1501
|
Dlakić M, Mushegian A. Prp8, the pivotal protein of the spliceosomal catalytic center, evolved from a retroelement-encoded reverse transcriptase. RNA (NEW YORK, N.Y.) 2011; 17:799-808. [PMID: 21441348 PMCID: PMC3078730 DOI: 10.1261/rna.2396011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Prp8 is the largest and most highly conserved protein of the spliceosome, encoded by all sequenced eukaryotic genomes but missing from prokaryotes and viruses. Despite all evidence that Prp8 is an integral part of the spliceosomal catalytic center, much remains to be learned about its molecular functions and evolutionary origin. By analyzing sequence and structure similarities between Prp8 and other protein domains, we show that its N-terminal region contains a putative bromodomain. The central conserved domain of Prp8 is related to the catalytic domain of reverse transcriptases (RTs) and is most similar to homologous enzymes encoded by prokaryotic retroelements. However, putative catalytic residues in this RT domain are only partially conserved and may not be sufficient for the nucleotidyltransferase activity. The RT domain is followed by an uncharacterized sequence region with relatives found in fungal RT-like proteins. This part of Prp8 is predicted to adopt an α-helical structure and may be functionally equivalent to diverse maturase/X domains of retroelements and to the thumb domain of retroviral RTs. Together with a previously identified C-terminal domain that has an RNaseH-like fold, our results suggest evolutionary connections between Prp8 and ancient mobile elements. Prp8 may have evolved by acquiring nucleic acid-binding domains from inactivated retroelements, and their present-day role may be in maintaining proper conformation of the bound RNA cofactors and substrates of the splicing reaction. This is only the second example-the other one being telomerase-of the RT recruitment from a genomic parasite to serve an essential cellular function.
Collapse
Affiliation(s)
- Mensur Dlakić
- Department of Microbiology, Montana State University, Bozeman, Montana 59717, USA.
| | | |
Collapse
|
1502
|
Björnsson H, Marteinsson V, Friðjónsson Ó, Linke D, Benediktsdóttir E. Isolation and characterization of an antigen from the fish pathogen Moritella viscosa. J Appl Microbiol 2011; 111:17-25. [DOI: 10.1111/j.1365-2672.2011.05023.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
1503
|
Vieira FG, Rozas J. Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol Evol 2011; 3:476-90. [PMID: 21527792 PMCID: PMC3134979 DOI: 10.1093/gbe/evr033] [Citation(s) in RCA: 336] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chemoreception is a biological process essential for the survival of animals, as it allows the recognition of important volatile cues for the detection of food, egg-laying substrates, mates, or predators, among other purposes. Furthermore, its role in pheromone detection may contribute to evolutionary processes, such as reproductive isolation and speciation. This key role in several vital biological processes makes chemoreception a particularly interesting system for studying the role of natural selection in molecular adaptation. Two major gene families are involved in the perireceptor events of the chemosensory system: the odorant-binding protein (OBP) and chemosensory protein (CSP) families. Here, we have conducted an exhaustive comparative genomic analysis of these gene families in 20 Arthropoda species. We show that the evolution of the OBP and CSP gene families is highly dynamic, with a high number of gains and losses of genes, pseudogenes, and independent origins of subfamilies. Taken together, our data clearly support the birth-and-death model for the evolution of these gene families with an overall high gene turnover rate. Moreover, we show that the genome organization of the two families is significantly more clustered than expected by chance and, more important, that this pattern appears to be actively maintained across the Drosophila phylogeny. Finally, we suggest the homologous nature of the OBP and CSP gene families, dating back their most recent common ancestor after the terrestrialization of Arthropoda (380--450 Ma) and we propose a scenario for the origin and diversification of these families.
Collapse
Affiliation(s)
- Filipe G Vieira
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
1504
|
Floris M, Raimondo D, Leoni G, Orsini M, Marcatili P, Tramontano A. MAISTAS: a tool for automatic structural evaluation of alternative splicing products. Bioinformatics 2011; 27:1625-9. [PMID: 21498402 PMCID: PMC3106191 DOI: 10.1093/bioinformatics/btr198] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Motivation: Analysis of the human genome revealed that the amount of transcribed sequence is an order of magnitude greater than the number of predicted and well-characterized genes. A sizeable fraction of these transcripts is related to alternatively spliced forms of known protein coding genes. Inspection of the alternatively spliced transcripts identified in the pilot phase of the ENCODE project has clearly shown that often their structure might substantially differ from that of other isoforms of the same gene, and therefore that they might perform unrelated functions, or that they might even not correspond to a functional protein. Identifying these cases is obviously relevant for the functional assignment of gene products and for the interpretation of the effect of variations in the corresponding proteins. Results: Here we describe a publicly available tool that, given a gene or a protein, retrieves and analyses all its annotated isoforms, provides users with three-dimensional models of the isoform(s) of his/her interest whenever possible and automatically assesses whether homology derived structural models correspond to plausible structures. This information is clearly relevant. When the homology model of some isoforms of a gene does not seem structurally plausible, the implications are that either they assume a structure unrelated to that of the other isoforms of the same gene with presumably significant functional differences, or do not correspond to functional products. We provide indications that the second hypothesis is likely to be true for a substantial fraction of the cases. Availability:http://maistas.bioinformatica.crs4.it/. Contact:anna.tramontano@uniromal.it
Collapse
Affiliation(s)
- Matteo Floris
- CRS4-Bioinformatics Laboratory, c/o Sardegna Ricerche Scientific Park, Pula, 09010 Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
1505
|
Basel-Vanagaite L, Pasmanik-Chor M, Lurie R, Yeheskel A, Kjaer KW. CDH3-Related Syndromes: Report on a New Mutation and Overview of the Genotype-Phenotype Correlations. Mol Syndromol 2011; 1:223-230. [PMID: 22140374 DOI: 10.1159/000327156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2011] [Indexed: 11/19/2022] Open
Abstract
Hypotrichosis with juvenile macular dystrophy (HJMD) and ectodermal dysplasia, ectrodactyly and macular dystrophy (EEM) are both caused by mutations in the CDH3 gene. In this report, we describe a family with EEM syndrome caused by a novel CDH3 gene mutation and review the mutation spectrum and limb abnormalities in both EEM and HJMD. A protein structure model showing the localization of different mutations causing both syndromes is presented. The CDH3 gene was sequenced and investigation of the mutations performed using a protein structure model. The conservation score was calculated by ConSurf. We identified a novel CDH3 gene mutation, p.G277V, which resides in a conserved residue located on a β-strand in the second cadherin domain. Review of the data on previously published mutations showed intra-familial and inter-familial variations in the severity of the limb abnormalities. Syndactyly was the most consistent clinical finding present in all the patients regardless of mutation type. The results of our study point to a phenotypic continuum between HJMD and EEM. It is important for genetic counseling to keep in mind the possible clinical/phenotypic overlap between these 2 syndromes and to be aware of the possible risk of limb abnormalities in future pregnancies in families with HJMD syndrome. CDH3 gene mutation screening is recommended in patients with both these syndromes as part of the work-up in order to offer appropriate genetic counseling.
Collapse
Affiliation(s)
- L Basel-Vanagaite
- Departments of Medical Genetics, Tel-Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
1506
|
González-Díaz H, Muíño L, Anadón AM, Romaris F, Prado-Prado FJ, Munteanu CR, Dorado J, Sierra AP, Mezo M, González-Warleta M, Gárate T, Ubeira FM. MISS-Prot: web server for self/non-self discrimination of protein residue networks in parasites; theory and experiments in Fasciola peptides and Anisakis allergens. MOLECULAR BIOSYSTEMS 2011; 7:1938-55. [PMID: 21468430 DOI: 10.1039/c1mb05069a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infections caused by human parasites (HPs) affect the poorest 500 million people worldwide but chemotherapy has become expensive, toxic, and/or less effective due to drug resistance. On the other hand, many 3D structures in Protein Data Bank (PDB) remain without function annotation. We need theoretical models to quickly predict biologically relevant Parasite Self Proteins (PSP), which are expressed differentially in a given parasite and are dissimilar to proteins expressed in other parasites and have a high probability to become new vaccines (unique sequence) or drug targets (unique 3D structure). We present herein a model for PSPs in eight different HPs (Ascaris, Entamoeba, Fasciola, Giardia, Leishmania, Plasmodium, Trypanosoma, and Toxoplasma) with 90% accuracy for 15 341 training and validation cases. The model combines protein residue networks, Markov Chain Models (MCM) and Artificial Neural Networks (ANN). The input parameters are the spectral moments of the Markov transition matrix for electrostatic interactions associated with the protein residue complex network calculated with the MARCH-INSIDE software. We implemented this model in a new web-server called MISS-Prot (MARCH-INSIDE Scores for Self-Proteins). MISS-Prot was programmed using PHP/HTML/Python and MARCH-INSIDE routines and is freely available at: . This server is easy to use by non-experts in Bioinformatics who can carry out automatic online upload and prediction with 3D structures deposited at PDB (mode 1). We can also study outcomes of Peptide Mass Fingerprinting (PMFs) and MS/MS for query proteins with unknown 3D structures (mode 2). We illustrated the use of MISS-Prot in experimental and/or theoretical studies of peptides from Fasciola hepatica cathepsin proteases or present on 10 Anisakis simplex allergens (Ani s 1 to Ani s 10). In doing so, we combined electrophoresis (1DE), MALDI-TOF Mass Spectroscopy, and MASCOT to seek sequences, Molecular Mechanics + Molecular Dynamics (MM/MD) to generate 3D structures and MISS-Prot to predict PSP scores. MISS-Prot also allows the prediction of PSP proteins in 16 additional species including parasite hosts, fungi pathogens, disease transmission vectors, and biotechnologically relevant organisms.
