embryonic stem cell (ES) clones was also higher than that in Parp-1(+/+) ES clone. Furthermore, in vitro, PARP-1 inhibited phosphorylation of p53 on serine 15 and (32)P-incorporation into p53 by ATM in a DNA-dependent manner. These results suggest that PARP-1 negatively regulates ATM kinase activity in response to DSB.
Collapse
Affiliation(s)
- Fumiaki Watanabe
- Department of Bioactive Molecules, National Institute of Infectious Disease, 1-23-1 Toyama, Shinjyuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
1516
|
Li HR, Shagisultanova EI, Yamashita K, Piao Z, Perucho M, Malkhosyan SR. Hypersensitivity of Tumor Cell Lines with Microsatellite Instability to DNA Double Strand Break Producing Chemotherapeutic Agent Bleomycin. Cancer Res 2004; 64:4760-7. [PMID: 15256444 DOI: 10.1158/0008-5472.can-04-0975] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genetic or epigenetic inactivation of DNA mismatch repair genes results in a strong mutator phenotype, known as the microsatellite mutator phenotype or microsatellite instability (MSI). This mutator phenotype causes mutations in genes responsible for the regulation of cell growth and survival/death and thus promotes the development and progression of tumors. In addition to such tumorigenic lesions, mutations in genes of other types of DNA repair, for example, DNA double-strand break (DNA DSB) repair, are found in tumor cells with MSI. We report here that the majority of MSI-positive tumor cell lines of different tissue origins (endometrial, ovarian, prostate, and colorectal carcinomas) are hypersensitive to bleomycin, a DNA DSB producing chemotherapeutic drug. We suggest that this hypersensitivity may be a result of inactivation of the DNA DSB repair activity by concomitant mutations of different DNA DSB repair genes. To provide experimental support to this hypothesis, we show that the subclones of the MSI-positive colorectal cancer cell line HCT-8 that bear heterozygous frameshift mutations in the DNA DSB repair gene DNA-PK(CS) are more sensitive to a combined treatment with bleomycin and the DNA protein kinase inhibitor LY294002 than the original HCT-8 cells, which are wild type for this gene. These results may be useful in designing therapies for MSI-positive cancer.
Collapse
Affiliation(s)
- Hai-Ri Li
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
1517
|
Khanna KK, Chenevix-Trench G. ATM and genome maintenance: defining its role in breast cancer susceptibility. J Mammary Gland Biol Neoplasia 2004; 9:247-62. [PMID: 15557798 DOI: 10.1023/b:jomg.0000048772.92326.a1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The ATM gene is mutated in ataxia-telangiectasia (A-T), a genetic instability syndrome characterized by increased cancer risk, as well as other features. Recent studies have shown that the ATM protein kinase plays a critical role in maintaining genome integrity by activating a biochemical chain reaction that in turn leads to cell cycle checkpoint activation and repair of DNA damage. ATM targets include well-known tumor suppressor genes such as p53 and BRCA1, both of which play an important role in predisposition to breast cancer. Studies of A-T families have consistently reported an increased risk of breast cancer in women with one mutated ATM gene, but so far an increased frequency of ATM mutations has not been found in women with breast cancer. Some specific missense and protein truncating variants of ATM have been reported to confer increased breast cancer risk, but the magnitude of this risk remains uncertain. A more comprehensive analysis of ATM is needed in large case-control studies, and in multiple-case breast cancer families.
Collapse
Affiliation(s)
- Kum Kum Khanna
- The Queensland Institute of Medical Research, 300 Herston Road, Herston, Queensland 4006, Australia.
| | | |
Collapse
|
1518
|
Eclache V, Caulet-Maugendre S, Poirel HA, Djemai M, Robert J, Lejeune F, Raphaël M. Cryptic deletion involving the ATM locus at 11q22.3∼q23.1 in B-cell chronic lymphocytic leukemia and related disorders. ACTA ACUST UNITED AC 2004; 152:72-6. [PMID: 15193446 DOI: 10.1016/j.cancergencyto.2003.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 09/29/2003] [Accepted: 10/13/2003] [Indexed: 11/29/2022]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) follows a heterogeneous clinical course, and several biological parameters have been investigated to try to predict its clinical outcome. New staging systems including cytogenetics and CD38 expression as predictive values have been developed. Deletions of 11q22.3 approximately q23.1 detected at diagnosis in cases of CLL patients have been associated with a relatively aggressive disease. This region, which contains the ataxia telangiectasia mutated (ATM) locus, may be implicated in the pathogenesis of lymphoid malignancies. We developed a set of dual-color specific probes to evaluate the ATM deletion by means of fluorescence in situ hybridization (FISH). We also used flow cytometry to investigate CD38 expression. Forty-one patients with CLL or low-grade B-cell lymphomas were studied at diagnosis or before treatment. FISH showed that only three CLL patients had deletions in the 11q23 locus; all three had progressive disease and were resistant to treatment. These data show that our FISH set of probes efficiently detects ATM deletions in CLL. No correlation was found between ATM deletions and CD38 expression level. These results confirm the prognostic significance of ATM deletions in CLL.
Collapse
MESH Headings
- ADP-ribosyl Cyclase/metabolism
- ADP-ribosyl Cyclase 1
- Adult
- Aged
- Antigens, CD/metabolism
- Ataxia Telangiectasia/genetics
- Ataxia Telangiectasia Mutated Proteins
- Cell Cycle Proteins
- Chromosome Deletion
- Chromosomes, Human, Pair 11/genetics
- DNA-Binding Proteins
- Disease Progression
- Female
- Flow Cytometry
- Follow-Up Studies
- Humans
- In Situ Hybridization, Fluorescence
- Interphase
- Karyotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Prolymphocytic/diagnosis
- Leukemia, Prolymphocytic/genetics
- Leukemia, Prolymphocytic/therapy
- Lymphoma/diagnosis
- Lymphoma/genetics
- Lymphoma/therapy
- Male
- Membrane Glycoproteins
- Middle Aged
- Neoplasm Staging
- Prognosis
- Protein Serine-Threonine Kinases/genetics
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Virginie Eclache
- Laboratoire d'Hématologie, Unité Fonctionelle d'Hématologie, Hôpital Jean Verdier, Avenue du 14 Juillet, 93145 Bondy Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
1519
|
Ding SL, Sheu LF, Yu JC, Yang TL, Chen BF, Leu FJ, Shen CY. Abnormality of the DNA double-strand-break checkpoint/repair genes, ATM, BRCA1 and TP53, in breast cancer is related to tumour grade. Br J Cancer 2004; 90:1995-2001. [PMID: 15138484 PMCID: PMC2409464 DOI: 10.1038/sj.bjc.6601804] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The role of the DNA double-strand-break (DSB) checkpoint/repair genes, ATM, BRCA1 and TP53, in sporadic breast cancer requires clarification, since ATM and BRCA1 mutations are rare in sporadic tumours. In an attempt to explain this phenomenon, we postulated that (i) in addition to genetic deletion, abnormal expression of DSB checkpoint/repair proteins might abolish the function of these genes and (ii) there might be a combined effect of individual defective genes during breast cancer pathogenesis. Using a largely homogenous group of 74 specimens of early-onset (⩽35 years of age) infiltrating ductal carcinomas, we examined associations between pathological grade and genetic deletion and/or abnormal protein expression of ATM, BRCA1 and TP53. The results showed that high-grade tumours displayed a high frequency of loss of heterozygosity (LOH) at, and/or abnormal expression of, ATM, BRCA1 and TP53. Multigenetic analysis showed abnormalities in BRCA1 to be independently associated with high-grade tumours. ATM and TP53 appeared to play an assistant role, abnormalities in these genes significantly increasing the possibility of poor differentiation in tumours with abnormalities in BRCA1. Furthermore, a higher number of abnormalities (LOH or abnormal expression) in these three genes correlated with poor tumour differentiation. Thus, this study suggests that combined changes in several DSB checkpoint/repair genes belonging to a common functional pathway are associated with breast cancer pathogenesis.