Collapse
Affiliation(s)
- Humberto González-Díaz
- Department of Microbiology & Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1507
|
Hijikata A, Yura K, Noguti T, Go M. Revisiting gap locations in amino acid sequence alignments and a proposal for a method to improve them by introducing solvent accessibility. Proteins 2011; 79:1868-77. [PMID: 21465562 PMCID: PMC3110861 DOI: 10.1002/prot.23011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 01/23/2011] [Accepted: 01/28/2011] [Indexed: 12/27/2022]
Abstract
In comparative modeling, the quality of amino acid sequence alignment still constitutes a major bottleneck in the generation of high quality models of protein three-dimensional (3D) structures. Substantial efforts have been made to improve alignment quality by revising the substitution matrix, introducing multiple sequences, replacing dynamic programming with hidden Markov models, and incorporating 3D structure information. Improvements in the gap penalty have not been a major focus, however, following the development of the affine gap penalty and of the secondary structure dependent gap penalty. We revisited the correlation between protein 3D structure and gap location in a large protein 3D structure data set, and found that the frequency of gap locations approximated to an exponential function of the solvent accessibility of the inserted residues. The nonlinearity of the gap frequency as a function of accessibility corresponded well to the relationship between residue mutation pattern and residue accessibility. By introducing this relationship into the gap penalty calculation for pairwise alignment between template and target amino acid sequences, we were able to obtain a sequence alignment much closer to the structural alignment. The quality of the alignments was substantially improved on a pair of sequences with identity in the “twilight zone” between 20 and 40%. The relocation of gaps by our new method made a significant improvement in comparative modeling, exemplified here by the Bacillus subtilis yitF protein. The method was implemented in a computer program, ALAdeGAP (ALignment with Accessibility dependent GAp Penalty), which is available at http://cib.cf.ocha.ac.jp/target_protein/. Proteins 2011; © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Atsushi Hijikata
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|
1508
|
Gauri SS, Mandal SM, Pati BR, Dey S. Purification and structural characterization of a novel antibacterial peptide from Bellamya bengalensis: activity against ampicillin and chloramphenicol resistant Staphylococcus epidermidis. Peptides 2011; 32:691-6. [PMID: 21262297 DOI: 10.1016/j.peptides.2011.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 11/17/2022]
Abstract
Increasing tendency of clinical bacterial strains resistant to conventional antibiotics has being a great challenge to the public's health. Antimicrobial peptides, a new class of antibiotics is known to have the activity against a wide range of bacteria resistant to conventional antibiotics. An antimicrobial peptide of 1676 Da was purified from Bellamya bengalensis, a fresh water snail, using ultrafiltration and reversed phase liquid chromatography. The effect of this peptide on Staphylococcus epidermidis resistant to ampicillin and chloramphenicol was investigated; the MIC and MBC values were 8 μg/ml and 16 μg/ml, respectively. Complete sequence of the peptide was determined by tandem mass spectrometry (MS/MS). Further, peptide net charge, hydrophobicity and molecular modeling were evaluated in silico for better understanding the probable mechanisms of action. The peptide showed the specificity to bacterial membranes. Hence, this reported peptide revealed a promising candidate to contribute in the development of therapeutic agent for Staphylococcal infections.
Collapse
Affiliation(s)
- Samiran S Gauri
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | | | | | | |
Collapse
|
1509
|
Deuquet J, Lausch E, Guex N, Abrami L, Salvi S, Lakkaraju A, Ramirez MCM, Martignetti JA, Rokicki D, Bonafe L, Superti-Furga A, van der Goot FG. Hyaline fibromatosis syndrome inducing mutations in the ectodomain of anthrax toxin receptor 2 can be rescued by proteasome inhibitors. EMBO Mol Med 2011; 3:208-21. [PMID: 21328543 PMCID: PMC3377065 DOI: 10.1002/emmm.201100124] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 11/25/2022] Open
Abstract
Hyaline Fibromatosis Syndrome (HFS) is a human genetic disease caused by mutations in the anthrax toxin receptor 2 (or cmg2) gene, which encodes a membrane protein thought to be involved in the homeostasis of the extracellular matrix. Little is known about the structure and function of the protein or the genotype–phenotype relationship of the disease. Through the analysis of four patients, we identify three novel mutants and determine their effects at the cellular level. Altogether, we show that missense mutations that map to the extracellular von Willebrand domain or the here characterized Ig-like domain of CMG2 lead to folding defects and thereby to retention of the mutated protein in the endoplasmic reticulum (ER). Mutations in the Ig-like domain prevent proper disulphide bond formation and are more efficiently targeted to ER-associated degradation. Finally, we show that mutant CMG2 can be rescued in fibroblasts of some patients by treatment with proteasome inhibitors and that CMG2 is then properly transported to the plasma membrane and signalling competent, identifying the ER folding and degradation pathway components as promising drug targets for HFS.
Collapse
Affiliation(s)
- Julie Deuquet
- Ecole Polytechnique Fédérale de Lausanne, Global Health InstituteLausanne, Switzerland
| | - Ekkehart Lausch
- Department of Pediatrics, University of FreiburgFreiburg, Germany
| | - Nicolas Guex
- Vital-IT Group, Swiss Institute of BioinformaticsLausanne Switzerland
| | - Laurence Abrami
- Ecole Polytechnique Fédérale de Lausanne, Global Health InstituteLausanne, Switzerland
| | - Suzanne Salvi
- Ecole Polytechnique Fédérale de Lausanne, Global Health InstituteLausanne, Switzerland
| | - Asvin Lakkaraju
- Ecole Polytechnique Fédérale de Lausanne, Global Health InstituteLausanne, Switzerland
| | - Maria Celeste M Ramirez
- Department of Genetics and Genomic Sciences, Mount Sinai School of MedicineNew York, NY, USA
| | - John A Martignetti
- Department of Genetics and Genomic Sciences, Mount Sinai School of MedicineNew York, NY, USA
- Department of Pediatrics, Mount Sinai School of MedicineNew York, NY, USA
- Department of Oncological Sciences, Mount Sinai School of MedicineNew York, NY, USA
| | - Dariusz Rokicki
- Division of Inborn Errors of Metabolism, Children's Memorial Health InstituteWarsaw, Poland
| | - Luisa Bonafe
- Division of Molecular Pediatrics, Centre Hospitalier Universitaire Vaudois, University of LausanneSwitzerland
| | - Andrea Superti-Furga
- Department of Pediatrics, University of FreiburgFreiburg, Germany
- Division of Molecular Pediatrics, Centre Hospitalier Universitaire Vaudois, University of LausanneSwitzerland
| | | |
Collapse
|
1510
|
Söding J, Remmert M. Protein sequence comparison and fold recognition: progress and good-practice benchmarking. Curr Opin Struct Biol 2011; 21:404-11. [PMID: 21458982 DOI: 10.1016/j.sbi.2011.03.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/01/2011] [Accepted: 03/09/2011] [Indexed: 11/26/2022]
Abstract
Protein sequence comparison methods have grown increasingly sensitive during the last decade and can often identify distantly related proteins sharing a common ancestor some 3 billion years ago. Although cellular function is not conserved so long, molecular functions and structures of protein domains often are. In combination with a domain-centered approach to function and structure prediction, modern remote homology detection methods have a great and largely underexploited potential for elucidating protein functions and evolution. Advances during the last few years include nonlinear scoring functions combining various sequence features, the use of sequence context information, and powerful new software packages. Since progress depends on realistically assessing new and existing methods and published benchmarks are often hard to compare, we propose 10 rules of good-practice benchmarking.
Collapse
Affiliation(s)
- Johannes Söding
- Gene Center and Center for Integrated Protein Science, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, Munich, Germany.
| | | |
Collapse
|
1511
|
Lobito AA, Ramani SR, Tom I, Bazan JF, Luis E, Fairbrother WJ, Ouyang W, Gonzalez LC. Murine insulin growth factor-like (IGFL) and human IGFL1 proteins are induced in inflammatory skin conditions and bind to a novel tumor necrosis factor receptor family member, IGFLR1. J Biol Chem 2011; 286:18969-81. [PMID: 21454693 PMCID: PMC3099712 DOI: 10.1074/jbc.m111.224626] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Psoriasis is a human skin condition characterized by epidermal hyperproliferation and infiltration of multiple leukocyte populations. In characterizing a novel insulin growth factor (IGF)-like (IGFL) gene in mice (mIGFL), we found transcripts of this gene to be most highly expressed in skin with enhanced expression in models of skin wounding and psoriatic-like inflammation. A possible functional ortholog in humans, IGFL1, was uniquely and significantly induced in psoriatic skin samples. In vitro IGFL1 expression was up-regulated in cultured primary keratinocytes stimulated with tumor necrosis factor α but not by other psoriasis-associated cytokines. Finally, using a secreted and transmembrane protein library, we discovered high affinity interactions between human IGFL1 and mIGFL and the TMEM149 ectodomain. TMEM149 (renamed here as IGFLR1) is an uncharacterized gene with structural similarity to the tumor necrosis factor receptor family. Our studies demonstrate that IGFLR1 is expressed primarily on the surface of mouse T cells. The connection between mIGFL and IGFLR1 receptor suggests mIGFL may influence T cell biology within inflammatory skin conditions.
Collapse
Affiliation(s)
- Adrian A Lobito
- Department of Protein Chemistry, Genentech, Inc, South San Francisco, California 94080-4918, USA
| | | | | | | | | | | | | | | |
Collapse
|
1512
|
Ochoa A, Llinás M, Singh M. Using context to improve protein domain identification. BMC Bioinformatics 2011; 12:90. [PMID: 21453511 PMCID: PMC3090354 DOI: 10.1186/1471-2105-12-90] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 03/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identifying domains in protein sequences is an important step in protein structural and functional annotation. Existing domain recognition methods typically evaluate each domain prediction independently of the rest. However, the majority of proteins are multidomain, and pairwise domain co-occurrences are highly specific and non-transitive. RESULTS Here, we demonstrate how to exploit domain co-occurrence to boost weak domain predictions that appear in previously observed combinations, while penalizing higher confidence domains if such combinations have never been observed. Our framework, Domain Prediction Using Context (dPUC), incorporates pairwise "context" scores between domains, along with traditional domain scores and thresholds, and improves domain prediction across a variety of organisms from bacteria to protozoa and metazoa. Among the genomes we tested, dPUC is most successful at improving predictions for the poorly-annotated malaria parasite Plasmodium falciparum, for which over 38% of the genome is currently unannotated. Our approach enables high-confidence annotations in this organism and the identification of orthologs to many core machinery proteins conserved in all eukaryotes, including those involved in ribosomal assembly and other RNA processing events, which surprisingly had not been previously known. CONCLUSIONS Overall, our results demonstrate that this new context-based approach will provide significant improvements in domain and function prediction, especially for poorly understood genomes for which the need for additional annotations is greatest. Source code for the algorithm is available under a GPL open source license at http://compbio.cs.princeton.edu/dpuc/. Pre-computed results for our test organisms and a web server are also available at that location.