Collapse
Affiliation(s)
- S L Ding
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - L F Sheu
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - J C Yu
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - T L Yang
- Department of Surgery, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - B F Chen
- Department of Pathology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - F J Leu
- Section of Pathology, Cardinal Tien Hospital and Fu-Jen Catholic University, Taipei 231, Taiwan
| | - C Y Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan. E-mail: .
| |
Collapse
|
1520
|
Abstract
DNA double-strand breaks constitute the most dangerous type of DNA damage induced by ionising radiation (IR). Accordingly, the resistance of cells to IR is modulated by three intimately related cellular processes: DNA repair, recombination, and replication. Significant discoveries in this field of research have been made over the last few years. A picture seems to be emerging in which perturbations of recombination in cancer cells are a more widespread cause of genomic instability than previously appreciated. Conversely, such cells may also be more sensitive to certain chemotherapeutic drugs and to IR. Thus, the alterations in recombination that promote carcinogenesis by causing genomic instability may also be the weakness of the tumours that arise in this setting, a concept which could hold great promise for the advancement of cancer treatment in the not too distant future.
Collapse
Affiliation(s)
- H Willers
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA
| | - J Dahm-Daphi
- Department of Radiotherapy and Radiooncology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - S N Powell
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA. E-mail:
| |
Collapse
|
1521
|
Iliakis G, Wang H, Perrault AR, Boecker W, Rosidi B, Windhofer F, Wu W, Guan J, Terzoudi G, Pantelias G. Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res 2004; 104:14-20. [PMID: 15162010 DOI: 10.1159/000077461] [Citation(s) in RCA: 306] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 11/22/2003] [Indexed: 11/19/2022] Open
Abstract
It is widely accepted that unrepaired or misrepaired DNA double strand breaks (DSBs) lead to the formation of chromosome aberrations. DSBs induced in the DNA of higher eukaryotes by endogenous processes or exogenous agents can in principle be repaired either by non-homologous endjoining (NHEJ), or homology directed repair (HDR). The basis on which the selection of the DSB repair pathway is made remains unknown but may depend on the inducing agent, or process. Evaluation of the relative contribution of NHEJ and HDR specifically to the repair of ionizing radiation (IR) induced DSBs is important for our understanding of the mechanisms leading to chromosome aberration formation. Here, we review recent work from our laboratories contributing to this line of inquiry. Analysis of DSB rejoining in irradiated cells using pulsed-field gel electrophoresis reveals a fast component operating with half times of 10-30 min. This component of DSB rejoining is severely compromised in cells with mutations in DNA-PKcs, Ku, DNA ligase IV, or XRCC4, as well as after chemical inhibition of DNA-PK, indicating that it reflects classical NHEJ; we termed this form of DSB rejoining D-NHEJ to signify its dependence on DNA-PK. Although chemical inhibition, or mutation, in any of these factors delays processing, cells ultimately remove the majority of DSBs using an alternative pathway operating with slower kinetics (half time 2-10 h). This alternative, slow pathway of DSB rejoining remains unaffected in mutants deficient in several genes of the RAD52 epistasis group, suggesting that it may not reflect HDR. We proposed that it reflects an alternative form of NHEJ that operates as a backup (B-NHEJ) to the DNA-PK-dependent (D-NHEJ) pathway. Biochemical studies confirm the presence in cell extracts of DNA end joining activities operating in the absence of DNA-PK and indicate the dominant role for D-NHEJ, when active. These observations in aggregate suggest that NHEJ, operating via two complementary pathways, B-NHEJ and D-NHEJ, is the main mechanism through which IR-induced DSBs are removed from the DNA of higher eukaryotes. HDR is considered to either act on a small fraction of IR induced DSBs, or to engage in the repair process at a step after the initial end joining. We propose that high speed D-NHEJ is an evolutionary development in higher eukaryotes orchestrated around the newly evolved DNA-PKcs and pre-existing factors. It achieves within a few minutes restoration of chromosome integrity through an optimized synapsis mechanism operating by a sequence of protein-protein interactions in the context of chromatin and the nuclear matrix. As a consequence D-NHEJ mostly joins the correct DNA ends and suppresses the formation of chromosome aberrations, albeit, without ensuring restoration of DNA sequence around the break. B-NHEJ is likely to be an evolutionarily older pathway with less optimized synapsis mechanisms that rejoins DNA ends with kinetics of several hours. The slow kinetics and suboptimal synapsis mechanisms of B-NHEJ allow more time for exchanges through the joining of incorrect ends and cause the formation of chromosome aberrations in wild type and D-NHEJ mutant cells.
Collapse
Affiliation(s)
- G Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1522
|
Sasaki MS, Takata M, Sonoda E, Tachibana A, Takeda S. Recombination repair pathway in the maintenance of chromosomal integrity against DNA interstrand crosslinks. Cytogenet Genome Res 2004; 104:28-34. [PMID: 15162012 DOI: 10.1159/000077463] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 12/08/2003] [Indexed: 11/19/2022] Open
Abstract
DNA interstrand crosslinks (ICL) present a major threat to cell viability and genome integrity. In eukaryotic cells, the ICLs have been suggested to be repaired by a complex process involving Xpf/Ercc1-mediated endonucleolytic incision and homologous recombination (HR). However, the entire feature of the ICL tolerating mechanism is still poorly understood. Here we studied chromosome aberrations (CA) and sister chromatid exchanges (SCE) by the use of the crosslinking agent mitomycin C (MMC), in chicken DT40 cells with the HR genes disrupted by targeted replacement. The disruption of the Rad54, Rad51B, Rad51C, Rad51D, Xrcc2 and Xrcc3 genes resulted in a dramatic reduction of spontaneous and MMC-induced SCEs. Interestingly, while HR-deficient cells were hypersensitive to cell killing by MMC, MMC-induced CAs were also suppressed in the HR-deficient cells except for Rad51D-, Xrcc2- and Xrcc3-deficient cells. These observations indicate that DNA double strand breaks (DSB) at stalled replication forks and those arising as repair intermediates present strong signals to cell death but can be tolerated by the HR repair pathway, where Rad54, Rad51B and Rad51C have an initiative role and repair can be completed by their paralogs Rad51D, Xrcc2 and Xrcc3. The impairment of the HR pathway, which otherwise leads to cell death, may be somewhat substituted by an alternative mechanism such as the Mre11/Rad50/Nbs1 pathway, resulting in reduced frequencies of SCEs and CAs.
Collapse
Affiliation(s)
- M S Sasaki
- Radiation Biology Center, Kyoto University, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
1523
|
Dudás A, Chovanec M. DNA double-strand break repair by homologous recombination. Mutat Res 2004; 566:131-67. [PMID: 15164978 DOI: 10.1016/j.mrrev.2003.07.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Revised: 07/29/2003] [Accepted: 07/30/2003] [Indexed: 01/06/2023]
Abstract
DNA double-strand breaks (DSB) are presumed to be the most deleterious DNA lesions as they disrupt both DNA strands. Homologous recombination (HR), single-strand annealing, and non-homologous end-joining are considered to be the pathways for repairing DSB. In this review, we focus on DSB repair by HR. The proteins involved in this process as well as the interactions among them are summarized and characterized. The main emphasis is on eukaryotic cells, particularly the budding yeast Saccharomyces cerevisiae and mammals. Only the RAD52 epistasis group proteins are included.