Collapse
Affiliation(s)
- Alejandro Ochoa
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
1513
|
Abstract
Here we investigate the mechanisms regulating Greatwall (Gwl), a serine/threonine kinase essential for promoting the correct timing of mitosis. We identify Gwl as a unique AGC kinase that, unlike most AGC members, appears to be devoid of a hydrophobic motif despite the presence of a functional hydrophobic pocket. Our results suggest that Gwl activation could be mediated by the binding of its hydrophobic pocket to the hydrophobic motif of another AGC kinase. Our molecular modeling and mutagenic analysis also indicate that Gwl displays a conserved tail/linker site whose phosphorylation mediates kinase activation by promoting the interaction of this phosphorylated residue with two lysines at the N terminus. This interaction could stabilize the αC-helix and maintain kinase activity. Finally, the different phosphorylation sites on Gwl are identified, and the role of each one in the regulation of Gwl kinase activity is determined. Our data suggest that only the phosphorylation of the tail/linker site, located outside the putative T loop, appears to be essential for Gwl activation. In summary, our results identify Gwl as a member of the AGC family of kinases that appears to be regulated by unique mechanisms and that differs from the other members of this family.
Collapse
|
1514
|
Bernardes JS, Carbone A, Zaverucha G. A discriminative method for family-based protein remote homology detection that combines inductive logic programming and propositional models. BMC Bioinformatics 2011; 12:83. [PMID: 21429187 PMCID: PMC3078102 DOI: 10.1186/1471-2105-12-83] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 03/23/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Remote homology detection is a hard computational problem. Most approaches have trained computational models by using either full protein sequences or multiple sequence alignments (MSA), including all positions. However, when we deal with proteins in the "twilight zone" we can observe that only some segments of sequences (motifs) are conserved. We introduce a novel logical representation that allows us to represent physico-chemical properties of sequences, conserved amino acid positions and conserved physico-chemical positions in the MSA. From this, Inductive Logic Programming (ILP) finds the most frequent patterns (motifs) and uses them to train propositional models, such as decision trees and support vector machines (SVM). RESULTS We use the SCOP database to perform our experiments by evaluating protein recognition within the same superfamily. Our results show that our methodology when using SVM performs significantly better than some of the state of the art methods, and comparable to other. However, our method provides a comprehensible set of logical rules that can help to understand what determines a protein function. CONCLUSIONS The strategy of selecting only the most frequent patterns is effective for the remote homology detection. This is possible through a suitable first-order logical representation of homologous properties, and through a set of frequent patterns, found by an ILP system, that summarizes essential features of protein functions.
Collapse
Affiliation(s)
- Juliana S Bernardes
- COPPE, Programa de Engenharia de Sistemas e Computação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Université Pierre et Marie Curie, UMR7238, Génomique Analytique, 15 rue de l'Ecole de Médecine, F-75006 Paris, France
| | - Alessandra Carbone
- Université Pierre et Marie Curie, UMR7238, Génomique Analytique, 15 rue de l'Ecole de Médecine, F-75006 Paris, France
- CNRS, UMR7238, Laboratoire de Génomique des Microorganismes, F-75006 Paris, France
| | - Gerson Zaverucha
- COPPE, Programa de Engenharia de Sistemas e Computação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
1515
|
Bolte K, Gruenheit N, Felsner G, Sommer MS, Maier UG, Hempel F. Making new out of old: recycling and modification of an ancient protein translocation system during eukaryotic evolution. Mechanistic comparison and phylogenetic analysis of ERAD, SELMA and the peroxisomal importomer. Bioessays 2011; 33:368-76. [PMID: 21425305 DOI: 10.1002/bies.201100007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
At first glance the three eukaryotic protein translocation machineries--the ER-associated degradation (ERAD) transport apparatus of the endoplasmic reticulum, the peroxisomal importomer and SELMA, the pre-protein translocator of complex plastids--appear quite different. However, mechanistic comparisons and phylogenetic analyses presented here suggest that all three translocation machineries share a common ancestral origin, which highlights the recycling of pre-existing components as an effective evolutionary driving force. Editor's suggested further reading in BioEssays ERAD ubiquitin ligases Abstract.
Collapse
Affiliation(s)
- Kathrin Bolte
- Laboratory for Cell Biology, Philipps-University of Marburg, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
1516
|
A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae. Mol Syst Biol 2011; 6:430. [PMID: 21119626 PMCID: PMC3010107 DOI: 10.1038/msb.2010.87] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 10/04/2010] [Indexed: 11/08/2022] Open
Abstract
Protein-metabolite networks are central to biological systems, but are incompletely understood. Here, we report a screen to catalog protein-lipid interactions in yeast. We used arrays of 56 metabolites to measure lipid-binding fingerprints of 172 proteins, including 91 with predicted lipid-binding domains. We identified 530 protein-lipid associations, the majority of which are novel. To show the data set's biological value, we studied further several novel interactions with sphingolipids, a class of conserved bioactive lipids with an elusive mode of action. Integration of live-cell imaging suggests new cellular targets for these molecules, including several with pleckstrin homology (PH) domains. Validated interactions with Slm1, a regulator of actin polarization, show that PH domains can have unexpected lipid-binding specificities and can act as coincidence sensors for both phosphatidylinositol phosphates and phosphorylated sphingolipids.
Collapse
|
1517
|
Mancini E, Tammaro F, Baldini F, Via A, Raimondo D, George P, Audisio P, Sharakhov IV, Tramontano A, Catteruccia F, Torre AD. Molecular evolution of a gene cluster of serine proteases expressed in the Anopheles gambiae female reproductive tract. BMC Evol Biol 2011; 11:72. [PMID: 21418586 PMCID: PMC3068966 DOI: 10.1186/1471-2148-11-72] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 03/19/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Genes involved in post-mating processes of multiple mating organisms are known to evolve rapidly due to coevolution driven by sexual conflict among male-female interacting proteins. In the malaria mosquito Anopheles gambiae - a monandrous species in which sexual conflict is expected to be absent or minimal - recent data strongly suggest that proteolytic enzymes specifically expressed in the female lower reproductive tissues are involved in the processing of male products transferred to females during mating. In order to better understand the role of selective forces underlying the evolution of proteins involved in post-mating responses, we analysed a cluster of genes encoding for three serine proteases that are down-regulated after mating, two of which specifically expressed in the atrium and one in the spermatheca of A. gambiae females. RESULTS The analysis of polymorphisms and divergence of these female-expressed proteases in closely related species of the A. gambiae complex revealed a high level of replacement polymorphisms consistent with relaxed evolutionary constraints of duplicated genes, allowing to rapidly fix novel replacements to perform new or more specific functions. Adaptive evolution was detected in several codons of the 3 genes and hints of episodic selection were also found. In addition, the structural modelling of these proteases highlighted some important differences in their substrate specificity, and provided evidence that a number of sites evolving under selective pressures lie relatively close to the catalytic triad and/or on the edge of the specificity pocket, known to be involved in substrate recognition or binding. The observed patterns suggest that these proteases may interact with factors transferred by males during mating (e.g. substrates, inhibitors or pathogens) and that they may have differently evolved in independent A. gambiae lineages. CONCLUSIONS Our results - also examined in light of constraints in the application of selection-inference methods to the closely related species of the A. gambiae complex - reveal an unexpectedly intricate evolutionary scenario. Further experimental analyses are needed to investigate the biological functions of these genes in order to better interpret their molecular evolution and to assess whether they represent possible targets for limiting the fertility of Anopheles mosquitoes in malaria vector control strategies.
Collapse
Affiliation(s)
- Emiliano Mancini
- Istituto-Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Sanità Pubblica e Malattie Infettive, 'Sapienza' Università di Roma, Rome, Italy
| | - Federica Tammaro
- Istituto-Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Sanità Pubblica e Malattie Infettive, 'Sapienza' Università di Roma, Rome, Italy
| | - Francesco Baldini
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Perugia, Terni, Italy
| | - Allegra Via
- Dipartimento di Scienze Biochimiche, 'Sapienza' Università di Roma, Rome, Italy
| | - Domenico Raimondo
- Dipartimento di Scienze Biochimiche, 'Sapienza' Università di Roma, Rome, Italy
| | - Phillip George
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA
| | - Paolo Audisio
- Dipartimento di Biologia e Biotecnologie "C. Darwin", 'Sapienza' Università di Roma, Rome, Italy
| | | | - Anna Tramontano
- Dipartimento di Scienze Biochimiche, 'Sapienza' Università di Roma, Rome, Italy
| | - Flaminia Catteruccia
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Perugia, Terni, Italy
- Division of Cell and Molecular Biology, Imperial College London, London, UK
| | - Alessandra della Torre
- Istituto-Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Sanità Pubblica e Malattie Infettive, 'Sapienza' Università di Roma, Rome, Italy
| |
Collapse
|
1518
|
Nordström KJV, Sällman Almén M, Edstam MM, Fredriksson R, Schiöth HB. Independent HHsearch, Needleman--Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families. Mol Biol Evol 2011; 28:2471-80. [PMID: 21402729 DOI: 10.1093/molbev/msr061] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several families of G protein-coupled receptors (GPCRs) show no significant sequence similarities to each other, and it has been debated which of them share a common origin. We developed and performed integrated and independent HHsearch, Needleman--Wunsch-based and motif analyses on more than 6,600 unique GPCRs from 12 species. Moreover, we mined the evolutionary important Trichoplax adhaerens, Nematostella vectensis, Thalassiosira pseudonana, and Strongylocentrotus purpuratus genomes, revealing remarkably rich vertebrate-like GPCR repertoires already in the early Metazoan species. We found strong evidence that the Adhesion and Frizzled families are children to the cyclic AMP (cAMP) family with HHsearch homology probabilities of 99.8% and 99.4%, respectively, also supported by the Needleman--Wunsch analysis and several motifs. We also found that the large Rhodopsin family is likely a child of the cAMP family with an HHsearch homology probability of 99.4% and conserved motifs. Therefore, we suggest that the Adhesion and Frizzled families originated from the cAMP family in an event close to that which gave rise to the Rhodopsin family. We also found convincing evidence that the Rhodopsin family is parent to the important sensory families; Taste 2 and Vomeronasal type 1 as well as the Nematode chemoreceptor families. The insect odorant, gustatory, and Trehalose receptors, frequently referred to as GPCRs, form a separate cluster without relationship to the other families, and we propose, based on these and others' results, that these families are ligand-gated ion channels rather than GPCRs. Overall, we suggest common descent of at least 97% of the GPCRs sequences found in humans.
Collapse
Affiliation(s)
- Karl J V Nordström
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
1519
|
HMMerThread: detecting remote, functional conserved domains in entire genomes by combining relaxed sequence-database searches with fold recognition. PLoS One 2011; 6:e17568. [PMID: 21423752 PMCID: PMC3053371 DOI: 10.1371/journal.pone.0017568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 02/03/2011] [Indexed: 12/14/2022] Open
Abstract
Conserved domains in proteins are one of the major sources of functional information for experimental design and genome-level annotation. Though search tools for conserved domain databases such as Hidden Markov Models (HMMs) are sensitive in detecting conserved domains in proteins when they share sufficient sequence similarity, they tend to miss more divergent family members, as they lack a reliable statistical framework for the detection of low sequence similarity. We have developed a greatly improved HMMerThread algorithm that can detect remotely conserved domains in highly divergent sequences. HMMerThread combines relaxed conserved domain searches with fold recognition to eliminate false positive, sequence-based identifications. With an accuracy of 90%, our software is able to automatically predict highly divergent members of conserved domain families with an associated 3-dimensional structure. We give additional confidence to our predictions by validation across species. We have run HMMerThread searches on eight proteomes including human and present a rich resource of remotely conserved domains, which adds significantly to the functional annotation of entire proteomes. We find ∼4500 cross-species validated, remotely conserved domain predictions in the human proteome alone. As an example, we find a DNA-binding domain in the C-terminal part of the A-kinase anchor protein 10 (AKAP10), a PKA adaptor that has been implicated in cardiac arrhythmias and premature cardiac death, which upon stress likely translocates from mitochondria to the nucleus/nucleolus. Based on our prediction, we propose that with this HLH-domain, AKAP10 is involved in the transcriptional control of stress response. Further remotely conserved domains we discuss are examples from areas such as sporulation, chromosome segregation and signalling during immune response. The HMMerThread algorithm is able to automatically detect the presence of remotely conserved domains in proteins based on weak sequence similarity. Our predictions open up new avenues for biological and medical studies. Genome-wide HMMerThread domains are available at http://vm1-hmmerthread.age.mpg.de.
Collapse
|
1520
|
Pandit SB, Skolnick J. TASSER_low-zsc: an approach to improve structure prediction using low z-score-ranked templates. Proteins 2011; 78:2769-80. [PMID: 20635423 DOI: 10.1002/prot.22791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In a variety of threading methods, often poorly ranked (low z-score) templates have good alignments. Here, a new method, TASSER_low-zsc that identifies these low z-score-ranked templates to improve protein structure prediction accuracy, is described. The approach consists of clustering of threading templates by affinity propagation on the basis of structural similarity (thread_cluster) followed by TASSER modeling, with final models selected by using a TASSER_QA variant. To establish the generality of the approach, templates provided by two threading methods, SP(3) and SPARKS(2), are examined. The SP(3) and SPARKS(2) benchmark datasets consist of 351 and 357 medium/hard proteins (those with moderate to poor quality templates and/or alignments) of length < or =250 residues, respectively. For SP(3) medium and hard targets, using thread_cluster, the TM-scores of the best template improve by approximately 4 and 9% over the original set (without low z-score templates) respectively; after TASSER modeling/refinement and ranking, the best model improves by approximately 7 and 9% over the best model generated with the original template set. Moreover, TASSER_low-zsc generates 22% (43%) more foldable medium (hard) targets. Similar improvements are observed with low-ranked templates from SPARKS(2). The template clustering approach could be applied to other modeling methods that utilize multiple templates to improve structure prediction.
Collapse
Affiliation(s)
- Shashi B Pandit
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30318, USA
| | | |
Collapse
|
1521
|
Loh J, Zhao G, Nelson CA, Coder P, Droit L, Handley SA, Johnson LS, Vachharajani P, Guzman H, Tesh RB, Wang D, Fremont DH, Virgin HW. Identification and sequencing of a novel rodent gammaherpesvirus that establishes acute and latent infection in laboratory mice. J Virol 2011; 85:2642-56. [PMID: 21209105 PMCID: PMC3067950 DOI: 10.1128/jvi.01661-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 12/28/2010] [Indexed: 01/22/2023] Open
Abstract
Gammaherpesviruses encode numerous immunomodulatory molecules that contribute to their ability to evade the host immune response and establish persistent, lifelong infections. As the human gammaherpesviruses are strictly species specific, small animal models of gammaherpesvirus infection, such as murine gammaherpesvirus 68 (γHV68) infection, are important for studying the roles of gammaherpesvirus immune evasion genes in in vivo infection and pathogenesis. We report here the genome sequence and characterization of a novel rodent gammaherpesvirus, designated rodent herpesvirus Peru (RHVP), that shares conserved genes and genome organization with γHV68 and the primate gammaherpesviruses but is phylogenetically distinct from γHV68. RHVP establishes acute and latent infection in laboratory mice. Additionally, RHVP contains multiple open reading frames (ORFs) not present in γHV68 that have sequence similarity to primate gammaherpesvirus immunomodulatory genes or cellular genes. These include ORFs with similarity to major histocompatibility complex class I (MHC-I), C-type lectins, and the mouse mammary tumor virus and herpesvirus saimiri superantigens. As these ORFs may function as immunomodulatory or virulence factors, RHVP presents new opportunities for the study of mechanisms of immune evasion by gammaherpesviruses.
Collapse
Affiliation(s)
- Joy Loh
- Department of Pathology and Immunology, Department of Molecular Microbiology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Guoyan Zhao
- Department of Pathology and Immunology, Department of Molecular Microbiology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Christopher A. Nelson
- Department of Pathology and Immunology, Department of Molecular Microbiology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Penny Coder
- Department of Pathology and Immunology, Department of Molecular Microbiology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Lindsay Droit
- Department of Pathology and Immunology, Department of Molecular Microbiology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Scott A. Handley
- Department of Pathology and Immunology, Department of Molecular Microbiology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - L. Steven Johnson
- Department of Pathology and Immunology, Department of Molecular Microbiology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Punit Vachharajani
- Department of Pathology and Immunology, Department of Molecular Microbiology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Hilda Guzman
- Department of Pathology and Immunology, Department of Molecular Microbiology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Robert B. Tesh
- Department of Pathology and Immunology, Department of Molecular Microbiology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - David Wang
- Department of Pathology and Immunology, Department of Molecular Microbiology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Daved H. Fremont
- Department of Pathology and Immunology, Department of Molecular Microbiology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Herbert W. Virgin
- Department of Pathology and Immunology, Department of Molecular Microbiology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
1522
|
Fogg PCM, Rigden DJ, Saunders JR, McCarthy AJ, Allison HE. Characterization of the relationship between integrase, excisionase and antirepressor activities associated with a superinfecting Shiga toxin encoding bacteriophage. Nucleic Acids Res 2011; 39:2116-29. [PMID: 21062824 PMCID: PMC3064807 DOI: 10.1093/nar/gkq923] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 11/13/2022] Open
Abstract
Shigatoxigenic Escherichia coli emerged as new food borne pathogens in the early 1980s, primarily driven by the dispersal of Shiga toxin-encoding lambdoid bacteriophages. At least some of these Stx phages display superinfection phenotypes, which differ significantly from lambda phage itself, driving through in situ recombination further phage evolution, increasing host range and potentially increasing the host's pathogenic profile. Here, increasing levels of Stx phage Φ24(B) integrase expression in multiple lysogen cultures are demonstrated along with apparently negligible repression of integrase expression by the cognate CI repressor. The Φ24(B) int transcription start site and promoter region were identified and found to differ from in silico predictions. The unidirectional activity of this integrase was determined in an in situ, inducible tri-partite reaction. This indicated that Φ24(B) must encode a novel directionality factor that is controlling excision events during prophage induction. This excisionase was subsequently identified and characterized through complementation experiments. In addition, the previous proposal that a putative antirepressor was responsible for the lack of immunity to superinfection through inactivation of CI has been revisited and a new hypothesis involving the role of this protein in promoting efficient induction of the Φ24(B) prophage is proposed.
Collapse
Affiliation(s)
- P. C. M. Fogg
- Microbiology Research Group, School of Biological Sciences, University of Liverpool and Structural Biology Group, School of Biological Sciences, University of Liverpool, BioSciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - D. J. Rigden
- Microbiology Research Group, School of Biological Sciences, University of Liverpool and Structural Biology Group, School of Biological Sciences, University of Liverpool, BioSciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - J. R. Saunders
- Microbiology Research Group, School of Biological Sciences, University of Liverpool and Structural Biology Group, School of Biological Sciences, University of Liverpool, BioSciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - A. J. McCarthy
- Microbiology Research Group, School of Biological Sciences, University of Liverpool and Structural Biology Group, School of Biological Sciences, University of Liverpool, BioSciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - H. E. Allison
- Microbiology Research Group, School of Biological Sciences, University of Liverpool and Structural Biology Group, School of Biological Sciences, University of Liverpool, BioSciences Building, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
1523
|
Rigden DJ. Ab initio modeling led annotation suggests nucleic acid binding function for many DUFs. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:431-8. [PMID: 21348639 DOI: 10.1089/omi.2010.0122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Expansions of sequence databases driven by new sequencing technology continue apace. These result in a continuous supply of protein sequences and domains that cannot be straightforwardly annotated by simple homology methods. For these, structure-based function prediction may contribute to an improved annotation. Here, short Domains of Unknown Function (DUFs) are ab initio modeled with ROSETTA and screened for likely nucleic acid binding function. Thirty-two DUFs are thereby predicted to have a nucleic acid binding function. In most cases, additional evidence supporting that function could be obtained from structure comparison, domain architectures, distant evolutionary relationships, genome context or protein-protein interaction data. These predictions contribute to the function annotation of thousands of proteins.