Collapse
Affiliation(s)
- Andrej Dudás
- Laboratory of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava 37, Slovak Republic
| | | |
Collapse
|
1524
|
Smith S, Hwang JY, Banerjee S, Majeed A, Gupta A, Myung K. Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2004; 101:9039-44. [PMID: 15184655 PMCID: PMC428469 DOI: 10.1073/pnas.0403093101] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Different types of gross chromosomal rearrangements (GCRs), including translocations, interstitial deletions, terminal deletions with de novo telomere additions, and chromosome fusions, are observed in many cancers. Multiple pathways, such as S-phase checkpoints, DNA replication, recombination, chromatin remodeling, and telomere maintenance that suppress GCRs have been identified. To experimentally expand our knowledge of other pathway(s) that suppress GCRs, we developed a generally applicable genome-wide screening method. In this screen, we identified 10 genes (ALO1, CDC50, CSM2, ELG1, ESC1, MMS4, RAD5, RAD18, TSA1, and UFO1) that encode proteins functioning in the suppression of GCRs. Moreover, the breakpoint junctions of GCRs from these GCR mutator mutants were determined with modified breakpoint-mapping methods. We also identified nine genes (AKR1, BFR1, HTZ1, IES6, NPL6, RPL13B, RPL27A, RPL35A, and SHU2) whose mutations generated growth defects with the pif1Delta mutation. In addition, we found that some of these mutations changed the telomere size.
Collapse
Affiliation(s)
- Stephanie Smith
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
1525
|
Lindeman GJ, Hiew M, Visvader JE, Leary J, Field M, Gaff CL, Gardner RJM, Trainor K, Cheetham G, Suthers G, Kirk J. Frequency of the ATM IVS10-6T-->G variant in Australian multiple-case breast cancer families. Breast Cancer Res 2004; 6:R401-7. [PMID: 15217508 PMCID: PMC468657 DOI: 10.1186/bcr806] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 04/19/2004] [Accepted: 04/29/2004] [Indexed: 11/10/2022] Open
Abstract
Background Germline mutations in the genes BRCA1 and BRCA2 account for only a proportion of hereditary breast cancer, suggesting that additional genes contribute to hereditary breast cancer. Recently a heterozygous variant in the ataxia–telangiectasia mutated (ATM) gene, IVS10-6T→G, was reported by an Australian multiple-case breast cancer family cohort study (the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer) to confer a substantial breast cancer risk. Although this variant can result in a truncated ATM product, its clinical significance as a high-penetrance breast cancer allele or its role as a low-penetrance risk-modifier is controversial. Methods We determined the frequency of ATM IVS10-6T→G variants in a cohort of individuals affected by breast and/or ovarian cancer who underwent BRCA1 and BRCA2 genetic testing at four major Australian familial cancer clinics. Results Seven of 495 patients (1.4%) were heterozygous for the IVS10-6T→G variant; the carrier rate in unselected Australian women with no family history of breast cancer is reported to be 6 of 725 (0.83%) (P = 0.4). Two of the seven probands also harboured a pathogenic BRCA1 mutation and one patient had a BRCA1 unclassified variant of uncertain significance. Conclusion These findings indicate that the ATM IVS10-6T→G variant does not seem to occur at a significantly higher frequency in affected individuals from high-risk families than in the general population. A role for this variant as a low-penetrance allele or as a modifying gene in association with other genes (such as BRCA1) remains possible. Routine testing for ATM IVS10-6T→G is not warranted in mutation screening of affected individuals from high-risk families.
Collapse
Affiliation(s)
- Geoffrey J Lindeman
- Familial Cancer Centre, Royal Melbourne Hospital, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Melody Hiew
- Familial Cancer Centre, Royal Melbourne Hospital, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Jane E Visvader
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Jennifer Leary
- Familial Cancer Service, Westmead Institute for Cancer Research, University of Sydney, Westmead Hospital, Westmead, Australia
| | - Michael Field
- Familial Cancer Service, Westmead Institute for Cancer Research, University of Sydney, Westmead Hospital, Westmead, Australia
| | - Clara L Gaff
- Familial Cancer Centre, Royal Melbourne Hospital, Melbourne, Australia
- Genetic Health Services Victoria, Melbourne, Australia
| | - RJ McKinlay Gardner
- Familial Cancer Centre, Royal Melbourne Hospital, Melbourne, Australia
- Genetic Health Services Victoria, Melbourne, Australia
| | - Kevin Trainor
- Department of Haematology and Genetic Pathology, Flinders Medical Centre, Adelaide, Australia
| | - Glenice Cheetham
- Molecular Pathology Division, Institute of Medical and Veterinary Science, Adelaide, Australia
| | - Graeme Suthers
- Familial Cancer Unit, SA Clinical Genetics Service, Women's and Children's Hospital, North Adelaide, Australia
| | - Judy Kirk
- Familial Cancer Service, Westmead Institute for Cancer Research, University of Sydney, Westmead Hospital, Westmead, Australia
| |
Collapse
|
1526
|
Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S. Molecular Mechanisms of Mammalian DNA Repair and the DNA Damage Checkpoints. Annu Rev Biochem 2004; 73:39-85. [PMID: 15189136 DOI: 10.1146/annurev.biochem.73.011303.073723] [Citation(s) in RCA: 2388] [Impact Index Per Article: 113.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA damage is a relatively common event in the life of a cell and may lead to mutation, cancer, and cellular or organismic death. Damage to DNA induces several cellular responses that enable the cell either to eliminate or cope with the damage or to activate a programmed cell death process, presumably to eliminate cells with potentially catastrophic mutations. These DNA damage response reactions include: (a) removal of DNA damage and restoration of the continuity of the DNA duplex; (b) activation of a DNA damage checkpoint, which arrests cell cycle progression so as to allow for repair and prevention of the transmission of damaged or incompletely replicated chromosomes; (c) transcriptional response, which causes changes in the transcription profile that may be beneficial to the cell; and (d) apoptosis, which eliminates heavily damaged or seriously deregulated cells. DNA repair mechanisms include direct repair, base excision repair, nucleotide excision repair, double-strand break repair, and cross-link repair. The DNA damage checkpoints employ damage sensor proteins, such as ATM, ATR, the Rad17-RFC complex, and the 9-1-1 complex, to detect DNA damage and to initiate signal transduction cascades that employ Chk1 and Chk2 Ser/Thr kinases and Cdc25 phosphatases. The signal transducers activate p53 and inactivate cyclin-dependent kinases to inhibit cell cycle progression from G1 to S (the G1/S checkpoint), DNA replication (the intra-S checkpoint), or G2 to mitosis (the G2/M checkpoint). In this review the molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed.
Collapse
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260, USA.
| | | | | | | |
Collapse
|
1527
|
Yatagai F, Morimoto S, Kato T, Honma M. Further characterization of loss of heterozygosity enhanced by p53 abrogation in human lymphoblastoid TK6 cells: disappearance of endpoint hotspots. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2004; 560:133-45. [PMID: 15157651 DOI: 10.1016/j.mrgentox.2004.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 02/19/2004] [Accepted: 02/19/2004] [Indexed: 11/27/2022]
Abstract
Loss of heterozygosity (LOH) is the predominant mechanism of spontaneous mutagenesis at the heterozygous thymindine kinase locus (tk) in TK6 cells. LOH events detected in spontaneous TK(-) mutants (110 clones from p53 wild-type cells TK6-20C and 117 clones from p53-abrogated cells TK6-E6) were analyzed using 13 microsatellite markers spanning the whole of chromosome 17. Our analysis indicated an approximately 60-fold higher frequency of terminal deletions in p53-abrogated cells TK6-E6 compared to p53 wild-type cells TK6-20C whereas frequencies of point mutations (non-LOH events), interstitial deletions, and crossing over events were found to increase only less than twofold by such p53 abrogation. We then made use of an additional 17 microsatellite markers which provided an average map-interval of 1.6Mb to map various LOH endpoints on the 45Mb portion of chromosome 17q corresponding to the maximum length of LOH tracts (i.e. from the distal marker D17S932 to the terminal end). There appeared to be four prominent peaks (I-IV) in the distribution of LOH endpoints/Mb of Tk6-20C cells that were not evident in p53-abrogated cells TK6-E6, where they appeared to be rather broadly distributed along the 15-20Mb length (D17S1807 to D17S1607) surrounding two of the peaks that we detected in TK6-20C cells (peaks II and III). We suggest that the chromosomal instability that is so evident in TK6-E6 cells may be due to DNA double-strand break repair occurring through non homologous end-joining rather than allelic recombination.
Collapse
Affiliation(s)
- Fumio Yatagai
- Division of Radioisotope Technology, The Institute of Physical and Chemical Research, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
1528
|
Tarsounas M, Muñoz P, Claas A, Smiraldo PG, Pittman DL, Blasco MA, West SC. Telomere maintenance requires the RAD51D recombination/repair protein. Cell 2004; 117:337-47. [PMID: 15109494 DOI: 10.1016/s0092-8674(04)00337-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 03/02/2004] [Accepted: 03/08/2004] [Indexed: 11/21/2022]
Abstract
The five RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) are required in mammalian cells for normal levels of genetic recombination and resistance to DNA-damaging agents. We report here that RAD51D is also involved in telomere maintenance. Using immunofluorescence labeling, electron microscopy, and chromatin immunoprecipitation assays, RAD51D was shown to localize to the telomeres of both meiotic and somatic cells. Telomerase-positive Rad51d(-/-) Trp53(-/-) primary mouse embryonic fibroblasts (MEFs) exhibited telomeric DNA repeat shortening compared to Trp53(-/-) or wild-type MEFs. Moreover, elevated levels of chromosomal aberrations were detected, including telomeric end-to-end fusions, a signature of telomere dysfunction. Inhibition of RAD51D synthesis in telomerase-negative immortalized human cells by siRNA also resulted in telomere erosion and chromosome fusion. We conclude that RAD51D plays a dual cellular role in both the repair of DNA double-strand breaks and telomere protection against attrition and fusion.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Blotting, Western
- Cell Line, Transformed
- Cell Transformation, Neoplastic
- Chromatin/metabolism
- Chromosome Aberrations
- DNA Damage
- DNA Repair
- DNA, Cruciform/metabolism
- DNA, Cruciform/ultrastructure
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/ultrastructure
- Fibroblasts/metabolism
- HeLa Cells
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Mice
- Mice, Knockout
- Precipitin Tests
- RNA, Small Interfering/metabolism
- Recombination, Genetic
- Spermatocytes/metabolism
- Spermatocytes/ultrastructure
- Telomere/metabolism
- Telomeric Repeat Binding Protein 2/metabolism
Collapse
Affiliation(s)
- Madalena Tarsounas
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire, EN6 3LD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
1529
|
Fabbro M, Savage K, Hobson K, Deans AJ, Powell SN, McArthur GA, Khanna KK. BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage. J Biol Chem 2004; 279:31251-8. [PMID: 15159397 DOI: 10.1074/jbc.m405372200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BRCA1 is a major player in the DNA damage response. This is evident from its loss, which causes cells to become sensitive to a wide variety of DNA damaging agents. The major BRCA1 binding partner, BARD1, is also implicated in the DNA damage response, and recent reports indicate that BRCA1 and BARD1 co-operate in this pathway. In this report, we utilized small interfering RNA to deplete BRCA1 and BARD1 to demonstrate that the BRCA1-BARD1 complex is required for ATM/ATR (ataxia-telangiectasia-mutated/ATM and Rad3-related)-mediated phosphorylation of p53(Ser-15) following IR- and UV radiation-induced DNA damage. In contrast, phosphorylation of a number of other ATM/ATR targets including H2AX, Chk2, Chk1, and c-jun does not depend on the presence of BRCA1-BARD1 complexes. Moreover, prior ATM/ATR-dependent phosphorylation of BRCA1 at Ser-1423 or Ser-1524 regulates the ability of ATM/ATR to phosphorylate p53(Ser-15) efficiently. Phosphorylation of p53(Ser-15) is necessary for an IR-induced G(1)/S arrest via transcriptional induction of the cyclin-dependent kinase inhibitor p21. Consistent with these data, repressing p53(Ser-15) phosphorylation by BRCA1-BARD1 depletion compromises p21 induction and the G(1)/S checkpoint arrest in response to IR but not UV radia-tion. These findings suggest that BRCA1-BARD1 complexes act as an adaptor to mediate ATM/ATR-directed phosphorylation of p53, influencing G(1)/S cell cycle progression after DNA damage.
Collapse
Affiliation(s)
- Megan Fabbro
- Queensland Institute of Medical Research, Post Office Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia
| | | | | | | | | | | | | |
Collapse
|
1530
|
Yang Q, Zhang R, Wang XW, Linke SP, Sengupta S, Hickson ID, Pedrazzi G, Perrera C, Stagljar I, Littman SJ, Modrich P, Harris CC. The mismatch DNA repair heterodimer, hMSH2/6, regulates BLM helicase. Oncogene 2004; 23:3749-56. [PMID: 15064730 DOI: 10.1038/sj.onc.1207462] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human MSH2/6 complex is essential for mismatch recognition during the repair of replication errors. Although mismatch repair components have been implicated in DNA homologous recombination repair, the exact function of hMSH2/6 in this pathway is unclear. Here, we show that the recombinant hMSH2/6 protein complex stimulated the ability of the Bloom's syndrome gene product, BLM, to process Holliday junctions in vitro, an activity that could also be regulated by p53. Consistent with these observations, hMSH6 colocalized with BLM and phospho-ser15-p53 in hydroxyurea-induced RAD51 nuclear foci that may correspond to the sites of presumed stalled DNA replication forks and more likely the resultant DNA double-stranded breaks. In addition, we show that hMSH2 and hMSH6 coimmunoprecipitated with BLM, p53, and RAD51. Both the number of RAD51 foci and the amount of the BLM-p53-RAD51 complex are increased in hMSH2- or hMSH6-deficient cells. These data suggest that hMSH2/6 formed a complex with BLM-p53-RAD51 in response to the damaged DNA forks during double-stranded break repair.