Collapse
Affiliation(s)
- Daniel J Rigden
- University of Liverpool, Institute of Integrative Biology, United Kingdom.
| |
Collapse
|
1524
|
Khan S, Pozzo T, Megyeri M, Lindahl S, Sundin A, Turner C, Karlsson EN. Aglycone specificity of Thermotoga neapolitana β-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis. BMC BIOCHEMISTRY 2011; 12:11. [PMID: 21345211 PMCID: PMC3056771 DOI: 10.1186/1471-2091-12-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 02/23/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND The thermostable β-glucosidase (TnBgl1A) from Thermotoga neapolitana is a promising biocatalyst for hydrolysis of glucosylated flavonoids and can be coupled to extraction methods using pressurized hot water. Hydrolysis has however been shown to be dependent on the position of the glucosylation on the flavonoid, and e.g. quercetin-3-glucoside (Q3) was hydrolysed slowly. A set of mutants of TnBgl1A were thus created to analyse the influence on the kinetic parameters using the model substrate para-nitrophenyl-β-D-glucopyranoside (pNPGlc), and screened for hydrolysis of Q3. RESULTS Structural analysis pinpointed an area in the active site pocket with non-conserved residues between specificity groups in glycoside hydrolase family 1 (GH1). Three residues in this area located on β-strand 5 (F219, N221, and G222) close to sugar binding sub-site +2 were selected for mutagenesis and amplified in a protocol that introduced a few spontaneous mutations. Eight mutants (four triple: F219L/P165L/M278I, N221S/P165L/M278I, G222Q/P165L/M278I, G222Q/V203M/K214R, two double: F219L/K214R, N221S/P342L and two single: G222M and N221S) were produced in E. coli, and purified to apparent homogeneity. Thermostability, measured as Tm by differential scanning calorimetry (101.9°C for wt), was kept in the mutated variants and significant decrease (ΔT of 5-10°C) was only observed for the triple mutants. The exchanged residue(s) in the respective mutant resulted in variations in KM and turnover. The KM-value was only changed in variants mutated at position 221 (N221S) and was in all cases monitored as a 2-3 × increase for pNPGlc, while the KM decreased a corresponding extent for Q3.Turnover was only significantly changed using pNPGlc, and was decreased 2-3 × in variants mutated at position 222, while the single, double and triple mutated variants carrying a mutation at position 221 (N221S) increased turnover up to 3.5 × compared to the wild type. Modelling showed that the mutation at position 221, may alter the position of N291 resulting in increased hydrogen bonding of Q3 (at a position corresponding to the +1 subsite) which may explain the decrease in KM for this substrate. CONCLUSION These results show that residues at the +2 subsite are interesting targets for mutagenesis and mutations at these positions can directly or indirectly affect both KM and turnover. An affinity change, leading to a decreased KM, can be explained by an altered position of N291, while the changes in turnover are more difficult to explain and may be the result of smaller conformational changes in the active site.
Collapse
Affiliation(s)
- Samiullah Khan
- Biotechnology, Dept of Chemistry, Lund University, P,O, Box 124, SE-221 00 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
1525
|
Chopra N, Agarwal S, Verma S, Bhatnagar S, Bhatnagar R. Modeling of the structure and interactions of the B. anthracis antitoxin, MoxX: deletion mutant studies highlight its modular structure and repressor function. J Comput Aided Mol Des 2011; 25:275-91. [PMID: 21336656 DOI: 10.1007/s10822-011-9419-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 02/07/2011] [Indexed: 02/07/2023]
Abstract
Our previous report on Bacillus anthracis toxin-antitoxin module (MoxXT) identified it to be a two component system wherein, PemK-like toxin (MoxT) functions as a ribonuclease (Agarwal S et al. JBC 285:7254-7270, 2010). The labile antitoxin (MoxX) can bind to/neutralize the action of the toxin and is also a DNA-binding protein mediating autoregulation. In this study, molecular modeling of MoxX in its biologically active dimeric form was done. It was found that it contains a conserved Ribbon-Helix-Helix (RHH) motif, consistent with its DNA-binding function. The modeled MoxX monomers dimerize to form a two-stranded antiparallel ribbon, while the C-terminal region adopts an extended conformation. Knowledge guided protein-protein docking, molecular dynamics simulation, and energy minimization was performed to obtain the structure of the MoxXT complex, which was exploited for the de novo design of a peptide capable of binding to MoxT. It was found that the designed peptide caused a decrease in MoxX binding to MoxT by 42% at a concentration of 2 μM in vitro. We also show that MoxX mediates negative transcriptional autoregulation by binding to its own upstream DNA. The interacting regions of both MoxX and DNA were identified in order to model their complex. The repressor activity of MoxX was found to be mediated by the 16 N-terminal residues that contains the ribbon of the RHH motif. Based on homology with other RHH proteins and deletion mutant studies, we propose a model of the MoxX-DNA interaction, with the antiparallel β-sheet of the MoxX dimer inserted into the major groove of its cognate DNA. The structure of the complex of MoxX with MoxT and its own upstream regulatory region will facilitate design of molecules that can disrupt these interactions, a strategy for development of novel antibacterials.
Collapse
Affiliation(s)
- Nikita Chopra
- Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi 110078, India
| | | | | | | | | |
Collapse
|
1526
|
Hu Y, Dong X, Wu A, Cao Y, Tian L, Jiang T. Incorporation of local structural preference potential improves fold recognition. PLoS One 2011; 6:e17215. [PMID: 21365008 PMCID: PMC3041821 DOI: 10.1371/journal.pone.0017215] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/25/2011] [Indexed: 11/19/2022] Open
Abstract
Fold recognition, or threading, is a popular protein structure modeling approach that uses known structure templates to build structures for those of unknown. The key to the success of fold recognition methods lies in the proper integration of sequence, physiochemical and structural information. Here we introduce another type of information, local structural preference potentials of 3-residue and 9-residue fragments, for fold recognition. By combining the two local structural preference potentials with the widely used sequence profile, secondary structure information and hydrophobic score, we have developed a new threading method called FR-t5 (fold recognition by use of 5 terms). In benchmark testings, we have found the consideration of local structural preference potentials in FR-t5 not only greatly enhances the alignment accuracy and recognition sensitivity, but also significantly improves the quality of prediction models.
Collapse
Affiliation(s)
- Yun Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxi Dong
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Aiping Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yang Cao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Liqing Tian
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Taijiao Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
1527
|
Shao M, Wang S, Wang C, Yuan X, Li SC, Zheng W, Bu D. Incorporating Ab Initio energy into threading approaches for protein structure prediction. BMC Bioinformatics 2011; 12 Suppl 1:S54. [PMID: 21342587 PMCID: PMC3044312 DOI: 10.1186/1471-2105-12-s1-s54] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Native structures of proteins are formed essentially due to the combining effects of local and distant (in the sense of sequence) interactions among residues. These interaction information are, explicitly or implicitly, encoded into the scoring function in protein structure prediction approaches—threading approaches usually measure an alignment in the sense that how well a sequence adopts an existing structure; while the energy functions in Ab Initio methods are designed to measure how likely a conformation is near-native. Encouraging progress has been observed in structure refinement where knowledge-based or physics-based potentials are designed to capture distant interactions. Thus, it is interesting to investigate whether distant interaction information captured by the Ab Initio energy function can be used to improve threading, especially for the weakly/distant homologous templates. Results In this paper, we investigate the possibility to improve alignment-generating through incorporating distant interaction information into the alignment scoring function in a nontrivial approach. Specifically, the distant interaction information is introduced through employing an Ab Initio energy function to evaluate the “partial” decoy built from an alignment. Subsequently, a local search algorithm is utilized to optimize the scoring function. Experimental results demonstrate that with distant interaction items, the quality of generated alignments are improved on 68 out of 127 query-template pairs in Prosup benchmark. In addition, compared with state-to-art threading methods, our method performs better on alignment accuracy comparison. Conclusions Incorporating Ab Initio energy functions into threading can greatly improve alignment accuracy.
Collapse
Affiliation(s)
- Mingfu Shao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
1528
|
Scaltriti E, Launay H, Genois MM, Bron P, Rivetti C, Grolli S, Ploquin M, Campanacci V, Tegoni M, Cambillau C, Moineau S, Masson JY. Lactococcal phage p2 ORF35-Sak3 is an ATPase involved in DNA recombination and AbiK mechanism. Mol Microbiol 2011; 80:102-16. [PMID: 21276096 DOI: 10.1111/j.1365-2958.2011.07561.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Virulent phages of the Siphoviridae family are responsible for milk fermentation failures worldwide. Here, we report the characterization of the product of the early expressed gene orf35 from Lactococcus lactis phage p2 (936 group). ORF35(p2), also named Sak3, is involved in the sensitivity of phage p2 to the antiviral abortive infection mechanism AbiK. The localization of its gene upstream of a gene coding for a single-strand binding protein as well as its membership to a superfamily of single-strand annealing proteins (SSAPs) suggested a possible role in homologous recombination. Electron microscopy showed that purified ORF35(p2) form a hexameric ring-like structure that is often found in proteins with a conserved RecA nucleotide-binding core. Gel shift assays and surface plasmon resonance data demonstrated that ORF35(p2) interacts preferentially with single-stranded DNA with nanomolar affinity. Atomic force microscopy showed also that it preferentially binds to sticky DNA substrates over blunt ends. In addition, in vitro assays demonstrated that ORF35(p2) is able to anneal complementary strands. Sak3 also stimulates Escherichia coli RecA-mediated homologous recombination. Remarkably, Sak3 was shown to possess an ATPase activity that is required for RecA stimulation. Collectively, our results demonstrate that ORF35(p2) is a novel SSAP stimulating homologous recombination.
Collapse
Affiliation(s)
- Erika Scaltriti
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de Luminy, case 932, 13288 Marseille cedex 09, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1529
|
Evolutionarily conserved orthologous families in phages are relatively rare in their prokaryotic hosts. J Bacteriol 2011; 193:1806-14. [PMID: 21317336 DOI: 10.1128/jb.01311-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified conserved orthologs in completely sequenced genomes of double-strand DNA phages and arranged them into evolutionary families (phage orthologous groups [POGs]). Using this resource to analyze the collection of known phage genomes, we find that most orthologs are unique in their genomes (having no diverged duplicates [paralogs]), and while many proteins contain multiple domains, the evolutionary recombination of these domains does not appear to be a major factor in evolution of these orthologous families. The number of POGs has been rapidly increasing over the past decade, the percentage of genes in phage genomes that have orthologs in other phages has also been increasing, and the percentage of unknown "ORFans" is decreasing as more proteins find homologs and establish a family. Other properties of phage genomes have remained relatively stable over time, most notably the high fraction of genes that are never or only rarely observed in their cellular hosts. This suggests that despite the renowned ability of phages to transduce cellular genes, these cellular "hitchhiker" genes do not dominate the phage genomic landscape, and a large fraction of the genes in phage genomes maintain an evolutionary trajectory that is distinct from that of the host genes.
Collapse
|
1530
|
Hastie KM, Kimberlin CR, Zandonatti MA, MacRae IJ, Saphire EO. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3' to 5' exonuclease activity essential for immune suppression. Proc Natl Acad Sci U S A 2011; 108:2396-401. [PMID: 21262835 PMCID: PMC3038715 DOI: 10.1073/pnas.1016404108] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lassa fever virus, a member of the family Arenaviridae, is a highly endemic category A pathogen that causes 300,000-500,000 infections per year in Western Africa. The arenaviral nucleoprotein NP has been implicated in suppression of the host innate immune system, but the mechanism by which this occurs has remained elusive. Here we present the crystal structure at 1.5 Å of the immunosuppressive C-terminal portion of Lassa virus NP and illustrate that, unexpectedly, its 3D fold closely mimics that of the DEDDh family of exonucleases. Accompanying biochemical experiments illustrate that NP indeed has a previously unknown, bona fide exonuclease activity, with strict specificity for double-stranded RNA substrates. We further demonstrate that this exonuclease activity is essential for the ability of NP to suppress translocation of IFN regulatory factor 3 and block activation of the innate immune system. Thus, the nucleoprotein is a viral exonuclease with anti-immune activity, and this work provides a unique opportunity to combat arenaviral infections.