Collapse
Affiliation(s)
- Qin Yang
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bldg 37, Rm 3068, 37 Convent Drive, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1531
|
Gu J, Xia X, Yan P, Liu H, Podust VN, Reynolds AB, Fanning E. Cell cycle-dependent regulation of a human DNA helicase that localizes in DNA damage foci. Mol Biol Cell 2004; 15:3320-32. [PMID: 15146062 PMCID: PMC452586 DOI: 10.1091/mbc.e04-03-0227] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mutational studies of human DNA helicase B (HDHB) have suggested that its activity is critical for the G1/S transition of the cell cycle, but the nature of its role remains unknown. In this study, we show that during G1, ectopically expressed HDHB localizes in nuclear foci induced by DNA damaging agents and that this focal pattern requires active HDHB. During S and G2/M, HDHB localizes primarily in the cytoplasm. A carboxy-terminal domain from HDHB confers cell cycle-dependent localization, but not the focal pattern, to a reporter protein. A cluster of potential cyclin-dependent kinase phosphorylation sites in this domain was modified at the G1/S transition and maintained through G2/M of the cell cycle in vivo, coincident with nuclear export of HDHB. Serine 967 of HDHB was the major site phosphorylated in vivo and in vitro by cyclin-dependent kinases. Mutational analysis demonstrated that phosphorylation of serine 967 is crucial in regulating the subcellular localization of ectopically expressed HDHB. We propose that the helicase of HDHB operates primarily during G1 to process endogenous DNA damage before the G1/S transition, and it is largely sequestered in the cytoplasm during S/G2.
Collapse
Affiliation(s)
- Jinming Gu
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | |
Collapse
|
1532
|
Allard S, Masson JY, Côté J. Chromatin remodeling and the maintenance of genome integrity. ACTA ACUST UNITED AC 2004; 1677:158-64. [PMID: 15020056 DOI: 10.1016/j.bbaexp.2003.10.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 10/06/2003] [Accepted: 10/06/2003] [Indexed: 12/18/2022]
Abstract
DNA damage of any type is threatening for a cell. If lesions are left unrepaired, genomic instability can arise, faithful transmission of genetic information is greatly compromised eventually leading the cell to undergo apoptosis or carcinogenesis. In order to access/detect and repair these damages, repair factors must circumvent the natural repressive barrier of chromatin. This review will present recent progress showing the intricate link between chromatin, its remodeling and the DNA repair process. Several studies demonstrated that one of the first events following specific types of DNA damage is the phosphorylation of histone H2A. This mark or the damage itself are responsible for the association of chromatin-modifying complexes near damaged DNA. These complexes are able to change the chromatin structure around the wounded DNA in order to allow the repair machinery to gain access and repair the lesion. Chromatin modifiers include ATP-dependent remodelers such as SWI/SNF and Rad54 as well as histone acetyltransferases (HATs) like SAGA/NuA4-related complexes and p300/CBP, which have been shown to facilitate DNA accessibility and repair in different pathways leading to the maintenance of genome integrity.
Collapse
Affiliation(s)
- Stéphane Allard
- Centre de Recherche en Cancérologie de l'Université Laval, Hôtel-Dieu de Québec (CHUQ), 9 rue McMahon, Québec, Canada G1R 2J6
| | | | | |
Collapse
|
1533
|
Shen H, Wang X, Hu Z, Zhang Z, Xu Y, Hu X, Guo J, Wei Q. Polymorphisms of DNA repair gene XRCC3 Thr241Met and risk of gastric cancer in a Chinese population. Cancer Lett 2004; 206:51-8. [PMID: 15019159 DOI: 10.1016/j.canlet.2003.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Revised: 09/08/2003] [Accepted: 09/08/2003] [Indexed: 01/08/2023]
Abstract
Mammalian cells are constantly exposed to a wide variety of genotoxic agents from both endogenous and exogenous sources. Genetic variability in DNA repair may contribute to human cancer risk. In this population-based case-control study in China, we tested the hypothesis that a C to T variant (Thr241Met) of DNA repair gene XRCC3 (X-ray repair cross-complementing group 3) is associated with risk of developing gastric cancer. We genotyped for this variant using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) in 188 histologically confirmed gastric cancer patients and 166 frequency-matched cancer-free controls. The XRCC3 genotype and allele frequencies were not significantly different between cases and controls (P = 0.99 for genotype; P = 0.76 for allele). The XRCC3 241Met allele frequency (4.8%) was significantly lower in healthy Chinese controls than previously reported healthy US Caucasian controls (38.9%). Compared with the XRCC3 241Thr/Thr genotype, the variant XRCC3241Thr/Met and Met/Met genotypes were not associated with an increased risk of gastric cancer (adjusted odds ratio (OR(a)), 1.06; 95% confidence interval (CI), 0.52-2.16). These findings suggest that polymorphisms of XRCC3 Thr241Met may not play a role in the etiology of gastric cancer. Further studies with a larger number of subjects and simultaneous measurement of different polymorphisms in DNA repair genes in the same pathway are needed to confirm these findings.
Collapse
Affiliation(s)
- Hongbing Shen
- Department of Epidemiology and Statistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China.
| | | | | | | | | | | | | | | |
Collapse
|
1534
|
Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 2004; 337:635-45. [PMID: 15019783 DOI: 10.1016/j.jmb.2004.02.002] [Citation(s) in RCA: 1577] [Impact Index Per Article: 75.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 01/20/2004] [Accepted: 02/03/2004] [Indexed: 10/26/2022]
Abstract
An automatic method for recognizing natively disordered regions from amino acid sequence is described and benchmarked against predictors that were assessed at the latest critical assessment of techniques for protein structure prediction (CASP) experiment. The method attains a Wilcoxon score of 90.0, which represents a statistically significant improvement on the methods evaluated on the same targets at CASP. The classifier, DISOPRED2, was used to estimate the frequency of native disorder in several representative genomes from the three kingdoms of life. Putative, long (>30 residue) disordered segments are found to occur in 2.0% of archaean, 4.2% of eubacterial and 33.0% of eukaryotic proteins. The function of proteins with long predicted regions of disorder was investigated using the gene ontology annotations supplied with the Saccharomyces genome database. The analysis of the yeast proteome suggests that proteins containing disorder are often located in the cell nucleus and are involved in the regulation of transcription and cell signalling. The results also indicate that native disorder is associated with the molecular functions of kinase activity and nucleic acid binding.
Collapse
Affiliation(s)
- J J Ward
- Bioinformatics Unit, Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
1535
|
Wang W, Seki M, Otsuki M, Tada S, Takao N, Yamamoto KI, Hayashi M, Honma M, Enomoto T. The absence of a functional relationship between ATM and BLM, the components of BASC, in DT40 cells. Biochim Biophys Acta Mol Basis Dis 2004; 1688:137-44. [PMID: 14990344 DOI: 10.1016/j.bbadis.2003.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2002] [Revised: 11/11/2003] [Accepted: 11/12/2003] [Indexed: 11/15/2022]
Abstract
Bloom syndrome (BS) and ataxia-telangiectasia (A-T) are rare autosomal recessive diseases associated with chromosomal instability. The genes responsible for BS and A-T have been identified as BLM and ATM, respectively, whose products were recently found to be components of BRCA1-associated genome surveillance complex (BASC), a supercomplex possibly involved in the recognition and repair of aberrant DNA structures. Based on experiments using BLM(-/-) DT40 cells and BLM(-/-)/RAD54(-/-) DT40 cells, we previously suggested that BLM functions to reduce the formation of double-strand breaks (DSBs) during DNA replication. To examine whether ATM is involved in the recognition and/or repair of DSBs generated in BLM(-/-) DT40 cells and to address the functional relationship between the two BASC components, we generated BLM(-/-)/ATM(-/-) DT40 cells and characterized their properties as well as those of ATM(-/-) and BLM(-/-) DT40 cells. BLM(-/-)/ATM(-/-) cells proliferated slightly more slowly than either BLM(-/-) or ATM(-/-) cells. The sensitivity of BLM(-/-)/ATM(-/-) cells to gamma-irradiation was similar to that of ATM(-/-) cells, while BLM(-/-) cells were slightly resistant to gamma-irradiation compared with wild-type cells. BLM(-/-) cells showed sensitivity to methyl methanesulfonate (MMS) and UV irradiation while ATM(-/-) cells did not show sensitivity to either agent. The sensitivity of BLM(-/-)/ATM(-/-) cells to MMS and UV was similar to that of BLM(-/-) cells. Disrupting the function of ATM reduced the targeted integration frequency in BLM(-/-) DT40 cells. However, a defect in ATM only slightly reduced the increased sister chromatid exchanges (SCEs) in BLM(-/-) DT40 cells.
Collapse
Affiliation(s)
- Wensheng Wang
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
1536
|
Espejel S, Martín M, Klatt P, Martín-Caballero J, Flores JM, Blasco MA. Shorter telomeres, accelerated ageing and increased lymphoma in DNA-PKcs-deficient mice. EMBO Rep 2004; 5:503-9. [PMID: 15105825 PMCID: PMC1299048 DOI: 10.1038/sj.embor.7400127] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 01/26/2004] [Accepted: 02/18/2004] [Indexed: 12/14/2022] Open
Abstract
Non-homologous end joining (NHEJ) is the principal repair mechanism used by mammalian cells to cope with double-strand breaks (DSBs) that continually occur in the genome. One of the key components of the mammalian NHEJ machinery is the DNA-PK complex, formed by the Ku86/70 heterodimer and the DNA-PK catalytic subunit (DNA-PKcs). Here, we report on the detailed life-long follow-up of DNA-PKcs-defective mice. Apart from defining a role of DNA-PKcs in telomere length maintenance in the context of the ageing organism, we observed that DNA-PKcs-defective mice had a shorter life span and showed an earlier onset of ageing-related pathologies than the corresponding wild-type littermates. In addition, DNA-PKcs ablation was associated with a markedly higher incidence of T lymphomas and infections. In conclusion, these data link the dual role of DNA-PKcs in DNA repair and telomere length maintenance to organismal ageing and cancer.
Collapse
Affiliation(s)
- Silvia Espejel
- Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Marta Martín
- Department of Cell Biology, Physiology and Immunology, and Institute of Biotechnology and Biomedicine, Universitat Autonoma de Barcelona, Barcelona 08193, Spain
| | - Peter Klatt
- Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Juan Martín-Caballero
- Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Juana M Flores
- Animal Surgery and Medicine Department, Facultad de Veterinaria, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - María A Blasco
- Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
- Tel: +34 917328031; Fax: +34 917328028; E-mail:
| |
Collapse
|
1537
|
Horejsí Z, Falck J, Bakkenist CJ, Kastan MB, Lukas J, Bartek J. Distinct functional domains of Nbs1 modulate the timing and magnitude of ATM activation after low doses of ionizing radiation. Oncogene 2004; 23:3122-7. [PMID: 15048089 DOI: 10.1038/sj.onc.1207447] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ATM kinase is a tumour suppressor and a key activator of genome integrity checkpoints in mammalian cells exposed to ionizing radiation (IR) and other insults that elicit DNA double-strand breaks (DSBs). In response to IR, autophosphorylation on serine 1981 causes dissociation of ATM dimers and initiates cellular ATM kinase activity. Here, we show that the kinetics and magnitude of ATM Ser1981 phosphorylation after exposure of human fibroblasts to low doses (2 Gy) of IR are altered in cells deficient in Nbs1, a substrate of ATM and a component of the MRN (Mre11-Rad50-Nbs1) complex involved in processing/repair of DSBs and ATM-dependent cell cycle checkpoints. Timely phosphorylation of both ATM Ser1981 and the ATM substrate Smc1 after IR were rescued via retrovirally mediated reconstitution of Nbs1-deficient cells by wild-type Nbs1 or mutants of Nbs1 defective in the FHA domain or nonphosphorylatable by ATM, but not by Nbs1 lacking the Mre11-interaction domain. Our data indicate that apart from its role downstream of ATM in the DNA damage checkpoint network, the MRN complex serves also as a modulator/amplifier of ATM activity. Although not absolutely required for ATM activation, the MRN nuclease complex may help reach the threshold activity of ATM necessary for optimal genome maintenance and prevention of cancer.
Collapse
Affiliation(s)
- Zuzana Horejsí
- Danish Cancer Society, Institute of Cancer Biology, Strandboulevarden 49, Copenhagen DK-2100 Denmark
| | | | | | | | | | | |
Collapse
|
1538
|
Fernandez-Zapico ME, Bramati PS, Zakaria S, Kaczynski JA, Urrutia R. Fundamentals of transcription factors and their impact on pancreatic development and cancer. Pancreatology 2004; 3:276-83. [PMID: 12890989 DOI: 10.1159/000071765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transcription factors are proteins that regulate gene expression by modulating the synthesis of messenger RNA. Since this process, known as gene transcription, is often the dominant control point in the production of many proteins, transcription factors are key regulators of numerous cellular functions, including secretion, proliferation, differentiation, and apoptosis. Most transcription factors are also the final effectors of signaling pathways that transduce signals from the cell membrane to the nucleus. Therefore alterations in the activity or expression of some transcription factors have a significant impact on the biology of human cells and may lead to the development of diseases. In this article we review this field of research with a particular emphasis on the role of transcription factors in pancreatic development and cancer.
Collapse
|
1539
|
Ismail IH, Mårtensson S, Moshinsky D, Rice A, Tang C, Howlett A, McMahon G, Hammarsten O. SU11752 inhibits the DNA-dependent protein kinase and DNA double-strand break repair resulting in ionizing radiation sensitization. Oncogene 2004; 23:873-82. [PMID: 14661061 DOI: 10.1038/sj.onc.1207303] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of the DNA-dependent protein kinase (DNA-PK) results in increased sensitivity to ionizing radiation due to inefficient repair of DNA double-strand breaks. Overexpression of DNA-PK in tumor cells conversely results in resistance to ionizing radiation. It is therefore possible that inhibition of DNA-PK will enhance the preferential killing of tumor cells by radiotherapy. Available inhibitors of DNA-PK, like wortmannin, are cytotoxic and stop the cell cycle because they inhibit phoshatidylinositol-3-kinases at 100-fold lower concentrations required to inhibit DNA-PK. In an effort to develop a specific DNA-PK inhibitor, we have characterized SU11752, from a three-substituted indolin-2-ones library. SU11752 and wortmannin were equally potent inhibitors of DNA-PK. In contrast, inhibition of the phoshatidylinositol-3-kinase p110gamma required 500-fold higher concentration of SU11752. Thus, SU11752 was a more selective inhibitor of DNA-PK than wortmannin. Inhibition kinetics and a direct assay for ATP binding showed that SU11752 inhibited DNA-PK by competing with ATP. SU11752 inhibited DNA double-strand break repair in cells and gave rise to a five-fold sensitization to ionizing radiation. At concentrations of SU11752 that inhibited DNA repair, cell cycle progression was still normal and ATM kinase activity was not inhibited. We conclude that SU11752 defines a new class of drugs that may serve as a starting point for the development of specific DNA-PK inhibitors.