Collapse
Affiliation(s)
| | | | | | | | - Erica Ollmann Saphire
- Departments of Immunology and Microbial Science and
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
1531
|
Frandsen RJN, Schütt C, Lund BW, Staerk D, Nielsen J, Olsson S, Giese H. Two novel classes of enzymes are required for the biosynthesis of aurofusarin in Fusarium graminearum. J Biol Chem 2011; 286:10419-28. [PMID: 21296881 DOI: 10.1074/jbc.m110.179853] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have reported the functional characterization of 9 out of 11 genes found in the gene cluster responsible for biosynthesis of the polyketide pigment aurofusarin in Fusarium graminearum. Here we reanalyze the function of a putative aurofusarin pump (AurT) and the two remaining orphan genes, aurZ and aurS. Targeted gene replacement of aurZ resulted in the discovery that the compound YWA1, rather than nor-rubrofusarin, is the primary product of F. graminearum polyketide synthase 12 (FgPKS12). AurZ is the first representative of a novel class of dehydratases that act on hydroxylated γ-pyrones. Replacement of the aurS gene resulted in accumulation of rubrofusarin, an intermediate that also accumulates when the GIP1, aurF, or aurO genes in the aurofusarin cluster are deleted. Based on the shared phenotype and predicted subcellular localization, we propose that AurS is a member of an extracellular enzyme complex (GIP1-AurF-AurO-AurS) responsible for converting rubrofusarin into aurofusarin. This implies that rubrofusarin, rather than aurofusarin, is pumped across the plasma membrane. Replacement of the putative aurofusarin pump aurT increased the rubrofusarin-to- aurofusarin ratio, supporting that rubrofusarin is normally pumped across the plasma membrane. These results provide functional information on two novel classes of proteins and their contribution to polyketide pigment biosynthesis.
Collapse
Affiliation(s)
- Rasmus J N Frandsen
- Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark.
| | | | | | | | | | | | | |
Collapse
|
1532
|
Albrecht S, Al-Lakkis-Wehbe M, Orsini A, Defoin A, Pale P, Salomon E, Tarnus C, Weibel JM. Amino-benzosuberone: A novel warhead for selective inhibition of human aminopeptidase-N/CD13. Bioorg Med Chem 2011; 19:1434-49. [DOI: 10.1016/j.bmc.2011.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/23/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
|
1533
|
Larsson P, Skwark MJ, Wallner B, Elofsson A. Improved predictions by Pcons.net using multiple templates. Bioinformatics 2011; 27:426-7. [PMID: 21149277 PMCID: PMC3031036 DOI: 10.1093/bioinformatics/btq664] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/24/2010] [Accepted: 11/29/2010] [Indexed: 11/15/2022] Open
Abstract
UNLABELLED Multiple templates can often be used to build more accurate homology models than models built from a single template. Here we introduce PconsM, an automated protocol that uses multiple templates to build protein models. PconsM has been among the top-performing methods in the recent CASP experiments and consistently perform better than the single template models used in Pcons.net. In particular for the easier targets with many alternative templates with a high degree of sequence identity, quality is readily improved with a few percentages over the highest ranked model built on a single template. PconsM is available as an additional pipeline within the Pcons.net protein structure prediction server. AVAILABILITY AND IMPLEMENTATION PconsM is freely available from http://pcons.net/.
Collapse
Affiliation(s)
- Per Larsson
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Swedish e-Science Research Centre, Stockholm Bioinformatics Centre, SciLifeLab, Stockholm University SE-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
1534
|
Duszenko M, Ginger ML, Brennand A, Gualdrón-López M, Colombo MI, Coombs GH, Coppens I, Jayabalasingham B, Langsley G, de Castro SL, Menna-Barreto R, Mottram JC, Navarro M, Rigden DJ, Romano PS, Stoka V, Turk B, Michels PAM. Autophagy in protists. Autophagy 2011; 7:127-58. [PMID: 20962583 DOI: 10.4161/auto.7.2.13310] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autophagy is the degradative process by which eukaryotic cells digest their own components using acid hydrolases within the lysosome. Originally thought to function almost exclusively in providing starving cells with nutrients taken from their own cellular constituents, autophagy is in fact involved in numerous cellular events including differentiation, turnover of macromolecules and organelles, and defense against parasitic invaders. During the last 10-20 years, molecular components of the autophagic machinery have been discovered, revealing a complex interactome of proteins and lipids, which, in a concerted way, induce membrane formation to engulf cellular material and target it for lysosomal degradation. Here, our emphasis is autophagy in protists. We discuss experimental and genomic data indicating that the canonical autophagy machinery characterized in animals and fungi appeared prior to the radiation of major eukaryotic lineages. Moreover, we describe how comparative bioinformatics revealed that this canonical machinery has been subject to moderation, outright loss or elaboration on multiple occasions in protist lineages, most probably as a consequence of diverse lifestyle adaptations. We also review experimental studies illustrating how several pathogenic protists either utilize autophagy mechanisms or manipulate host-cell autophagy in order to establish or maintain infection within a host. The essentiality of autophagy for the pathogenicity of many parasites, and the unique features of some of the autophagy-related proteins involved, suggest possible new targets for drug discovery. Further studies of the molecular details of autophagy in protists will undoubtedly enhance our understanding of the diversity and complexity of this cellular phenomenon and the opportunities it offers as a drug target.
Collapse
Affiliation(s)
- Michael Duszenko
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1535
|
Lintner NG, Frankel KA, Tsutakawa SE, Alsbury DL, Copié V, Young MJ, Tainer JA, Lawrence CM. The structure of the CRISPR-associated protein Csa3 provides insight into the regulation of the CRISPR/Cas system. J Mol Biol 2011; 405:939-55. [PMID: 21093452 PMCID: PMC4507800 DOI: 10.1016/j.jmb.2010.11.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/01/2010] [Accepted: 11/09/2010] [Indexed: 01/07/2023]
Abstract
Adaptive immune systems have recently been recognized in prokaryotic organisms where, in response to viral infection, they incorporate short fragments of invader-derived DNA into loci called clustered regularly interspaced short palindromic repeats (CRISPRs). In subsequent infections, the CRISPR loci are transcribed and processed into guide sequences for the neutralization of the invading RNA or DNA. The CRISPR-associated protein machinery (Cas) lies at the heart of this process, yet many of the molecular details of the CRISPR/Cas system remain to be elucidated. Here, we report the first structure of Csa3, a CRISPR-associated protein from Sulfolobus solfataricus (Sso1445), which reveals a dimeric two-domain protein. The N-terminal domain is a unique variation on the dinucleotide binding domain that orchestrates dimer formation. In addition, it utilizes two conserved sequence motifs [Thr-h-Gly-Phe-(Asn/Asp)-Glu-X(4)-Arg and Leu-X(2)-Gly-h-Arg] to construct a 2-fold symmetric pocket on the dimer axis. This pocket is likely to represent a regulatory ligand-binding site. The N-terminal domain is fused to a C-terminal MarR-like winged helix-turn-helix domain that is expected to be involved in DNA recognition. Overall, the unique domain architecture of Csa3 suggests a transcriptional regulator under allosteric control of the N-terminal domain. Alternatively, Csa3 may function in a larger complex, with the conserved cleft participating in protein-protein or protein-nucleic acid interactions. A similar N-terminal domain is also identified in Csx1, a second CRISPR-associated protein family of unknown function.
Collapse
Affiliation(s)
- Nathanael G. Lintner
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA,Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Kenneth A. Frankel
- Life Science Division, Lawrence Berkeley National Labs, Berkeley, CA 94720, USA
| | - Susan E. Tsutakawa
- Life Science Division, Lawrence Berkeley National Labs, Berkeley, CA 94720, USA
| | - Donald L. Alsbury
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA,Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Valérie Copié
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA,Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Mark J. Young
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA,Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - John A. Tainer
- Life Science Division, Lawrence Berkeley National Labs, Berkeley, CA 94720, USA,Department of Molecular Biology MB4 and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - C. Martin Lawrence
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA,Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA,Address correspondence to: Martin Lawrence, Department of Chemistry and Biochemistry, 103 CBB, Montana State University, Bozeman, MT 59717; ; Phone: 1-406-994-5382, Fax: 1-406-994-5407
| |
Collapse
|
1536
|
Leoni G, Le Pera L, Ferrè F, Raimondo D, Tramontano A. Coding potential of the products of alternative splicing in human. Genome Biol 2011; 12:R9. [PMID: 21251333 PMCID: PMC3091307 DOI: 10.1186/gb-2011-12-1-r9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 12/17/2010] [Accepted: 01/20/2011] [Indexed: 12/22/2022] Open
Abstract
Background Analysis of the human genome has revealed that as much as an order of magnitude more of the genomic sequence is transcribed than accounted for by the predicted and characterized genes. A number of these transcripts are alternatively spliced forms of known protein coding genes; however, it is becoming clear that many of them do not necessarily correspond to a functional protein. Results In this study we analyze alternative splicing isoforms of human gene products that are unambiguously identified by mass spectrometry and compare their properties with those of isoforms of the same genes for which no peptide was found in publicly available mass spectrometry datasets. We analyze them in detail for the presence of uninterrupted functional domains, active sites as well as the plausibility of their predicted structure. We report how well each of these strategies and their combination can correctly identify translated isoforms and derive a lower limit for their specificity, that is, their ability to correctly identify non-translated products. Conclusions The most effective strategy for correctly identifying translated products relies on the conservation of active sites, but it can only be applied to a small fraction of isoforms, while a reasonably high coverage, sensitivity and specificity can be achieved by analyzing the presence of non-truncated functional domains. Combining the latter with an assessment of the plausibility of the modeled structure of the isoform increases both coverage and specificity with a moderate cost in terms of sensitivity.
Collapse
Affiliation(s)
- Guido Leoni
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, P.le A. Moro, 5 - 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
1537
|
Abstract
Homology modeling is based on the observation that related protein sequences adopt similar three-dimensional structures. Hence, a homology model of a protein can be derived using related protein structure(s) as modeling template(s). A key step in this approach is the establishment of correspondence between residues of the protein to be modeled and those of modeling template(s). This step, often referred to as sequence-structure alignment, is one of the major determinants of the accuracy of a homology model. This chapter gives an overview of methods for deriving sequence-structure alignments and discusses recent methodological developments leading to improved performance. However, no method is perfect. How to find alignment regions that may have errors and how to make improvements? This is another focus of this chapter. Finally, the chapter provides a practical guidance of how to get the most of the available tools in maximizing the accuracy of sequence-structure alignments.