Collapse
Affiliation(s)
- Ismail Hassan Ismail
- Department of Clinical Chemistry, Göteborg University, Sahlgrenska University Hospital, Göteborg 41345, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
1540
|
Koike M, Koike A. The establishment and characterization of cell lines stably expressing human Ku80 tagged with enhanced green fluorescent protein. JOURNAL OF RADIATION RESEARCH 2004; 45:119-125. [PMID: 15133299 DOI: 10.1269/jrr.45.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Ku protein is a complex of two subunits, Ku70 and Ku80, and it plays a role in multiple nuclear processes, e.g., nonhomologous DNA-end-joining (NHEJ), chromosome maintenance, and transcription regulation. On the other hand, several studies have reported a cytoplasmic or cell surface localization of Ku in various cell types. The mechanism underlying the regulation of all the diverse functions of Ku is still unclear, though the mechanism that regulates the nuclear localization of Ku70 and Ku80 appears to play, at least in part, a key role in regulating the physiological function of Ku. In this study, we generated cell lines expressing the human Ku80 tagged with the green fluorescent protein (GFP) color variants in Ku80-deficient cells, i.e., xrs-6 derived from CHO-K1. Although Ku70, as well as Ku80, was undetectable in xrs-6 cells, it was seen in these transformants at a level similar to the level of CHO-K1. Furthermore, etoposide- and radiosensitive phenotype of xrs-6 cells were corrected by an introduction of the tagged Ku80. Moreover, the tagged Ku80 suppressed apoptosis triggered by DNA damage. These results demonstrate that fusion to the GFP color variants does not interfere with the functions of the Ku80 in the Ku-dependent DSB repair. Therefore, these transformants might be useful not only in the analysis of Ku80 behavior, but also in an analysis of the dynamics of the NHEJ repair process.
Collapse
Affiliation(s)
- Manabu Koike
- Radiation Hazards Research Group, National Institute of Radiological Sciences, Chiba, Japan.
| | | |
Collapse
|
1541
|
Affiliation(s)
- Bin-Bing S Zhou
- Drug Discovery Biology, Incyte Corporation, Experimental Station, Rt. 141 & Henry Clay Road, Bldg 400, Wilmington, DE 19880, USA.
| | | |
Collapse
|
1542
|
Abstract
V(D)J recombination assembles antigen receptor genes from component gene segments. We review findings that have shaped our current understanding of this remarkable mechanism, with a focus on two major reports--the first detailed comparison of germline and rearranged antigen receptor loci and the discovery of the recombination activating gene-1.
Collapse
Affiliation(s)
- David Jung
- Howard Hughes Medical Institute, The Children's Hospital, The CBR Institute for Biomedical Research, Inc., Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
1543
|
Scott RJ. DNA double strand break repair and its association with inherited predispositions to breast cancer. Hered Cancer Clin Pract 2004; 2:37-43. [PMID: 20233482 PMCID: PMC2839992 DOI: 10.1186/1897-4287-2-1-37] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Accepted: 02/10/2004] [Indexed: 11/30/2022] Open
Abstract
Mutations in BRCA1 account for the majority of familial aggregations of early onset breast and ovarian cancer (~70%) and about 1/5 of all early onset breast cancer families; in contrast, mutations in BRCA2 account for a smaller proportion of breast/ovarian cancer families and a similar proportion of early onset breast cancer families. BRCA2 has also been shown to be associated with a much more pleiotropic disease spectrum compared to BRCA1. Since the identification of both BRCA1 and BRCA2 investigations into the functions of these genes have revealed that both are associated with the maintenance of genomic integrity via their apparent roles in cellular response to DNA damage, especially their involvement in the process of double strand DNA break repair. This review will focus on the specific roles of both genes and how functional differences may account for the diverse clinical findings observed between families that harbour BRCA1 or BRCA2 mutations.
Collapse
Affiliation(s)
- Rodney J Scott
- Discipline of Medical Genetics, School of Biomedical Sciences, Faculty of Health, University of Newcastle and the Hunter Medical Research Institute, Newcastle, Australia and Division of Genetics, Hunter Area Pathology Service, John Hunter Hospital, Newcastle, Australia.
| |
Collapse
|
1544
|
Dittmann K, Virsik-Köpp P, Mayer C, Rave-Fränk M, Rodemann HP. Bowman-Birk protease inhibitor activates DNA-dependent protein kinase and reduces formation of radiation-induced dicentric chromosomes. Int J Radiat Biol 2004; 79:801-8. [PMID: 14630539 DOI: 10.1080/09553000310001610277] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To test a stimulatory effect of the radioprotector Bowman Birk protease inhibitor (BBI) upon DNA repair processes. MATERIALS AND METHODS An effect of BBI upon DNA repair was investigated by quantification of radiation-induced dicentric chromosomes. Sensitivity to ionizing radiation was determined by clonogenic survival assay. Quantification of activity of the DNA-dependent kinase was performed by immunoprecipitation and phosphorylation of a TP53-derived peptide. RESULTS The formation of radiation-induced dicentric chromosomes was reduced significantly after pretreatment of cells with BBI. By using a cell line with an inducible expression of a mutated TP53, it was shown that the BBI-mediated reduction of dicentric chromosome formation depended on the presence of wild-type TP53. To get further insights into the molecular mode of action of BBI, activity of the DNA-dependent protein kinase (DNA-PK) was quantified. BBI treatment resulted in a stimulation of basal (DNA-PK) activity. In SCID mouse fibroblasts deficient in DNA-PK activity, BBI failed to reduce the amount of radiation-induced dicentric chromosomes and the radioprotective effect was absent. Likewise, cells expressing mt.TP53 did not show radioprotection by BBI. CONCLUSIONS It was observed that BBI exerts its radioprotective effect by a reduction of incorrect DNA repair, resulting in a reduced amount of dicentric chromosomes. This effect on the fidelity of DNA repair is TP53 dependent and correlated with induction of DNA-PK activity.
Collapse
Affiliation(s)
- K Dittmann
- Section of Radiobiology and Environmental Research, Department of Radiation Oncology University of Tübingen Röntgenweg 11 D-72076 Tübingen Germany
| | | | | | | | | |
Collapse
|
1545
|
Harris R, Esposito D, Sankar A, Maman JD, Hinks JA, Pearl LH, Driscoll PC. The 3D solution structure of the C-terminal region of Ku86 (Ku86CTR). J Mol Biol 2004; 335:573-82. [PMID: 14672664 DOI: 10.1016/j.jmb.2003.10.047] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In eukaryotes the non-homologous end-joining repair of double strand breaks in DNA is executed by a series of proteins that bring about the synapsis, preparation and ligation of the broken DNA ends. The mechanism of this process appears to be initiated by the obligate heterodimer (Ku70/Ku86) protein complex Ku that has affinity for DNA ends. Ku then recruits the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The three-dimensional structures of the major part of the Ku heterodimer, representing the DNA-binding core, both free and bound to DNA are known from X-ray crystallography. However, these structures lack a region of ca 190 residues from the C-terminal region (CTR) of the Ku86 subunit (also known as Lupus Ku autoantigen p86, Ku80, or XRCC5) that includes the extreme C-terminal tail that is reported to be sufficient for DNA-PKcs-binding. We have examined the structural characteristics of the Ku86CTR protein expressed in bacteria. By deletion mutagenesis and heteronuclear NMR spectroscopy we localised a globular domain consisting of residues 592-709. Constructs comprising additional residues either to the N-terminal side (residues 543-709), or the C-terminal side (residues 592-732), which includes the putative DNA-PKcs-binding motif, yielded NMR spectra consistent with these extra regions lacking ordered structure. The three-dimensional solution structure of the core globular domain of the C-terminal region of Ku86 (Ku86CTR(592-709)) has been determined using heteronuclear NMR spectroscopy and dynamical simulated annealing using structural restraints from nuclear Overhauser effect spectroscopy, and scalar and residual dipolar couplings. The polypeptide fold comprises six regions of alpha-helical secondary structure that has an overall superhelical topology remotely homologous to the MIF4G homology domain of the human nuclear cap binding protein 80 kDa subunit and the VHS domain of the Drosophila protein Hrs, though strict analysis of the structures suggests that these domains are not functionally related. Two prominent hydrophobic pockets in the gap between helices alpha2 and alpha4 suggest a potential ligand-binding characteristic for this globular domain.