Collapse
|
1538
|
Automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal. Methods Mol Biol 2011; 857:107-36. [PMID: 22323219 DOI: 10.1007/978-1-61779-588-6_5] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Comparative protein structure modeling is a computational approach to build three-dimensional structural models for proteins using experimental structures of related protein family members as templates. Regular blind assessments of modeling accuracy have demonstrated that comparative protein structure modeling is currently the most reliable technique to model protein structures. Homology models are often sufficiently accurate to substitute for experimental structures in a wide variety of applications. Since the usefulness of a model for specific application is determined by its accuracy, model quality estimation is an essential component of protein structure prediction. Comparative protein modeling has become a routine approach in many areas of life science research since fully automated modeling systems allow also nonexperts to build reliable models. In this chapter, we describe practical approaches for automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal.
Collapse
|
1539
|
Abstract
High accuracy protein modeling from its sequence information is an important step toward revealing the sequence-structure-function relationship of proteins and nowadays it becomes increasingly more useful for practical purposes such as in drug discovery and in protein design. We have developed a protocol for protein structure prediction that can generate highly accurate protein models in terms of backbone structure, side-chain orientation, hydrogen bonding, and binding sites of ligands. To obtain accurate protein models, we have combined a powerful global optimization method with traditional homology modeling procedures such as multiple sequence alignment, chain building, and side-chain remodeling. We have built a series of specific score functions for these steps, and optimized them by utilizing conformational space annealing, which is one of the most successful combinatorial optimization algorithms currently available.
Collapse
Affiliation(s)
- Keehyoung Joo
- Center for In Silico Protein Science, Center for Advanced Computation, Korea Institute for Advanced Study, Seoul, Korea
| | | | | |
Collapse
|
1540
|
Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. ACTA ACUST UNITED AC 2010; 27:343-50. [PMID: 21134891 PMCID: PMC3031035 DOI: 10.1093/bioinformatics/btq662] [Citation(s) in RCA: 1575] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Motivation: Quality assessment of protein structures is an important part of experimental structure validation and plays a crucial role in protein structure prediction, where the predicted models may contain substantial errors. Most current scoring functions are primarily designed to rank alternative models of the same sequence supporting model selection, whereas the prediction of the absolute quality of an individual protein model has received little attention in the field. However, reliable absolute quality estimates are crucial to assess the suitability of a model for specific biomedical applications. Results: In this work, we present a new absolute measure for the quality of protein models, which provides an estimate of the ‘degree of nativeness’ of the structural features observed in a model and describes the likelihood that a given model is of comparable quality to experimental structures. Model quality estimates based on the QMEAN scoring function were normalized with respect to the number of interactions. The resulting scoring function is independent of the size of the protein and may therefore be used to assess both monomers and entire oligomeric assemblies. Model quality scores for individual models are then expressed as ‘Z-scores’ in comparison to scores obtained for high-resolution crystal structures. We demonstrate the ability of the newly introduced QMEAN Z-score to detect experimentally solved protein structures containing significant errors, as well as to evaluate theoretical protein models. In a comprehensive QMEAN Z-score analysis of all experimental structures in the PDB, membrane proteins accumulate on one side of the score spectrum and thermostable proteins on the other. Proteins from the thermophilic organism Thermatoga maritima received significantly higher QMEAN Z-scores in a pairwise comparison with their homologous mesophilic counterparts, underlining the significance of the QMEAN Z-score as an estimate of protein stability. Availability: The Z-score calculation has been integrated in the QMEAN server available at: http://swissmodel.expasy.org/qmean. Contact:torsten.schwede@unibas.ch Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
|
1541
|
Kalkhof S, Haehn S, Paulsson M, Smyth N, Meiler J, Sinz A. Computational modeling of laminin N-terminal domains using sparse distance constraints from disulfide bonds and chemical cross-linking. Proteins 2010; 78:3409-27. [PMID: 20939100 PMCID: PMC5079110 DOI: 10.1002/prot.22848] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/16/2010] [Accepted: 07/25/2010] [Indexed: 11/10/2022]
Abstract
Basement membranes are thin extracellular protein layers, which separate endothelial and epithelial cells from the underlying connecting tissue. The main noncollagenous components of basement membranes are laminins, trimeric glycoproteins, which form polymeric networks by interactions of their N-terminal (LN) domains; however, no high-resolution structure of laminin LN domains exists so far. To construct models for laminin β(1) and γ(1) LN domains, 14 potentially suited template structures were determined using fold recognition methods. For each target/template-combination comparative models were created with Rosetta. Final models were selected based on their agreement with experimentally obtained distance constraints from natural cross-links, that is, disulfide bonds as well as chemical cross-links obtained from reactions with two amine-reactive cross-linkers. We predict that laminin β(1) and γ(1) LN domains share the galactose-binding domain-like fold.
Collapse
Affiliation(s)
- Stefan Kalkhof
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle (Saale), Germany
| | - Sebastian Haehn
- Center for Biochemistry, Faculty of Medicine, Center for Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne D-50931, Germany
| | - Mats Paulsson
- Center for Biochemistry, Faculty of Medicine, Center for Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne D-50931, Germany
| | - Neil Smyth
- School of Biological Sciences, University of Southampton, Bassett Crescent, East Southampton, SO16 7PX, United Kingdom
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University Nashville, TN 37212, USA
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle (Saale), Germany
| |
Collapse
|
1542
|
Identification of gene products involved in the oxidative stress response of Moraxella catarrhalis. Infect Immun 2010; 79:745-55. [PMID: 21098105 DOI: 10.1128/iai.01060-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is subjected to oxidative stress from both internal and environmental sources. A previous study (C. D. Pericone, K. Overweg, P. W. Hermans, and J. N. Weiser, Infect. Immun. 68:3990-3997, 2000) indicated that a wild-type strain of M. catarrhalis was very resistant to killing by exogenous hydrogen peroxide (H₂O₂). The gene encoding OxyR, a LysR family transcriptional regulator, was identified and inactivated in M. catarrhalis strain O35E, resulting in an increase in sensitivity to killing by H₂O₂ in disk diffusion assays and a concomitant aerobic serial dilution effect. Genes encoding a predicted catalase (KatA) and an alkyl hydroperoxidase (AhpCF) showed dose-dependent upregulation in wild-type cells exposed to H₂O₂. DNA microarray and real-time reverse transcription-PCR (RT-PCR) analyses identified M. catarrhalis genes whose expression was affected by oxidative stress in an OxyR-dependent manner. Testing of M. catarrhalis O35E katA and ahpC mutants for their abilities to scavenge exogenous H₂O₂ showed that the KatA catalase was responsible for most of this activity in the wild-type parent strain. The introduction of the same mutations into M. catarrhalis strain ETSU-4 showed that the growth of a ETSU-4 katA mutant was markedly inhibited by the addition of 50 mM H₂O₂ but that this mutant could still form a biofilm equivalent to that produced by its wild-type parent strain.
Collapse
|
1543
|
Chinappi M, Via A, Marcatili P, Tramontano A. On the mechanism of chloroquine resistance in Plasmodium falciparum. PLoS One 2010; 5:e14064. [PMID: 21124966 PMCID: PMC2988812 DOI: 10.1371/journal.pone.0014064] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 10/28/2010] [Indexed: 11/18/2022] Open
Abstract
Resistance to chloroquine of malaria strains is known to be associated with a parasite protein named PfCRT, the mutated form of which is able to reduce chloroquine accumulation in the digestive vacuole of the pathogen. Whether the protein mediates extrusion of the drug acting as a channel or as a carrier and which is the protonation state of its chloroquine substrate is the subject of a scientific debate. We present here an analytical approach that explores which combination of hypotheses on the mechanism of transport and the protonation state of chloroquine are consistent with available equilibrium experimental data. We show that the available experimental data are not, by themselves, sufficient to conclude whether the protein acts as a channel or as a transporter, which explains the origin of their different interpretation by different authors. Interestingly, though, each of the two models is only consistent with a subset of hypotheses on the protonation state of the transported molecule. The combination of these results with a sequence and structure analysis of PfCRT, which strongly suggests that the molecule is a carrier, indicates that the transported species is either or both the mono and di-protonated forms of chloroquine. We believe that our results, besides shedding light on the mechanism of chloroquine resistance in P. falciparum, have implications for the development of novel therapies against resistant malaria strains and demonstrate the usefulness of an approach combining systems biology strategies with structural bioinformatics and experimental data.
Collapse
Affiliation(s)
- Mauro Chinappi
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Allegra Via
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Paolo Marcatili
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Anna Tramontano
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
- Istituto Pasteur, Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
- * E-mail:
| |
Collapse
|
1544
|
A LytM domain dictates the localization of proteins to the mother cell-forespore interface during bacterial endospore formation. J Bacteriol 2010; 193:591-8. [PMID: 21097616 DOI: 10.1128/jb.01270-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large number of proteins are known to reside at specific subcellular locations in bacterial cells. However, the molecular mechanisms by which many of these proteins are anchored at these locations remains unclear. During endospore formation in Bacillus subtilis, several integral membrane proteins are located specifically at the interface of the two adjacent cells of the developing sporangium, the mother cell and forespore. The mother cell membrane protein SpoIIIAH recognizes the cell-cell interface through an interaction with the forespore membrane protein SpoIIQ, and then the other proteins are positioned there by the SpoIIIAH-SpoIIQ complex. In this study, we investigated the molecular mechanisms underlying the formation of the SpoIIIAH-SpoIIQ complex. Using gel filtration chromatography and isothermal titration calorimetry, we measured the binding parameters that characterize the SpoIIIAH-SpoIIQ interaction in vitro. We also demonstrated that the interaction of SpoIIIAH and SpoIIQ is governed by their YscJ and degenerate LytM domains, respectively. Therefore, the LytM domain of SpoIIQ provides the positional cue that dictates the localization of mother cell membrane proteins to the mother cell-forespore interface.
Collapse
|
1545
|
Fleishman SJ, Corn JE, Strauch EM, Whitehead TA, Andre I, Thompson J, Havranek JJ, Das R, Bradley P, Baker D. Rosetta in CAPRI rounds 13-19. Proteins 2010; 78:3212-8. [PMID: 20597089 PMCID: PMC2952713 DOI: 10.1002/prot.22784] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/10/2010] [Accepted: 05/12/2010] [Indexed: 11/08/2022]
Abstract
Modeling the conformational changes that occur on binding of macromolecules is an unsolved challenge. In previous rounds of the Critical Assessment of PRediction of Interactions (CAPRI), it was demonstrated that the Rosetta approach to macromolecular modeling could capture side chain conformational changes on binding with high accuracy. In rounds 13-19 we tested the ability of various backbone remodeling strategies to capture the main-chain conformational changes observed during binding events. These approaches span a wide range of backbone motions, from limited refinement of loops to relieve clashes in homologous docking, through extensive remodeling of loop segments, to large-scale remodeling of RNA. Although the results are encouraging, major improvements in sampling and energy evaluation are clearly required for consistent high accuracy modeling. Analysis of our failures in the CAPRI challenges suggest that conformational sampling at the termini of exposed beta strands is a particularly pressing area for improvement.
Collapse
Affiliation(s)
- Sarel J Fleishman
- Department of Biochemistry, University of WashingtonSeattle, Washington 98195
| | - Jacob E Corn
- Department of Biochemistry, University of WashingtonSeattle, Washington 98195
| | - Eva M Strauch
- Department of Biochemistry, University of WashingtonSeattle, Washington 98195
| | - Tim A Whitehead
- Department of Biochemistry, University of WashingtonSeattle, Washington 98195
| | - Ingemar Andre
- Department of Biochemistry, University of WashingtonSeattle, Washington 98195
| | - James Thompson
- Department of Biochemistry, University of WashingtonSeattle, Washington 98195
- Department of Genome Sciences, University of WashingtonSeattle, Washington 98195
| | - James J Havranek
- Department of Genetics, Washington University School of MedicineSt. Louis, Missouri 63110
| | - Rhiju Das
- Department of Biochemistry, Stanford UniversityStanford, California 94305
| | - Philip Bradley
- Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattle, Washington 98109
| | - David Baker
- Department of Biochemistry, University of WashingtonSeattle, Washington 98195
- Howard Hughes Medical Institute (HHMI)Seattle, Washington 98195
| |
Collapse
|
1546
|
Horst JA, Wang K, Horst OV, Cunningham ML, Samudrala R. Disease risk of missense mutations using structural inference from predicted function. Curr Protein Pept Sci 2010; 11:573-88. [PMID: 20887259 PMCID: PMC3095817 DOI: 10.2174/138920310794109139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 07/27/2010] [Indexed: 12/17/2022]
Abstract
Advancements in sequencing techniques place personalized genomic medicine upon the horizon, bringing along the responsibility of clinicians to understand the likelihood for a mutation to cause disease, and of scientists to separate etiology from nonpathologic variability. Pathogenicity is discernable from patterns of interactions between a missense mutation, the surrounding protein structure, and intermolecular interactions. Physicochemical stability calculations are not accessible without structures, as is the case for the vast majority of human proteins, so diagnostic accuracy remains in infancy. To model the effects of missense mutations on functional stability without structure, we combine novel protein sequence analysis algorithms to discern spatial distributions of sequence, evolutionary, and physicochemical conservation, through a new approach to optimize component selection. Novel components include a combinatory substitution matrix and two heuristic algorithms that detect positions which confer structural support to interaction interfaces. The method reaches 0.91 AUC in ten-fold cross-validation to predict alteration of function for 6,392 in vitro mutations. For clinical utility we trained the method on 7,022 disease associated missense mutations within the Online Mendelian inheritance in man amongst a larger randomized set. In a blinded prospective test to delineate mutations unique to 186 patients with craniosynostosis from those in the 95 highly variant Coriell controls and 1000 age matched controls, we achieved roughly 1/3 sensitivity and perfect specificity. The component algorithms retained during machine learning constitute novel protein sequence analysis techniques to describe environments supporting neutrality or pathology of mutations. This approach to pathogenetics enables new insight into the mechanistic relationship of missense mutations to disease phenotypes in our patients.
Collapse
Affiliation(s)
- Jeremy A. Horst
- Department of Oral Biology, University of Washington, USA
- Department of Oral Medicine, School of Dentistry, University of Washington, USA
- Department of Microbiology School of Medicine, University of Washington, USA
| | - Kai Wang
- Center for Applied Genomics, Children's Hospital of Philadelphia, University of Washington, USA
| | - Orapin V. Horst
- Department of Oral Biology, University of Washington, USA
- Department of Dental Public Health Sciences, University of Washington, USA
- Department of Endodontics, School of Dentistry, University of Washington, USA
| | - Michael L. Cunningham
- Department of Oral Biology, University of Washington, USA
- Department of Pediatrics, School of Medicine, University of Washington, USA
- Craniofacial Clinic, Seattle Children's Hospital 1959 NE Pacific St #357132, Seattle, WA 98195, USA
| | - Ram Samudrala
- Department of Oral Biology, University of Washington, USA
- Department of Microbiology School of Medicine, University of Washington, USA
| |
Collapse
|
1547
|
Chubb D, Jefferys BR, Sternberg MJE, Kelley LA. Sequencing delivers diminishing returns for homology detection: implications for mapping the protein universe. Bioinformatics 2010; 26:2664-71. [PMID: 20843957 DOI: 10.1093/bioinformatics/btq527] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Databases of sequenced genomes are widely used to characterize the structure, function and evolutionary relationships of proteins. The ability to discern such relationships is widely expected to grow as sequencing projects provide novel information, bridging gaps in our map of the protein universe. RESULTS We have plotted our progress in protein sequencing over the last two decades and found that the rate of novel sequence discovery is in a sustained period of decline. Consequently, PSI-BLAST, the most widely used method to detect remote evolutionary relationships, which relies upon the accumulation of novel sequence data, is now showing a plateau in performance. We interpret this trend as signalling our approach to a representative map of the protein universe and discuss its implications.
Collapse
Affiliation(s)
- Daniel Chubb
- Department of Life Science, Imperial College London, London, UK.
| | | | | | | |
Collapse
|
1548
|
Fernández-Tornero C, Böttcher B, Rashid UJ, Steuerwald U, Flörchinger B, Devos DP, Lindner D, Müller CW. Conformational flexibility of RNA polymerase III during transcriptional elongation. EMBO J 2010; 29:3762-72. [PMID: 20967027 DOI: 10.1038/emboj.2010.266] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/27/2010] [Indexed: 01/21/2023] Open
Abstract
RNA polymerase (Pol) III is responsible for the transcription of genes encoding small RNAs, including tRNA, 5S rRNA and U6 RNA. Here, we report the electron cryomicroscopy structures of yeast Pol III at 9.9 Å resolution and its elongation complex at 16.5 Å resolution. Particle sub-classification reveals prominent EM densities for the two Pol III-specific subcomplexes, C31/C82/C34 and C37/C53, that can be interpreted using homology models. While the winged-helix-containing C31/C82/C34 subcomplex initiates transcription from one side of the DNA-binding cleft, the C37/C53 subcomplex accesses the transcription bubble from the opposite side of this cleft. The transcribing Pol III enzyme structure not only shows the complete incoming DNA duplex, but also reveals the exit path of newly synthesized RNA. During transcriptional elongation, the Pol III-specific subcomplexes tightly enclose the incoming DNA duplex, which likely increases processivity and provides structural insights into the conformational switch between Pol III-mediated initiation and elongation.
Collapse
Affiliation(s)
- Carlos Fernández-Tornero
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1549
|
Abstract
Motivation: The challenge of template-based modeling lies in the recognition of correct templates and generation of accurate sequence-template alignments. Homologous information has proved to be very powerful in detecting remote homologs, as demonstrated by the state-of-the-art profile-based method HHpred. However, HHpred does not fare well when proteins under consideration are low-homology. A protein is low-homology if we cannot obtain sufficient amount of homologous information for it from existing protein sequence databases. Results: We present a profile-entropy dependent scoring function for low-homology protein threading. This method will model correlation among various protein features and determine their relative importance according to the amount of homologous information available. When proteins under consideration are low-homology, our method will rely more on structure information; otherwise, homologous information. Experimental results indicate that our threading method greatly outperforms the best profile-based method HHpred and all the top CASP8 servers on low-homology proteins. Tested on the CASP8 hard targets, our threading method is also better than all the top CASP8 servers but slightly worse than Zhang-Server. This is significant considering that Zhang-Server and other top CASP8 servers use a combination of multiple structure-prediction techniques including consensus method, multiple-template modeling, template-free modeling and model refinement while our method is a classical single-template-based threading method without any post-threading refinement. Contact:jinboxu@gmail.com
Collapse
Affiliation(s)
- Jian Peng
- Toyota Technological Institute at Chicago, IL 60637, USA
| | | |
Collapse
|
1550
|
de Groot R, Lane DA, Crawley JTB. The ADAMTS13 metalloprotease domain: roles of subsites in enzyme activity and specificity. Blood 2010; 116:3064-72. [PMID: 20647566 PMCID: PMC2974611 DOI: 10.1182/blood-2009-12-258780] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 07/15/2010] [Indexed: 11/20/2022] Open
Abstract
ADAMTS13 modulates von Willebrand factor (VWF) platelet-tethering function by proteolysis of the Tyr1605-Met1606 bond in the VWF A2 domain. To examine the role of the metalloprotease domain of ADAMTS13 in scissile bond specificity, we identified 3 variable regions (VR1, -2, and -3) in the ADAMTS family metalloprotease domain that flank the active site, which might be important for specificity. Eight composite sequence swaps (to residues in ADAMTS1 or ADAMTS2) and 18 single-point mutants were generated in these VRs and expressed. Swapping VR1 (E184-R193) of ADAMTS13 with that of ADAMTS1 or ADAMTS2 abolished/severely impaired ADAMTS13 function. Kinetic analysis of VR1 point mutants using VWF115 as a short substrate revealed reduced proteolytic function (k(cat)/K(m) reduced by 2- to 10-fold) as a result of D187A, R190A, and R193A substitutions. Analysis of VR2 (F216-V220) revealed a minor importance of this region. Mutants of VR3 (G236-A261) proteolysed wild-type VWF115 normally. However, using either short or full-length VWF substrates containing the P1' M1606A mutation, we identified residues within VR3 (D252-P256) that influence P1' amino acid specificity, we hypothesize, by shaping the S1' pocket. It is concluded that 2 subsites, D187-R193 and D252-P256, in the metalloprotease domain play an important role in cleavage efficiency and site specificity.
Collapse
Affiliation(s)
- Rens de Groot
- Department of Haematology, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom.
| | | | | |
Collapse
|