Collapse
Affiliation(s)
- Richard Harris
- Bloomsbury Centre for Structural Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
1546
|
Mothersill CE, Moriarty MJ, Seymour CB. Radiotherapy and the potential exploitation of bystander effects. Int J Radiat Oncol Biol Phys 2004; 58:575-9. [PMID: 14751530 DOI: 10.1016/j.ijrobp.2003.09.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Radiation-induced bystander effects are the subject of intense investigation in radiation protection. The effects predominate at low doses and have been discussed mainly in terms of the impact on low-dose risk assessment. Possible therapeutic implications have been alluded to, but not discussed in any detail. The purpose of this review was to consider bystander biology in areas of major importance or interest in radiotherapy. These include consideration of radiation-induced bystander effects during the cell cycle, under hypoxic conditions, when fractionated therapy modalities are used, or when combined radiochemotherapy is given. Also discussed are individual variations in toxicity of bystander factors and normal tissue "collateral" damage. The importance of considering the tumor in the context of the organ, and even the organism that supports it, is also discussed. Direct clinical radiotherapy studies that consider bystander effects are not in the public domain at the time of writing, but many in vitro studies are available that are relevant; some preliminary animal data have also been published. Because radiation-induced bystander effects appear to challenge many of the central assumptions that underlie radiotherapy practice, it is important to consider what unexplored treatment avenues might result from a consideration of these effects. The final part of this paper is devoted to this point.
Collapse
Affiliation(s)
- C E Mothersill
- Radiation and Environmental Science Centre, Dublin Institute of Technology, Dublin, Ireland.
| | | | | |
Collapse
|
1547
|
Kühne C, Tjörnhammar ML, Pongor S, Banks L, Simoncsits A. Repair of a minimal DNA double-strand break by NHEJ requires DNA-PKcs and is controlled by the ATM/ATR checkpoint. Nucleic Acids Res 2004; 31:7227-37. [PMID: 14654698 PMCID: PMC291875 DOI: 10.1093/nar/gkg937] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mammalian cells primarily rejoin DNA double-strand breaks (DSBs) by the non-homologous end-joining (NHEJ) pathway. The joining of the broken DNA ends appears directly without template and accuracy is ensured by the NHEJ factors that are under ATM/ATR regulated checkpoint control. In the current study we report the engineering of a mono-specific DNA damaging agent. This was used to study the molecular requirements for the repair of the least complex DSB in vivo. Single-chain PvuII restriction enzymes fused to protein delivery sequences transduce cells efficiently and induce blunt end DSBs in vivo. We demonstrate that beside XRCC4/LigaseIV and KU, the DNA-PK catalytic subunit (DNA-PKcs) is also essential for the joining of this low complex DSB in vivo. The appearance of blunt end 3'-hydroxyl and 5'-phosphate DNA DSBs induces a significantly higher frequency of anaphase bridges in cells that do not contain functional DNA-PKcs, suggesting an absolute requirement for DNA-PKcs in the control of chromosomal stability during end joining. Moreover, these minimal blunt end DSBs are sufficient to induce a p53 and ATM/ATR checkpoint function.
Collapse
Affiliation(s)
- Christian Kühne
- International Center for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano 99, I-34000 Trieste, Italy.
| | | | | | | | | |
Collapse
|
1548
|
Jazayeri A, McAinsh AD, Jackson SP. Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair. Proc Natl Acad Sci U S A 2004; 101:1644-9. [PMID: 14711989 PMCID: PMC341805 DOI: 10.1073/pnas.0304797101] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There are two main pathways in eukaryotic cells for the repair of DNA double-strand breaks: homologous recombination and nonhomologous end joining. Because eukaryotic genomes are packaged in chromatin, these pathways are likely to require the modulation of chromatin structure. One way to achieve this is by the acetylation of lysine residues on the N-terminal tails of histones. Here we demonstrate that Sin3p and Rpd3p, components of one of the predominant histone deacetylase complexes of Saccharomyces cerevisiae, are required for efficient nonhomologous end joining. We also show that lysine 16 of histone H4 becomes deacetylated in the proximity of a chromosomal DNA double-strand break in a Sin3p-dependent manner. Taken together, these results define a role for the Sin3p/Rpd3p complex in the modulation of DNA repair.
Collapse
Affiliation(s)
- Ali Jazayeri
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | | | | |
Collapse
|
1549
|
Zhao R, Yang FT, Alexander DR. An oncogenic tyrosine kinase inhibits DNA repair and DNA-damage-induced Bcl-xL deamidation in T cell transformation. Cancer Cell 2004; 5:37-49. [PMID: 14749125 DOI: 10.1016/s1535-6108(03)00333-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A transgenic mouse model of T cell lymphoma was used to investigate the transforming events mediated by an oncogenic tyrosine kinase in pretumorigenic CD4-CD8- (DN) thymocytes. Parental CD45(-/-) and p56(lck-F505Y) mice do not develop tumors, whereas their CD45(-/-)p56(lck-F505Y) progeny develop T lymphomas. Increased but nononcogenic p56lck kinase activity in p56(lck-F505Y) mice DN thymocytes causes cell-cycle progression, survival, and Bcl-XL upregulation. Additional unique oncogenic signals occur in pretumorigenic CD45(-/-)p56(lck-F505Y) thymocytes in which p56lck kinase activity is 2- to 3-fold higher relative to p56(lck-F505Y): inhibition of DNA repair, inhibition of DNA-damage-induced Bcl-XL deamidation, Bax conformational change and mitochondrial translocation, cytochrome c release, and the apoptotic caspase execution cascade. Inhibition of Bcl-XL deamidation may be a critical switch in oncogenic kinase-induced T cell transformation.
Collapse
Affiliation(s)
- Rui Zhao
- Laboratory of Lymphocyte Signalling and Development, Molecular Immunology Programme, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK
| | | | | |
Collapse
|
1550
|
Abstract
Earlier studies have shown that mTOR plays a key role in ribosome biogenesis. In bacteria, amino acids and ATP levels independently control ribosome biogenesis. Here, we describe recent findings demonstrating that homeostatic levels of amino acids, most notably branched-chain amino acids, and ATP, independently regulate the activity of mTOR. Unlike the effects of amino acids, the effects of ATP appear to be direct. Based on these findings we propose a model by which tumor cells existing in the anaerobic environment may have an advantage in growth by exploiting the rapid, although less efficient, production of ATP to drive growth via the mTOR signaling pathway.
Collapse
Affiliation(s)
- A Jaeschke
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|